217 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			217 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                      The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a Union-find algorithm to compute Minimum Spanning Tree
 | 
						|
// for a given CFG.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/BranchProbabilityInfo.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
#define DEBUG_TYPE "cfgmst"
 | 
						|
 | 
						|
/// \brief An union-find based Minimum Spanning Tree for CFG
 | 
						|
///
 | 
						|
/// Implements a Union-find algorithm to compute Minimum Spanning Tree
 | 
						|
/// for a given CFG.
 | 
						|
template <class Edge, class BBInfo> class CFGMST {
 | 
						|
public:
 | 
						|
  Function &F;
 | 
						|
 | 
						|
  // Store all the edges in CFG. It may contain some stale edges
 | 
						|
  // when Removed is set.
 | 
						|
  std::vector<std::unique_ptr<Edge>> AllEdges;
 | 
						|
 | 
						|
  // This map records the auxiliary information for each BB.
 | 
						|
  DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
 | 
						|
 | 
						|
  // Find the root group of the G and compress the path from G to the root.
 | 
						|
  BBInfo *findAndCompressGroup(BBInfo *G) {
 | 
						|
    if (G->Group != G)
 | 
						|
      G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
 | 
						|
    return static_cast<BBInfo *>(G->Group);
 | 
						|
  }
 | 
						|
 | 
						|
  // Union BB1 and BB2 into the same group and return true.
 | 
						|
  // Returns false if BB1 and BB2 are already in the same group.
 | 
						|
  bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
 | 
						|
    BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
 | 
						|
    BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
 | 
						|
 | 
						|
    if (BB1G == BB2G)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Make the smaller rank tree a direct child or the root of high rank tree.
 | 
						|
    if (BB1G->Rank < BB2G->Rank)
 | 
						|
      BB1G->Group = BB2G;
 | 
						|
    else {
 | 
						|
      BB2G->Group = BB1G;
 | 
						|
      // If the ranks are the same, increment root of one tree by one.
 | 
						|
      if (BB1G->Rank == BB2G->Rank)
 | 
						|
        BB1G->Rank++;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Give BB, return the auxiliary information.
 | 
						|
  BBInfo &getBBInfo(const BasicBlock *BB) const {
 | 
						|
    auto It = BBInfos.find(BB);
 | 
						|
    assert(It->second.get() != nullptr);
 | 
						|
    return *It->second.get();
 | 
						|
  }
 | 
						|
 | 
						|
  // Traverse the CFG using a stack. Find all the edges and assign the weight.
 | 
						|
  // Edges with large weight will be put into MST first so they are less likely
 | 
						|
  // to be instrumented.
 | 
						|
  void buildEdges() {
 | 
						|
    DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
 | 
						|
 | 
						|
    const BasicBlock *BB = &(F.getEntryBlock());
 | 
						|
    uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2);
 | 
						|
    // Add a fake edge to the entry.
 | 
						|
    addEdge(nullptr, BB, EntryWeight);
 | 
						|
 | 
						|
    // Special handling for single BB functions.
 | 
						|
    if (succ_empty(BB)) {
 | 
						|
      addEdge(BB, nullptr, EntryWeight);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    static const uint32_t CriticalEdgeMultiplier = 1000;
 | 
						|
 | 
						|
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | 
						|
      TerminatorInst *TI = BB->getTerminator();
 | 
						|
      uint64_t BBWeight =
 | 
						|
          (BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2);
 | 
						|
      uint64_t Weight = 2;
 | 
						|
      if (int successors = TI->getNumSuccessors()) {
 | 
						|
        for (int i = 0; i != successors; ++i) {
 | 
						|
          BasicBlock *TargetBB = TI->getSuccessor(i);
 | 
						|
          bool Critical = isCriticalEdge(TI, i);
 | 
						|
          uint64_t scaleFactor = BBWeight;
 | 
						|
          if (Critical) {
 | 
						|
            if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
 | 
						|
              scaleFactor *= CriticalEdgeMultiplier;
 | 
						|
            else
 | 
						|
              scaleFactor = UINT64_MAX;
 | 
						|
          }
 | 
						|
          if (BPI != nullptr)
 | 
						|
            Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor);
 | 
						|
          addEdge(&*BB, TargetBB, Weight).IsCritical = Critical;
 | 
						|
          DEBUG(dbgs() << "  Edge: from " << BB->getName() << " to "
 | 
						|
                       << TargetBB->getName() << "  w=" << Weight << "\n");
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        addEdge(&*BB, nullptr, BBWeight);
 | 
						|
        DEBUG(dbgs() << "  Edge: from " << BB->getName() << " to exit"
 | 
						|
                     << " w = " << BBWeight << "\n");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Sort CFG edges based on its weight.
 | 
						|
  void sortEdgesByWeight() {
 | 
						|
    std::stable_sort(AllEdges.begin(), AllEdges.end(),
 | 
						|
                     [](const std::unique_ptr<Edge> &Edge1,
 | 
						|
                        const std::unique_ptr<Edge> &Edge2) {
 | 
						|
                       return Edge1->Weight > Edge2->Weight;
 | 
						|
                     });
 | 
						|
  }
 | 
						|
 | 
						|
  // Traverse all the edges and compute the Minimum Weight Spanning Tree
 | 
						|
  // using union-find algorithm.
 | 
						|
  void computeMinimumSpanningTree() {
 | 
						|
    // First, put all the critical edge with landing-pad as the Dest to MST.
 | 
						|
    // This works around the insufficient support of critical edges split
 | 
						|
    // when destination BB is a landing pad.
 | 
						|
    for (auto &Ei : AllEdges) {
 | 
						|
      if (Ei->Removed)
 | 
						|
        continue;
 | 
						|
      if (Ei->IsCritical) {
 | 
						|
        if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
 | 
						|
          if (unionGroups(Ei->SrcBB, Ei->DestBB))
 | 
						|
            Ei->InMST = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto &Ei : AllEdges) {
 | 
						|
      if (Ei->Removed)
 | 
						|
        continue;
 | 
						|
      if (unionGroups(Ei->SrcBB, Ei->DestBB))
 | 
						|
        Ei->InMST = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Dump the Debug information about the instrumentation.
 | 
						|
  void dumpEdges(raw_ostream &OS, const Twine &Message) const {
 | 
						|
    if (!Message.str().empty())
 | 
						|
      OS << Message << "\n";
 | 
						|
    OS << "  Number of Basic Blocks: " << BBInfos.size() << "\n";
 | 
						|
    for (auto &BI : BBInfos) {
 | 
						|
      const BasicBlock *BB = BI.first;
 | 
						|
      OS << "  BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << "  "
 | 
						|
         << BI.second->infoString() << "\n";
 | 
						|
    }
 | 
						|
 | 
						|
    OS << "  Number of Edges: " << AllEdges.size()
 | 
						|
       << " (*: Instrument, C: CriticalEdge, -: Removed)\n";
 | 
						|
    uint32_t Count = 0;
 | 
						|
    for (auto &EI : AllEdges)
 | 
						|
      OS << "  Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
 | 
						|
         << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Add an edge to AllEdges with weight W.
 | 
						|
  Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) {
 | 
						|
    uint32_t Index = BBInfos.size();
 | 
						|
    auto Iter = BBInfos.end();
 | 
						|
    bool Inserted;
 | 
						|
    std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
 | 
						|
    if (Inserted) {
 | 
						|
      // Newly inserted, update the real info.
 | 
						|
      Iter->second = std::move(llvm::make_unique<BBInfo>(Index));
 | 
						|
      Index++;
 | 
						|
    }
 | 
						|
    std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
 | 
						|
    if (Inserted)
 | 
						|
      // Newly inserted, update the real info.
 | 
						|
      Iter->second = std::move(llvm::make_unique<BBInfo>(Index));
 | 
						|
    AllEdges.emplace_back(new Edge(Src, Dest, W));
 | 
						|
    return *AllEdges.back();
 | 
						|
  }
 | 
						|
 | 
						|
  BranchProbabilityInfo *BPI;
 | 
						|
  BlockFrequencyInfo *BFI;
 | 
						|
 | 
						|
public:
 | 
						|
  CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr,
 | 
						|
         BlockFrequencyInfo *BFI_ = nullptr)
 | 
						|
      : F(Func), BPI(BPI_), BFI(BFI_) {
 | 
						|
    buildEdges();
 | 
						|
    sortEdgesByWeight();
 | 
						|
    computeMinimumSpanningTree();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
#undef DEBUG_TYPE // "cfgmst"
 | 
						|
} // end namespace llvm
 |