542 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			542 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Float2Int pass, which aims to demote floating
 | 
						|
// point operations to work on integers, where that is losslessly possible.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "float2int"
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/Float2Int.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/APSInt.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include <deque>
 | 
						|
#include <functional> // For std::function
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// The algorithm is simple. Start at instructions that convert from the
 | 
						|
// float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
 | 
						|
// graph, using an equivalence datastructure to unify graphs that interfere.
 | 
						|
//
 | 
						|
// Mappable instructions are those with an integer corrollary that, given
 | 
						|
// integer domain inputs, produce an integer output; fadd, for example.
 | 
						|
//
 | 
						|
// If a non-mappable instruction is seen, this entire def-use graph is marked
 | 
						|
// as non-transformable. If we see an instruction that converts from the
 | 
						|
// integer domain to FP domain (uitofp,sitofp), we terminate our walk.
 | 
						|
 | 
						|
/// The largest integer type worth dealing with.
 | 
						|
static cl::opt<unsigned>
 | 
						|
MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
 | 
						|
             cl::desc("Max integer bitwidth to consider in float2int"
 | 
						|
                      "(default=64)"));
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct Float2IntLegacyPass : public FunctionPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    Float2IntLegacyPass() : FunctionPass(ID) {
 | 
						|
      initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override {
 | 
						|
      if (skipFunction(F))
 | 
						|
        return false;
 | 
						|
 | 
						|
      return Impl.runImpl(F);
 | 
						|
    }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    Float2IntPass Impl;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char Float2IntLegacyPass::ID = 0;
 | 
						|
INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
 | 
						|
 | 
						|
// Given a FCmp predicate, return a matching ICmp predicate if one
 | 
						|
// exists, otherwise return BAD_ICMP_PREDICATE.
 | 
						|
static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
 | 
						|
  switch (P) {
 | 
						|
  case CmpInst::FCMP_OEQ:
 | 
						|
  case CmpInst::FCMP_UEQ:
 | 
						|
    return CmpInst::ICMP_EQ;
 | 
						|
  case CmpInst::FCMP_OGT:
 | 
						|
  case CmpInst::FCMP_UGT:
 | 
						|
    return CmpInst::ICMP_SGT;
 | 
						|
  case CmpInst::FCMP_OGE:
 | 
						|
  case CmpInst::FCMP_UGE:
 | 
						|
    return CmpInst::ICMP_SGE;
 | 
						|
  case CmpInst::FCMP_OLT:
 | 
						|
  case CmpInst::FCMP_ULT:
 | 
						|
    return CmpInst::ICMP_SLT;
 | 
						|
  case CmpInst::FCMP_OLE:
 | 
						|
  case CmpInst::FCMP_ULE:
 | 
						|
    return CmpInst::ICMP_SLE;
 | 
						|
  case CmpInst::FCMP_ONE:
 | 
						|
  case CmpInst::FCMP_UNE:
 | 
						|
    return CmpInst::ICMP_NE;
 | 
						|
  default:
 | 
						|
    return CmpInst::BAD_ICMP_PREDICATE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Given a floating point binary operator, return the matching
 | 
						|
// integer version.
 | 
						|
static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  default: llvm_unreachable("Unhandled opcode!");
 | 
						|
  case Instruction::FAdd: return Instruction::Add;
 | 
						|
  case Instruction::FSub: return Instruction::Sub;
 | 
						|
  case Instruction::FMul: return Instruction::Mul;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Find the roots - instructions that convert from the FP domain to
 | 
						|
// integer domain.
 | 
						|
void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
 | 
						|
  for (auto &I : instructions(F)) {
 | 
						|
    if (isa<VectorType>(I.getType()))
 | 
						|
      continue;
 | 
						|
    switch (I.getOpcode()) {
 | 
						|
    default: break;
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
      Roots.insert(&I);
 | 
						|
      break;
 | 
						|
    case Instruction::FCmp:
 | 
						|
      if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
 | 
						|
          CmpInst::BAD_ICMP_PREDICATE)
 | 
						|
        Roots.insert(&I);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Helper - mark I as having been traversed, having range R.
 | 
						|
ConstantRange Float2IntPass::seen(Instruction *I, ConstantRange R) {
 | 
						|
  DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
 | 
						|
  if (SeenInsts.find(I) != SeenInsts.end())
 | 
						|
    SeenInsts.find(I)->second = R;
 | 
						|
  else
 | 
						|
    SeenInsts.insert(std::make_pair(I, R));
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
// Helper - get a range representing a poison value.
 | 
						|
ConstantRange Float2IntPass::badRange() {
 | 
						|
  return ConstantRange(MaxIntegerBW + 1, true);
 | 
						|
}
 | 
						|
ConstantRange Float2IntPass::unknownRange() {
 | 
						|
  return ConstantRange(MaxIntegerBW + 1, false);
 | 
						|
}
 | 
						|
ConstantRange Float2IntPass::validateRange(ConstantRange R) {
 | 
						|
  if (R.getBitWidth() > MaxIntegerBW + 1)
 | 
						|
    return badRange();
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
// The most obvious way to structure the search is a depth-first, eager
 | 
						|
// search from each root. However, that require direct recursion and so
 | 
						|
// can only handle small instruction sequences. Instead, we split the search
 | 
						|
// up into two phases:
 | 
						|
//   - walkBackwards:  A breadth-first walk of the use-def graph starting from
 | 
						|
//                     the roots. Populate "SeenInsts" with interesting
 | 
						|
//                     instructions and poison values if they're obvious and
 | 
						|
//                     cheap to compute. Calculate the equivalance set structure
 | 
						|
//                     while we're here too.
 | 
						|
//   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
 | 
						|
//                     defs before their uses. Calculate the real range info.
 | 
						|
 | 
						|
// Breadth-first walk of the use-def graph; determine the set of nodes
 | 
						|
// we care about and eagerly determine if some of them are poisonous.
 | 
						|
void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
 | 
						|
  std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *I = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
 | 
						|
    if (SeenInsts.find(I) != SeenInsts.end())
 | 
						|
      // Seen already.
 | 
						|
      continue;
 | 
						|
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
      // FIXME: Handle select and phi nodes.
 | 
						|
    default:
 | 
						|
      // Path terminated uncleanly.
 | 
						|
      seen(I, badRange());
 | 
						|
      break;
 | 
						|
 | 
						|
    case Instruction::UIToFP: {
 | 
						|
      // Path terminated cleanly.
 | 
						|
      unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
 | 
						|
      APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
 | 
						|
      APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
 | 
						|
      seen(I, validateRange(ConstantRange(Min, Max)));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case Instruction::SIToFP: {
 | 
						|
      // Path terminated cleanly.
 | 
						|
      unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
 | 
						|
      APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
 | 
						|
      APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
 | 
						|
      seen(I, validateRange(ConstantRange(SMin, SMax)));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::FCmp:
 | 
						|
      seen(I, unknownRange());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    for (Value *O : I->operands()) {
 | 
						|
      if (Instruction *OI = dyn_cast<Instruction>(O)) {
 | 
						|
        // Unify def-use chains if they interfere.
 | 
						|
        ECs.unionSets(I, OI);
 | 
						|
        if (SeenInsts.find(I)->second != badRange())
 | 
						|
          Worklist.push_back(OI);
 | 
						|
      } else if (!isa<ConstantFP>(O)) {
 | 
						|
        // Not an instruction or ConstantFP? we can't do anything.
 | 
						|
        seen(I, badRange());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Walk forwards down the list of seen instructions, so we visit defs before
 | 
						|
// uses.
 | 
						|
void Float2IntPass::walkForwards() {
 | 
						|
  for (auto &It : reverse(SeenInsts)) {
 | 
						|
    if (It.second != unknownRange())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Instruction *I = It.first;
 | 
						|
    std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
      // FIXME: Handle select and phi nodes.
 | 
						|
    default:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
      llvm_unreachable("Should have been handled in walkForwards!");
 | 
						|
 | 
						|
    case Instruction::FAdd:
 | 
						|
      Op = [](ArrayRef<ConstantRange> Ops) {
 | 
						|
        assert(Ops.size() == 2 && "FAdd is a binary operator!");
 | 
						|
        return Ops[0].add(Ops[1]);
 | 
						|
      };
 | 
						|
      break;
 | 
						|
 | 
						|
    case Instruction::FSub:
 | 
						|
      Op = [](ArrayRef<ConstantRange> Ops) {
 | 
						|
        assert(Ops.size() == 2 && "FSub is a binary operator!");
 | 
						|
        return Ops[0].sub(Ops[1]);
 | 
						|
      };
 | 
						|
      break;
 | 
						|
 | 
						|
    case Instruction::FMul:
 | 
						|
      Op = [](ArrayRef<ConstantRange> Ops) {
 | 
						|
        assert(Ops.size() == 2 && "FMul is a binary operator!");
 | 
						|
        return Ops[0].multiply(Ops[1]);
 | 
						|
      };
 | 
						|
      break;
 | 
						|
 | 
						|
    //
 | 
						|
    // Root-only instructions - we'll only see these if they're the
 | 
						|
    //                          first node in a walk.
 | 
						|
    //
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
      Op = [](ArrayRef<ConstantRange> Ops) {
 | 
						|
        assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
 | 
						|
        return Ops[0];
 | 
						|
      };
 | 
						|
      break;
 | 
						|
 | 
						|
    case Instruction::FCmp:
 | 
						|
      Op = [](ArrayRef<ConstantRange> Ops) {
 | 
						|
        assert(Ops.size() == 2 && "FCmp is a binary operator!");
 | 
						|
        return Ops[0].unionWith(Ops[1]);
 | 
						|
      };
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    bool Abort = false;
 | 
						|
    SmallVector<ConstantRange,4> OpRanges;
 | 
						|
    for (Value *O : I->operands()) {
 | 
						|
      if (Instruction *OI = dyn_cast<Instruction>(O)) {
 | 
						|
        assert(SeenInsts.find(OI) != SeenInsts.end() &&
 | 
						|
               "def not seen before use!");
 | 
						|
        OpRanges.push_back(SeenInsts.find(OI)->second);
 | 
						|
      } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
 | 
						|
        // Work out if the floating point number can be losslessly represented
 | 
						|
        // as an integer.
 | 
						|
        // APFloat::convertToInteger(&Exact) purports to do what we want, but
 | 
						|
        // the exactness can be too precise. For example, negative zero can
 | 
						|
        // never be exactly converted to an integer.
 | 
						|
        //
 | 
						|
        // Instead, we ask APFloat to round itself to an integral value - this
 | 
						|
        // preserves sign-of-zero - then compare the result with the original.
 | 
						|
        //
 | 
						|
        const APFloat &F = CF->getValueAPF();
 | 
						|
 | 
						|
        // First, weed out obviously incorrect values. Non-finite numbers
 | 
						|
        // can't be represented and neither can negative zero, unless
 | 
						|
        // we're in fast math mode.
 | 
						|
        if (!F.isFinite() ||
 | 
						|
            (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
 | 
						|
             !I->hasNoSignedZeros())) {
 | 
						|
          seen(I, badRange());
 | 
						|
          Abort = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        APFloat NewF = F;
 | 
						|
        auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
 | 
						|
        if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
 | 
						|
          seen(I, badRange());
 | 
						|
          Abort = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        // OK, it's representable. Now get it.
 | 
						|
        APSInt Int(MaxIntegerBW+1, false);
 | 
						|
        bool Exact;
 | 
						|
        CF->getValueAPF().convertToInteger(Int,
 | 
						|
                                           APFloat::rmNearestTiesToEven,
 | 
						|
                                           &Exact);
 | 
						|
        OpRanges.push_back(ConstantRange(Int));
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("Should have already marked this as badRange!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Reduce the operands' ranges to a single range and return.
 | 
						|
    if (!Abort)
 | 
						|
      seen(I, Op(OpRanges));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// If there is a valid transform to be done, do it.
 | 
						|
bool Float2IntPass::validateAndTransform() {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Iterate over every disjoint partition of the def-use graph.
 | 
						|
  for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
 | 
						|
    ConstantRange R(MaxIntegerBW + 1, false);
 | 
						|
    bool Fail = false;
 | 
						|
    Type *ConvertedToTy = nullptr;
 | 
						|
 | 
						|
    // For every member of the partition, union all the ranges together.
 | 
						|
    for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
 | 
						|
         MI != ME; ++MI) {
 | 
						|
      Instruction *I = *MI;
 | 
						|
      auto SeenI = SeenInsts.find(I);
 | 
						|
      if (SeenI == SeenInsts.end())
 | 
						|
        continue;
 | 
						|
 | 
						|
      R = R.unionWith(SeenI->second);
 | 
						|
      // We need to ensure I has no users that have not been seen.
 | 
						|
      // If it does, transformation would be illegal.
 | 
						|
      //
 | 
						|
      // Don't count the roots, as they terminate the graphs.
 | 
						|
      if (Roots.count(I) == 0) {
 | 
						|
        // Set the type of the conversion while we're here.
 | 
						|
        if (!ConvertedToTy)
 | 
						|
          ConvertedToTy = I->getType();
 | 
						|
        for (User *U : I->users()) {
 | 
						|
          Instruction *UI = dyn_cast<Instruction>(U);
 | 
						|
          if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
 | 
						|
            DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
 | 
						|
            Fail = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Fail)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the set was empty, or we failed, or the range is poisonous,
 | 
						|
    // bail out.
 | 
						|
    if (ECs.member_begin(It) == ECs.member_end() || Fail ||
 | 
						|
        R.isFullSet() || R.isSignWrappedSet())
 | 
						|
      continue;
 | 
						|
    assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
 | 
						|
 | 
						|
    // The number of bits required is the maximum of the upper and
 | 
						|
    // lower limits, plus one so it can be signed.
 | 
						|
    unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
 | 
						|
                              R.getUpper().getMinSignedBits()) + 1;
 | 
						|
    DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
 | 
						|
 | 
						|
    // If we've run off the realms of the exactly representable integers,
 | 
						|
    // the floating point result will differ from an integer approximation.
 | 
						|
 | 
						|
    // Do we need more bits than are in the mantissa of the type we converted
 | 
						|
    // to? semanticsPrecision returns the number of mantissa bits plus one
 | 
						|
    // for the sign bit.
 | 
						|
    unsigned MaxRepresentableBits
 | 
						|
      = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
 | 
						|
    if (MinBW > MaxRepresentableBits) {
 | 
						|
      DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (MinBW > 64) {
 | 
						|
      DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // OK, R is known to be representable. Now pick a type for it.
 | 
						|
    // FIXME: Pick the smallest legal type that will fit.
 | 
						|
    Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
 | 
						|
 | 
						|
    for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
 | 
						|
         MI != ME; ++MI)
 | 
						|
      convert(*MI, Ty);
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
 | 
						|
  if (ConvertedInsts.find(I) != ConvertedInsts.end())
 | 
						|
    // Already converted this instruction.
 | 
						|
    return ConvertedInsts[I];
 | 
						|
 | 
						|
  SmallVector<Value*,4> NewOperands;
 | 
						|
  for (Value *V : I->operands()) {
 | 
						|
    // Don't recurse if we're an instruction that terminates the path.
 | 
						|
    if (I->getOpcode() == Instruction::UIToFP ||
 | 
						|
        I->getOpcode() == Instruction::SIToFP) {
 | 
						|
      NewOperands.push_back(V);
 | 
						|
    } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
 | 
						|
      NewOperands.push_back(convert(VI, ToTy));
 | 
						|
    } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
 | 
						|
      APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
 | 
						|
      bool Exact;
 | 
						|
      CF->getValueAPF().convertToInteger(Val,
 | 
						|
                                         APFloat::rmNearestTiesToEven,
 | 
						|
                                         &Exact);
 | 
						|
      NewOperands.push_back(ConstantInt::get(ToTy, Val));
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Unhandled operand type?");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now create a new instruction.
 | 
						|
  IRBuilder<> IRB(I);
 | 
						|
  Value *NewV = nullptr;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: llvm_unreachable("Unhandled instruction!");
 | 
						|
 | 
						|
  case Instruction::FPToUI:
 | 
						|
    NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::FPToSI:
 | 
						|
    NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::FCmp: {
 | 
						|
    CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
 | 
						|
    assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
 | 
						|
    NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::UIToFP:
 | 
						|
    NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::SIToFP:
 | 
						|
    NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::FAdd:
 | 
						|
  case Instruction::FSub:
 | 
						|
  case Instruction::FMul:
 | 
						|
    NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
 | 
						|
                           NewOperands[0], NewOperands[1],
 | 
						|
                           I->getName());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're a root instruction, RAUW.
 | 
						|
  if (Roots.count(I))
 | 
						|
    I->replaceAllUsesWith(NewV);
 | 
						|
 | 
						|
  ConvertedInsts[I] = NewV;
 | 
						|
  return NewV;
 | 
						|
}
 | 
						|
 | 
						|
// Perform dead code elimination on the instructions we just modified.
 | 
						|
void Float2IntPass::cleanup() {
 | 
						|
  for (auto &I : reverse(ConvertedInsts))
 | 
						|
    I.first->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
bool Float2IntPass::runImpl(Function &F) {
 | 
						|
  DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
 | 
						|
  // Clear out all state.
 | 
						|
  ECs = EquivalenceClasses<Instruction*>();
 | 
						|
  SeenInsts.clear();
 | 
						|
  ConvertedInsts.clear();
 | 
						|
  Roots.clear();
 | 
						|
 | 
						|
  Ctx = &F.getParent()->getContext();
 | 
						|
 | 
						|
  findRoots(F, Roots);
 | 
						|
 | 
						|
  walkBackwards(Roots);
 | 
						|
  walkForwards();
 | 
						|
 | 
						|
  bool Modified = validateAndTransform();
 | 
						|
  if (Modified)
 | 
						|
    cleanup();
 | 
						|
  return Modified;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
 | 
						|
 | 
						|
PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) {
 | 
						|
  if (!runImpl(F))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  else {
 | 
						|
    // FIXME: This should also 'preserve the CFG'.
 | 
						|
    PreservedAnalyses PA;
 | 
						|
    PA.preserve<GlobalsAA>();
 | 
						|
    return PA;
 | 
						|
  }
 | 
						|
}
 | 
						|
} // End namespace llvm
 |