1407 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1407 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the visit functions for load, store and alloca.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombineInternal.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
 | 
						|
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
 | 
						|
 | 
						|
/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
 | 
						|
/// some part of a constant global variable.  This intentionally only accepts
 | 
						|
/// constant expressions because we can't rewrite arbitrary instructions.
 | 
						|
static bool pointsToConstantGlobal(Value *V) {
 | 
						|
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | 
						|
    return GV->isConstant();
 | 
						|
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | 
						|
    if (CE->getOpcode() == Instruction::BitCast ||
 | 
						|
        CE->getOpcode() == Instruction::AddrSpaceCast ||
 | 
						|
        CE->getOpcode() == Instruction::GetElementPtr)
 | 
						|
      return pointsToConstantGlobal(CE->getOperand(0));
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
 | 
						|
/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
 | 
						|
/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
 | 
						|
/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
 | 
						|
/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
 | 
						|
/// the alloca, and if the source pointer is a pointer to a constant global, we
 | 
						|
/// can optimize this.
 | 
						|
static bool
 | 
						|
isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
 | 
						|
                               SmallVectorImpl<Instruction *> &ToDelete) {
 | 
						|
  // We track lifetime intrinsics as we encounter them.  If we decide to go
 | 
						|
  // ahead and replace the value with the global, this lets the caller quickly
 | 
						|
  // eliminate the markers.
 | 
						|
 | 
						|
  SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
 | 
						|
  ValuesToInspect.emplace_back(V, false);
 | 
						|
  while (!ValuesToInspect.empty()) {
 | 
						|
    auto ValuePair = ValuesToInspect.pop_back_val();
 | 
						|
    const bool IsOffset = ValuePair.second;
 | 
						|
    for (auto &U : ValuePair.first->uses()) {
 | 
						|
      auto *I = cast<Instruction>(U.getUser());
 | 
						|
 | 
						|
      if (auto *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
        // Ignore non-volatile loads, they are always ok.
 | 
						|
        if (!LI->isSimple()) return false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
 | 
						|
        // If uses of the bitcast are ok, we are ok.
 | 
						|
        ValuesToInspect.emplace_back(I, IsOffset);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
        // If the GEP has all zero indices, it doesn't offset the pointer. If it
 | 
						|
        // doesn't, it does.
 | 
						|
        ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (auto CS = CallSite(I)) {
 | 
						|
        // If this is the function being called then we treat it like a load and
 | 
						|
        // ignore it.
 | 
						|
        if (CS.isCallee(&U))
 | 
						|
          continue;
 | 
						|
 | 
						|
        unsigned DataOpNo = CS.getDataOperandNo(&U);
 | 
						|
        bool IsArgOperand = CS.isArgOperand(&U);
 | 
						|
 | 
						|
        // Inalloca arguments are clobbered by the call.
 | 
						|
        if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
 | 
						|
          return false;
 | 
						|
 | 
						|
        // If this is a readonly/readnone call site, then we know it is just a
 | 
						|
        // load (but one that potentially returns the value itself), so we can
 | 
						|
        // ignore it if we know that the value isn't captured.
 | 
						|
        if (CS.onlyReadsMemory() &&
 | 
						|
            (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If this is being passed as a byval argument, the caller is making a
 | 
						|
        // copy, so it is only a read of the alloca.
 | 
						|
        if (IsArgOperand && CS.isByValArgument(DataOpNo))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Lifetime intrinsics can be handled by the caller.
 | 
						|
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
            II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | 
						|
          assert(II->use_empty() && "Lifetime markers have no result to use!");
 | 
						|
          ToDelete.push_back(II);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is isn't our memcpy/memmove, reject it as something we can't
 | 
						|
      // handle.
 | 
						|
      MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
 | 
						|
      if (!MI)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // If the transfer is using the alloca as a source of the transfer, then
 | 
						|
      // ignore it since it is a load (unless the transfer is volatile).
 | 
						|
      if (U.getOperandNo() == 1) {
 | 
						|
        if (MI->isVolatile()) return false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we already have seen a copy, reject the second one.
 | 
						|
      if (TheCopy) return false;
 | 
						|
 | 
						|
      // If the pointer has been offset from the start of the alloca, we can't
 | 
						|
      // safely handle this.
 | 
						|
      if (IsOffset) return false;
 | 
						|
 | 
						|
      // If the memintrinsic isn't using the alloca as the dest, reject it.
 | 
						|
      if (U.getOperandNo() != 0) return false;
 | 
						|
 | 
						|
      // If the source of the memcpy/move is not a constant global, reject it.
 | 
						|
      if (!pointsToConstantGlobal(MI->getSource()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Otherwise, the transform is safe.  Remember the copy instruction.
 | 
						|
      TheCopy = MI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
 | 
						|
/// modified by a copy from a constant global.  If we can prove this, we can
 | 
						|
/// replace any uses of the alloca with uses of the global directly.
 | 
						|
static MemTransferInst *
 | 
						|
isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
 | 
						|
                               SmallVectorImpl<Instruction *> &ToDelete) {
 | 
						|
  MemTransferInst *TheCopy = nullptr;
 | 
						|
  if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
 | 
						|
    return TheCopy;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
 | 
						|
  // Check for array size of 1 (scalar allocation).
 | 
						|
  if (!AI.isArrayAllocation()) {
 | 
						|
    // i32 1 is the canonical array size for scalar allocations.
 | 
						|
    if (AI.getArraySize()->getType()->isIntegerTy(32))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Canonicalize it.
 | 
						|
    Value *V = IC.Builder->getInt32(1);
 | 
						|
    AI.setOperand(0, V);
 | 
						|
    return &AI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
 | 
						|
  if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
 | 
						|
    Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
 | 
						|
    AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
 | 
						|
    New->setAlignment(AI.getAlignment());
 | 
						|
 | 
						|
    // Scan to the end of the allocation instructions, to skip over a block of
 | 
						|
    // allocas if possible...also skip interleaved debug info
 | 
						|
    //
 | 
						|
    BasicBlock::iterator It(New);
 | 
						|
    while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
 | 
						|
      ++It;
 | 
						|
 | 
						|
    // Now that I is pointing to the first non-allocation-inst in the block,
 | 
						|
    // insert our getelementptr instruction...
 | 
						|
    //
 | 
						|
    Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
 | 
						|
    Value *NullIdx = Constant::getNullValue(IdxTy);
 | 
						|
    Value *Idx[2] = {NullIdx, NullIdx};
 | 
						|
    Instruction *GEP =
 | 
						|
        GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
 | 
						|
    IC.InsertNewInstBefore(GEP, *It);
 | 
						|
 | 
						|
    // Now make everything use the getelementptr instead of the original
 | 
						|
    // allocation.
 | 
						|
    return IC.replaceInstUsesWith(AI, GEP);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<UndefValue>(AI.getArraySize()))
 | 
						|
    return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | 
						|
 | 
						|
  // Ensure that the alloca array size argument has type intptr_t, so that
 | 
						|
  // any casting is exposed early.
 | 
						|
  Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
 | 
						|
  if (AI.getArraySize()->getType() != IntPtrTy) {
 | 
						|
    Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
 | 
						|
    AI.setOperand(0, V);
 | 
						|
    return &AI;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
 | 
						|
  if (auto *I = simplifyAllocaArraySize(*this, AI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (AI.getAllocatedType()->isSized()) {
 | 
						|
    // If the alignment is 0 (unspecified), assign it the preferred alignment.
 | 
						|
    if (AI.getAlignment() == 0)
 | 
						|
      AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
 | 
						|
 | 
						|
    // Move all alloca's of zero byte objects to the entry block and merge them
 | 
						|
    // together.  Note that we only do this for alloca's, because malloc should
 | 
						|
    // allocate and return a unique pointer, even for a zero byte allocation.
 | 
						|
    if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
 | 
						|
      // For a zero sized alloca there is no point in doing an array allocation.
 | 
						|
      // This is helpful if the array size is a complicated expression not used
 | 
						|
      // elsewhere.
 | 
						|
      if (AI.isArrayAllocation()) {
 | 
						|
        AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
 | 
						|
        return &AI;
 | 
						|
      }
 | 
						|
 | 
						|
      // Get the first instruction in the entry block.
 | 
						|
      BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
 | 
						|
      Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
 | 
						|
      if (FirstInst != &AI) {
 | 
						|
        // If the entry block doesn't start with a zero-size alloca then move
 | 
						|
        // this one to the start of the entry block.  There is no problem with
 | 
						|
        // dominance as the array size was forced to a constant earlier already.
 | 
						|
        AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
 | 
						|
        if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
 | 
						|
            DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
 | 
						|
          AI.moveBefore(FirstInst);
 | 
						|
          return &AI;
 | 
						|
        }
 | 
						|
 | 
						|
        // If the alignment of the entry block alloca is 0 (unspecified),
 | 
						|
        // assign it the preferred alignment.
 | 
						|
        if (EntryAI->getAlignment() == 0)
 | 
						|
          EntryAI->setAlignment(
 | 
						|
              DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
 | 
						|
        // Replace this zero-sized alloca with the one at the start of the entry
 | 
						|
        // block after ensuring that the address will be aligned enough for both
 | 
						|
        // types.
 | 
						|
        unsigned MaxAlign = std::max(EntryAI->getAlignment(),
 | 
						|
                                     AI.getAlignment());
 | 
						|
        EntryAI->setAlignment(MaxAlign);
 | 
						|
        if (AI.getType() != EntryAI->getType())
 | 
						|
          return new BitCastInst(EntryAI, AI.getType());
 | 
						|
        return replaceInstUsesWith(AI, EntryAI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (AI.getAlignment()) {
 | 
						|
    // Check to see if this allocation is only modified by a memcpy/memmove from
 | 
						|
    // a constant global whose alignment is equal to or exceeds that of the
 | 
						|
    // allocation.  If this is the case, we can change all users to use
 | 
						|
    // the constant global instead.  This is commonly produced by the CFE by
 | 
						|
    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
 | 
						|
    // is only subsequently read.
 | 
						|
    SmallVector<Instruction *, 4> ToDelete;
 | 
						|
    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
 | 
						|
      unsigned SourceAlign = getOrEnforceKnownAlignment(
 | 
						|
          Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
 | 
						|
      if (AI.getAlignment() <= SourceAlign) {
 | 
						|
        DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
 | 
						|
        DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
 | 
						|
        for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
 | 
						|
          eraseInstFromFunction(*ToDelete[i]);
 | 
						|
        Constant *TheSrc = cast<Constant>(Copy->getSource());
 | 
						|
        Constant *Cast
 | 
						|
          = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
 | 
						|
        Instruction *NewI = replaceInstUsesWith(AI, Cast);
 | 
						|
        eraseInstFromFunction(*Copy);
 | 
						|
        ++NumGlobalCopies;
 | 
						|
        return NewI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // At last, use the generic allocation site handler to aggressively remove
 | 
						|
  // unused allocas.
 | 
						|
  return visitAllocSite(AI);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper to combine a load to a new type.
 | 
						|
///
 | 
						|
/// This just does the work of combining a load to a new type. It handles
 | 
						|
/// metadata, etc., and returns the new instruction. The \c NewTy should be the
 | 
						|
/// loaded *value* type. This will convert it to a pointer, cast the operand to
 | 
						|
/// that pointer type, load it, etc.
 | 
						|
///
 | 
						|
/// Note that this will create all of the instructions with whatever insert
 | 
						|
/// point the \c InstCombiner currently is using.
 | 
						|
static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
 | 
						|
                                      const Twine &Suffix = "") {
 | 
						|
  Value *Ptr = LI.getPointerOperand();
 | 
						|
  unsigned AS = LI.getPointerAddressSpace();
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
 | 
						|
  LI.getAllMetadata(MD);
 | 
						|
 | 
						|
  LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
 | 
						|
      IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
 | 
						|
      LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
 | 
						|
  NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
 | 
						|
  MDBuilder MDB(NewLoad->getContext());
 | 
						|
  for (const auto &MDPair : MD) {
 | 
						|
    unsigned ID = MDPair.first;
 | 
						|
    MDNode *N = MDPair.second;
 | 
						|
    // Note, essentially every kind of metadata should be preserved here! This
 | 
						|
    // routine is supposed to clone a load instruction changing *only its type*.
 | 
						|
    // The only metadata it makes sense to drop is metadata which is invalidated
 | 
						|
    // when the pointer type changes. This should essentially never be the case
 | 
						|
    // in LLVM, but we explicitly switch over only known metadata to be
 | 
						|
    // conservatively correct. If you are adding metadata to LLVM which pertains
 | 
						|
    // to loads, you almost certainly want to add it here.
 | 
						|
    switch (ID) {
 | 
						|
    case LLVMContext::MD_dbg:
 | 
						|
    case LLVMContext::MD_tbaa:
 | 
						|
    case LLVMContext::MD_prof:
 | 
						|
    case LLVMContext::MD_fpmath:
 | 
						|
    case LLVMContext::MD_tbaa_struct:
 | 
						|
    case LLVMContext::MD_invariant_load:
 | 
						|
    case LLVMContext::MD_alias_scope:
 | 
						|
    case LLVMContext::MD_noalias:
 | 
						|
    case LLVMContext::MD_nontemporal:
 | 
						|
    case LLVMContext::MD_mem_parallel_loop_access:
 | 
						|
      // All of these directly apply.
 | 
						|
      NewLoad->setMetadata(ID, N);
 | 
						|
      break;
 | 
						|
 | 
						|
    case LLVMContext::MD_nonnull:
 | 
						|
      // This only directly applies if the new type is also a pointer.
 | 
						|
      if (NewTy->isPointerTy()) {
 | 
						|
        NewLoad->setMetadata(ID, N);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // If it's integral now, translate it to !range metadata.
 | 
						|
      if (NewTy->isIntegerTy()) {
 | 
						|
        auto *ITy = cast<IntegerType>(NewTy);
 | 
						|
        auto *NullInt = ConstantExpr::getPtrToInt(
 | 
						|
            ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
 | 
						|
        auto *NonNullInt =
 | 
						|
            ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
 | 
						|
        NewLoad->setMetadata(LLVMContext::MD_range,
 | 
						|
                             MDB.createRange(NonNullInt, NullInt));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case LLVMContext::MD_align:
 | 
						|
    case LLVMContext::MD_dereferenceable:
 | 
						|
    case LLVMContext::MD_dereferenceable_or_null:
 | 
						|
      // These only directly apply if the new type is also a pointer.
 | 
						|
      if (NewTy->isPointerTy())
 | 
						|
        NewLoad->setMetadata(ID, N);
 | 
						|
      break;
 | 
						|
    case LLVMContext::MD_range:
 | 
						|
      // FIXME: It would be nice to propagate this in some way, but the type
 | 
						|
      // conversions make it hard. If the new type is a pointer, we could
 | 
						|
      // translate it to !nonnull metadata.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return NewLoad;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Combine a store to a new type.
 | 
						|
///
 | 
						|
/// Returns the newly created store instruction.
 | 
						|
static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
 | 
						|
  Value *Ptr = SI.getPointerOperand();
 | 
						|
  unsigned AS = SI.getPointerAddressSpace();
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
 | 
						|
  SI.getAllMetadata(MD);
 | 
						|
 | 
						|
  StoreInst *NewStore = IC.Builder->CreateAlignedStore(
 | 
						|
      V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
 | 
						|
      SI.getAlignment(), SI.isVolatile());
 | 
						|
  NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope());
 | 
						|
  for (const auto &MDPair : MD) {
 | 
						|
    unsigned ID = MDPair.first;
 | 
						|
    MDNode *N = MDPair.second;
 | 
						|
    // Note, essentially every kind of metadata should be preserved here! This
 | 
						|
    // routine is supposed to clone a store instruction changing *only its
 | 
						|
    // type*. The only metadata it makes sense to drop is metadata which is
 | 
						|
    // invalidated when the pointer type changes. This should essentially
 | 
						|
    // never be the case in LLVM, but we explicitly switch over only known
 | 
						|
    // metadata to be conservatively correct. If you are adding metadata to
 | 
						|
    // LLVM which pertains to stores, you almost certainly want to add it
 | 
						|
    // here.
 | 
						|
    switch (ID) {
 | 
						|
    case LLVMContext::MD_dbg:
 | 
						|
    case LLVMContext::MD_tbaa:
 | 
						|
    case LLVMContext::MD_prof:
 | 
						|
    case LLVMContext::MD_fpmath:
 | 
						|
    case LLVMContext::MD_tbaa_struct:
 | 
						|
    case LLVMContext::MD_alias_scope:
 | 
						|
    case LLVMContext::MD_noalias:
 | 
						|
    case LLVMContext::MD_nontemporal:
 | 
						|
    case LLVMContext::MD_mem_parallel_loop_access:
 | 
						|
      // All of these directly apply.
 | 
						|
      NewStore->setMetadata(ID, N);
 | 
						|
      break;
 | 
						|
 | 
						|
    case LLVMContext::MD_invariant_load:
 | 
						|
    case LLVMContext::MD_nonnull:
 | 
						|
    case LLVMContext::MD_range:
 | 
						|
    case LLVMContext::MD_align:
 | 
						|
    case LLVMContext::MD_dereferenceable:
 | 
						|
    case LLVMContext::MD_dereferenceable_or_null:
 | 
						|
      // These don't apply for stores.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NewStore;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Combine loads to match the type of their uses' value after looking
 | 
						|
/// through intervening bitcasts.
 | 
						|
///
 | 
						|
/// The core idea here is that if the result of a load is used in an operation,
 | 
						|
/// we should load the type most conducive to that operation. For example, when
 | 
						|
/// loading an integer and converting that immediately to a pointer, we should
 | 
						|
/// instead directly load a pointer.
 | 
						|
///
 | 
						|
/// However, this routine must never change the width of a load or the number of
 | 
						|
/// loads as that would introduce a semantic change. This combine is expected to
 | 
						|
/// be a semantic no-op which just allows loads to more closely model the types
 | 
						|
/// of their consuming operations.
 | 
						|
///
 | 
						|
/// Currently, we also refuse to change the precise type used for an atomic load
 | 
						|
/// or a volatile load. This is debatable, and might be reasonable to change
 | 
						|
/// later. However, it is risky in case some backend or other part of LLVM is
 | 
						|
/// relying on the exact type loaded to select appropriate atomic operations.
 | 
						|
static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
 | 
						|
  // FIXME: We could probably with some care handle both volatile and ordered
 | 
						|
  // atomic loads here but it isn't clear that this is important.
 | 
						|
  if (!LI.isUnordered())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (LI.use_empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *Ty = LI.getType();
 | 
						|
  const DataLayout &DL = IC.getDataLayout();
 | 
						|
 | 
						|
  // Try to canonicalize loads which are only ever stored to operate over
 | 
						|
  // integers instead of any other type. We only do this when the loaded type
 | 
						|
  // is sized and has a size exactly the same as its store size and the store
 | 
						|
  // size is a legal integer type.
 | 
						|
  if (!Ty->isIntegerTy() && Ty->isSized() &&
 | 
						|
      DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
 | 
						|
      DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) &&
 | 
						|
      !DL.isNonIntegralPointerType(Ty)) {
 | 
						|
    if (all_of(LI.users(), [&LI](User *U) {
 | 
						|
          auto *SI = dyn_cast<StoreInst>(U);
 | 
						|
          return SI && SI->getPointerOperand() != &LI;
 | 
						|
        })) {
 | 
						|
      LoadInst *NewLoad = combineLoadToNewType(
 | 
						|
          IC, LI,
 | 
						|
          Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
 | 
						|
      // Replace all the stores with stores of the newly loaded value.
 | 
						|
      for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
 | 
						|
        auto *SI = cast<StoreInst>(*UI++);
 | 
						|
        IC.Builder->SetInsertPoint(SI);
 | 
						|
        combineStoreToNewValue(IC, *SI, NewLoad);
 | 
						|
        IC.eraseInstFromFunction(*SI);
 | 
						|
      }
 | 
						|
      assert(LI.use_empty() && "Failed to remove all users of the load!");
 | 
						|
      // Return the old load so the combiner can delete it safely.
 | 
						|
      return &LI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fold away bit casts of the loaded value by loading the desired type.
 | 
						|
  // We can do this for BitCastInsts as well as casts from and to pointer types,
 | 
						|
  // as long as those are noops (i.e., the source or dest type have the same
 | 
						|
  // bitwidth as the target's pointers).
 | 
						|
  if (LI.hasOneUse())
 | 
						|
    if (auto* CI = dyn_cast<CastInst>(LI.user_back())) {
 | 
						|
      if (CI->isNoopCast(DL)) {
 | 
						|
        LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
 | 
						|
        CI->replaceAllUsesWith(NewLoad);
 | 
						|
        IC.eraseInstFromFunction(*CI);
 | 
						|
        return &LI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // FIXME: We should also canonicalize loads of vectors when their elements are
 | 
						|
  // cast to other types.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
 | 
						|
  // FIXME: We could probably with some care handle both volatile and atomic
 | 
						|
  // stores here but it isn't clear that this is important.
 | 
						|
  if (!LI.isSimple())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *T = LI.getType();
 | 
						|
  if (!T->isAggregateType())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  StringRef Name = LI.getName();
 | 
						|
  assert(LI.getAlignment() && "Alignment must be set at this point");
 | 
						|
 | 
						|
  if (auto *ST = dyn_cast<StructType>(T)) {
 | 
						|
    // If the struct only have one element, we unpack.
 | 
						|
    auto NumElements = ST->getNumElements();
 | 
						|
    if (NumElements == 1) {
 | 
						|
      LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
 | 
						|
                                               ".unpack");
 | 
						|
      return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
 | 
						|
        UndefValue::get(T), NewLoad, 0, Name));
 | 
						|
    }
 | 
						|
 | 
						|
    // We don't want to break loads with padding here as we'd loose
 | 
						|
    // the knowledge that padding exists for the rest of the pipeline.
 | 
						|
    const DataLayout &DL = IC.getDataLayout();
 | 
						|
    auto *SL = DL.getStructLayout(ST);
 | 
						|
    if (SL->hasPadding())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    auto Align = LI.getAlignment();
 | 
						|
    if (!Align)
 | 
						|
      Align = DL.getABITypeAlignment(ST);
 | 
						|
 | 
						|
    auto *Addr = LI.getPointerOperand();
 | 
						|
    auto *IdxType = Type::getInt32Ty(T->getContext());
 | 
						|
    auto *Zero = ConstantInt::get(IdxType, 0);
 | 
						|
 | 
						|
    Value *V = UndefValue::get(T);
 | 
						|
    for (unsigned i = 0; i < NumElements; i++) {
 | 
						|
      Value *Indices[2] = {
 | 
						|
        Zero,
 | 
						|
        ConstantInt::get(IdxType, i),
 | 
						|
      };
 | 
						|
      auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
 | 
						|
                                                Name + ".elt");
 | 
						|
      auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
 | 
						|
      auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack");
 | 
						|
      V = IC.Builder->CreateInsertValue(V, L, i);
 | 
						|
    }
 | 
						|
 | 
						|
    V->setName(Name);
 | 
						|
    return IC.replaceInstUsesWith(LI, V);
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *AT = dyn_cast<ArrayType>(T)) {
 | 
						|
    auto *ET = AT->getElementType();
 | 
						|
    auto NumElements = AT->getNumElements();
 | 
						|
    if (NumElements == 1) {
 | 
						|
      LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
 | 
						|
      return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
 | 
						|
        UndefValue::get(T), NewLoad, 0, Name));
 | 
						|
    }
 | 
						|
 | 
						|
    const DataLayout &DL = IC.getDataLayout();
 | 
						|
    auto EltSize = DL.getTypeAllocSize(ET);
 | 
						|
    auto Align = LI.getAlignment();
 | 
						|
    if (!Align)
 | 
						|
      Align = DL.getABITypeAlignment(T);
 | 
						|
 | 
						|
    auto *Addr = LI.getPointerOperand();
 | 
						|
    auto *IdxType = Type::getInt64Ty(T->getContext());
 | 
						|
    auto *Zero = ConstantInt::get(IdxType, 0);
 | 
						|
 | 
						|
    Value *V = UndefValue::get(T);
 | 
						|
    uint64_t Offset = 0;
 | 
						|
    for (uint64_t i = 0; i < NumElements; i++) {
 | 
						|
      Value *Indices[2] = {
 | 
						|
        Zero,
 | 
						|
        ConstantInt::get(IdxType, i),
 | 
						|
      };
 | 
						|
      auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
 | 
						|
                                                Name + ".elt");
 | 
						|
      auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset),
 | 
						|
                                              Name + ".unpack");
 | 
						|
      V = IC.Builder->CreateInsertValue(V, L, i);
 | 
						|
      Offset += EltSize;
 | 
						|
    }
 | 
						|
 | 
						|
    V->setName(Name);
 | 
						|
    return IC.replaceInstUsesWith(LI, V);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// If we can determine that all possible objects pointed to by the provided
 | 
						|
// pointer value are, not only dereferenceable, but also definitively less than
 | 
						|
// or equal to the provided maximum size, then return true. Otherwise, return
 | 
						|
// false (constant global values and allocas fall into this category).
 | 
						|
//
 | 
						|
// FIXME: This should probably live in ValueTracking (or similar).
 | 
						|
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
 | 
						|
                                     const DataLayout &DL) {
 | 
						|
  SmallPtrSet<Value *, 4> Visited;
 | 
						|
  SmallVector<Value *, 4> Worklist(1, V);
 | 
						|
 | 
						|
  do {
 | 
						|
    Value *P = Worklist.pop_back_val();
 | 
						|
    P = P->stripPointerCasts();
 | 
						|
 | 
						|
    if (!Visited.insert(P).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
 | 
						|
      Worklist.push_back(SI->getTrueValue());
 | 
						|
      Worklist.push_back(SI->getFalseValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(P)) {
 | 
						|
      for (Value *IncValue : PN->incoming_values())
 | 
						|
        Worklist.push_back(IncValue);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
 | 
						|
      if (GA->isInterposable())
 | 
						|
        return false;
 | 
						|
      Worklist.push_back(GA->getAliasee());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we know how big this object is, and it is less than MaxSize, continue
 | 
						|
    // searching. Otherwise, return false.
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
 | 
						|
      if (!AI->getAllocatedType()->isSized())
 | 
						|
        return false;
 | 
						|
 | 
						|
      ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
 | 
						|
      if (!CS)
 | 
						|
        return false;
 | 
						|
 | 
						|
      uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
 | 
						|
      // Make sure that, even if the multiplication below would wrap as an
 | 
						|
      // uint64_t, we still do the right thing.
 | 
						|
      if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
 | 
						|
      if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
 | 
						|
        return false;
 | 
						|
 | 
						|
      uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
 | 
						|
      if (InitSize > MaxSize)
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  } while (!Worklist.empty());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// If we're indexing into an object of a known size, and the outer index is
 | 
						|
// not a constant, but having any value but zero would lead to undefined
 | 
						|
// behavior, replace it with zero.
 | 
						|
//
 | 
						|
// For example, if we have:
 | 
						|
// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
 | 
						|
// ...
 | 
						|
// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
 | 
						|
// ... = load i32* %arrayidx, align 4
 | 
						|
// Then we know that we can replace %x in the GEP with i64 0.
 | 
						|
//
 | 
						|
// FIXME: We could fold any GEP index to zero that would cause UB if it were
 | 
						|
// not zero. Currently, we only handle the first such index. Also, we could
 | 
						|
// also search through non-zero constant indices if we kept track of the
 | 
						|
// offsets those indices implied.
 | 
						|
static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
 | 
						|
                                     Instruction *MemI, unsigned &Idx) {
 | 
						|
  if (GEPI->getNumOperands() < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the first non-zero index of a GEP. If all indices are zero, return
 | 
						|
  // one past the last index.
 | 
						|
  auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
 | 
						|
    unsigned I = 1;
 | 
						|
    for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
 | 
						|
      Value *V = GEPI->getOperand(I);
 | 
						|
      if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | 
						|
        if (CI->isZero())
 | 
						|
          continue;
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return I;
 | 
						|
  };
 | 
						|
 | 
						|
  // Skip through initial 'zero' indices, and find the corresponding pointer
 | 
						|
  // type. See if the next index is not a constant.
 | 
						|
  Idx = FirstNZIdx(GEPI);
 | 
						|
  if (Idx == GEPI->getNumOperands())
 | 
						|
    return false;
 | 
						|
  if (isa<Constant>(GEPI->getOperand(Idx)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
 | 
						|
  Type *AllocTy =
 | 
						|
    GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
 | 
						|
  if (!AllocTy || !AllocTy->isSized())
 | 
						|
    return false;
 | 
						|
  const DataLayout &DL = IC.getDataLayout();
 | 
						|
  uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
 | 
						|
 | 
						|
  // If there are more indices after the one we might replace with a zero, make
 | 
						|
  // sure they're all non-negative. If any of them are negative, the overall
 | 
						|
  // address being computed might be before the base address determined by the
 | 
						|
  // first non-zero index.
 | 
						|
  auto IsAllNonNegative = [&]() {
 | 
						|
    for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
 | 
						|
      bool KnownNonNegative, KnownNegative;
 | 
						|
      IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
 | 
						|
                        KnownNegative, 0, MemI);
 | 
						|
      if (KnownNonNegative)
 | 
						|
        continue;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  // FIXME: If the GEP is not inbounds, and there are extra indices after the
 | 
						|
  // one we'll replace, those could cause the address computation to wrap
 | 
						|
  // (rendering the IsAllNonNegative() check below insufficient). We can do
 | 
						|
  // better, ignoring zero indices (and other indices we can prove small
 | 
						|
  // enough not to wrap).
 | 
						|
  if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
 | 
						|
  // also known to be dereferenceable.
 | 
						|
  return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
 | 
						|
         IsAllNonNegative();
 | 
						|
}
 | 
						|
 | 
						|
// If we're indexing into an object with a variable index for the memory
 | 
						|
// access, but the object has only one element, we can assume that the index
 | 
						|
// will always be zero. If we replace the GEP, return it.
 | 
						|
template <typename T>
 | 
						|
static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
 | 
						|
                                          T &MemI) {
 | 
						|
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
 | 
						|
    unsigned Idx;
 | 
						|
    if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
 | 
						|
      Instruction *NewGEPI = GEPI->clone();
 | 
						|
      NewGEPI->setOperand(Idx,
 | 
						|
        ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
 | 
						|
      NewGEPI->insertBefore(GEPI);
 | 
						|
      MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
 | 
						|
      return NewGEPI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 | 
						|
  Value *Op = LI.getOperand(0);
 | 
						|
 | 
						|
  // Try to canonicalize the loaded type.
 | 
						|
  if (Instruction *Res = combineLoadToOperationType(*this, LI))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Attempt to improve the alignment.
 | 
						|
  unsigned KnownAlign = getOrEnforceKnownAlignment(
 | 
						|
      Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
 | 
						|
  unsigned LoadAlign = LI.getAlignment();
 | 
						|
  unsigned EffectiveLoadAlign =
 | 
						|
      LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
 | 
						|
 | 
						|
  if (KnownAlign > EffectiveLoadAlign)
 | 
						|
    LI.setAlignment(KnownAlign);
 | 
						|
  else if (LoadAlign == 0)
 | 
						|
    LI.setAlignment(EffectiveLoadAlign);
 | 
						|
 | 
						|
  // Replace GEP indices if possible.
 | 
						|
  if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
 | 
						|
      Worklist.Add(NewGEPI);
 | 
						|
      return &LI;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *Res = unpackLoadToAggregate(*this, LI))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Do really simple store-to-load forwarding and load CSE, to catch cases
 | 
						|
  // where there are several consecutive memory accesses to the same location,
 | 
						|
  // separated by a few arithmetic operations.
 | 
						|
  BasicBlock::iterator BBI(LI);
 | 
						|
  bool IsLoadCSE = false;
 | 
						|
  if (Value *AvailableVal =
 | 
						|
      FindAvailableLoadedValue(&LI, LI.getParent(), BBI,
 | 
						|
                               DefMaxInstsToScan, AA, &IsLoadCSE)) {
 | 
						|
    if (IsLoadCSE) {
 | 
						|
      LoadInst *NLI = cast<LoadInst>(AvailableVal);
 | 
						|
      unsigned KnownIDs[] = {
 | 
						|
          LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
 | 
						|
          LLVMContext::MD_noalias,         LLVMContext::MD_range,
 | 
						|
          LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
 | 
						|
          LLVMContext::MD_invariant_group, LLVMContext::MD_align,
 | 
						|
          LLVMContext::MD_dereferenceable,
 | 
						|
          LLVMContext::MD_dereferenceable_or_null};
 | 
						|
      combineMetadata(NLI, &LI, KnownIDs);
 | 
						|
    };
 | 
						|
 | 
						|
    return replaceInstUsesWith(
 | 
						|
        LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
 | 
						|
                                            LI.getName() + ".cast"));
 | 
						|
  }
 | 
						|
 | 
						|
  // None of the following transforms are legal for volatile/ordered atomic
 | 
						|
  // loads.  Most of them do apply for unordered atomics.
 | 
						|
  if (!LI.isUnordered()) return nullptr;
 | 
						|
 | 
						|
  // load(gep null, ...) -> unreachable
 | 
						|
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
 | 
						|
    const Value *GEPI0 = GEPI->getOperand(0);
 | 
						|
    // TODO: Consider a target hook for valid address spaces for this xform.
 | 
						|
    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
 | 
						|
      // Insert a new store to null instruction before the load to indicate
 | 
						|
      // that this code is not reachable.  We do this instead of inserting
 | 
						|
      // an unreachable instruction directly because we cannot modify the
 | 
						|
      // CFG.
 | 
						|
      new StoreInst(UndefValue::get(LI.getType()),
 | 
						|
                    Constant::getNullValue(Op->getType()), &LI);
 | 
						|
      return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // load null/undef -> unreachable
 | 
						|
  // TODO: Consider a target hook for valid address spaces for this xform.
 | 
						|
  if (isa<UndefValue>(Op) ||
 | 
						|
      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
 | 
						|
    // Insert a new store to null instruction before the load to indicate that
 | 
						|
    // this code is not reachable.  We do this instead of inserting an
 | 
						|
    // unreachable instruction directly because we cannot modify the CFG.
 | 
						|
    new StoreInst(UndefValue::get(LI.getType()),
 | 
						|
                  Constant::getNullValue(Op->getType()), &LI);
 | 
						|
    return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op->hasOneUse()) {
 | 
						|
    // Change select and PHI nodes to select values instead of addresses: this
 | 
						|
    // helps alias analysis out a lot, allows many others simplifications, and
 | 
						|
    // exposes redundancy in the code.
 | 
						|
    //
 | 
						|
    // Note that we cannot do the transformation unless we know that the
 | 
						|
    // introduced loads cannot trap!  Something like this is valid as long as
 | 
						|
    // the condition is always false: load (select bool %C, int* null, int* %G),
 | 
						|
    // but it would not be valid if we transformed it to load from null
 | 
						|
    // unconditionally.
 | 
						|
    //
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
 | 
						|
      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
 | 
						|
      unsigned Align = LI.getAlignment();
 | 
						|
      if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) &&
 | 
						|
          isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) {
 | 
						|
        LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
 | 
						|
                                           SI->getOperand(1)->getName()+".val");
 | 
						|
        LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
 | 
						|
                                           SI->getOperand(2)->getName()+".val");
 | 
						|
        assert(LI.isUnordered() && "implied by above");
 | 
						|
        V1->setAlignment(Align);
 | 
						|
        V1->setAtomic(LI.getOrdering(), LI.getSynchScope());
 | 
						|
        V2->setAlignment(Align);
 | 
						|
        V2->setAtomic(LI.getOrdering(), LI.getSynchScope());
 | 
						|
        return SelectInst::Create(SI->getCondition(), V1, V2);
 | 
						|
      }
 | 
						|
 | 
						|
      // load (select (cond, null, P)) -> load P
 | 
						|
      if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
 | 
						|
          LI.getPointerAddressSpace() == 0) {
 | 
						|
        LI.setOperand(0, SI->getOperand(2));
 | 
						|
        return &LI;
 | 
						|
      }
 | 
						|
 | 
						|
      // load (select (cond, P, null)) -> load P
 | 
						|
      if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
 | 
						|
          LI.getPointerAddressSpace() == 0) {
 | 
						|
        LI.setOperand(0, SI->getOperand(1));
 | 
						|
        return &LI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look for extractelement/insertvalue sequence that acts like a bitcast.
 | 
						|
///
 | 
						|
/// \returns underlying value that was "cast", or nullptr otherwise.
 | 
						|
///
 | 
						|
/// For example, if we have:
 | 
						|
///
 | 
						|
///     %E0 = extractelement <2 x double> %U, i32 0
 | 
						|
///     %V0 = insertvalue [2 x double] undef, double %E0, 0
 | 
						|
///     %E1 = extractelement <2 x double> %U, i32 1
 | 
						|
///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
 | 
						|
///
 | 
						|
/// and the layout of a <2 x double> is isomorphic to a [2 x double],
 | 
						|
/// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
 | 
						|
/// Note that %U may contain non-undef values where %V1 has undef.
 | 
						|
static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
 | 
						|
  Value *U = nullptr;
 | 
						|
  while (auto *IV = dyn_cast<InsertValueInst>(V)) {
 | 
						|
    auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
 | 
						|
    if (!E)
 | 
						|
      return nullptr;
 | 
						|
    auto *W = E->getVectorOperand();
 | 
						|
    if (!U)
 | 
						|
      U = W;
 | 
						|
    else if (U != W)
 | 
						|
      return nullptr;
 | 
						|
    auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
 | 
						|
    if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
 | 
						|
      return nullptr;
 | 
						|
    V = IV->getAggregateOperand();
 | 
						|
  }
 | 
						|
  if (!isa<UndefValue>(V) ||!U)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *UT = cast<VectorType>(U->getType());
 | 
						|
  auto *VT = V->getType();
 | 
						|
  // Check that types UT and VT are bitwise isomorphic.
 | 
						|
  const auto &DL = IC.getDataLayout();
 | 
						|
  if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  if (auto *AT = dyn_cast<ArrayType>(VT)) {
 | 
						|
    if (AT->getNumElements() != UT->getNumElements())
 | 
						|
      return nullptr;
 | 
						|
  } else {
 | 
						|
    auto *ST = cast<StructType>(VT);
 | 
						|
    if (ST->getNumElements() != UT->getNumElements())
 | 
						|
      return nullptr;
 | 
						|
    for (const auto *EltT : ST->elements()) {
 | 
						|
      if (EltT != UT->getElementType())
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return U;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Combine stores to match the type of value being stored.
 | 
						|
///
 | 
						|
/// The core idea here is that the memory does not have any intrinsic type and
 | 
						|
/// where we can we should match the type of a store to the type of value being
 | 
						|
/// stored.
 | 
						|
///
 | 
						|
/// However, this routine must never change the width of a store or the number of
 | 
						|
/// stores as that would introduce a semantic change. This combine is expected to
 | 
						|
/// be a semantic no-op which just allows stores to more closely model the types
 | 
						|
/// of their incoming values.
 | 
						|
///
 | 
						|
/// Currently, we also refuse to change the precise type used for an atomic or
 | 
						|
/// volatile store. This is debatable, and might be reasonable to change later.
 | 
						|
/// However, it is risky in case some backend or other part of LLVM is relying
 | 
						|
/// on the exact type stored to select appropriate atomic operations.
 | 
						|
///
 | 
						|
/// \returns true if the store was successfully combined away. This indicates
 | 
						|
/// the caller must erase the store instruction. We have to let the caller erase
 | 
						|
/// the store instruction as otherwise there is no way to signal whether it was
 | 
						|
/// combined or not: IC.EraseInstFromFunction returns a null pointer.
 | 
						|
static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
 | 
						|
  // FIXME: We could probably with some care handle both volatile and ordered
 | 
						|
  // atomic stores here but it isn't clear that this is important.
 | 
						|
  if (!SI.isUnordered())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *V = SI.getValueOperand();
 | 
						|
 | 
						|
  // Fold away bit casts of the stored value by storing the original type.
 | 
						|
  if (auto *BC = dyn_cast<BitCastInst>(V)) {
 | 
						|
    V = BC->getOperand(0);
 | 
						|
    combineStoreToNewValue(IC, SI, V);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *U = likeBitCastFromVector(IC, V)) {
 | 
						|
    combineStoreToNewValue(IC, SI, U);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We should also canonicalize stores of vectors when their elements
 | 
						|
  // are cast to other types.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
 | 
						|
  // FIXME: We could probably with some care handle both volatile and atomic
 | 
						|
  // stores here but it isn't clear that this is important.
 | 
						|
  if (!SI.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *V = SI.getValueOperand();
 | 
						|
  Type *T = V->getType();
 | 
						|
 | 
						|
  if (!T->isAggregateType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (auto *ST = dyn_cast<StructType>(T)) {
 | 
						|
    // If the struct only have one element, we unpack.
 | 
						|
    unsigned Count = ST->getNumElements();
 | 
						|
    if (Count == 1) {
 | 
						|
      V = IC.Builder->CreateExtractValue(V, 0);
 | 
						|
      combineStoreToNewValue(IC, SI, V);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // We don't want to break loads with padding here as we'd loose
 | 
						|
    // the knowledge that padding exists for the rest of the pipeline.
 | 
						|
    const DataLayout &DL = IC.getDataLayout();
 | 
						|
    auto *SL = DL.getStructLayout(ST);
 | 
						|
    if (SL->hasPadding())
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto Align = SI.getAlignment();
 | 
						|
    if (!Align)
 | 
						|
      Align = DL.getABITypeAlignment(ST);
 | 
						|
 | 
						|
    SmallString<16> EltName = V->getName();
 | 
						|
    EltName += ".elt";
 | 
						|
    auto *Addr = SI.getPointerOperand();
 | 
						|
    SmallString<16> AddrName = Addr->getName();
 | 
						|
    AddrName += ".repack";
 | 
						|
 | 
						|
    auto *IdxType = Type::getInt32Ty(ST->getContext());
 | 
						|
    auto *Zero = ConstantInt::get(IdxType, 0);
 | 
						|
    for (unsigned i = 0; i < Count; i++) {
 | 
						|
      Value *Indices[2] = {
 | 
						|
        Zero,
 | 
						|
        ConstantInt::get(IdxType, i),
 | 
						|
      };
 | 
						|
      auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
 | 
						|
                                                AddrName);
 | 
						|
      auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
 | 
						|
      auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
 | 
						|
      IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *AT = dyn_cast<ArrayType>(T)) {
 | 
						|
    // If the array only have one element, we unpack.
 | 
						|
    auto NumElements = AT->getNumElements();
 | 
						|
    if (NumElements == 1) {
 | 
						|
      V = IC.Builder->CreateExtractValue(V, 0);
 | 
						|
      combineStoreToNewValue(IC, SI, V);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    const DataLayout &DL = IC.getDataLayout();
 | 
						|
    auto EltSize = DL.getTypeAllocSize(AT->getElementType());
 | 
						|
    auto Align = SI.getAlignment();
 | 
						|
    if (!Align)
 | 
						|
      Align = DL.getABITypeAlignment(T);
 | 
						|
 | 
						|
    SmallString<16> EltName = V->getName();
 | 
						|
    EltName += ".elt";
 | 
						|
    auto *Addr = SI.getPointerOperand();
 | 
						|
    SmallString<16> AddrName = Addr->getName();
 | 
						|
    AddrName += ".repack";
 | 
						|
 | 
						|
    auto *IdxType = Type::getInt64Ty(T->getContext());
 | 
						|
    auto *Zero = ConstantInt::get(IdxType, 0);
 | 
						|
 | 
						|
    uint64_t Offset = 0;
 | 
						|
    for (uint64_t i = 0; i < NumElements; i++) {
 | 
						|
      Value *Indices[2] = {
 | 
						|
        Zero,
 | 
						|
        ConstantInt::get(IdxType, i),
 | 
						|
      };
 | 
						|
      auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
 | 
						|
                                                AddrName);
 | 
						|
      auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
 | 
						|
      auto EltAlign = MinAlign(Align, Offset);
 | 
						|
      IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
 | 
						|
      Offset += EltSize;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// equivalentAddressValues - Test if A and B will obviously have the same
 | 
						|
/// value. This includes recognizing that %t0 and %t1 will have the same
 | 
						|
/// value in code like this:
 | 
						|
///   %t0 = getelementptr \@a, 0, 3
 | 
						|
///   store i32 0, i32* %t0
 | 
						|
///   %t1 = getelementptr \@a, 0, 3
 | 
						|
///   %t2 = load i32* %t1
 | 
						|
///
 | 
						|
static bool equivalentAddressValues(Value *A, Value *B) {
 | 
						|
  // Test if the values are trivially equivalent.
 | 
						|
  if (A == B) return true;
 | 
						|
 | 
						|
  // Test if the values come form identical arithmetic instructions.
 | 
						|
  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
 | 
						|
  // its only used to compare two uses within the same basic block, which
 | 
						|
  // means that they'll always either have the same value or one of them
 | 
						|
  // will have an undefined value.
 | 
						|
  if (isa<BinaryOperator>(A) ||
 | 
						|
      isa<CastInst>(A) ||
 | 
						|
      isa<PHINode>(A) ||
 | 
						|
      isa<GetElementPtrInst>(A))
 | 
						|
    if (Instruction *BI = dyn_cast<Instruction>(B))
 | 
						|
      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
 | 
						|
        return true;
 | 
						|
 | 
						|
  // Otherwise they may not be equivalent.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
 | 
						|
  Value *Val = SI.getOperand(0);
 | 
						|
  Value *Ptr = SI.getOperand(1);
 | 
						|
 | 
						|
  // Try to canonicalize the stored type.
 | 
						|
  if (combineStoreToValueType(*this, SI))
 | 
						|
    return eraseInstFromFunction(SI);
 | 
						|
 | 
						|
  // Attempt to improve the alignment.
 | 
						|
  unsigned KnownAlign = getOrEnforceKnownAlignment(
 | 
						|
      Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT);
 | 
						|
  unsigned StoreAlign = SI.getAlignment();
 | 
						|
  unsigned EffectiveStoreAlign =
 | 
						|
      StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
 | 
						|
 | 
						|
  if (KnownAlign > EffectiveStoreAlign)
 | 
						|
    SI.setAlignment(KnownAlign);
 | 
						|
  else if (StoreAlign == 0)
 | 
						|
    SI.setAlignment(EffectiveStoreAlign);
 | 
						|
 | 
						|
  // Try to canonicalize the stored type.
 | 
						|
  if (unpackStoreToAggregate(*this, SI))
 | 
						|
    return eraseInstFromFunction(SI);
 | 
						|
 | 
						|
  // Replace GEP indices if possible.
 | 
						|
  if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
 | 
						|
      Worklist.Add(NewGEPI);
 | 
						|
      return &SI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't hack volatile/ordered stores.
 | 
						|
  // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
 | 
						|
  if (!SI.isUnordered()) return nullptr;
 | 
						|
 | 
						|
  // If the RHS is an alloca with a single use, zapify the store, making the
 | 
						|
  // alloca dead.
 | 
						|
  if (Ptr->hasOneUse()) {
 | 
						|
    if (isa<AllocaInst>(Ptr))
 | 
						|
      return eraseInstFromFunction(SI);
 | 
						|
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
 | 
						|
      if (isa<AllocaInst>(GEP->getOperand(0))) {
 | 
						|
        if (GEP->getOperand(0)->hasOneUse())
 | 
						|
          return eraseInstFromFunction(SI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Do really simple DSE, to catch cases where there are several consecutive
 | 
						|
  // stores to the same location, separated by a few arithmetic operations. This
 | 
						|
  // situation often occurs with bitfield accesses.
 | 
						|
  BasicBlock::iterator BBI(SI);
 | 
						|
  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
 | 
						|
       --ScanInsts) {
 | 
						|
    --BBI;
 | 
						|
    // Don't count debug info directives, lest they affect codegen,
 | 
						|
    // and we skip pointer-to-pointer bitcasts, which are NOPs.
 | 
						|
    if (isa<DbgInfoIntrinsic>(BBI) ||
 | 
						|
        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
 | 
						|
      ScanInsts++;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
 | 
						|
      // Prev store isn't volatile, and stores to the same location?
 | 
						|
      if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
 | 
						|
                                                        SI.getOperand(1))) {
 | 
						|
        ++NumDeadStore;
 | 
						|
        ++BBI;
 | 
						|
        eraseInstFromFunction(*PrevSI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a load, we have to stop.  However, if the loaded value is from
 | 
						|
    // the pointer we're loading and is producing the pointer we're storing,
 | 
						|
    // then *this* store is dead (X = load P; store X -> P).
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | 
						|
      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
 | 
						|
        assert(SI.isUnordered() && "can't eliminate ordering operation");
 | 
						|
        return eraseInstFromFunction(SI);
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, this is a load from some other location.  Stores before it
 | 
						|
      // may not be dead.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't skip over loads or things that can modify memory.
 | 
						|
    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // store X, null    -> turns into 'unreachable' in SimplifyCFG
 | 
						|
  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
 | 
						|
    if (!isa<UndefValue>(Val)) {
 | 
						|
      SI.setOperand(0, UndefValue::get(Val->getType()));
 | 
						|
      if (Instruction *U = dyn_cast<Instruction>(Val))
 | 
						|
        Worklist.Add(U);  // Dropped a use.
 | 
						|
    }
 | 
						|
    return nullptr;  // Do not modify these!
 | 
						|
  }
 | 
						|
 | 
						|
  // store undef, Ptr -> noop
 | 
						|
  if (isa<UndefValue>(Val))
 | 
						|
    return eraseInstFromFunction(SI);
 | 
						|
 | 
						|
  // If this store is the last instruction in the basic block (possibly
 | 
						|
  // excepting debug info instructions), and if the block ends with an
 | 
						|
  // unconditional branch, try to move it to the successor block.
 | 
						|
  BBI = SI.getIterator();
 | 
						|
  do {
 | 
						|
    ++BBI;
 | 
						|
  } while (isa<DbgInfoIntrinsic>(BBI) ||
 | 
						|
           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
 | 
						|
    if (BI->isUnconditional())
 | 
						|
      if (SimplifyStoreAtEndOfBlock(SI))
 | 
						|
        return nullptr;  // xform done!
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyStoreAtEndOfBlock - Turn things like:
 | 
						|
///   if () { *P = v1; } else { *P = v2 }
 | 
						|
/// into a phi node with a store in the successor.
 | 
						|
///
 | 
						|
/// Simplify things like:
 | 
						|
///   *P = v1; if () { *P = v2; }
 | 
						|
/// into a phi node with a store in the successor.
 | 
						|
///
 | 
						|
bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
 | 
						|
  assert(SI.isUnordered() &&
 | 
						|
         "this code has not been auditted for volatile or ordered store case");
 | 
						|
 | 
						|
  BasicBlock *StoreBB = SI.getParent();
 | 
						|
 | 
						|
  // Check to see if the successor block has exactly two incoming edges.  If
 | 
						|
  // so, see if the other predecessor contains a store to the same location.
 | 
						|
  // if so, insert a PHI node (if needed) and move the stores down.
 | 
						|
  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
 | 
						|
 | 
						|
  // Determine whether Dest has exactly two predecessors and, if so, compute
 | 
						|
  // the other predecessor.
 | 
						|
  pred_iterator PI = pred_begin(DestBB);
 | 
						|
  BasicBlock *P = *PI;
 | 
						|
  BasicBlock *OtherBB = nullptr;
 | 
						|
 | 
						|
  if (P != StoreBB)
 | 
						|
    OtherBB = P;
 | 
						|
 | 
						|
  if (++PI == pred_end(DestBB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  P = *PI;
 | 
						|
  if (P != StoreBB) {
 | 
						|
    if (OtherBB)
 | 
						|
      return false;
 | 
						|
    OtherBB = P;
 | 
						|
  }
 | 
						|
  if (++PI != pred_end(DestBB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Bail out if all the relevant blocks aren't distinct (this can happen,
 | 
						|
  // for example, if SI is in an infinite loop)
 | 
						|
  if (StoreBB == DestBB || OtherBB == DestBB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Verify that the other block ends in a branch and is not otherwise empty.
 | 
						|
  BasicBlock::iterator BBI(OtherBB->getTerminator());
 | 
						|
  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
 | 
						|
  if (!OtherBr || BBI == OtherBB->begin())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the other block ends in an unconditional branch, check for the 'if then
 | 
						|
  // else' case.  there is an instruction before the branch.
 | 
						|
  StoreInst *OtherStore = nullptr;
 | 
						|
  if (OtherBr->isUnconditional()) {
 | 
						|
    --BBI;
 | 
						|
    // Skip over debugging info.
 | 
						|
    while (isa<DbgInfoIntrinsic>(BBI) ||
 | 
						|
           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
 | 
						|
      if (BBI==OtherBB->begin())
 | 
						|
        return false;
 | 
						|
      --BBI;
 | 
						|
    }
 | 
						|
    // If this isn't a store, isn't a store to the same location, or is not the
 | 
						|
    // right kind of store, bail out.
 | 
						|
    OtherStore = dyn_cast<StoreInst>(BBI);
 | 
						|
    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
 | 
						|
        !SI.isSameOperationAs(OtherStore))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    // Otherwise, the other block ended with a conditional branch. If one of the
 | 
						|
    // destinations is StoreBB, then we have the if/then case.
 | 
						|
    if (OtherBr->getSuccessor(0) != StoreBB &&
 | 
						|
        OtherBr->getSuccessor(1) != StoreBB)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
 | 
						|
    // if/then triangle.  See if there is a store to the same ptr as SI that
 | 
						|
    // lives in OtherBB.
 | 
						|
    for (;; --BBI) {
 | 
						|
      // Check to see if we find the matching store.
 | 
						|
      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
 | 
						|
        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
 | 
						|
            !SI.isSameOperationAs(OtherStore))
 | 
						|
          return false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // If we find something that may be using or overwriting the stored
 | 
						|
      // value, or if we run out of instructions, we can't do the xform.
 | 
						|
      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
 | 
						|
          BBI == OtherBB->begin())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // In order to eliminate the store in OtherBr, we have to
 | 
						|
    // make sure nothing reads or overwrites the stored value in
 | 
						|
    // StoreBB.
 | 
						|
    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
 | 
						|
      // FIXME: This should really be AA driven.
 | 
						|
      if (I->mayReadFromMemory() || I->mayWriteToMemory())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a PHI node now if we need it.
 | 
						|
  Value *MergedVal = OtherStore->getOperand(0);
 | 
						|
  if (MergedVal != SI.getOperand(0)) {
 | 
						|
    PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
 | 
						|
    PN->addIncoming(SI.getOperand(0), SI.getParent());
 | 
						|
    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
 | 
						|
    MergedVal = InsertNewInstBefore(PN, DestBB->front());
 | 
						|
  }
 | 
						|
 | 
						|
  // Advance to a place where it is safe to insert the new store and
 | 
						|
  // insert it.
 | 
						|
  BBI = DestBB->getFirstInsertionPt();
 | 
						|
  StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
 | 
						|
                                   SI.isVolatile(),
 | 
						|
                                   SI.getAlignment(),
 | 
						|
                                   SI.getOrdering(),
 | 
						|
                                   SI.getSynchScope());
 | 
						|
  InsertNewInstBefore(NewSI, *BBI);
 | 
						|
  NewSI->setDebugLoc(OtherStore->getDebugLoc());
 | 
						|
 | 
						|
  // If the two stores had AA tags, merge them.
 | 
						|
  AAMDNodes AATags;
 | 
						|
  SI.getAAMetadata(AATags);
 | 
						|
  if (AATags) {
 | 
						|
    OtherStore->getAAMetadata(AATags, /* Merge = */ true);
 | 
						|
    NewSI->setAAMetadata(AATags);
 | 
						|
  }
 | 
						|
 | 
						|
  // Nuke the old stores.
 | 
						|
  eraseInstFromFunction(SI);
 | 
						|
  eraseInstFromFunction(*OtherStore);
 | 
						|
  return true;
 | 
						|
}
 |