763 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			763 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Loops should be simplified before this analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <numeric>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::bfi_detail;
 | 
						|
 | 
						|
#define DEBUG_TYPE "block-freq"
 | 
						|
 | 
						|
ScaledNumber<uint64_t> BlockMass::toScaled() const {
 | 
						|
  if (isFull())
 | 
						|
    return ScaledNumber<uint64_t>(1, 0);
 | 
						|
  return ScaledNumber<uint64_t>(getMass() + 1, -64);
 | 
						|
}
 | 
						|
 | 
						|
void BlockMass::dump() const { print(dbgs()); }
 | 
						|
 | 
						|
static char getHexDigit(int N) {
 | 
						|
  assert(N < 16);
 | 
						|
  if (N < 10)
 | 
						|
    return '0' + N;
 | 
						|
  return 'a' + N - 10;
 | 
						|
}
 | 
						|
raw_ostream &BlockMass::print(raw_ostream &OS) const {
 | 
						|
  for (int Digits = 0; Digits < 16; ++Digits)
 | 
						|
    OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
 | 
						|
typedef BlockFrequencyInfoImplBase::Distribution Distribution;
 | 
						|
typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
 | 
						|
typedef BlockFrequencyInfoImplBase::Scaled64 Scaled64;
 | 
						|
typedef BlockFrequencyInfoImplBase::LoopData LoopData;
 | 
						|
typedef BlockFrequencyInfoImplBase::Weight Weight;
 | 
						|
typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
 | 
						|
 | 
						|
/// \brief Dithering mass distributer.
 | 
						|
///
 | 
						|
/// This class splits up a single mass into portions by weight, dithering to
 | 
						|
/// spread out error.  No mass is lost.  The dithering precision depends on the
 | 
						|
/// precision of the product of \a BlockMass and \a BranchProbability.
 | 
						|
///
 | 
						|
/// The distribution algorithm follows.
 | 
						|
///
 | 
						|
///  1. Initialize by saving the sum of the weights in \a RemWeight and the
 | 
						|
///     mass to distribute in \a RemMass.
 | 
						|
///
 | 
						|
///  2. For each portion:
 | 
						|
///
 | 
						|
///      1. Construct a branch probability, P, as the portion's weight divided
 | 
						|
///         by the current value of \a RemWeight.
 | 
						|
///      2. Calculate the portion's mass as \a RemMass times P.
 | 
						|
///      3. Update \a RemWeight and \a RemMass at each portion by subtracting
 | 
						|
///         the current portion's weight and mass.
 | 
						|
struct DitheringDistributer {
 | 
						|
  uint32_t RemWeight;
 | 
						|
  BlockMass RemMass;
 | 
						|
 | 
						|
  DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
 | 
						|
 | 
						|
  BlockMass takeMass(uint32_t Weight);
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace
 | 
						|
 | 
						|
DitheringDistributer::DitheringDistributer(Distribution &Dist,
 | 
						|
                                           const BlockMass &Mass) {
 | 
						|
  Dist.normalize();
 | 
						|
  RemWeight = Dist.Total;
 | 
						|
  RemMass = Mass;
 | 
						|
}
 | 
						|
 | 
						|
BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
 | 
						|
  assert(Weight && "invalid weight");
 | 
						|
  assert(Weight <= RemWeight);
 | 
						|
  BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
 | 
						|
 | 
						|
  // Decrement totals (dither).
 | 
						|
  RemWeight -= Weight;
 | 
						|
  RemMass -= Mass;
 | 
						|
  return Mass;
 | 
						|
}
 | 
						|
 | 
						|
void Distribution::add(const BlockNode &Node, uint64_t Amount,
 | 
						|
                       Weight::DistType Type) {
 | 
						|
  assert(Amount && "invalid weight of 0");
 | 
						|
  uint64_t NewTotal = Total + Amount;
 | 
						|
 | 
						|
  // Check for overflow.  It should be impossible to overflow twice.
 | 
						|
  bool IsOverflow = NewTotal < Total;
 | 
						|
  assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
 | 
						|
  DidOverflow |= IsOverflow;
 | 
						|
 | 
						|
  // Update the total.
 | 
						|
  Total = NewTotal;
 | 
						|
 | 
						|
  // Save the weight.
 | 
						|
  Weights.push_back(Weight(Type, Node, Amount));
 | 
						|
}
 | 
						|
 | 
						|
static void combineWeight(Weight &W, const Weight &OtherW) {
 | 
						|
  assert(OtherW.TargetNode.isValid());
 | 
						|
  if (!W.Amount) {
 | 
						|
    W = OtherW;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  assert(W.Type == OtherW.Type);
 | 
						|
  assert(W.TargetNode == OtherW.TargetNode);
 | 
						|
  assert(OtherW.Amount && "Expected non-zero weight");
 | 
						|
  if (W.Amount > W.Amount + OtherW.Amount)
 | 
						|
    // Saturate on overflow.
 | 
						|
    W.Amount = UINT64_MAX;
 | 
						|
  else
 | 
						|
    W.Amount += OtherW.Amount;
 | 
						|
}
 | 
						|
static void combineWeightsBySorting(WeightList &Weights) {
 | 
						|
  // Sort so edges to the same node are adjacent.
 | 
						|
  std::sort(Weights.begin(), Weights.end(),
 | 
						|
            [](const Weight &L,
 | 
						|
               const Weight &R) { return L.TargetNode < R.TargetNode; });
 | 
						|
 | 
						|
  // Combine adjacent edges.
 | 
						|
  WeightList::iterator O = Weights.begin();
 | 
						|
  for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
 | 
						|
       ++O, (I = L)) {
 | 
						|
    *O = *I;
 | 
						|
 | 
						|
    // Find the adjacent weights to the same node.
 | 
						|
    for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
 | 
						|
      combineWeight(*O, *L);
 | 
						|
  }
 | 
						|
 | 
						|
  // Erase extra entries.
 | 
						|
  Weights.erase(O, Weights.end());
 | 
						|
  return;
 | 
						|
}
 | 
						|
static void combineWeightsByHashing(WeightList &Weights) {
 | 
						|
  // Collect weights into a DenseMap.
 | 
						|
  typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
 | 
						|
  HashTable Combined(NextPowerOf2(2 * Weights.size()));
 | 
						|
  for (const Weight &W : Weights)
 | 
						|
    combineWeight(Combined[W.TargetNode.Index], W);
 | 
						|
 | 
						|
  // Check whether anything changed.
 | 
						|
  if (Weights.size() == Combined.size())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Fill in the new weights.
 | 
						|
  Weights.clear();
 | 
						|
  Weights.reserve(Combined.size());
 | 
						|
  for (const auto &I : Combined)
 | 
						|
    Weights.push_back(I.second);
 | 
						|
}
 | 
						|
static void combineWeights(WeightList &Weights) {
 | 
						|
  // Use a hash table for many successors to keep this linear.
 | 
						|
  if (Weights.size() > 128) {
 | 
						|
    combineWeightsByHashing(Weights);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  combineWeightsBySorting(Weights);
 | 
						|
}
 | 
						|
static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
 | 
						|
  assert(Shift >= 0);
 | 
						|
  assert(Shift < 64);
 | 
						|
  if (!Shift)
 | 
						|
    return N;
 | 
						|
  return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
 | 
						|
}
 | 
						|
void Distribution::normalize() {
 | 
						|
  // Early exit for termination nodes.
 | 
						|
  if (Weights.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Only bother if there are multiple successors.
 | 
						|
  if (Weights.size() > 1)
 | 
						|
    combineWeights(Weights);
 | 
						|
 | 
						|
  // Early exit when combined into a single successor.
 | 
						|
  if (Weights.size() == 1) {
 | 
						|
    Total = 1;
 | 
						|
    Weights.front().Amount = 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine how much to shift right so that the total fits into 32-bits.
 | 
						|
  //
 | 
						|
  // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1
 | 
						|
  // for each weight can cause a 32-bit overflow.
 | 
						|
  int Shift = 0;
 | 
						|
  if (DidOverflow)
 | 
						|
    Shift = 33;
 | 
						|
  else if (Total > UINT32_MAX)
 | 
						|
    Shift = 33 - countLeadingZeros(Total);
 | 
						|
 | 
						|
  // Early exit if nothing needs to be scaled.
 | 
						|
  if (!Shift) {
 | 
						|
    // If we didn't overflow then combineWeights() shouldn't have changed the
 | 
						|
    // sum of the weights, but let's double-check.
 | 
						|
    assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
 | 
						|
                                    [](uint64_t Sum, const Weight &W) {
 | 
						|
                      return Sum + W.Amount;
 | 
						|
                    }) &&
 | 
						|
           "Expected total to be correct");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Recompute the total through accumulation (rather than shifting it) so that
 | 
						|
  // it's accurate after shifting and any changes combineWeights() made above.
 | 
						|
  Total = 0;
 | 
						|
 | 
						|
  // Sum the weights to each node and shift right if necessary.
 | 
						|
  for (Weight &W : Weights) {
 | 
						|
    // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we
 | 
						|
    // can round here without concern about overflow.
 | 
						|
    assert(W.TargetNode.isValid());
 | 
						|
    W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
 | 
						|
    assert(W.Amount <= UINT32_MAX);
 | 
						|
 | 
						|
    // Update the total.
 | 
						|
    Total += W.Amount;
 | 
						|
  }
 | 
						|
  assert(Total <= UINT32_MAX);
 | 
						|
}
 | 
						|
 | 
						|
void BlockFrequencyInfoImplBase::clear() {
 | 
						|
  // Swap with a default-constructed std::vector, since std::vector<>::clear()
 | 
						|
  // does not actually clear heap storage.
 | 
						|
  std::vector<FrequencyData>().swap(Freqs);
 | 
						|
  std::vector<WorkingData>().swap(Working);
 | 
						|
  Loops.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Clear all memory not needed downstream.
 | 
						|
///
 | 
						|
/// Releases all memory not used downstream.  In particular, saves Freqs.
 | 
						|
static void cleanup(BlockFrequencyInfoImplBase &BFI) {
 | 
						|
  std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
 | 
						|
  BFI.clear();
 | 
						|
  BFI.Freqs = std::move(SavedFreqs);
 | 
						|
}
 | 
						|
 | 
						|
bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
 | 
						|
                                           const LoopData *OuterLoop,
 | 
						|
                                           const BlockNode &Pred,
 | 
						|
                                           const BlockNode &Succ,
 | 
						|
                                           uint64_t Weight) {
 | 
						|
  if (!Weight)
 | 
						|
    Weight = 1;
 | 
						|
 | 
						|
  auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
 | 
						|
    return OuterLoop && OuterLoop->isHeader(Node);
 | 
						|
  };
 | 
						|
 | 
						|
  BlockNode Resolved = Working[Succ.Index].getResolvedNode();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  auto debugSuccessor = [&](const char *Type) {
 | 
						|
    dbgs() << "  =>"
 | 
						|
           << " [" << Type << "] weight = " << Weight;
 | 
						|
    if (!isLoopHeader(Resolved))
 | 
						|
      dbgs() << ", succ = " << getBlockName(Succ);
 | 
						|
    if (Resolved != Succ)
 | 
						|
      dbgs() << ", resolved = " << getBlockName(Resolved);
 | 
						|
    dbgs() << "\n";
 | 
						|
  };
 | 
						|
  (void)debugSuccessor;
 | 
						|
#endif
 | 
						|
 | 
						|
  if (isLoopHeader(Resolved)) {
 | 
						|
    DEBUG(debugSuccessor("backedge"));
 | 
						|
    Dist.addBackedge(Resolved, Weight);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
 | 
						|
    DEBUG(debugSuccessor("  exit  "));
 | 
						|
    Dist.addExit(Resolved, Weight);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Resolved < Pred) {
 | 
						|
    if (!isLoopHeader(Pred)) {
 | 
						|
      // If OuterLoop is an irreducible loop, we can't actually handle this.
 | 
						|
      assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
 | 
						|
             "unhandled irreducible control flow");
 | 
						|
 | 
						|
      // Irreducible backedge.  Abort.
 | 
						|
      DEBUG(debugSuccessor("abort!!!"));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If "Pred" is a loop header, then this isn't really a backedge; rather,
 | 
						|
    // OuterLoop must be irreducible.  These false backedges can come only from
 | 
						|
    // secondary loop headers.
 | 
						|
    assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
 | 
						|
           "unhandled irreducible control flow");
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(debugSuccessor(" local  "));
 | 
						|
  Dist.addLocal(Resolved, Weight);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
 | 
						|
    const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
 | 
						|
  // Copy the exit map into Dist.
 | 
						|
  for (const auto &I : Loop.Exits)
 | 
						|
    if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
 | 
						|
                   I.second.getMass()))
 | 
						|
      // Irreducible backedge.
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Compute the loop scale for a loop.
 | 
						|
void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
 | 
						|
  // Compute loop scale.
 | 
						|
  DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
 | 
						|
 | 
						|
  // Infinite loops need special handling. If we give the back edge an infinite
 | 
						|
  // mass, they may saturate all the other scales in the function down to 1,
 | 
						|
  // making all the other region temperatures look exactly the same. Choose an
 | 
						|
  // arbitrary scale to avoid these issues.
 | 
						|
  //
 | 
						|
  // FIXME: An alternate way would be to select a symbolic scale which is later
 | 
						|
  // replaced to be the maximum of all computed scales plus 1. This would
 | 
						|
  // appropriately describe the loop as having a large scale, without skewing
 | 
						|
  // the final frequency computation.
 | 
						|
  const Scaled64 InifiniteLoopScale(1, 12);
 | 
						|
 | 
						|
  // LoopScale == 1 / ExitMass
 | 
						|
  // ExitMass == HeadMass - BackedgeMass
 | 
						|
  BlockMass TotalBackedgeMass;
 | 
						|
  for (auto &Mass : Loop.BackedgeMass)
 | 
						|
    TotalBackedgeMass += Mass;
 | 
						|
  BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
 | 
						|
 | 
						|
  // Block scale stores the inverse of the scale. If this is an infinite loop,
 | 
						|
  // its exit mass will be zero. In this case, use an arbitrary scale for the
 | 
						|
  // loop scale.
 | 
						|
  Loop.Scale =
 | 
						|
      ExitMass.isEmpty() ? InifiniteLoopScale : ExitMass.toScaled().inverse();
 | 
						|
 | 
						|
  DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
 | 
						|
               << " - " << TotalBackedgeMass << ")\n"
 | 
						|
               << " - scale = " << Loop.Scale << "\n");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Package up a loop.
 | 
						|
void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
 | 
						|
  DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
 | 
						|
 | 
						|
  // Clear the subloop exits to prevent quadratic memory usage.
 | 
						|
  for (const BlockNode &M : Loop.Nodes) {
 | 
						|
    if (auto *Loop = Working[M.Index].getPackagedLoop())
 | 
						|
      Loop->Exits.clear();
 | 
						|
    DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
 | 
						|
  }
 | 
						|
  Loop.IsPackaged = true;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
 | 
						|
                        const DitheringDistributer &D, const BlockNode &T,
 | 
						|
                        const BlockMass &M, const char *Desc) {
 | 
						|
  dbgs() << "  => assign " << M << " (" << D.RemMass << ")";
 | 
						|
  if (Desc)
 | 
						|
    dbgs() << " [" << Desc << "]";
 | 
						|
  if (T.isValid())
 | 
						|
    dbgs() << " to " << BFI.getBlockName(T);
 | 
						|
  dbgs() << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
 | 
						|
                                                LoopData *OuterLoop,
 | 
						|
                                                Distribution &Dist) {
 | 
						|
  BlockMass Mass = Working[Source.Index].getMass();
 | 
						|
  DEBUG(dbgs() << "  => mass:  " << Mass << "\n");
 | 
						|
 | 
						|
  // Distribute mass to successors as laid out in Dist.
 | 
						|
  DitheringDistributer D(Dist, Mass);
 | 
						|
 | 
						|
  for (const Weight &W : Dist.Weights) {
 | 
						|
    // Check for a local edge (non-backedge and non-exit).
 | 
						|
    BlockMass Taken = D.takeMass(W.Amount);
 | 
						|
    if (W.Type == Weight::Local) {
 | 
						|
      Working[W.TargetNode.Index].getMass() += Taken;
 | 
						|
      DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Backedges and exits only make sense if we're processing a loop.
 | 
						|
    assert(OuterLoop && "backedge or exit outside of loop");
 | 
						|
 | 
						|
    // Check for a backedge.
 | 
						|
    if (W.Type == Weight::Backedge) {
 | 
						|
      OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
 | 
						|
      DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // This must be an exit.
 | 
						|
    assert(W.Type == Weight::Exit);
 | 
						|
    OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
 | 
						|
    DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
 | 
						|
                                     const Scaled64 &Min, const Scaled64 &Max) {
 | 
						|
  // Scale the Factor to a size that creates integers.  Ideally, integers would
 | 
						|
  // be scaled so that Max == UINT64_MAX so that they can be best
 | 
						|
  // differentiated.  However, in the presence of large frequency values, small
 | 
						|
  // frequencies are scaled down to 1, making it impossible to differentiate
 | 
						|
  // small, unequal numbers. When the spread between Min and Max frequencies
 | 
						|
  // fits well within MaxBits, we make the scale be at least 8.
 | 
						|
  const unsigned MaxBits = 64;
 | 
						|
  const unsigned SpreadBits = (Max / Min).lg();
 | 
						|
  Scaled64 ScalingFactor;
 | 
						|
  if (SpreadBits <= MaxBits - 3) {
 | 
						|
    // If the values are small enough, make the scaling factor at least 8 to
 | 
						|
    // allow distinguishing small values.
 | 
						|
    ScalingFactor = Min.inverse();
 | 
						|
    ScalingFactor <<= 3;
 | 
						|
  } else {
 | 
						|
    // If the values need more than MaxBits to be represented, saturate small
 | 
						|
    // frequency values down to 1 by using a scaling factor that benefits large
 | 
						|
    // frequency values.
 | 
						|
    ScalingFactor = Scaled64(1, MaxBits) / Max;
 | 
						|
  }
 | 
						|
 | 
						|
  // Translate the floats to integers.
 | 
						|
  DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
 | 
						|
               << ", factor = " << ScalingFactor << "\n");
 | 
						|
  for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
 | 
						|
    Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
 | 
						|
    BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
 | 
						|
    DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
 | 
						|
                 << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
 | 
						|
                 << ", int = " << BFI.Freqs[Index].Integer << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Unwrap a loop package.
 | 
						|
///
 | 
						|
/// Visits all the members of a loop, adjusting their BlockData according to
 | 
						|
/// the loop's pseudo-node.
 | 
						|
static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
 | 
						|
  DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
 | 
						|
               << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
 | 
						|
               << "\n");
 | 
						|
  Loop.Scale *= Loop.Mass.toScaled();
 | 
						|
  Loop.IsPackaged = false;
 | 
						|
  DEBUG(dbgs() << "  => combined-scale = " << Loop.Scale << "\n");
 | 
						|
 | 
						|
  // Propagate the head scale through the loop.  Since members are visited in
 | 
						|
  // RPO, the head scale will be updated by the loop scale first, and then the
 | 
						|
  // final head scale will be used for updated the rest of the members.
 | 
						|
  for (const BlockNode &N : Loop.Nodes) {
 | 
						|
    const auto &Working = BFI.Working[N.Index];
 | 
						|
    Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
 | 
						|
                                       : BFI.Freqs[N.Index].Scaled;
 | 
						|
    Scaled64 New = Loop.Scale * F;
 | 
						|
    DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New
 | 
						|
                 << "\n");
 | 
						|
    F = New;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BlockFrequencyInfoImplBase::unwrapLoops() {
 | 
						|
  // Set initial frequencies from loop-local masses.
 | 
						|
  for (size_t Index = 0; Index < Working.size(); ++Index)
 | 
						|
    Freqs[Index].Scaled = Working[Index].Mass.toScaled();
 | 
						|
 | 
						|
  for (LoopData &Loop : Loops)
 | 
						|
    unwrapLoop(*this, Loop);
 | 
						|
}
 | 
						|
 | 
						|
void BlockFrequencyInfoImplBase::finalizeMetrics() {
 | 
						|
  // Unwrap loop packages in reverse post-order, tracking min and max
 | 
						|
  // frequencies.
 | 
						|
  auto Min = Scaled64::getLargest();
 | 
						|
  auto Max = Scaled64::getZero();
 | 
						|
  for (size_t Index = 0; Index < Working.size(); ++Index) {
 | 
						|
    // Update min/max scale.
 | 
						|
    Min = std::min(Min, Freqs[Index].Scaled);
 | 
						|
    Max = std::max(Max, Freqs[Index].Scaled);
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert to integers.
 | 
						|
  convertFloatingToInteger(*this, Min, Max);
 | 
						|
 | 
						|
  // Clean up data structures.
 | 
						|
  cleanup(*this);
 | 
						|
 | 
						|
  // Print out the final stats.
 | 
						|
  DEBUG(dump());
 | 
						|
}
 | 
						|
 | 
						|
BlockFrequency
 | 
						|
BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
 | 
						|
  if (!Node.isValid())
 | 
						|
    return 0;
 | 
						|
  return Freqs[Node.Index].Integer;
 | 
						|
}
 | 
						|
Scaled64
 | 
						|
BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
 | 
						|
  if (!Node.isValid())
 | 
						|
    return Scaled64::getZero();
 | 
						|
  return Freqs[Node.Index].Scaled;
 | 
						|
}
 | 
						|
 | 
						|
std::string
 | 
						|
BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
 | 
						|
  return std::string();
 | 
						|
}
 | 
						|
std::string
 | 
						|
BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
 | 
						|
  return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &
 | 
						|
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
 | 
						|
                                           const BlockNode &Node) const {
 | 
						|
  return OS << getFloatingBlockFreq(Node);
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &
 | 
						|
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
 | 
						|
                                           const BlockFrequency &Freq) const {
 | 
						|
  Scaled64 Block(Freq.getFrequency(), 0);
 | 
						|
  Scaled64 Entry(getEntryFreq(), 0);
 | 
						|
 | 
						|
  return OS << Block / Entry;
 | 
						|
}
 | 
						|
 | 
						|
void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
 | 
						|
  Start = OuterLoop.getHeader();
 | 
						|
  Nodes.reserve(OuterLoop.Nodes.size());
 | 
						|
  for (auto N : OuterLoop.Nodes)
 | 
						|
    addNode(N);
 | 
						|
  indexNodes();
 | 
						|
}
 | 
						|
void IrreducibleGraph::addNodesInFunction() {
 | 
						|
  Start = 0;
 | 
						|
  for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
 | 
						|
    if (!BFI.Working[Index].isPackaged())
 | 
						|
      addNode(Index);
 | 
						|
  indexNodes();
 | 
						|
}
 | 
						|
void IrreducibleGraph::indexNodes() {
 | 
						|
  for (auto &I : Nodes)
 | 
						|
    Lookup[I.Node.Index] = &I;
 | 
						|
}
 | 
						|
void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
 | 
						|
                               const BFIBase::LoopData *OuterLoop) {
 | 
						|
  if (OuterLoop && OuterLoop->isHeader(Succ))
 | 
						|
    return;
 | 
						|
  auto L = Lookup.find(Succ.Index);
 | 
						|
  if (L == Lookup.end())
 | 
						|
    return;
 | 
						|
  IrrNode &SuccIrr = *L->second;
 | 
						|
  Irr.Edges.push_back(&SuccIrr);
 | 
						|
  SuccIrr.Edges.push_front(&Irr);
 | 
						|
  ++SuccIrr.NumIn;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template <> struct GraphTraits<IrreducibleGraph> {
 | 
						|
  typedef bfi_detail::IrreducibleGraph GraphT;
 | 
						|
 | 
						|
  typedef const GraphT::IrrNode NodeType;
 | 
						|
  typedef GraphT::IrrNode::iterator ChildIteratorType;
 | 
						|
 | 
						|
  static const NodeType *getEntryNode(const GraphT &G) {
 | 
						|
    return G.StartIrr;
 | 
						|
  }
 | 
						|
  static ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); }
 | 
						|
  static ChildIteratorType child_end(NodeType *N) { return N->succ_end(); }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Find extra irreducible headers.
 | 
						|
///
 | 
						|
/// Find entry blocks and other blocks with backedges, which exist when \c G
 | 
						|
/// contains irreducible sub-SCCs.
 | 
						|
static void findIrreducibleHeaders(
 | 
						|
    const BlockFrequencyInfoImplBase &BFI,
 | 
						|
    const IrreducibleGraph &G,
 | 
						|
    const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
 | 
						|
    LoopData::NodeList &Headers, LoopData::NodeList &Others) {
 | 
						|
  // Map from nodes in the SCC to whether it's an entry block.
 | 
						|
  SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
 | 
						|
 | 
						|
  // InSCC also acts the set of nodes in the graph.  Seed it.
 | 
						|
  for (const auto *I : SCC)
 | 
						|
    InSCC[I] = false;
 | 
						|
 | 
						|
  for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
 | 
						|
    auto &Irr = *I->first;
 | 
						|
    for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
 | 
						|
      if (InSCC.count(P))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // This is an entry block.
 | 
						|
      I->second = true;
 | 
						|
      Headers.push_back(Irr.Node);
 | 
						|
      DEBUG(dbgs() << "  => entry = " << BFI.getBlockName(Irr.Node) << "\n");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(Headers.size() >= 2 &&
 | 
						|
         "Expected irreducible CFG; -loop-info is likely invalid");
 | 
						|
  if (Headers.size() == InSCC.size()) {
 | 
						|
    // Every block is a header.
 | 
						|
    std::sort(Headers.begin(), Headers.end());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for extra headers from irreducible sub-SCCs.
 | 
						|
  for (const auto &I : InSCC) {
 | 
						|
    // Entry blocks are already headers.
 | 
						|
    if (I.second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto &Irr = *I.first;
 | 
						|
    for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
 | 
						|
      // Skip forward edges.
 | 
						|
      if (P->Node < Irr.Node)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Skip predecessors from entry blocks.  These can have inverted
 | 
						|
      // ordering.
 | 
						|
      if (InSCC.lookup(P))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Store the extra header.
 | 
						|
      Headers.push_back(Irr.Node);
 | 
						|
      DEBUG(dbgs() << "  => extra = " << BFI.getBlockName(Irr.Node) << "\n");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (Headers.back() == Irr.Node)
 | 
						|
      // Added this as a header.
 | 
						|
      continue;
 | 
						|
 | 
						|
    // This is not a header.
 | 
						|
    Others.push_back(Irr.Node);
 | 
						|
    DEBUG(dbgs() << "  => other = " << BFI.getBlockName(Irr.Node) << "\n");
 | 
						|
  }
 | 
						|
  std::sort(Headers.begin(), Headers.end());
 | 
						|
  std::sort(Others.begin(), Others.end());
 | 
						|
}
 | 
						|
 | 
						|
static void createIrreducibleLoop(
 | 
						|
    BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
 | 
						|
    LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
 | 
						|
    const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
 | 
						|
  // Translate the SCC into RPO.
 | 
						|
  DEBUG(dbgs() << " - found-scc\n");
 | 
						|
 | 
						|
  LoopData::NodeList Headers;
 | 
						|
  LoopData::NodeList Others;
 | 
						|
  findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
 | 
						|
 | 
						|
  auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
 | 
						|
                                Headers.end(), Others.begin(), Others.end());
 | 
						|
 | 
						|
  // Update loop hierarchy.
 | 
						|
  for (const auto &N : Loop->Nodes)
 | 
						|
    if (BFI.Working[N.Index].isLoopHeader())
 | 
						|
      BFI.Working[N.Index].Loop->Parent = &*Loop;
 | 
						|
    else
 | 
						|
      BFI.Working[N.Index].Loop = &*Loop;
 | 
						|
}
 | 
						|
 | 
						|
iterator_range<std::list<LoopData>::iterator>
 | 
						|
BlockFrequencyInfoImplBase::analyzeIrreducible(
 | 
						|
    const IrreducibleGraph &G, LoopData *OuterLoop,
 | 
						|
    std::list<LoopData>::iterator Insert) {
 | 
						|
  assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
 | 
						|
  auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
 | 
						|
 | 
						|
  for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
 | 
						|
    if (I->size() < 2)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Translate the SCC into RPO.
 | 
						|
    createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
 | 
						|
  }
 | 
						|
 | 
						|
  if (OuterLoop)
 | 
						|
    return make_range(std::next(Prev), Insert);
 | 
						|
  return make_range(Loops.begin(), Insert);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
 | 
						|
  OuterLoop.Exits.clear();
 | 
						|
  for (auto &Mass : OuterLoop.BackedgeMass)
 | 
						|
    Mass = BlockMass::getEmpty();
 | 
						|
  auto O = OuterLoop.Nodes.begin() + 1;
 | 
						|
  for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
 | 
						|
    if (!Working[I->Index].isPackaged())
 | 
						|
      *O++ = *I;
 | 
						|
  OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
 | 
						|
}
 | 
						|
 | 
						|
void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
 | 
						|
  assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
 | 
						|
 | 
						|
  // Since the loop has more than one header block, the mass flowing back into
 | 
						|
  // each header will be different. Adjust the mass in each header loop to
 | 
						|
  // reflect the masses flowing through back edges.
 | 
						|
  //
 | 
						|
  // To do this, we distribute the initial mass using the backedge masses
 | 
						|
  // as weights for the distribution.
 | 
						|
  BlockMass LoopMass = BlockMass::getFull();
 | 
						|
  Distribution Dist;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "adjust-loop-header-mass:\n");
 | 
						|
  for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
 | 
						|
    auto &HeaderNode = Loop.Nodes[H];
 | 
						|
    auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
 | 
						|
    DEBUG(dbgs() << " - Add back edge mass for node "
 | 
						|
                 << getBlockName(HeaderNode) << ": " << BackedgeMass << "\n");
 | 
						|
    if (BackedgeMass.getMass() > 0)
 | 
						|
      Dist.addLocal(HeaderNode, BackedgeMass.getMass());
 | 
						|
    else
 | 
						|
      DEBUG(dbgs() << "   Nothing added. Back edge mass is zero\n");
 | 
						|
  }
 | 
						|
 | 
						|
  DitheringDistributer D(Dist, LoopMass);
 | 
						|
 | 
						|
  DEBUG(dbgs() << " Distribute loop mass " << LoopMass
 | 
						|
               << " to headers using above weights\n");
 | 
						|
  for (const Weight &W : Dist.Weights) {
 | 
						|
    BlockMass Taken = D.takeMass(W.Amount);
 | 
						|
    assert(W.Type == Weight::Local && "all weights should be local");
 | 
						|
    Working[W.TargetNode.Index].getMass() = Taken;
 | 
						|
    DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
 | 
						|
  }
 | 
						|
}
 |