484 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			484 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- HexagonBlockRanges.cpp -------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "hbr"
 | 
						|
 | 
						|
#include "HexagonBlockRanges.h"
 | 
						|
#include "HexagonInstrInfo.h"
 | 
						|
#include "HexagonSubtarget.h"
 | 
						|
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
 | 
						|
#include <map>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const {
 | 
						|
  // If A contains start(), or "this" contains A.start(), then overlap.
 | 
						|
  IndexType S = start(), E = end(), AS = A.start(), AE = A.end();
 | 
						|
  if (AS == S)
 | 
						|
    return true;
 | 
						|
  bool SbAE = (S < AE) || (S == AE && A.TiedEnd);  // S-before-AE.
 | 
						|
  bool ASbE = (AS < E) || (AS == E && TiedEnd);    // AS-before-E.
 | 
						|
  if ((AS < S && SbAE) || (S < AS && ASbE))
 | 
						|
    return true;
 | 
						|
  // Otherwise no overlap.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const {
 | 
						|
  if (start() <= A.start()) {
 | 
						|
    // Treat "None" in the range end as equal to the range start.
 | 
						|
    IndexType E = (end() != IndexType::None) ? end() : start();
 | 
						|
    IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start();
 | 
						|
    if (AE <= E)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) {
 | 
						|
  // Allow merging adjacent ranges.
 | 
						|
  assert(end() == A.start() || overlaps(A));
 | 
						|
  IndexType AS = A.start(), AE = A.end();
 | 
						|
  if (AS < start() || start() == IndexType::None)
 | 
						|
    setStart(AS);
 | 
						|
  if (end() < AE || end() == IndexType::None) {
 | 
						|
    setEnd(AE);
 | 
						|
    TiedEnd = A.TiedEnd;
 | 
						|
  } else {
 | 
						|
    if (end() == AE)
 | 
						|
      TiedEnd |= A.TiedEnd;
 | 
						|
  }
 | 
						|
  if (A.Fixed)
 | 
						|
    Fixed = true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonBlockRanges::RangeList::include(const RangeList &RL) {
 | 
						|
  for (auto &R : RL)
 | 
						|
    if (!is_contained(*this, R))
 | 
						|
      push_back(R);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Merge all overlapping ranges in the list, so that all that remains
 | 
						|
// is a list of disjoint ranges.
 | 
						|
void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) {
 | 
						|
  if (empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  std::sort(begin(), end());
 | 
						|
  iterator Iter = begin();
 | 
						|
 | 
						|
  while (Iter != end()-1) {
 | 
						|
    iterator Next = std::next(Iter);
 | 
						|
    // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start.
 | 
						|
    // This allows merging dead ranges, but is not valid for live ranges.
 | 
						|
    bool Merge = MergeAdjacent && (Iter->end() == Next->start());
 | 
						|
    if (Merge || Iter->overlaps(*Next)) {
 | 
						|
      Iter->merge(*Next);
 | 
						|
      erase(Next);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    ++Iter;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Compute a range A-B and add it to the list.
 | 
						|
void HexagonBlockRanges::RangeList::addsub(const IndexRange &A,
 | 
						|
      const IndexRange &B) {
 | 
						|
  // Exclusion of non-overlapping ranges makes some checks simpler
 | 
						|
  // later in this function.
 | 
						|
  if (!A.overlaps(B)) {
 | 
						|
    // A - B = A.
 | 
						|
    add(A);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  IndexType AS = A.start(), AE = A.end();
 | 
						|
  IndexType BS = B.start(), BE = B.end();
 | 
						|
 | 
						|
  // If AE is None, then A is included in B, since A and B overlap.
 | 
						|
  // The result of subtraction if empty, so just return.
 | 
						|
  if (AE == IndexType::None)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (AS < BS) {
 | 
						|
    // A starts before B.
 | 
						|
    // AE cannot be None since A and B overlap.
 | 
						|
    assert(AE != IndexType::None);
 | 
						|
    // Add the part of A that extends on the "less" side of B.
 | 
						|
    add(AS, BS, A.Fixed, false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BE < AE) {
 | 
						|
    // BE cannot be Exit here.
 | 
						|
    if (BE == IndexType::None)
 | 
						|
      add(BS, AE, A.Fixed, false);
 | 
						|
    else
 | 
						|
      add(BE, AE, A.Fixed, false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Subtract a given range from each element in the list.
 | 
						|
void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) {
 | 
						|
  // Cannot assume that the list is unionized (i.e. contains only non-
 | 
						|
  // overlapping ranges.
 | 
						|
  RangeList T;
 | 
						|
  for (iterator Next, I = begin(); I != end(); I = Next) {
 | 
						|
    IndexRange &Rg = *I;
 | 
						|
    if (Rg.overlaps(Range)) {
 | 
						|
      T.addsub(Rg, Range);
 | 
						|
      Next = this->erase(I);
 | 
						|
    } else {
 | 
						|
      Next = std::next(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  include(T);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B)
 | 
						|
    : Block(B) {
 | 
						|
  IndexType Idx = IndexType::First;
 | 
						|
  First = Idx;
 | 
						|
  for (auto &In : B) {
 | 
						|
    if (In.isDebugValue())
 | 
						|
      continue;
 | 
						|
    assert(getIndex(&In) == IndexType::None && "Instruction already in map");
 | 
						|
    Map.insert(std::make_pair(Idx, &In));
 | 
						|
    ++Idx;
 | 
						|
  }
 | 
						|
  Last = B.empty() ? IndexType::None : unsigned(Idx)-1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const {
 | 
						|
  auto F = Map.find(Idx);
 | 
						|
  return (F != Map.end()) ? F->second : 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex(
 | 
						|
      MachineInstr *MI) const {
 | 
						|
  for (auto &I : Map)
 | 
						|
    if (I.second == MI)
 | 
						|
      return I.first;
 | 
						|
  return IndexType::None;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex(
 | 
						|
      IndexType Idx) const {
 | 
						|
  assert (Idx != IndexType::None);
 | 
						|
  if (Idx == IndexType::Entry)
 | 
						|
    return IndexType::None;
 | 
						|
  if (Idx == IndexType::Exit)
 | 
						|
    return Last;
 | 
						|
  if (Idx == First)
 | 
						|
    return IndexType::Entry;
 | 
						|
  return unsigned(Idx)-1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex(
 | 
						|
      IndexType Idx) const {
 | 
						|
  assert (Idx != IndexType::None);
 | 
						|
  if (Idx == IndexType::Entry)
 | 
						|
    return IndexType::First;
 | 
						|
  if (Idx == IndexType::Exit || Idx == Last)
 | 
						|
    return IndexType::None;
 | 
						|
  return unsigned(Idx)+1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI,
 | 
						|
      MachineInstr *NewMI) {
 | 
						|
  for (auto &I : Map) {
 | 
						|
    if (I.second != OldMI)
 | 
						|
      continue;
 | 
						|
    if (NewMI != nullptr)
 | 
						|
      I.second = NewMI;
 | 
						|
    else
 | 
						|
      Map.erase(I.first);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf)
 | 
						|
  : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()),
 | 
						|
    TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()),
 | 
						|
    Reserved(TRI.getReservedRegs(mf)) {
 | 
						|
  // Consider all non-allocatable registers as reserved.
 | 
						|
  for (auto I = TRI.regclass_begin(), E = TRI.regclass_end(); I != E; ++I) {
 | 
						|
    auto *RC = *I;
 | 
						|
    if (RC->isAllocatable())
 | 
						|
      continue;
 | 
						|
    for (unsigned R : *RC)
 | 
						|
      Reserved[R] = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns(
 | 
						|
      const MachineBasicBlock &B) {
 | 
						|
  RegisterSet LiveIns;
 | 
						|
  for (auto I : B.liveins())
 | 
						|
    if (!Reserved[I.PhysReg])
 | 
						|
      LiveIns.insert({I.PhysReg, 0});
 | 
						|
  return LiveIns;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs(
 | 
						|
      RegisterRef R, const MachineRegisterInfo &MRI,
 | 
						|
      const TargetRegisterInfo &TRI) {
 | 
						|
  RegisterSet SRs;
 | 
						|
 | 
						|
  if (R.Sub != 0) {
 | 
						|
    SRs.insert(R);
 | 
						|
    return SRs;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(R.Reg)) {
 | 
						|
    MCSubRegIterator I(R.Reg, &TRI);
 | 
						|
    if (!I.isValid())
 | 
						|
      SRs.insert({R.Reg, 0});
 | 
						|
    for (; I.isValid(); ++I)
 | 
						|
      SRs.insert({*I, 0});
 | 
						|
  } else {
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(R.Reg));
 | 
						|
    auto &RC = *MRI.getRegClass(R.Reg);
 | 
						|
    unsigned PReg = *RC.begin();
 | 
						|
    MCSubRegIndexIterator I(PReg, &TRI);
 | 
						|
    if (!I.isValid())
 | 
						|
      SRs.insert({R.Reg, 0});
 | 
						|
    for (; I.isValid(); ++I)
 | 
						|
      SRs.insert({R.Reg, I.getSubRegIndex()});
 | 
						|
  }
 | 
						|
  return SRs;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap,
 | 
						|
      RegToRangeMap &LiveMap) {
 | 
						|
  std::map<RegisterRef,IndexType> LastDef, LastUse;
 | 
						|
  RegisterSet LiveOnEntry;
 | 
						|
  MachineBasicBlock &B = IndexMap.getBlock();
 | 
						|
  MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
 | 
						|
 | 
						|
  for (auto R : getLiveIns(B))
 | 
						|
    for (auto S : expandToSubRegs(R, MRI, TRI))
 | 
						|
      LiveOnEntry.insert(S);
 | 
						|
 | 
						|
  for (auto R : LiveOnEntry)
 | 
						|
    LastDef[R] = IndexType::Entry;
 | 
						|
 | 
						|
  auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void {
 | 
						|
    auto LD = LastDef[R], LU = LastUse[R];
 | 
						|
    if (LD == IndexType::None)
 | 
						|
      LD = IndexType::Entry;
 | 
						|
    if (LU == IndexType::None)
 | 
						|
      LU = IndexType::Exit;
 | 
						|
    LiveMap[R].add(LD, LU, false, false);
 | 
						|
    LastUse[R] = LastDef[R] = IndexType::None;
 | 
						|
  };
 | 
						|
 | 
						|
  for (auto &In : B) {
 | 
						|
    if (In.isDebugValue())
 | 
						|
      continue;
 | 
						|
    IndexType Index = IndexMap.getIndex(&In);
 | 
						|
    // Process uses first.
 | 
						|
    for (auto &Op : In.operands()) {
 | 
						|
      if (!Op.isReg() || !Op.isUse() || Op.isUndef())
 | 
						|
        continue;
 | 
						|
      RegisterRef R = { Op.getReg(), Op.getSubReg() };
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg])
 | 
						|
        continue;
 | 
						|
      bool IsKill = Op.isKill();
 | 
						|
      for (auto S : expandToSubRegs(R, MRI, TRI)) {
 | 
						|
        LastUse[S] = Index;
 | 
						|
        if (IsKill)
 | 
						|
          closeRange(S);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Process defs.
 | 
						|
    for (auto &Op : In.operands()) {
 | 
						|
      if (!Op.isReg() || !Op.isDef() || Op.isUndef())
 | 
						|
        continue;
 | 
						|
      RegisterRef R = { Op.getReg(), Op.getSubReg() };
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg])
 | 
						|
        continue;
 | 
						|
      for (auto S : expandToSubRegs(R, MRI, TRI)) {
 | 
						|
        if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None)
 | 
						|
          closeRange(S);
 | 
						|
        LastDef[S] = Index;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect live-on-exit.
 | 
						|
  RegisterSet LiveOnExit;
 | 
						|
  for (auto *SB : B.successors())
 | 
						|
    for (auto R : getLiveIns(*SB))
 | 
						|
      for (auto S : expandToSubRegs(R, MRI, TRI))
 | 
						|
        LiveOnExit.insert(S);
 | 
						|
 | 
						|
  for (auto R : LiveOnExit)
 | 
						|
    LastUse[R] = IndexType::Exit;
 | 
						|
 | 
						|
  // Process remaining registers.
 | 
						|
  RegisterSet Left;
 | 
						|
  for (auto &I : LastUse)
 | 
						|
    if (I.second != IndexType::None)
 | 
						|
      Left.insert(I.first);
 | 
						|
  for (auto &I : LastDef)
 | 
						|
    if (I.second != IndexType::None)
 | 
						|
      Left.insert(I.first);
 | 
						|
  for (auto R : Left)
 | 
						|
    closeRange(R);
 | 
						|
 | 
						|
  // Finalize the live ranges.
 | 
						|
  for (auto &P : LiveMap)
 | 
						|
    P.second.unionize();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap(
 | 
						|
      InstrIndexMap &IndexMap) {
 | 
						|
  RegToRangeMap LiveMap;
 | 
						|
  DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": index map\n" << IndexMap << '\n');
 | 
						|
  computeInitialLiveRanges(IndexMap, LiveMap);
 | 
						|
  DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": live map\n"
 | 
						|
               << PrintRangeMap(LiveMap, TRI) << '\n');
 | 
						|
  return LiveMap;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap(
 | 
						|
      InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) {
 | 
						|
  RegToRangeMap DeadMap;
 | 
						|
 | 
						|
  auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void {
 | 
						|
    auto F = LiveMap.find(R);
 | 
						|
    if (F == LiveMap.end() || F->second.empty()) {
 | 
						|
      DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    RangeList &RL = F->second;
 | 
						|
    RangeList::iterator A = RL.begin(), Z = RL.end()-1;
 | 
						|
 | 
						|
    // Try to create the initial range.
 | 
						|
    if (A->start() != IndexType::Entry) {
 | 
						|
      IndexType DE = IndexMap.getPrevIndex(A->start());
 | 
						|
      if (DE != IndexType::Entry)
 | 
						|
        DeadMap[R].add(IndexType::Entry, DE, false, false);
 | 
						|
    }
 | 
						|
 | 
						|
    while (A != Z) {
 | 
						|
      // Creating a dead range that follows A.  Pay attention to empty
 | 
						|
      // ranges (i.e. those ending with "None").
 | 
						|
      IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end();
 | 
						|
      IndexType DS = IndexMap.getNextIndex(AE);
 | 
						|
      ++A;
 | 
						|
      IndexType DE = IndexMap.getPrevIndex(A->start());
 | 
						|
      if (DS < DE)
 | 
						|
        DeadMap[R].add(DS, DE, false, false);
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to create the final range.
 | 
						|
    if (Z->end() != IndexType::Exit) {
 | 
						|
      IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end();
 | 
						|
      IndexType DS = IndexMap.getNextIndex(ZE);
 | 
						|
      if (DS < IndexType::Exit)
 | 
						|
        DeadMap[R].add(DS, IndexType::Exit, false, false);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  MachineFunction &MF = *IndexMap.getBlock().getParent();
 | 
						|
  auto &MRI = MF.getRegInfo();
 | 
						|
  unsigned NumRegs = TRI.getNumRegs();
 | 
						|
  BitVector Visited(NumRegs);
 | 
						|
  for (unsigned R = 1; R < NumRegs; ++R) {
 | 
						|
    for (auto S : expandToSubRegs({R,0}, MRI, TRI)) {
 | 
						|
      if (Reserved[S.Reg] || Visited[S.Reg])
 | 
						|
        continue;
 | 
						|
      addDeadRanges(S);
 | 
						|
      Visited[S.Reg] = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (auto &P : LiveMap)
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(P.first.Reg))
 | 
						|
      addDeadRanges(P.first);
 | 
						|
 | 
						|
  DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": dead map\n"
 | 
						|
               << PrintRangeMap(DeadMap, TRI) << '\n');
 | 
						|
  return DeadMap;
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS,
 | 
						|
                              HexagonBlockRanges::IndexType Idx) {
 | 
						|
  if (Idx == HexagonBlockRanges::IndexType::None)
 | 
						|
    return OS << '-';
 | 
						|
  if (Idx == HexagonBlockRanges::IndexType::Entry)
 | 
						|
    return OS << 'n';
 | 
						|
  if (Idx == HexagonBlockRanges::IndexType::Exit)
 | 
						|
    return OS << 'x';
 | 
						|
  return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1;
 | 
						|
}
 | 
						|
 | 
						|
// A mapping to translate between instructions and their indices.
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS,
 | 
						|
                              const HexagonBlockRanges::IndexRange &IR) {
 | 
						|
  OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']');
 | 
						|
  if (IR.Fixed)
 | 
						|
    OS << '!';
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS,
 | 
						|
                              const HexagonBlockRanges::RangeList &RL) {
 | 
						|
  for (auto &R : RL)
 | 
						|
    OS << R << " ";
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS,
 | 
						|
                              const HexagonBlockRanges::InstrIndexMap &M) {
 | 
						|
  for (auto &In : M.Block) {
 | 
						|
    HexagonBlockRanges::IndexType Idx = M.getIndex(&In);
 | 
						|
    OS << Idx << (Idx == M.Last ? ". " : "  ") << In;
 | 
						|
  }
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS,
 | 
						|
                              const HexagonBlockRanges::PrintRangeMap &P) {
 | 
						|
  for (auto &I : P.Map) {
 | 
						|
    const HexagonBlockRanges::RangeList &RL = I.second;
 | 
						|
    OS << PrintReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n";
 | 
						|
  }
 | 
						|
  return OS;
 | 
						|
}
 |