1032 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1032 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// MachineScheduler schedules machine instructions after phi elimination. It
 | 
						|
// preserves LiveIntervals so it can be invoked before register allocation.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "HexagonMachineScheduler.h"
 | 
						|
#include "HexagonSubtarget.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDAGMutation.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
 | 
						|
#include <iomanip>
 | 
						|
#include <sstream>
 | 
						|
 | 
						|
static cl::opt<bool> IgnoreBBRegPressure("ignore-bb-reg-pressure",
 | 
						|
    cl::Hidden, cl::ZeroOrMore, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
 | 
						|
    cl::Hidden, cl::ZeroOrMore, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<unsigned> SchedDebugVerboseLevel("misched-verbose-level",
 | 
						|
    cl::Hidden, cl::ZeroOrMore, cl::init(1));
 | 
						|
 | 
						|
static cl::opt<bool> TopUseShorterTie("top-use-shorter-tie",
 | 
						|
    cl::Hidden, cl::ZeroOrMore, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> BotUseShorterTie("bot-use-shorter-tie",
 | 
						|
    cl::Hidden, cl::ZeroOrMore, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> DisableTCTie("disable-tc-tie",
 | 
						|
    cl::Hidden, cl::ZeroOrMore, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
 | 
						|
    cl::Hidden, cl::ZeroOrMore, cl::init(true));
 | 
						|
 | 
						|
// Check if the scheduler should penalize instructions that are available to
 | 
						|
// early due to a zero-latency dependence.
 | 
						|
static cl::opt<bool> CheckEarlyAvail("check-early-avail", cl::Hidden,
 | 
						|
    cl::ZeroOrMore, cl::init(true));
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "misched"
 | 
						|
 | 
						|
namespace {
 | 
						|
class HexagonCallMutation : public ScheduleDAGMutation {
 | 
						|
public:
 | 
						|
  void apply(ScheduleDAGInstrs *DAG) override;
 | 
						|
private:
 | 
						|
  bool shouldTFRICallBind(const HexagonInstrInfo &HII,
 | 
						|
                          const SUnit &Inst1, const SUnit &Inst2) const;
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
// Check if a call and subsequent A2_tfrpi instructions should maintain
 | 
						|
// scheduling affinity. We are looking for the TFRI to be consumed in
 | 
						|
// the next instruction. This should help reduce the instances of
 | 
						|
// double register pairs being allocated and scheduled before a call
 | 
						|
// when not used until after the call. This situation is exacerbated
 | 
						|
// by the fact that we allocate the pair from the callee saves list,
 | 
						|
// leading to excess spills and restores.
 | 
						|
bool HexagonCallMutation::shouldTFRICallBind(const HexagonInstrInfo &HII,
 | 
						|
      const SUnit &Inst1, const SUnit &Inst2) const {
 | 
						|
  if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TypeXTYPE are 64 bit operations.
 | 
						|
  if (HII.getType(*Inst2.getInstr()) == HexagonII::TypeXTYPE)
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void HexagonCallMutation::apply(ScheduleDAGInstrs *DAG) {
 | 
						|
  SUnit* LastSequentialCall = nullptr;
 | 
						|
  unsigned VRegHoldingRet = 0;
 | 
						|
  unsigned RetRegister;
 | 
						|
  SUnit* LastUseOfRet = nullptr;
 | 
						|
  auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
 | 
						|
  auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
 | 
						|
 | 
						|
  // Currently we only catch the situation when compare gets scheduled
 | 
						|
  // before preceding call.
 | 
						|
  for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
 | 
						|
    // Remember the call.
 | 
						|
    if (DAG->SUnits[su].getInstr()->isCall())
 | 
						|
      LastSequentialCall = &DAG->SUnits[su];
 | 
						|
    // Look for a compare that defines a predicate.
 | 
						|
    else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
 | 
						|
      DAG->SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
 | 
						|
    // Look for call and tfri* instructions.
 | 
						|
    else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
 | 
						|
             shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
 | 
						|
      DAG->SUnits[su].addPred(SDep(&DAG->SUnits[su-1], SDep::Barrier));
 | 
						|
    // Prevent redundant register copies between two calls, which are caused by
 | 
						|
    // both the return value and the argument for the next call being in %R0.
 | 
						|
    // Example:
 | 
						|
    //   1: <call1>
 | 
						|
    //   2: %VregX = COPY %R0
 | 
						|
    //   3: <use of %VregX>
 | 
						|
    //   4: %R0 = ...
 | 
						|
    //   5: <call2>
 | 
						|
    // The scheduler would often swap 3 and 4, so an additional register is
 | 
						|
    // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
 | 
						|
    // this. The same applies for %D0 and %V0/%W0, which are also handled.
 | 
						|
    else if (SchedRetvalOptimization) {
 | 
						|
      const MachineInstr *MI = DAG->SUnits[su].getInstr();
 | 
						|
      if (MI->isCopy() && (MI->readsRegister(Hexagon::R0, &TRI) ||
 | 
						|
                           MI->readsRegister(Hexagon::V0, &TRI)))  {
 | 
						|
        // %vregX = COPY %R0
 | 
						|
        VRegHoldingRet = MI->getOperand(0).getReg();
 | 
						|
        RetRegister = MI->getOperand(1).getReg();
 | 
						|
        LastUseOfRet = nullptr;
 | 
						|
      } else if (VRegHoldingRet && MI->readsVirtualRegister(VRegHoldingRet))
 | 
						|
        // <use of %vregX>
 | 
						|
        LastUseOfRet = &DAG->SUnits[su];
 | 
						|
      else if (LastUseOfRet && MI->definesRegister(RetRegister, &TRI))
 | 
						|
        // %R0 = ...
 | 
						|
        DAG->SUnits[su].addPred(SDep(LastUseOfRet, SDep::Barrier));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Save the last formed packet
 | 
						|
void VLIWResourceModel::savePacket() {
 | 
						|
  OldPacket = Packet;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if scheduling of this SU is possible
 | 
						|
/// in the current packet.
 | 
						|
/// It is _not_ precise (statefull), it is more like
 | 
						|
/// another heuristic. Many corner cases are figured
 | 
						|
/// empirically.
 | 
						|
bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
 | 
						|
  if (!SU || !SU->getInstr())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // First see if the pipeline could receive this instruction
 | 
						|
  // in the current cycle.
 | 
						|
  switch (SU->getInstr()->getOpcode()) {
 | 
						|
  default:
 | 
						|
    if (!ResourcesModel->canReserveResources(*SU->getInstr()))
 | 
						|
      return false;
 | 
						|
  case TargetOpcode::EXTRACT_SUBREG:
 | 
						|
  case TargetOpcode::INSERT_SUBREG:
 | 
						|
  case TargetOpcode::SUBREG_TO_REG:
 | 
						|
  case TargetOpcode::REG_SEQUENCE:
 | 
						|
  case TargetOpcode::IMPLICIT_DEF:
 | 
						|
  case TargetOpcode::COPY:
 | 
						|
  case TargetOpcode::INLINEASM:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  MachineFunction &MF = *SU->getInstr()->getParent()->getParent();
 | 
						|
  auto &QII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
 | 
						|
 | 
						|
  // Now see if there are no other dependencies to instructions already
 | 
						|
  // in the packet.
 | 
						|
  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
 | 
						|
    if (Packet[i]->Succs.size() == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Enable .cur formation.
 | 
						|
    if (QII.mayBeCurLoad(*Packet[i]->getInstr()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
 | 
						|
         E = Packet[i]->Succs.end(); I != E; ++I) {
 | 
						|
      // Since we do not add pseudos to packets, might as well
 | 
						|
      // ignore order dependencies.
 | 
						|
      if (I->isCtrl())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (I->getSUnit() == SU)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Keep track of available resources.
 | 
						|
bool VLIWResourceModel::reserveResources(SUnit *SU) {
 | 
						|
  bool startNewCycle = false;
 | 
						|
  // Artificially reset state.
 | 
						|
  if (!SU) {
 | 
						|
    ResourcesModel->clearResources();
 | 
						|
    savePacket();
 | 
						|
    Packet.clear();
 | 
						|
    TotalPackets++;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // If this SU does not fit in the packet
 | 
						|
  // start a new one.
 | 
						|
  if (!isResourceAvailable(SU)) {
 | 
						|
    ResourcesModel->clearResources();
 | 
						|
    savePacket();
 | 
						|
    Packet.clear();
 | 
						|
    TotalPackets++;
 | 
						|
    startNewCycle = true;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (SU->getInstr()->getOpcode()) {
 | 
						|
  default:
 | 
						|
    ResourcesModel->reserveResources(*SU->getInstr());
 | 
						|
    break;
 | 
						|
  case TargetOpcode::EXTRACT_SUBREG:
 | 
						|
  case TargetOpcode::INSERT_SUBREG:
 | 
						|
  case TargetOpcode::SUBREG_TO_REG:
 | 
						|
  case TargetOpcode::REG_SEQUENCE:
 | 
						|
  case TargetOpcode::IMPLICIT_DEF:
 | 
						|
  case TargetOpcode::KILL:
 | 
						|
  case TargetOpcode::CFI_INSTRUCTION:
 | 
						|
  case TargetOpcode::EH_LABEL:
 | 
						|
  case TargetOpcode::COPY:
 | 
						|
  case TargetOpcode::INLINEASM:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  Packet.push_back(SU);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
 | 
						|
  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
 | 
						|
    DEBUG(dbgs() << "\t[" << i << "] SU(");
 | 
						|
    DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
 | 
						|
    DEBUG(Packet[i]->getInstr()->dump());
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // If packet is now full, reset the state so in the next cycle
 | 
						|
  // we start fresh.
 | 
						|
  if (Packet.size() >= SchedModel->getIssueWidth()) {
 | 
						|
    ResourcesModel->clearResources();
 | 
						|
    savePacket();
 | 
						|
    Packet.clear();
 | 
						|
    TotalPackets++;
 | 
						|
    startNewCycle = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return startNewCycle;
 | 
						|
}
 | 
						|
 | 
						|
/// schedule - Called back from MachineScheduler::runOnMachineFunction
 | 
						|
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
 | 
						|
/// only includes instructions that have DAG nodes, not scheduling boundaries.
 | 
						|
void VLIWMachineScheduler::schedule() {
 | 
						|
  DEBUG(dbgs()
 | 
						|
        << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
 | 
						|
        << " " << BB->getName()
 | 
						|
        << " in_func " << BB->getParent()->getFunction()->getName()
 | 
						|
        << " at loop depth "  << MLI->getLoopDepth(BB)
 | 
						|
        << " \n");
 | 
						|
 | 
						|
  buildDAGWithRegPressure();
 | 
						|
 | 
						|
  SmallVector<SUnit*, 8> TopRoots, BotRoots;
 | 
						|
  findRootsAndBiasEdges(TopRoots, BotRoots);
 | 
						|
 | 
						|
  // Initialize the strategy before modifying the DAG.
 | 
						|
  SchedImpl->initialize(this);
 | 
						|
 | 
						|
  DEBUG(unsigned maxH = 0;
 | 
						|
        for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          if (SUnits[su].getHeight() > maxH)
 | 
						|
            maxH = SUnits[su].getHeight();
 | 
						|
        dbgs() << "Max Height " << maxH << "\n";);
 | 
						|
  DEBUG(unsigned maxD = 0;
 | 
						|
        for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          if (SUnits[su].getDepth() > maxD)
 | 
						|
            maxD = SUnits[su].getDepth();
 | 
						|
        dbgs() << "Max Depth " << maxD << "\n";);
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(this));
 | 
						|
 | 
						|
  initQueues(TopRoots, BotRoots);
 | 
						|
 | 
						|
  bool IsTopNode = false;
 | 
						|
  while (true) {
 | 
						|
    DEBUG(dbgs() << "** VLIWMachineScheduler::schedule picking next node\n");
 | 
						|
    SUnit *SU = SchedImpl->pickNode(IsTopNode);
 | 
						|
    if (!SU) break;
 | 
						|
 | 
						|
    if (!checkSchedLimit())
 | 
						|
      break;
 | 
						|
 | 
						|
    scheduleMI(SU, IsTopNode);
 | 
						|
 | 
						|
    updateQueues(SU, IsTopNode);
 | 
						|
 | 
						|
    // Notify the scheduling strategy after updating the DAG.
 | 
						|
    SchedImpl->schedNode(SU, IsTopNode);
 | 
						|
  }
 | 
						|
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | 
						|
 | 
						|
  placeDebugValues();
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    unsigned BBNum = begin()->getParent()->getNumber();
 | 
						|
    dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
 | 
						|
    dumpSchedule();
 | 
						|
    dbgs() << '\n';
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
 | 
						|
  DAG = static_cast<VLIWMachineScheduler*>(dag);
 | 
						|
  SchedModel = DAG->getSchedModel();
 | 
						|
 | 
						|
  Top.init(DAG, SchedModel);
 | 
						|
  Bot.init(DAG, SchedModel);
 | 
						|
 | 
						|
  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
 | 
						|
  // are disabled, then these HazardRecs will be disabled.
 | 
						|
  const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
 | 
						|
  const TargetSubtargetInfo &STI = DAG->MF.getSubtarget();
 | 
						|
  const TargetInstrInfo *TII = STI.getInstrInfo();
 | 
						|
  delete Top.HazardRec;
 | 
						|
  delete Bot.HazardRec;
 | 
						|
  Top.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
 | 
						|
  Bot.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
 | 
						|
 | 
						|
  delete Top.ResourceModel;
 | 
						|
  delete Bot.ResourceModel;
 | 
						|
  Top.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
 | 
						|
  Bot.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
 | 
						|
 | 
						|
  assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
 | 
						|
         "-misched-topdown incompatible with -misched-bottomup");
 | 
						|
 | 
						|
  DAG->addMutation(make_unique<HexagonSubtarget::HexagonDAGMutation>());
 | 
						|
  DAG->addMutation(make_unique<HexagonCallMutation>());
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
 | 
						|
  if (SU->isScheduled)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (const SDep &PI : SU->Preds) {
 | 
						|
    unsigned PredReadyCycle = PI.getSUnit()->TopReadyCycle;
 | 
						|
    unsigned MinLatency = PI.getLatency();
 | 
						|
#ifndef NDEBUG
 | 
						|
    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
 | 
						|
#endif
 | 
						|
    if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
 | 
						|
      SU->TopReadyCycle = PredReadyCycle + MinLatency;
 | 
						|
  }
 | 
						|
  Top.releaseNode(SU, SU->TopReadyCycle);
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
 | 
						|
  if (SU->isScheduled)
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(SU->getInstr() && "Scheduled SUnit must have instr");
 | 
						|
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
 | 
						|
    unsigned MinLatency = I->getLatency();
 | 
						|
#ifndef NDEBUG
 | 
						|
    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
 | 
						|
#endif
 | 
						|
    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
 | 
						|
      SU->BotReadyCycle = SuccReadyCycle + MinLatency;
 | 
						|
  }
 | 
						|
  Bot.releaseNode(SU, SU->BotReadyCycle);
 | 
						|
}
 | 
						|
 | 
						|
/// Does this SU have a hazard within the current instruction group.
 | 
						|
///
 | 
						|
/// The scheduler supports two modes of hazard recognition. The first is the
 | 
						|
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
 | 
						|
/// supports highly complicated in-order reservation tables
 | 
						|
/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
 | 
						|
///
 | 
						|
/// The second is a streamlined mechanism that checks for hazards based on
 | 
						|
/// simple counters that the scheduler itself maintains. It explicitly checks
 | 
						|
/// for instruction dispatch limitations, including the number of micro-ops that
 | 
						|
/// can dispatch per cycle.
 | 
						|
///
 | 
						|
/// TODO: Also check whether the SU must start a new group.
 | 
						|
bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) {
 | 
						|
  if (HazardRec->isEnabled())
 | 
						|
    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
 | 
						|
 | 
						|
  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
 | 
						|
  if (IssueCount + uops > SchedModel->getIssueWidth())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU,
 | 
						|
                                                     unsigned ReadyCycle) {
 | 
						|
  if (ReadyCycle < MinReadyCycle)
 | 
						|
    MinReadyCycle = ReadyCycle;
 | 
						|
 | 
						|
  // Check for interlocks first. For the purpose of other heuristics, an
 | 
						|
  // instruction that cannot issue appears as if it's not in the ReadyQueue.
 | 
						|
  if (ReadyCycle > CurrCycle || checkHazard(SU))
 | 
						|
 | 
						|
    Pending.push(SU);
 | 
						|
  else
 | 
						|
    Available.push(SU);
 | 
						|
}
 | 
						|
 | 
						|
/// Move the boundary of scheduled code by one cycle.
 | 
						|
void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() {
 | 
						|
  unsigned Width = SchedModel->getIssueWidth();
 | 
						|
  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
 | 
						|
 | 
						|
  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
 | 
						|
  unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
 | 
						|
 | 
						|
  if (!HazardRec->isEnabled()) {
 | 
						|
    // Bypass HazardRec virtual calls.
 | 
						|
    CurrCycle = NextCycle;
 | 
						|
  } else {
 | 
						|
    // Bypass getHazardType calls in case of long latency.
 | 
						|
    for (; CurrCycle != NextCycle; ++CurrCycle) {
 | 
						|
      if (isTop())
 | 
						|
        HazardRec->AdvanceCycle();
 | 
						|
      else
 | 
						|
        HazardRec->RecedeCycle();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  CheckPending = true;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "*** Next cycle " << Available.getName() << " cycle "
 | 
						|
               << CurrCycle << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// Move the boundary of scheduled code by one SUnit.
 | 
						|
void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) {
 | 
						|
  bool startNewCycle = false;
 | 
						|
 | 
						|
  // Update the reservation table.
 | 
						|
  if (HazardRec->isEnabled()) {
 | 
						|
    if (!isTop() && SU->isCall) {
 | 
						|
      // Calls are scheduled with their preceding instructions. For bottom-up
 | 
						|
      // scheduling, clear the pipeline state before emitting.
 | 
						|
      HazardRec->Reset();
 | 
						|
    }
 | 
						|
    HazardRec->EmitInstruction(SU);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update DFA model.
 | 
						|
  startNewCycle = ResourceModel->reserveResources(SU);
 | 
						|
 | 
						|
  // Check the instruction group dispatch limit.
 | 
						|
  // TODO: Check if this SU must end a dispatch group.
 | 
						|
  IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
 | 
						|
  if (startNewCycle) {
 | 
						|
    DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
 | 
						|
    bumpCycle();
 | 
						|
  }
 | 
						|
  else
 | 
						|
    DEBUG(dbgs() << "*** IssueCount " << IssueCount
 | 
						|
          << " at cycle " << CurrCycle << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// Release pending ready nodes in to the available queue. This makes them
 | 
						|
/// visible to heuristics.
 | 
						|
void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() {
 | 
						|
  // If the available queue is empty, it is safe to reset MinReadyCycle.
 | 
						|
  if (Available.empty())
 | 
						|
    MinReadyCycle = UINT_MAX;
 | 
						|
 | 
						|
  // Check to see if any of the pending instructions are ready to issue.  If
 | 
						|
  // so, add them to the available queue.
 | 
						|
  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
 | 
						|
    SUnit *SU = *(Pending.begin()+i);
 | 
						|
    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
 | 
						|
 | 
						|
    if (ReadyCycle < MinReadyCycle)
 | 
						|
      MinReadyCycle = ReadyCycle;
 | 
						|
 | 
						|
    if (ReadyCycle > CurrCycle)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (checkHazard(SU))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Available.push(SU);
 | 
						|
    Pending.remove(Pending.begin()+i);
 | 
						|
    --i; --e;
 | 
						|
  }
 | 
						|
  CheckPending = false;
 | 
						|
}
 | 
						|
 | 
						|
/// Remove SU from the ready set for this boundary.
 | 
						|
void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) {
 | 
						|
  if (Available.isInQueue(SU))
 | 
						|
    Available.remove(Available.find(SU));
 | 
						|
  else {
 | 
						|
    assert(Pending.isInQueue(SU) && "bad ready count");
 | 
						|
    Pending.remove(Pending.find(SU));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If this queue only has one ready candidate, return it. As a side effect,
 | 
						|
/// advance the cycle until at least one node is ready. If multiple instructions
 | 
						|
/// are ready, return NULL.
 | 
						|
SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() {
 | 
						|
  if (CheckPending)
 | 
						|
    releasePending();
 | 
						|
 | 
						|
  for (unsigned i = 0; Available.empty(); ++i) {
 | 
						|
    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
 | 
						|
           "permanent hazard"); (void)i;
 | 
						|
    ResourceModel->reserveResources(nullptr);
 | 
						|
    bumpCycle();
 | 
						|
    releasePending();
 | 
						|
  }
 | 
						|
  if (Available.size() == 1)
 | 
						|
    return *Available.begin();
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
void ConvergingVLIWScheduler::traceCandidate(const char *Label,
 | 
						|
      const ReadyQueue &Q, SUnit *SU, int Cost, PressureChange P) {
 | 
						|
  dbgs() << Label << " " << Q.getName() << " ";
 | 
						|
  if (P.isValid())
 | 
						|
    dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
 | 
						|
           << P.getUnitInc() << " ";
 | 
						|
  else
 | 
						|
    dbgs() << "     ";
 | 
						|
  dbgs() << "cost(" << Cost << ")\t";
 | 
						|
  SU->dump(DAG);
 | 
						|
}
 | 
						|
 | 
						|
// Very detailed queue dump, to be used with higher verbosity levels.
 | 
						|
void ConvergingVLIWScheduler::readyQueueVerboseDump(
 | 
						|
      const RegPressureTracker &RPTracker, SchedCandidate &Candidate,
 | 
						|
      ReadyQueue &Q) {
 | 
						|
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker &>(RPTracker);
 | 
						|
 | 
						|
  dbgs() << ">>> " << Q.getName() << "\n";
 | 
						|
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
 | 
						|
    RegPressureDelta RPDelta;
 | 
						|
    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
 | 
						|
                                    DAG->getRegionCriticalPSets(),
 | 
						|
                                    DAG->getRegPressure().MaxSetPressure);
 | 
						|
    std::stringstream dbgstr;
 | 
						|
    dbgstr << "SU(" << std::setw(3) << (*I)->NodeNum << ")";
 | 
						|
    dbgs() << dbgstr.str();
 | 
						|
    SchedulingCost(Q, *I, Candidate, RPDelta, true);
 | 
						|
    dbgs() << "\t";
 | 
						|
    (*I)->getInstr()->dump();
 | 
						|
  }
 | 
						|
  dbgs() << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
 | 
						|
/// of SU, return it, otherwise return null.
 | 
						|
static SUnit *getSingleUnscheduledPred(SUnit *SU) {
 | 
						|
  SUnit *OnlyAvailablePred = nullptr;
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    SUnit &Pred = *I->getSUnit();
 | 
						|
    if (!Pred.isScheduled) {
 | 
						|
      // We found an available, but not scheduled, predecessor.  If it's the
 | 
						|
      // only one we have found, keep track of it... otherwise give up.
 | 
						|
      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
 | 
						|
        return nullptr;
 | 
						|
      OnlyAvailablePred = &Pred;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return OnlyAvailablePred;
 | 
						|
}
 | 
						|
 | 
						|
/// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
 | 
						|
/// of SU, return it, otherwise return null.
 | 
						|
static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
 | 
						|
  SUnit *OnlyAvailableSucc = nullptr;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    SUnit &Succ = *I->getSUnit();
 | 
						|
    if (!Succ.isScheduled) {
 | 
						|
      // We found an available, but not scheduled, successor.  If it's the
 | 
						|
      // only one we have found, keep track of it... otherwise give up.
 | 
						|
      if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
 | 
						|
        return nullptr;
 | 
						|
      OnlyAvailableSucc = &Succ;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return OnlyAvailableSucc;
 | 
						|
}
 | 
						|
 | 
						|
// Constants used to denote relative importance of
 | 
						|
// heuristic components for cost computation.
 | 
						|
static const unsigned PriorityOne = 200;
 | 
						|
static const unsigned PriorityTwo = 50;
 | 
						|
static const unsigned PriorityThree = 75;
 | 
						|
static const unsigned ScaleTwo = 10;
 | 
						|
static const unsigned FactorOne = 2;
 | 
						|
 | 
						|
/// Single point to compute overall scheduling cost.
 | 
						|
/// TODO: More heuristics will be used soon.
 | 
						|
int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
 | 
						|
                                            SchedCandidate &Candidate,
 | 
						|
                                            RegPressureDelta &Delta,
 | 
						|
                                            bool verbose) {
 | 
						|
  // Initial trivial priority.
 | 
						|
  int ResCount = 1;
 | 
						|
 | 
						|
  // Do not waste time on a node that is already scheduled.
 | 
						|
  if (!SU || SU->isScheduled)
 | 
						|
    return ResCount;
 | 
						|
 | 
						|
  MachineInstr &Instr = *SU->getInstr();
 | 
						|
 | 
						|
  DEBUG(if (verbose) dbgs() << ((Q.getID() == TopQID) ? "(top|" : "(bot|"));
 | 
						|
  // Forced priority is high.
 | 
						|
  if (SU->isScheduleHigh) {
 | 
						|
    ResCount += PriorityOne;
 | 
						|
    DEBUG(dbgs() << "H|");
 | 
						|
  }
 | 
						|
 | 
						|
  // Critical path first.
 | 
						|
  if (Q.getID() == TopQID) {
 | 
						|
    ResCount += (SU->getHeight() * ScaleTwo);
 | 
						|
 | 
						|
    DEBUG(if (verbose) {
 | 
						|
      std::stringstream dbgstr;
 | 
						|
      dbgstr << "h" << std::setw(3) << SU->getHeight() << "|";
 | 
						|
      dbgs() << dbgstr.str();
 | 
						|
    });
 | 
						|
 | 
						|
    // If resources are available for it, multiply the
 | 
						|
    // chance of scheduling.
 | 
						|
    if (Top.ResourceModel->isResourceAvailable(SU)) {
 | 
						|
      ResCount <<= FactorOne;
 | 
						|
      ResCount += PriorityThree;
 | 
						|
      DEBUG(if (verbose) dbgs() << "A|");
 | 
						|
    } else
 | 
						|
      DEBUG(if (verbose) dbgs() << " |");
 | 
						|
  } else {
 | 
						|
    ResCount += (SU->getDepth() * ScaleTwo);
 | 
						|
 | 
						|
    DEBUG(if (verbose) {
 | 
						|
      std::stringstream dbgstr;
 | 
						|
      dbgstr << "d" << std::setw(3) << SU->getDepth() << "|";
 | 
						|
      dbgs() << dbgstr.str();
 | 
						|
    });
 | 
						|
 | 
						|
    // If resources are available for it, multiply the
 | 
						|
    // chance of scheduling.
 | 
						|
    if (Bot.ResourceModel->isResourceAvailable(SU)) {
 | 
						|
      ResCount <<= FactorOne;
 | 
						|
      ResCount += PriorityThree;
 | 
						|
      DEBUG(if (verbose) dbgs() << "A|");
 | 
						|
    } else
 | 
						|
      DEBUG(if (verbose) dbgs() << " |");
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumNodesBlocking = 0;
 | 
						|
  if (Q.getID() == TopQID) {
 | 
						|
    // How many SUs does it block from scheduling?
 | 
						|
    // Look at all of the successors of this node.
 | 
						|
    // Count the number of nodes that
 | 
						|
    // this node is the sole unscheduled node for.
 | 
						|
    for (const SDep &SI : SU->Succs)
 | 
						|
      if (getSingleUnscheduledPred(SI.getSUnit()) == SU)
 | 
						|
        ++NumNodesBlocking;
 | 
						|
  } else {
 | 
						|
    // How many unscheduled predecessors block this node?
 | 
						|
    for (const SDep &PI : SU->Preds)
 | 
						|
      if (getSingleUnscheduledSucc(PI.getSUnit()) == SU)
 | 
						|
        ++NumNodesBlocking;
 | 
						|
  }
 | 
						|
  ResCount += (NumNodesBlocking * ScaleTwo);
 | 
						|
 | 
						|
  DEBUG(if (verbose) {
 | 
						|
    std::stringstream dbgstr;
 | 
						|
    dbgstr << "blk " << std::setw(2) << NumNodesBlocking << ")|";
 | 
						|
    dbgs() << dbgstr.str();
 | 
						|
  });
 | 
						|
 | 
						|
  // Factor in reg pressure as a heuristic.
 | 
						|
  if (!IgnoreBBRegPressure) {
 | 
						|
    // Decrease priority by the amount that register pressure exceeds the limit.
 | 
						|
    ResCount -= (Delta.Excess.getUnitInc()*PriorityOne);
 | 
						|
    // Decrease priority if register pressure exceeds the limit.
 | 
						|
    ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityOne);
 | 
						|
    // Decrease priority slightly if register pressure would increase over the
 | 
						|
    // current maximum.
 | 
						|
    ResCount -= (Delta.CurrentMax.getUnitInc()*PriorityTwo);
 | 
						|
    DEBUG(if (verbose) {
 | 
						|
        dbgs() << "RP " << Delta.Excess.getUnitInc() << "/"
 | 
						|
               << Delta.CriticalMax.getUnitInc() <<"/"
 | 
						|
               << Delta.CurrentMax.getUnitInc() << ")|";
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  // Give a little extra priority to a .cur instruction if there is a resource
 | 
						|
  // available for it.
 | 
						|
  auto &QST = DAG->MF.getSubtarget<HexagonSubtarget>();
 | 
						|
  auto &QII = *QST.getInstrInfo();
 | 
						|
  if (SU->isInstr() && QII.mayBeCurLoad(*SU->getInstr())) {
 | 
						|
    if (Q.getID() == TopQID && Top.ResourceModel->isResourceAvailable(SU)) {
 | 
						|
      ResCount += PriorityTwo;
 | 
						|
      DEBUG(if (verbose) dbgs() << "C|");
 | 
						|
    } else if (Q.getID() == BotQID &&
 | 
						|
               Bot.ResourceModel->isResourceAvailable(SU)) {
 | 
						|
      ResCount += PriorityTwo;
 | 
						|
      DEBUG(if (verbose) dbgs() << "C|");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Give preference to a zero latency instruction if the dependent
 | 
						|
  // instruction is in the current packet.
 | 
						|
  if (Q.getID() == TopQID) {
 | 
						|
    for (const SDep &PI : SU->Preds) {
 | 
						|
      if (!PI.getSUnit()->getInstr()->isPseudo() && PI.isAssignedRegDep() &&
 | 
						|
          PI.getLatency() == 0 &&
 | 
						|
          Top.ResourceModel->isInPacket(PI.getSUnit())) {
 | 
						|
        ResCount += PriorityThree;
 | 
						|
        DEBUG(if (verbose) dbgs() << "Z|");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    for (const SDep &SI : SU->Succs) {
 | 
						|
      if (!SI.getSUnit()->getInstr()->isPseudo() && SI.isAssignedRegDep() &&
 | 
						|
          SI.getLatency() == 0 &&
 | 
						|
          Bot.ResourceModel->isInPacket(SI.getSUnit())) {
 | 
						|
        ResCount += PriorityThree;
 | 
						|
        DEBUG(if (verbose) dbgs() << "Z|");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Give less preference to an instruction that will cause a stall with
 | 
						|
  // an instruction in the previous packet.
 | 
						|
  if (QII.isV60VectorInstruction(Instr)) {
 | 
						|
    // Check for stalls in the previous packet.
 | 
						|
    if (Q.getID() == TopQID) {
 | 
						|
      for (auto J : Top.ResourceModel->OldPacket)
 | 
						|
        if (QII.producesStall(*J->getInstr(), Instr))
 | 
						|
          ResCount -= PriorityOne;
 | 
						|
    } else {
 | 
						|
      for (auto J : Bot.ResourceModel->OldPacket)
 | 
						|
        if (QII.producesStall(Instr, *J->getInstr()))
 | 
						|
          ResCount -= PriorityOne;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the instruction has a non-zero latency dependence with an instruction in
 | 
						|
  // the current packet, then it should not be scheduled yet. The case occurs
 | 
						|
  // when the dependent instruction is scheduled in a new packet, so the
 | 
						|
  // scheduler updates the current cycle and pending instructions become
 | 
						|
  // available.
 | 
						|
  if (CheckEarlyAvail) {
 | 
						|
    if (Q.getID() == TopQID) {
 | 
						|
      for (const auto &PI : SU->Preds) {
 | 
						|
        if (PI.getLatency() > 0 &&
 | 
						|
            Top.ResourceModel->isInPacket(PI.getSUnit())) {
 | 
						|
          ResCount -= PriorityOne;
 | 
						|
          DEBUG(if (verbose) dbgs() << "D|");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      for (const auto &SI : SU->Succs) {
 | 
						|
        if (SI.getLatency() > 0 &&
 | 
						|
            Bot.ResourceModel->isInPacket(SI.getSUnit())) {
 | 
						|
          ResCount -= PriorityOne;
 | 
						|
          DEBUG(if (verbose) dbgs() << "D|");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(if (verbose) {
 | 
						|
    std::stringstream dbgstr;
 | 
						|
    dbgstr << "Total " << std::setw(4) << ResCount << ")";
 | 
						|
    dbgs() << dbgstr.str();
 | 
						|
  });
 | 
						|
 | 
						|
  return ResCount;
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best candidate from the top queue.
 | 
						|
///
 | 
						|
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
 | 
						|
/// DAG building. To adjust for the current scheduling location we need to
 | 
						|
/// maintain the number of vreg uses remaining to be top-scheduled.
 | 
						|
ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
 | 
						|
pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
 | 
						|
                  SchedCandidate &Candidate) {
 | 
						|
  DEBUG(if (SchedDebugVerboseLevel > 1)
 | 
						|
        readyQueueVerboseDump(RPTracker, Candidate, Q);
 | 
						|
        else Q.dump(););
 | 
						|
 | 
						|
  // getMaxPressureDelta temporarily modifies the tracker.
 | 
						|
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
 | 
						|
 | 
						|
  // BestSU remains NULL if no top candidates beat the best existing candidate.
 | 
						|
  CandResult FoundCandidate = NoCand;
 | 
						|
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
 | 
						|
    RegPressureDelta RPDelta;
 | 
						|
    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
 | 
						|
                                    DAG->getRegionCriticalPSets(),
 | 
						|
                                    DAG->getRegPressure().MaxSetPressure);
 | 
						|
 | 
						|
    int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
 | 
						|
 | 
						|
    // Initialize the candidate if needed.
 | 
						|
    if (!Candidate.SU) {
 | 
						|
      DEBUG(traceCandidate("DCAND", Q, *I, CurrentCost));
 | 
						|
      Candidate.SU = *I;
 | 
						|
      Candidate.RPDelta = RPDelta;
 | 
						|
      Candidate.SCost = CurrentCost;
 | 
						|
      FoundCandidate = NodeOrder;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Best cost.
 | 
						|
    if (CurrentCost > Candidate.SCost) {
 | 
						|
      DEBUG(traceCandidate("CCAND", Q, *I, CurrentCost));
 | 
						|
      Candidate.SU = *I;
 | 
						|
      Candidate.RPDelta = RPDelta;
 | 
						|
      Candidate.SCost = CurrentCost;
 | 
						|
      FoundCandidate = BestCost;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Tie breaker using Timing Class.
 | 
						|
    if (!DisableTCTie) {
 | 
						|
      auto &QST = DAG->MF.getSubtarget<HexagonSubtarget>();
 | 
						|
      auto &QII = *QST.getInstrInfo();
 | 
						|
 | 
						|
      const MachineInstr *MI = (*I)->getInstr();
 | 
						|
      const MachineInstr *CandI = Candidate.SU->getInstr();
 | 
						|
      const InstrItineraryData *InstrItins = QST.getInstrItineraryData();
 | 
						|
 | 
						|
      unsigned InstrLatency = QII.getInstrTimingClassLatency(InstrItins, *MI);
 | 
						|
      unsigned CandLatency = QII.getInstrTimingClassLatency(InstrItins, *CandI);
 | 
						|
      DEBUG(dbgs() << "TC Tie Breaker Cand: "
 | 
						|
                   << CandLatency << " Instr:" << InstrLatency << "\n"
 | 
						|
                   << *MI << *CandI << "\n");
 | 
						|
      if (Q.getID() == TopQID && CurrentCost == Candidate.SCost) {
 | 
						|
        if (InstrLatency < CandLatency && TopUseShorterTie) {
 | 
						|
          Candidate.SU = *I;
 | 
						|
          Candidate.RPDelta = RPDelta;
 | 
						|
          Candidate.SCost = CurrentCost;
 | 
						|
          FoundCandidate = BestCost;
 | 
						|
          DEBUG(dbgs() << "Used top shorter tie breaker\n");
 | 
						|
          continue;
 | 
						|
        } else if (InstrLatency > CandLatency && !TopUseShorterTie) {
 | 
						|
          Candidate.SU = *I;
 | 
						|
          Candidate.RPDelta = RPDelta;
 | 
						|
          Candidate.SCost = CurrentCost;
 | 
						|
          FoundCandidate = BestCost;
 | 
						|
          DEBUG(dbgs() << "Used top longer tie breaker\n");
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      } else if (Q.getID() == BotQID && CurrentCost == Candidate.SCost) {
 | 
						|
        if (InstrLatency < CandLatency && BotUseShorterTie) {
 | 
						|
          Candidate.SU = *I;
 | 
						|
          Candidate.RPDelta = RPDelta;
 | 
						|
          Candidate.SCost = CurrentCost;
 | 
						|
          FoundCandidate = BestCost;
 | 
						|
          DEBUG(dbgs() << "Used Bot shorter tie breaker\n");
 | 
						|
          continue;
 | 
						|
        } else if (InstrLatency > CandLatency && !BotUseShorterTie) {
 | 
						|
          Candidate.SU = *I;
 | 
						|
          Candidate.RPDelta = RPDelta;
 | 
						|
          Candidate.SCost = CurrentCost;
 | 
						|
          FoundCandidate = BestCost;
 | 
						|
          DEBUG(dbgs() << "Used Bot longer tie breaker\n");
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (CurrentCost == Candidate.SCost) {
 | 
						|
      if ((Q.getID() == TopQID &&
 | 
						|
           (*I)->Succs.size() > Candidate.SU->Succs.size()) ||
 | 
						|
          (Q.getID() == BotQID &&
 | 
						|
           (*I)->Preds.size() < Candidate.SU->Preds.size())) {
 | 
						|
        DEBUG(traceCandidate("SPCAND", Q, *I, CurrentCost));
 | 
						|
        Candidate.SU = *I;
 | 
						|
        Candidate.RPDelta = RPDelta;
 | 
						|
        Candidate.SCost = CurrentCost;
 | 
						|
        FoundCandidate = BestCost;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through to original instruction order.
 | 
						|
    // Only consider node order if Candidate was chosen from this Q.
 | 
						|
    if (FoundCandidate == NoCand)
 | 
						|
      continue;
 | 
						|
  }
 | 
						|
  return FoundCandidate;
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best candidate node from either the top or bottom queue.
 | 
						|
SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
 | 
						|
  // Schedule as far as possible in the direction of no choice. This is most
 | 
						|
  // efficient, but also provides the best heuristics for CriticalPSets.
 | 
						|
  if (SUnit *SU = Bot.pickOnlyChoice()) {
 | 
						|
    DEBUG(dbgs() << "Picked only Bottom\n");
 | 
						|
    IsTopNode = false;
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
  if (SUnit *SU = Top.pickOnlyChoice()) {
 | 
						|
    DEBUG(dbgs() << "Picked only Top\n");
 | 
						|
    IsTopNode = true;
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
  SchedCandidate BotCand;
 | 
						|
  // Prefer bottom scheduling when heuristics are silent.
 | 
						|
  CandResult BotResult = pickNodeFromQueue(Bot.Available,
 | 
						|
                                           DAG->getBotRPTracker(), BotCand);
 | 
						|
  assert(BotResult != NoCand && "failed to find the first candidate");
 | 
						|
 | 
						|
  // If either Q has a single candidate that provides the least increase in
 | 
						|
  // Excess pressure, we can immediately schedule from that Q.
 | 
						|
  //
 | 
						|
  // RegionCriticalPSets summarizes the pressure within the scheduled region and
 | 
						|
  // affects picking from either Q. If scheduling in one direction must
 | 
						|
  // increase pressure for one of the excess PSets, then schedule in that
 | 
						|
  // direction first to provide more freedom in the other direction.
 | 
						|
  if (BotResult == SingleExcess || BotResult == SingleCritical) {
 | 
						|
    DEBUG(dbgs() << "Prefered Bottom Node\n");
 | 
						|
    IsTopNode = false;
 | 
						|
    return BotCand.SU;
 | 
						|
  }
 | 
						|
  // Check if the top Q has a better candidate.
 | 
						|
  SchedCandidate TopCand;
 | 
						|
  CandResult TopResult = pickNodeFromQueue(Top.Available,
 | 
						|
                                           DAG->getTopRPTracker(), TopCand);
 | 
						|
  assert(TopResult != NoCand && "failed to find the first candidate");
 | 
						|
 | 
						|
  if (TopResult == SingleExcess || TopResult == SingleCritical) {
 | 
						|
    DEBUG(dbgs() << "Prefered Top Node\n");
 | 
						|
    IsTopNode = true;
 | 
						|
    return TopCand.SU;
 | 
						|
  }
 | 
						|
  // If either Q has a single candidate that minimizes pressure above the
 | 
						|
  // original region's pressure pick it.
 | 
						|
  if (BotResult == SingleMax) {
 | 
						|
    DEBUG(dbgs() << "Prefered Bottom Node SingleMax\n");
 | 
						|
    IsTopNode = false;
 | 
						|
    return BotCand.SU;
 | 
						|
  }
 | 
						|
  if (TopResult == SingleMax) {
 | 
						|
    DEBUG(dbgs() << "Prefered Top Node SingleMax\n");
 | 
						|
    IsTopNode = true;
 | 
						|
    return TopCand.SU;
 | 
						|
  }
 | 
						|
  if (TopCand.SCost > BotCand.SCost) {
 | 
						|
    DEBUG(dbgs() << "Prefered Top Node Cost\n");
 | 
						|
    IsTopNode = true;
 | 
						|
    return TopCand.SU;
 | 
						|
  }
 | 
						|
  // Otherwise prefer the bottom candidate in node order.
 | 
						|
  DEBUG(dbgs() << "Prefered Bottom in Node order\n");
 | 
						|
  IsTopNode = false;
 | 
						|
  return BotCand.SU;
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
 | 
						|
SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
 | 
						|
  if (DAG->top() == DAG->bottom()) {
 | 
						|
    assert(Top.Available.empty() && Top.Pending.empty() &&
 | 
						|
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  SUnit *SU;
 | 
						|
  if (llvm::ForceTopDown) {
 | 
						|
    SU = Top.pickOnlyChoice();
 | 
						|
    if (!SU) {
 | 
						|
      SchedCandidate TopCand;
 | 
						|
      CandResult TopResult =
 | 
						|
        pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
 | 
						|
      assert(TopResult != NoCand && "failed to find the first candidate");
 | 
						|
      (void)TopResult;
 | 
						|
      SU = TopCand.SU;
 | 
						|
    }
 | 
						|
    IsTopNode = true;
 | 
						|
  } else if (llvm::ForceBottomUp) {
 | 
						|
    SU = Bot.pickOnlyChoice();
 | 
						|
    if (!SU) {
 | 
						|
      SchedCandidate BotCand;
 | 
						|
      CandResult BotResult =
 | 
						|
        pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
 | 
						|
      assert(BotResult != NoCand && "failed to find the first candidate");
 | 
						|
      (void)BotResult;
 | 
						|
      SU = BotCand.SU;
 | 
						|
    }
 | 
						|
    IsTopNode = false;
 | 
						|
  } else {
 | 
						|
    SU = pickNodeBidrectional(IsTopNode);
 | 
						|
  }
 | 
						|
  if (SU->isTopReady())
 | 
						|
    Top.removeReady(SU);
 | 
						|
  if (SU->isBottomReady())
 | 
						|
    Bot.removeReady(SU);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
 | 
						|
        << " Scheduling Instruction in cycle "
 | 
						|
        << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
 | 
						|
        SU->dump(DAG));
 | 
						|
  return SU;
 | 
						|
}
 | 
						|
 | 
						|
/// Update the scheduler's state after scheduling a node. This is the same node
 | 
						|
/// that was just returned by pickNode(). However, VLIWMachineScheduler needs
 | 
						|
/// to update it's state based on the current cycle before MachineSchedStrategy
 | 
						|
/// does.
 | 
						|
void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
 | 
						|
  if (IsTopNode) {
 | 
						|
    SU->TopReadyCycle = Top.CurrCycle;
 | 
						|
    Top.bumpNode(SU);
 | 
						|
  } else {
 | 
						|
    SU->BotReadyCycle = Bot.CurrCycle;
 | 
						|
    Bot.bumpNode(SU);
 | 
						|
  }
 | 
						|
}
 |