270 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Dead Loop Deletion Pass. This pass is responsible
 | 
						|
// for eliminating loops with non-infinite computable trip counts that have no
 | 
						|
// side effects or volatile instructions, and do not contribute to the
 | 
						|
// computation of the function's return value.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/LoopDeletion.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/LoopPassManager.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-delete"
 | 
						|
 | 
						|
STATISTIC(NumDeleted, "Number of loops deleted");
 | 
						|
 | 
						|
/// isLoopDead - Determined if a loop is dead.  This assumes that we've already
 | 
						|
/// checked for unique exit and exiting blocks, and that the code is in LCSSA
 | 
						|
/// form.
 | 
						|
bool LoopDeletionPass::isLoopDead(Loop *L, ScalarEvolution &SE,
 | 
						|
                                  SmallVectorImpl<BasicBlock *> &exitingBlocks,
 | 
						|
                                  SmallVectorImpl<BasicBlock *> &exitBlocks,
 | 
						|
                                  bool &Changed, BasicBlock *Preheader) {
 | 
						|
  BasicBlock *exitBlock = exitBlocks[0];
 | 
						|
 | 
						|
  // Make sure that all PHI entries coming from the loop are loop invariant.
 | 
						|
  // Because the code is in LCSSA form, any values used outside of the loop
 | 
						|
  // must pass through a PHI in the exit block, meaning that this check is
 | 
						|
  // sufficient to guarantee that no loop-variant values are used outside
 | 
						|
  // of the loop.
 | 
						|
  BasicBlock::iterator BI = exitBlock->begin();
 | 
						|
  bool AllEntriesInvariant = true;
 | 
						|
  bool AllOutgoingValuesSame = true;
 | 
						|
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
 | 
						|
    Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
 | 
						|
 | 
						|
    // Make sure all exiting blocks produce the same incoming value for the exit
 | 
						|
    // block.  If there are different incoming values for different exiting
 | 
						|
    // blocks, then it is impossible to statically determine which value should
 | 
						|
    // be used.
 | 
						|
    AllOutgoingValuesSame =
 | 
						|
        all_of(makeArrayRef(exitingBlocks).slice(1), [&](BasicBlock *BB) {
 | 
						|
          return incoming == P->getIncomingValueForBlock(BB);
 | 
						|
        });
 | 
						|
 | 
						|
    if (!AllOutgoingValuesSame)
 | 
						|
      break;
 | 
						|
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(incoming))
 | 
						|
      if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
 | 
						|
        AllEntriesInvariant = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    ++BI;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Changed)
 | 
						|
    SE.forgetLoopDispositions(L);
 | 
						|
 | 
						|
  if (!AllEntriesInvariant || !AllOutgoingValuesSame)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure that no instructions in the block have potential side-effects.
 | 
						|
  // This includes instructions that could write to memory, and loads that are
 | 
						|
  // marked volatile.  This could be made more aggressive by using aliasing
 | 
						|
  // information to identify readonly and readnone calls.
 | 
						|
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
 | 
						|
       LI != LE; ++LI) {
 | 
						|
    for (Instruction &I : **LI) {
 | 
						|
      if (I.mayHaveSideEffects())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Remove dead loops, by which we mean loops that do not impact the observable
 | 
						|
/// behavior of the program other than finite running time.  Note we do ensure
 | 
						|
/// that this never remove a loop that might be infinite, as doing so could
 | 
						|
/// change the halting/non-halting nature of a program. NOTE: This entire
 | 
						|
/// process relies pretty heavily on LoopSimplify and LCSSA in order to make
 | 
						|
/// various safety checks work.
 | 
						|
bool LoopDeletionPass::runImpl(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
 | 
						|
                               LoopInfo &loopInfo) {
 | 
						|
  assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
 | 
						|
 | 
						|
  // We can only remove the loop if there is a preheader that we can
 | 
						|
  // branch from after removing it.
 | 
						|
  BasicBlock *preheader = L->getLoopPreheader();
 | 
						|
  if (!preheader)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If LoopSimplify form is not available, stay out of trouble.
 | 
						|
  if (!L->hasDedicatedExits())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can't remove loops that contain subloops.  If the subloops were dead,
 | 
						|
  // they would already have been removed in earlier executions of this pass.
 | 
						|
  if (L->begin() != L->end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 4> exitingBlocks;
 | 
						|
  L->getExitingBlocks(exitingBlocks);
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 4> exitBlocks;
 | 
						|
  L->getUniqueExitBlocks(exitBlocks);
 | 
						|
 | 
						|
  // We require that the loop only have a single exit block.  Otherwise, we'd
 | 
						|
  // be in the situation of needing to be able to solve statically which exit
 | 
						|
  // block will be branched to, or trying to preserve the branching logic in
 | 
						|
  // a loop invariant manner.
 | 
						|
  if (exitBlocks.size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Finally, we have to check that the loop really is dead.
 | 
						|
  bool Changed = false;
 | 
						|
  if (!isLoopDead(L, SE, exitingBlocks, exitBlocks, Changed, preheader))
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  // Don't remove loops for which we can't solve the trip count.
 | 
						|
  // They could be infinite, in which case we'd be changing program behavior.
 | 
						|
  const SCEV *S = SE.getMaxBackedgeTakenCount(L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(S))
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  // Now that we know the removal is safe, remove the loop by changing the
 | 
						|
  // branch from the preheader to go to the single exit block.
 | 
						|
  BasicBlock *exitBlock = exitBlocks[0];
 | 
						|
 | 
						|
  // Because we're deleting a large chunk of code at once, the sequence in which
 | 
						|
  // we remove things is very important to avoid invalidation issues.  Don't
 | 
						|
  // mess with this unless you have good reason and know what you're doing.
 | 
						|
 | 
						|
  // Tell ScalarEvolution that the loop is deleted. Do this before
 | 
						|
  // deleting the loop so that ScalarEvolution can look at the loop
 | 
						|
  // to determine what it needs to clean up.
 | 
						|
  SE.forgetLoop(L);
 | 
						|
 | 
						|
  // Connect the preheader directly to the exit block.
 | 
						|
  TerminatorInst *TI = preheader->getTerminator();
 | 
						|
  TI->replaceUsesOfWith(L->getHeader(), exitBlock);
 | 
						|
 | 
						|
  // Rewrite phis in the exit block to get their inputs from
 | 
						|
  // the preheader instead of the exiting block.
 | 
						|
  BasicBlock *exitingBlock = exitingBlocks[0];
 | 
						|
  BasicBlock::iterator BI = exitBlock->begin();
 | 
						|
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
 | 
						|
    int j = P->getBasicBlockIndex(exitingBlock);
 | 
						|
    assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
 | 
						|
    P->setIncomingBlock(j, preheader);
 | 
						|
    for (unsigned i = 1; i < exitingBlocks.size(); ++i)
 | 
						|
      P->removeIncomingValue(exitingBlocks[i]);
 | 
						|
    ++BI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the dominator tree and remove the instructions and blocks that will
 | 
						|
  // be deleted from the reference counting scheme.
 | 
						|
  SmallVector<DomTreeNode*, 8> ChildNodes;
 | 
						|
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
 | 
						|
       LI != LE; ++LI) {
 | 
						|
    // Move all of the block's children to be children of the preheader, which
 | 
						|
    // allows us to remove the domtree entry for the block.
 | 
						|
    ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
 | 
						|
    for (DomTreeNode *ChildNode : ChildNodes) {
 | 
						|
      DT.changeImmediateDominator(ChildNode, DT[preheader]);
 | 
						|
    }
 | 
						|
 | 
						|
    ChildNodes.clear();
 | 
						|
    DT.eraseNode(*LI);
 | 
						|
 | 
						|
    // Remove the block from the reference counting scheme, so that we can
 | 
						|
    // delete it freely later.
 | 
						|
    (*LI)->dropAllReferences();
 | 
						|
  }
 | 
						|
 | 
						|
  // Erase the instructions and the blocks without having to worry
 | 
						|
  // about ordering because we already dropped the references.
 | 
						|
  // NOTE: This iteration is safe because erasing the block does not remove its
 | 
						|
  // entry from the loop's block list.  We do that in the next section.
 | 
						|
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
 | 
						|
       LI != LE; ++LI)
 | 
						|
    (*LI)->eraseFromParent();
 | 
						|
 | 
						|
  // Finally, the blocks from loopinfo.  This has to happen late because
 | 
						|
  // otherwise our loop iterators won't work.
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock *, 8> blocks;
 | 
						|
  blocks.insert(L->block_begin(), L->block_end());
 | 
						|
  for (BasicBlock *BB : blocks)
 | 
						|
    loopInfo.removeBlock(BB);
 | 
						|
 | 
						|
  // The last step is to update LoopInfo now that we've eliminated this loop.
 | 
						|
  loopInfo.markAsRemoved(L);
 | 
						|
  Changed = true;
 | 
						|
 | 
						|
  ++NumDeleted;
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM) {
 | 
						|
  auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
 | 
						|
  Function *F = L.getHeader()->getParent();
 | 
						|
 | 
						|
  auto &DT = *FAM.getCachedResult<DominatorTreeAnalysis>(*F);
 | 
						|
  auto &SE = *FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
 | 
						|
  auto &LI = *FAM.getCachedResult<LoopAnalysis>(*F);
 | 
						|
 | 
						|
  bool Changed = runImpl(&L, DT, SE, LI);
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  return getLoopPassPreservedAnalyses();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class LoopDeletionLegacyPass : public LoopPass {
 | 
						|
public:
 | 
						|
  static char ID; // Pass ID, replacement for typeid
 | 
						|
  LoopDeletionLegacyPass() : LoopPass(ID) {
 | 
						|
    initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  // Possibly eliminate loop L if it is dead.
 | 
						|
  bool runOnLoop(Loop *L, LPPassManager &) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    getLoopAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char LoopDeletionLegacyPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
 | 
						|
                      "Delete dead loops", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
 | 
						|
                    "Delete dead loops", false, false)
 | 
						|
 | 
						|
Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
 | 
						|
 | 
						|
bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) {
 | 
						|
  if (skipLoop(L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
  LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
 | 
						|
  LoopDeletionPass Impl;
 | 
						|
  return Impl.runImpl(L, DT, SE, loopInfo);
 | 
						|
}
 |