520 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			520 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ARMTargetTransformInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Target/CostTable.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "armtti"
 | 
						|
 | 
						|
int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
 unsigned Bits = Ty->getPrimitiveSizeInBits();
 | 
						|
 if (Bits == 0 || Imm.getActiveBits() >= 64)
 | 
						|
   return 4;
 | 
						|
 | 
						|
  int64_t SImmVal = Imm.getSExtValue();
 | 
						|
  uint64_t ZImmVal = Imm.getZExtValue();
 | 
						|
  if (!ST->isThumb()) {
 | 
						|
    if ((SImmVal >= 0 && SImmVal < 65536) ||
 | 
						|
        (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
 | 
						|
        (ARM_AM::getSOImmVal(~ZImmVal) != -1))
 | 
						|
      return 1;
 | 
						|
    return ST->hasV6T2Ops() ? 2 : 3;
 | 
						|
  }
 | 
						|
  if (ST->isThumb2()) {
 | 
						|
    if ((SImmVal >= 0 && SImmVal < 65536) ||
 | 
						|
        (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
 | 
						|
        (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
 | 
						|
      return 1;
 | 
						|
    return ST->hasV6T2Ops() ? 2 : 3;
 | 
						|
  }
 | 
						|
  // Thumb1.
 | 
						|
  if (SImmVal >= 0 && SImmVal < 256)
 | 
						|
    return 1;
 | 
						|
  if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
 | 
						|
    return 2;
 | 
						|
  // Load from constantpool.
 | 
						|
  return 3;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Constants smaller than 256 fit in the immediate field of
 | 
						|
// Thumb1 instructions so we return a zero cost and 1 otherwise.
 | 
						|
int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
 | 
						|
                                      const APInt &Imm, Type *Ty) {
 | 
						|
  if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
 | 
						|
                              Type *Ty) {
 | 
						|
  // Division by a constant can be turned into multiplication, but only if we
 | 
						|
  // know it's constant. So it's not so much that the immediate is cheap (it's
 | 
						|
  // not), but that the alternative is worse.
 | 
						|
  // FIXME: this is probably unneeded with GlobalISel.
 | 
						|
  if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
 | 
						|
       Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
 | 
						|
      Idx == 1)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return getIntImmCost(Imm, Ty);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  // Single to/from double precision conversions.
 | 
						|
  static const CostTblEntry NEONFltDblTbl[] = {
 | 
						|
    // Vector fptrunc/fpext conversions.
 | 
						|
    { ISD::FP_ROUND,   MVT::v2f64, 2 },
 | 
						|
    { ISD::FP_EXTEND,  MVT::v2f32, 2 },
 | 
						|
    { ISD::FP_EXTEND,  MVT::v4f32, 4 }
 | 
						|
  };
 | 
						|
 | 
						|
  if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
 | 
						|
                                          ISD == ISD::FP_EXTEND)) {
 | 
						|
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
 | 
						|
    if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
 | 
						|
      return LT.first * Entry->Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  EVT SrcTy = TLI->getValueType(DL, Src);
 | 
						|
  EVT DstTy = TLI->getValueType(DL, Dst);
 | 
						|
 | 
						|
  if (!SrcTy.isSimple() || !DstTy.isSimple())
 | 
						|
    return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | 
						|
 | 
						|
  // Some arithmetic, load and store operations have specific instructions
 | 
						|
  // to cast up/down their types automatically at no extra cost.
 | 
						|
  // TODO: Get these tables to know at least what the related operations are.
 | 
						|
  static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
 | 
						|
 | 
						|
    // The number of vmovl instructions for the extension.
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
 | 
						|
 | 
						|
    // Operations that we legalize using splitting.
 | 
						|
    { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
 | 
						|
 | 
						|
    // Vector float <-> i32 conversions.
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | 
						|
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
 | 
						|
 | 
						|
    { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
 | 
						|
 | 
						|
    // Vector double <-> i32 conversions.
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | 
						|
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | 
						|
 | 
						|
    { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
 | 
						|
  };
 | 
						|
 | 
						|
  if (SrcTy.isVector() && ST->hasNEON()) {
 | 
						|
    if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
 | 
						|
                                                   DstTy.getSimpleVT(),
 | 
						|
                                                   SrcTy.getSimpleVT()))
 | 
						|
      return Entry->Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scalar float to integer conversions.
 | 
						|
  static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
 | 
						|
    { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
 | 
						|
  };
 | 
						|
  if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
 | 
						|
    if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
 | 
						|
                                                   DstTy.getSimpleVT(),
 | 
						|
                                                   SrcTy.getSimpleVT()))
 | 
						|
      return Entry->Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scalar integer to float conversions.
 | 
						|
  static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
 | 
						|
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
 | 
						|
  };
 | 
						|
 | 
						|
  if (SrcTy.isInteger() && ST->hasNEON()) {
 | 
						|
    if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
 | 
						|
                                                   ISD, DstTy.getSimpleVT(),
 | 
						|
                                                   SrcTy.getSimpleVT()))
 | 
						|
      return Entry->Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scalar integer conversion costs.
 | 
						|
  static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
 | 
						|
    // i16 -> i64 requires two dependent operations.
 | 
						|
    { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
 | 
						|
 | 
						|
    // Truncates on i64 are assumed to be free.
 | 
						|
    { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
 | 
						|
    { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
 | 
						|
    { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
 | 
						|
    { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
 | 
						|
  };
 | 
						|
 | 
						|
  if (SrcTy.isInteger()) {
 | 
						|
    if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
 | 
						|
                                                   DstTy.getSimpleVT(),
 | 
						|
                                                   SrcTy.getSimpleVT()))
 | 
						|
      return Entry->Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  return BaseT::getCastInstrCost(Opcode, Dst, Src);
 | 
						|
}
 | 
						|
 | 
						|
int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
 | 
						|
                                   unsigned Index) {
 | 
						|
  // Penalize inserting into an D-subregister. We end up with a three times
 | 
						|
  // lower estimated throughput on swift.
 | 
						|
  if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
 | 
						|
      ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
 | 
						|
    return 3;
 | 
						|
 | 
						|
  if ((Opcode == Instruction::InsertElement ||
 | 
						|
       Opcode == Instruction::ExtractElement)) {
 | 
						|
    // Cross-class copies are expensive on many microarchitectures,
 | 
						|
    // so assume they are expensive by default.
 | 
						|
    if (ValTy->getVectorElementType()->isIntegerTy())
 | 
						|
      return 3;
 | 
						|
 | 
						|
    // Even if it's not a cross class copy, this likely leads to mixing
 | 
						|
    // of NEON and VFP code and should be therefore penalized.
 | 
						|
    if (ValTy->isVectorTy() &&
 | 
						|
        ValTy->getScalarSizeInBits() <= 32)
 | 
						|
      return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
 | 
						|
  }
 | 
						|
 | 
						|
  return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
 | 
						|
}
 | 
						|
 | 
						|
int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
 | 
						|
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  // On NEON a a vector select gets lowered to vbsl.
 | 
						|
  if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
 | 
						|
    // Lowering of some vector selects is currently far from perfect.
 | 
						|
    static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
 | 
						|
      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
 | 
						|
      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
 | 
						|
      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
 | 
						|
    };
 | 
						|
 | 
						|
    EVT SelCondTy = TLI->getValueType(DL, CondTy);
 | 
						|
    EVT SelValTy = TLI->getValueType(DL, ValTy);
 | 
						|
    if (SelCondTy.isSimple() && SelValTy.isSimple()) {
 | 
						|
      if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
 | 
						|
                                                     SelCondTy.getSimpleVT(),
 | 
						|
                                                     SelValTy.getSimpleVT()))
 | 
						|
        return Entry->Cost;
 | 
						|
    }
 | 
						|
 | 
						|
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
 | 
						|
    return LT.first;
 | 
						|
  }
 | 
						|
 | 
						|
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
 | 
						|
}
 | 
						|
 | 
						|
int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
 | 
						|
  // Address computations in vectorized code with non-consecutive addresses will
 | 
						|
  // likely result in more instructions compared to scalar code where the
 | 
						|
  // computation can more often be merged into the index mode. The resulting
 | 
						|
  // extra micro-ops can significantly decrease throughput.
 | 
						|
  unsigned NumVectorInstToHideOverhead = 10;
 | 
						|
 | 
						|
  if (Ty->isVectorTy() && IsComplex)
 | 
						|
    return NumVectorInstToHideOverhead;
 | 
						|
 | 
						|
  // In many cases the address computation is not merged into the instruction
 | 
						|
  // addressing mode.
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
int ARMTTIImpl::getFPOpCost(Type *Ty) {
 | 
						|
  // Use similar logic that's in ARMISelLowering:
 | 
						|
  // Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access
 | 
						|
  // to VFP.
 | 
						|
 | 
						|
  if (ST->hasVFP2() && !ST->isThumb1Only()) {
 | 
						|
    if (Ty->isFloatTy()) {
 | 
						|
      return TargetTransformInfo::TCC_Basic;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Ty->isDoubleTy()) {
 | 
						|
      return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive :
 | 
						|
        TargetTransformInfo::TCC_Basic;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::TCC_Expensive;
 | 
						|
}
 | 
						|
 | 
						|
int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
 | 
						|
                               Type *SubTp) {
 | 
						|
  // We only handle costs of reverse and alternate shuffles for now.
 | 
						|
  if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
 | 
						|
    return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | 
						|
 | 
						|
  if (Kind == TTI::SK_Reverse) {
 | 
						|
    static const CostTblEntry NEONShuffleTbl[] = {
 | 
						|
        // Reverse shuffle cost one instruction if we are shuffling within a
 | 
						|
        // double word (vrev) or two if we shuffle a quad word (vrev, vext).
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
 | 
						|
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
 | 
						|
 | 
						|
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
 | 
						|
 | 
						|
    if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
 | 
						|
                                            LT.second))
 | 
						|
      return LT.first * Entry->Cost;
 | 
						|
 | 
						|
    return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | 
						|
  }
 | 
						|
  if (Kind == TTI::SK_Alternate) {
 | 
						|
    static const CostTblEntry NEONAltShuffleTbl[] = {
 | 
						|
        // Alt shuffle cost table for ARM. Cost is the number of instructions
 | 
						|
        // required to create the shuffled vector.
 | 
						|
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
 | 
						|
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
 | 
						|
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
 | 
						|
 | 
						|
        {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
 | 
						|
 | 
						|
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
 | 
						|
    if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl,
 | 
						|
                                            ISD::VECTOR_SHUFFLE, LT.second))
 | 
						|
      return LT.first * Entry->Cost;
 | 
						|
    return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | 
						|
  }
 | 
						|
  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
 | 
						|
}
 | 
						|
 | 
						|
int ARMTTIImpl::getArithmeticInstrCost(
 | 
						|
    unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
 | 
						|
    TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
 | 
						|
    TTI::OperandValueProperties Opd2PropInfo) {
 | 
						|
 | 
						|
  int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
 | 
						|
 | 
						|
  const unsigned FunctionCallDivCost = 20;
 | 
						|
  const unsigned ReciprocalDivCost = 10;
 | 
						|
  static const CostTblEntry CostTbl[] = {
 | 
						|
    // Division.
 | 
						|
    // These costs are somewhat random. Choose a cost of 20 to indicate that
 | 
						|
    // vectorizing devision (added function call) is going to be very expensive.
 | 
						|
    // Double registers types.
 | 
						|
    { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
 | 
						|
    { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
 | 
						|
    { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
 | 
						|
    { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
 | 
						|
    { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
 | 
						|
    { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
 | 
						|
    { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
 | 
						|
    { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
 | 
						|
    { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
 | 
						|
    { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
 | 
						|
    { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
 | 
						|
    { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
 | 
						|
    { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
 | 
						|
    { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
 | 
						|
    { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
 | 
						|
    { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
 | 
						|
    // Quad register types.
 | 
						|
    { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
 | 
						|
    { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
 | 
						|
    { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
 | 
						|
    { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
 | 
						|
    { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
 | 
						|
    { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
 | 
						|
    { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
 | 
						|
    { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
 | 
						|
    { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
 | 
						|
    { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
 | 
						|
    { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
 | 
						|
    { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
 | 
						|
    { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
 | 
						|
    { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
 | 
						|
    { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
 | 
						|
    { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
 | 
						|
    // Multiplication.
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasNEON())
 | 
						|
    if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
 | 
						|
      return LT.first * Entry->Cost;
 | 
						|
 | 
						|
  int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
 | 
						|
                                           Opd1PropInfo, Opd2PropInfo);
 | 
						|
 | 
						|
  // This is somewhat of a hack. The problem that we are facing is that SROA
 | 
						|
  // creates a sequence of shift, and, or instructions to construct values.
 | 
						|
  // These sequences are recognized by the ISel and have zero-cost. Not so for
 | 
						|
  // the vectorized code. Because we have support for v2i64 but not i64 those
 | 
						|
  // sequences look particularly beneficial to vectorize.
 | 
						|
  // To work around this we increase the cost of v2i64 operations to make them
 | 
						|
  // seem less beneficial.
 | 
						|
  if (LT.second == MVT::v2i64 &&
 | 
						|
      Op2Info == TargetTransformInfo::OK_UniformConstantValue)
 | 
						|
    Cost += 4;
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | 
						|
                                unsigned AddressSpace) {
 | 
						|
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
 | 
						|
 | 
						|
  if (Src->isVectorTy() && Alignment != 16 &&
 | 
						|
      Src->getVectorElementType()->isDoubleTy()) {
 | 
						|
    // Unaligned loads/stores are extremely inefficient.
 | 
						|
    // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
 | 
						|
    return LT.first * 4;
 | 
						|
  }
 | 
						|
  return LT.first;
 | 
						|
}
 | 
						|
 | 
						|
int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
 | 
						|
                                           unsigned Factor,
 | 
						|
                                           ArrayRef<unsigned> Indices,
 | 
						|
                                           unsigned Alignment,
 | 
						|
                                           unsigned AddressSpace) {
 | 
						|
  assert(Factor >= 2 && "Invalid interleave factor");
 | 
						|
  assert(isa<VectorType>(VecTy) && "Expect a vector type");
 | 
						|
 | 
						|
  // vldN/vstN doesn't support vector types of i64/f64 element.
 | 
						|
  bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
 | 
						|
 | 
						|
  if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) {
 | 
						|
    unsigned NumElts = VecTy->getVectorNumElements();
 | 
						|
    Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
 | 
						|
    unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
 | 
						|
 | 
						|
    // vldN/vstN only support legal vector types of size 64 or 128 in bits.
 | 
						|
    if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
 | 
						|
      return Factor;
 | 
						|
  }
 | 
						|
 | 
						|
  return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | 
						|
                                           Alignment, AddressSpace);
 | 
						|
}
 |