750 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			750 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CloneFunction.cpp - Clone a function into another function ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the CloneFunctionInto interface, which is used as the
 | 
						|
// low-level function cloner.  This is used by the CloneFunction and function
 | 
						|
// inliner to do the dirty work of copying the body of a function around.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include <map>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// See comments in Cloning.h.
 | 
						|
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
 | 
						|
                                  ValueToValueMapTy &VMap,
 | 
						|
                                  const Twine &NameSuffix, Function *F,
 | 
						|
                                  ClonedCodeInfo *CodeInfo) {
 | 
						|
  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
 | 
						|
  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
 | 
						|
 | 
						|
  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
 | 
						|
  
 | 
						|
  // Loop over all instructions, and copy them over.
 | 
						|
  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
 | 
						|
       II != IE; ++II) {
 | 
						|
    Instruction *NewInst = II->clone();
 | 
						|
    if (II->hasName())
 | 
						|
      NewInst->setName(II->getName()+NameSuffix);
 | 
						|
    NewBB->getInstList().push_back(NewInst);
 | 
						|
    VMap[&*II] = NewInst; // Add instruction map to value.
 | 
						|
 | 
						|
    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
 | 
						|
    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | 
						|
      if (isa<ConstantInt>(AI->getArraySize()))
 | 
						|
        hasStaticAllocas = true;
 | 
						|
      else
 | 
						|
        hasDynamicAllocas = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (CodeInfo) {
 | 
						|
    CodeInfo->ContainsCalls          |= hasCalls;
 | 
						|
    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
 | 
						|
    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
 | 
						|
                                        BB != &BB->getParent()->getEntryBlock();
 | 
						|
  }
 | 
						|
  return NewBB;
 | 
						|
}
 | 
						|
 | 
						|
// Clone OldFunc into NewFunc, transforming the old arguments into references to
 | 
						|
// VMap values.
 | 
						|
//
 | 
						|
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
 | 
						|
                             ValueToValueMapTy &VMap,
 | 
						|
                             bool ModuleLevelChanges,
 | 
						|
                             SmallVectorImpl<ReturnInst*> &Returns,
 | 
						|
                             const char *NameSuffix, ClonedCodeInfo *CodeInfo,
 | 
						|
                             ValueMapTypeRemapper *TypeMapper,
 | 
						|
                             ValueMaterializer *Materializer) {
 | 
						|
  assert(NameSuffix && "NameSuffix cannot be null!");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (const Argument &I : OldFunc->args())
 | 
						|
    assert(VMap.count(&I) && "No mapping from source argument specified!");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Copy all attributes other than those stored in the AttributeSet.  We need
 | 
						|
  // to remap the parameter indices of the AttributeSet.
 | 
						|
  AttributeSet NewAttrs = NewFunc->getAttributes();
 | 
						|
  NewFunc->copyAttributesFrom(OldFunc);
 | 
						|
  NewFunc->setAttributes(NewAttrs);
 | 
						|
 | 
						|
  // Fix up the personality function that got copied over.
 | 
						|
  if (OldFunc->hasPersonalityFn())
 | 
						|
    NewFunc->setPersonalityFn(
 | 
						|
        MapValue(OldFunc->getPersonalityFn(), VMap,
 | 
						|
                 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
 | 
						|
                 TypeMapper, Materializer));
 | 
						|
 | 
						|
  AttributeSet OldAttrs = OldFunc->getAttributes();
 | 
						|
  // Clone any argument attributes that are present in the VMap.
 | 
						|
  for (const Argument &OldArg : OldFunc->args())
 | 
						|
    if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
 | 
						|
      AttributeSet attrs =
 | 
						|
          OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
 | 
						|
      if (attrs.getNumSlots() > 0)
 | 
						|
        NewArg->addAttr(attrs);
 | 
						|
    }
 | 
						|
 | 
						|
  NewFunc->setAttributes(
 | 
						|
      NewFunc->getAttributes()
 | 
						|
          .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
 | 
						|
                         OldAttrs.getRetAttributes())
 | 
						|
          .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
 | 
						|
                         OldAttrs.getFnAttributes()));
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
 | 
						|
  OldFunc->getAllMetadata(MDs);
 | 
						|
  for (auto MD : MDs)
 | 
						|
    NewFunc->addMetadata(
 | 
						|
        MD.first,
 | 
						|
        *MapMetadata(MD.second, VMap,
 | 
						|
                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
 | 
						|
                     TypeMapper, Materializer));
 | 
						|
 | 
						|
  // Loop over all of the basic blocks in the function, cloning them as
 | 
						|
  // appropriate.  Note that we save BE this way in order to handle cloning of
 | 
						|
  // recursive functions into themselves.
 | 
						|
  //
 | 
						|
  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
 | 
						|
       BI != BE; ++BI) {
 | 
						|
    const BasicBlock &BB = *BI;
 | 
						|
 | 
						|
    // Create a new basic block and copy instructions into it!
 | 
						|
    BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
 | 
						|
 | 
						|
    // Add basic block mapping.
 | 
						|
    VMap[&BB] = CBB;
 | 
						|
 | 
						|
    // It is only legal to clone a function if a block address within that
 | 
						|
    // function is never referenced outside of the function.  Given that, we
 | 
						|
    // want to map block addresses from the old function to block addresses in
 | 
						|
    // the clone. (This is different from the generic ValueMapper
 | 
						|
    // implementation, which generates an invalid blockaddress when
 | 
						|
    // cloning a function.)
 | 
						|
    if (BB.hasAddressTaken()) {
 | 
						|
      Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
 | 
						|
                                              const_cast<BasicBlock*>(&BB));
 | 
						|
      VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
 | 
						|
    }
 | 
						|
 | 
						|
    // Note return instructions for the caller.
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
 | 
						|
      Returns.push_back(RI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the instructions in the function, fixing up operand
 | 
						|
  // references as we go.  This uses VMap to do all the hard work.
 | 
						|
  for (Function::iterator BB =
 | 
						|
           cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
 | 
						|
                          BE = NewFunc->end();
 | 
						|
       BB != BE; ++BB)
 | 
						|
    // Loop over all instructions, fixing each one as we find it...
 | 
						|
    for (Instruction &II : *BB)
 | 
						|
      RemapInstruction(&II, VMap,
 | 
						|
                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
 | 
						|
                       TypeMapper, Materializer);
 | 
						|
}
 | 
						|
 | 
						|
/// Return a copy of the specified function and add it to that function's
 | 
						|
/// module.  Also, any references specified in the VMap are changed to refer to
 | 
						|
/// their mapped value instead of the original one.  If any of the arguments to
 | 
						|
/// the function are in the VMap, the arguments are deleted from the resultant
 | 
						|
/// function.  The VMap is updated to include mappings from all of the
 | 
						|
/// instructions and basicblocks in the function from their old to new values.
 | 
						|
///
 | 
						|
Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
 | 
						|
                              ClonedCodeInfo *CodeInfo) {
 | 
						|
  std::vector<Type*> ArgTypes;
 | 
						|
 | 
						|
  // The user might be deleting arguments to the function by specifying them in
 | 
						|
  // the VMap.  If so, we need to not add the arguments to the arg ty vector
 | 
						|
  //
 | 
						|
  for (const Argument &I : F->args())
 | 
						|
    if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
 | 
						|
      ArgTypes.push_back(I.getType());
 | 
						|
 | 
						|
  // Create a new function type...
 | 
						|
  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
 | 
						|
                                    ArgTypes, F->getFunctionType()->isVarArg());
 | 
						|
 | 
						|
  // Create the new function...
 | 
						|
  Function *NewF =
 | 
						|
      Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
 | 
						|
 | 
						|
  // Loop over the arguments, copying the names of the mapped arguments over...
 | 
						|
  Function::arg_iterator DestI = NewF->arg_begin();
 | 
						|
  for (const Argument & I : F->args())
 | 
						|
    if (VMap.count(&I) == 0) {     // Is this argument preserved?
 | 
						|
      DestI->setName(I.getName()); // Copy the name over...
 | 
						|
      VMap[&I] = &*DestI++;        // Add mapping to VMap
 | 
						|
    }
 | 
						|
 | 
						|
  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
 | 
						|
  CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "",
 | 
						|
                    CodeInfo);
 | 
						|
 | 
						|
  return NewF;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// This is a private class used to implement CloneAndPruneFunctionInto.
 | 
						|
  struct PruningFunctionCloner {
 | 
						|
    Function *NewFunc;
 | 
						|
    const Function *OldFunc;
 | 
						|
    ValueToValueMapTy &VMap;
 | 
						|
    bool ModuleLevelChanges;
 | 
						|
    const char *NameSuffix;
 | 
						|
    ClonedCodeInfo *CodeInfo;
 | 
						|
 | 
						|
  public:
 | 
						|
    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
 | 
						|
                          ValueToValueMapTy &valueMap, bool moduleLevelChanges,
 | 
						|
                          const char *nameSuffix, ClonedCodeInfo *codeInfo)
 | 
						|
        : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
 | 
						|
          ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
 | 
						|
          CodeInfo(codeInfo) {}
 | 
						|
 | 
						|
    /// The specified block is found to be reachable, clone it and
 | 
						|
    /// anything that it can reach.
 | 
						|
    void CloneBlock(const BasicBlock *BB, 
 | 
						|
                    BasicBlock::const_iterator StartingInst,
 | 
						|
                    std::vector<const BasicBlock*> &ToClone);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// The specified block is found to be reachable, clone it and
 | 
						|
/// anything that it can reach.
 | 
						|
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
 | 
						|
                                       BasicBlock::const_iterator StartingInst,
 | 
						|
                                       std::vector<const BasicBlock*> &ToClone){
 | 
						|
  WeakVH &BBEntry = VMap[BB];
 | 
						|
 | 
						|
  // Have we already cloned this block?
 | 
						|
  if (BBEntry) return;
 | 
						|
  
 | 
						|
  // Nope, clone it now.
 | 
						|
  BasicBlock *NewBB;
 | 
						|
  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
 | 
						|
  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
 | 
						|
 | 
						|
  // It is only legal to clone a function if a block address within that
 | 
						|
  // function is never referenced outside of the function.  Given that, we
 | 
						|
  // want to map block addresses from the old function to block addresses in
 | 
						|
  // the clone. (This is different from the generic ValueMapper
 | 
						|
  // implementation, which generates an invalid blockaddress when
 | 
						|
  // cloning a function.)
 | 
						|
  //
 | 
						|
  // Note that we don't need to fix the mapping for unreachable blocks;
 | 
						|
  // the default mapping there is safe.
 | 
						|
  if (BB->hasAddressTaken()) {
 | 
						|
    Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
 | 
						|
                                            const_cast<BasicBlock*>(BB));
 | 
						|
    VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
 | 
						|
  }
 | 
						|
 | 
						|
  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
 | 
						|
 | 
						|
  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
 | 
						|
  // loop doesn't include the terminator.
 | 
						|
  for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
 | 
						|
       II != IE; ++II) {
 | 
						|
 | 
						|
    Instruction *NewInst = II->clone();
 | 
						|
 | 
						|
    // Eagerly remap operands to the newly cloned instruction, except for PHI
 | 
						|
    // nodes for which we defer processing until we update the CFG.
 | 
						|
    if (!isa<PHINode>(NewInst)) {
 | 
						|
      RemapInstruction(NewInst, VMap,
 | 
						|
                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
 | 
						|
 | 
						|
      // If we can simplify this instruction to some other value, simply add
 | 
						|
      // a mapping to that value rather than inserting a new instruction into
 | 
						|
      // the basic block.
 | 
						|
      if (Value *V =
 | 
						|
              SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
 | 
						|
        // On the off-chance that this simplifies to an instruction in the old
 | 
						|
        // function, map it back into the new function.
 | 
						|
        if (Value *MappedV = VMap.lookup(V))
 | 
						|
          V = MappedV;
 | 
						|
 | 
						|
        if (!NewInst->mayHaveSideEffects()) {
 | 
						|
          VMap[&*II] = V;
 | 
						|
          delete NewInst;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (II->hasName())
 | 
						|
      NewInst->setName(II->getName()+NameSuffix);
 | 
						|
    VMap[&*II] = NewInst; // Add instruction map to value.
 | 
						|
    NewBB->getInstList().push_back(NewInst);
 | 
						|
    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
 | 
						|
 | 
						|
    if (CodeInfo)
 | 
						|
      if (auto CS = ImmutableCallSite(&*II))
 | 
						|
        if (CS.hasOperandBundles())
 | 
						|
          CodeInfo->OperandBundleCallSites.push_back(NewInst);
 | 
						|
 | 
						|
    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | 
						|
      if (isa<ConstantInt>(AI->getArraySize()))
 | 
						|
        hasStaticAllocas = true;
 | 
						|
      else
 | 
						|
        hasDynamicAllocas = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Finally, clone over the terminator.
 | 
						|
  const TerminatorInst *OldTI = BB->getTerminator();
 | 
						|
  bool TerminatorDone = false;
 | 
						|
  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
 | 
						|
    if (BI->isConditional()) {
 | 
						|
      // If the condition was a known constant in the callee...
 | 
						|
      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
 | 
						|
      // Or is a known constant in the caller...
 | 
						|
      if (!Cond) {
 | 
						|
        Value *V = VMap.lookup(BI->getCondition());
 | 
						|
        Cond = dyn_cast_or_null<ConstantInt>(V);
 | 
						|
      }
 | 
						|
 | 
						|
      // Constant fold to uncond branch!
 | 
						|
      if (Cond) {
 | 
						|
        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
 | 
						|
        VMap[OldTI] = BranchInst::Create(Dest, NewBB);
 | 
						|
        ToClone.push_back(Dest);
 | 
						|
        TerminatorDone = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
 | 
						|
    // If switching on a value known constant in the caller.
 | 
						|
    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
 | 
						|
    if (!Cond) { // Or known constant after constant prop in the callee...
 | 
						|
      Value *V = VMap.lookup(SI->getCondition());
 | 
						|
      Cond = dyn_cast_or_null<ConstantInt>(V);
 | 
						|
    }
 | 
						|
    if (Cond) {     // Constant fold to uncond branch!
 | 
						|
      SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
 | 
						|
      BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
 | 
						|
      VMap[OldTI] = BranchInst::Create(Dest, NewBB);
 | 
						|
      ToClone.push_back(Dest);
 | 
						|
      TerminatorDone = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!TerminatorDone) {
 | 
						|
    Instruction *NewInst = OldTI->clone();
 | 
						|
    if (OldTI->hasName())
 | 
						|
      NewInst->setName(OldTI->getName()+NameSuffix);
 | 
						|
    NewBB->getInstList().push_back(NewInst);
 | 
						|
    VMap[OldTI] = NewInst;             // Add instruction map to value.
 | 
						|
 | 
						|
    if (CodeInfo)
 | 
						|
      if (auto CS = ImmutableCallSite(OldTI))
 | 
						|
        if (CS.hasOperandBundles())
 | 
						|
          CodeInfo->OperandBundleCallSites.push_back(NewInst);
 | 
						|
 | 
						|
    // Recursively clone any reachable successor blocks.
 | 
						|
    const TerminatorInst *TI = BB->getTerminator();
 | 
						|
    for (const BasicBlock *Succ : TI->successors())
 | 
						|
      ToClone.push_back(Succ);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (CodeInfo) {
 | 
						|
    CodeInfo->ContainsCalls          |= hasCalls;
 | 
						|
    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
 | 
						|
    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
 | 
						|
      BB != &BB->getParent()->front();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// This works like CloneAndPruneFunctionInto, except that it does not clone the
 | 
						|
/// entire function. Instead it starts at an instruction provided by the caller
 | 
						|
/// and copies (and prunes) only the code reachable from that instruction.
 | 
						|
void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
 | 
						|
                                     const Instruction *StartingInst,
 | 
						|
                                     ValueToValueMapTy &VMap,
 | 
						|
                                     bool ModuleLevelChanges,
 | 
						|
                                     SmallVectorImpl<ReturnInst *> &Returns,
 | 
						|
                                     const char *NameSuffix,
 | 
						|
                                     ClonedCodeInfo *CodeInfo) {
 | 
						|
  assert(NameSuffix && "NameSuffix cannot be null!");
 | 
						|
 | 
						|
  ValueMapTypeRemapper *TypeMapper = nullptr;
 | 
						|
  ValueMaterializer *Materializer = nullptr;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // If the cloning starts at the beginning of the function, verify that
 | 
						|
  // the function arguments are mapped.
 | 
						|
  if (!StartingInst)
 | 
						|
    for (const Argument &II : OldFunc->args())
 | 
						|
      assert(VMap.count(&II) && "No mapping from source argument specified!");
 | 
						|
#endif
 | 
						|
 | 
						|
  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
 | 
						|
                            NameSuffix, CodeInfo);
 | 
						|
  const BasicBlock *StartingBB;
 | 
						|
  if (StartingInst)
 | 
						|
    StartingBB = StartingInst->getParent();
 | 
						|
  else {
 | 
						|
    StartingBB = &OldFunc->getEntryBlock();
 | 
						|
    StartingInst = &StartingBB->front();
 | 
						|
  }
 | 
						|
 | 
						|
  // Clone the entry block, and anything recursively reachable from it.
 | 
						|
  std::vector<const BasicBlock*> CloneWorklist;
 | 
						|
  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
 | 
						|
  while (!CloneWorklist.empty()) {
 | 
						|
    const BasicBlock *BB = CloneWorklist.back();
 | 
						|
    CloneWorklist.pop_back();
 | 
						|
    PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Loop over all of the basic blocks in the old function.  If the block was
 | 
						|
  // reachable, we have cloned it and the old block is now in the value map:
 | 
						|
  // insert it into the new function in the right order.  If not, ignore it.
 | 
						|
  //
 | 
						|
  // Defer PHI resolution until rest of function is resolved.
 | 
						|
  SmallVector<const PHINode*, 16> PHIToResolve;
 | 
						|
  for (const BasicBlock &BI : *OldFunc) {
 | 
						|
    Value *V = VMap.lookup(&BI);
 | 
						|
    BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
 | 
						|
    if (!NewBB) continue;  // Dead block.
 | 
						|
 | 
						|
    // Add the new block to the new function.
 | 
						|
    NewFunc->getBasicBlockList().push_back(NewBB);
 | 
						|
 | 
						|
    // Handle PHI nodes specially, as we have to remove references to dead
 | 
						|
    // blocks.
 | 
						|
    for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
 | 
						|
      // PHI nodes may have been remapped to non-PHI nodes by the caller or
 | 
						|
      // during the cloning process.
 | 
						|
      if (const PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
        if (isa<PHINode>(VMap[PN]))
 | 
						|
          PHIToResolve.push_back(PN);
 | 
						|
        else
 | 
						|
          break;
 | 
						|
      } else {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, remap the terminator instructions, as those can't be remapped
 | 
						|
    // until all BBs are mapped.
 | 
						|
    RemapInstruction(NewBB->getTerminator(), VMap,
 | 
						|
                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
 | 
						|
                     TypeMapper, Materializer);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Defer PHI resolution until rest of function is resolved, PHI resolution
 | 
						|
  // requires the CFG to be up-to-date.
 | 
						|
  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
 | 
						|
    const PHINode *OPN = PHIToResolve[phino];
 | 
						|
    unsigned NumPreds = OPN->getNumIncomingValues();
 | 
						|
    const BasicBlock *OldBB = OPN->getParent();
 | 
						|
    BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
 | 
						|
 | 
						|
    // Map operands for blocks that are live and remove operands for blocks
 | 
						|
    // that are dead.
 | 
						|
    for (; phino != PHIToResolve.size() &&
 | 
						|
         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
 | 
						|
      OPN = PHIToResolve[phino];
 | 
						|
      PHINode *PN = cast<PHINode>(VMap[OPN]);
 | 
						|
      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
 | 
						|
        Value *V = VMap.lookup(PN->getIncomingBlock(pred));
 | 
						|
        if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
 | 
						|
          Value *InVal = MapValue(PN->getIncomingValue(pred),
 | 
						|
                                  VMap, 
 | 
						|
                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
 | 
						|
          assert(InVal && "Unknown input value?");
 | 
						|
          PN->setIncomingValue(pred, InVal);
 | 
						|
          PN->setIncomingBlock(pred, MappedBlock);
 | 
						|
        } else {
 | 
						|
          PN->removeIncomingValue(pred, false);
 | 
						|
          --pred;  // Revisit the next entry.
 | 
						|
          --e;
 | 
						|
        }
 | 
						|
      } 
 | 
						|
    }
 | 
						|
    
 | 
						|
    // The loop above has removed PHI entries for those blocks that are dead
 | 
						|
    // and has updated others.  However, if a block is live (i.e. copied over)
 | 
						|
    // but its terminator has been changed to not go to this block, then our
 | 
						|
    // phi nodes will have invalid entries.  Update the PHI nodes in this
 | 
						|
    // case.
 | 
						|
    PHINode *PN = cast<PHINode>(NewBB->begin());
 | 
						|
    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
 | 
						|
    if (NumPreds != PN->getNumIncomingValues()) {
 | 
						|
      assert(NumPreds < PN->getNumIncomingValues());
 | 
						|
      // Count how many times each predecessor comes to this block.
 | 
						|
      std::map<BasicBlock*, unsigned> PredCount;
 | 
						|
      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
 | 
						|
           PI != E; ++PI)
 | 
						|
        --PredCount[*PI];
 | 
						|
      
 | 
						|
      // Figure out how many entries to remove from each PHI.
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        ++PredCount[PN->getIncomingBlock(i)];
 | 
						|
      
 | 
						|
      // At this point, the excess predecessor entries are positive in the
 | 
						|
      // map.  Loop over all of the PHIs and remove excess predecessor
 | 
						|
      // entries.
 | 
						|
      BasicBlock::iterator I = NewBB->begin();
 | 
						|
      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
 | 
						|
        for (const auto &PCI : PredCount) {
 | 
						|
          BasicBlock *Pred = PCI.first;
 | 
						|
          for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
 | 
						|
            PN->removeIncomingValue(Pred, false);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the loops above have made these phi nodes have 0 or 1 operand,
 | 
						|
    // replace them with undef or the input value.  We must do this for
 | 
						|
    // correctness, because 0-operand phis are not valid.
 | 
						|
    PN = cast<PHINode>(NewBB->begin());
 | 
						|
    if (PN->getNumIncomingValues() == 0) {
 | 
						|
      BasicBlock::iterator I = NewBB->begin();
 | 
						|
      BasicBlock::const_iterator OldI = OldBB->begin();
 | 
						|
      while ((PN = dyn_cast<PHINode>(I++))) {
 | 
						|
        Value *NV = UndefValue::get(PN->getType());
 | 
						|
        PN->replaceAllUsesWith(NV);
 | 
						|
        assert(VMap[&*OldI] == PN && "VMap mismatch");
 | 
						|
        VMap[&*OldI] = NV;
 | 
						|
        PN->eraseFromParent();
 | 
						|
        ++OldI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make a second pass over the PHINodes now that all of them have been
 | 
						|
  // remapped into the new function, simplifying the PHINode and performing any
 | 
						|
  // recursive simplifications exposed. This will transparently update the
 | 
						|
  // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
 | 
						|
  // two PHINodes, the iteration over the old PHIs remains valid, and the
 | 
						|
  // mapping will just map us to the new node (which may not even be a PHI
 | 
						|
  // node).
 | 
						|
  const DataLayout &DL = NewFunc->getParent()->getDataLayout();
 | 
						|
  SmallSetVector<const Value *, 8> Worklist;
 | 
						|
  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
 | 
						|
    if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
 | 
						|
      Worklist.insert(PHIToResolve[Idx]);
 | 
						|
 | 
						|
  // Note that we must test the size on each iteration, the worklist can grow.
 | 
						|
  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
 | 
						|
    const Value *OrigV = Worklist[Idx];
 | 
						|
    auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
 | 
						|
    if (!I)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip over non-intrinsic callsites, we don't want to remove any nodes from
 | 
						|
    // the CGSCC.
 | 
						|
    CallSite CS = CallSite(I);
 | 
						|
    if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // See if this instruction simplifies.
 | 
						|
    Value *SimpleV = SimplifyInstruction(I, DL);
 | 
						|
    if (!SimpleV)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Stash away all the uses of the old instruction so we can check them for
 | 
						|
    // recursive simplifications after a RAUW. This is cheaper than checking all
 | 
						|
    // uses of To on the recursive step in most cases.
 | 
						|
    for (const User *U : OrigV->users())
 | 
						|
      Worklist.insert(cast<Instruction>(U));
 | 
						|
 | 
						|
    // Replace the instruction with its simplified value.
 | 
						|
    I->replaceAllUsesWith(SimpleV);
 | 
						|
 | 
						|
    // If the original instruction had no side effects, remove it.
 | 
						|
    if (isInstructionTriviallyDead(I))
 | 
						|
      I->eraseFromParent();
 | 
						|
    else
 | 
						|
      VMap[OrigV] = I;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that the inlined function body has been fully constructed, go through
 | 
						|
  // and zap unconditional fall-through branches. This happens all the time when
 | 
						|
  // specializing code: code specialization turns conditional branches into
 | 
						|
  // uncond branches, and this code folds them.
 | 
						|
  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
 | 
						|
  Function::iterator I = Begin;
 | 
						|
  while (I != NewFunc->end()) {
 | 
						|
    // Check if this block has become dead during inlining or other
 | 
						|
    // simplifications. Note that the first block will appear dead, as it has
 | 
						|
    // not yet been wired up properly.
 | 
						|
    if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
 | 
						|
                       I->getSinglePredecessor() == &*I)) {
 | 
						|
      BasicBlock *DeadBB = &*I++;
 | 
						|
      DeleteDeadBlock(DeadBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We need to simplify conditional branches and switches with a constant
 | 
						|
    // operand. We try to prune these out when cloning, but if the
 | 
						|
    // simplification required looking through PHI nodes, those are only
 | 
						|
    // available after forming the full basic block. That may leave some here,
 | 
						|
    // and we still want to prune the dead code as early as possible.
 | 
						|
    ConstantFoldTerminator(&*I);
 | 
						|
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
 | 
						|
    if (!BI || BI->isConditional()) { ++I; continue; }
 | 
						|
    
 | 
						|
    BasicBlock *Dest = BI->getSuccessor(0);
 | 
						|
    if (!Dest->getSinglePredecessor()) {
 | 
						|
      ++I; continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
 | 
						|
    // above should have zapped all of them..
 | 
						|
    assert(!isa<PHINode>(Dest->begin()));
 | 
						|
 | 
						|
    // We know all single-entry PHI nodes in the inlined function have been
 | 
						|
    // removed, so we just need to splice the blocks.
 | 
						|
    BI->eraseFromParent();
 | 
						|
    
 | 
						|
    // Make all PHI nodes that referred to Dest now refer to I as their source.
 | 
						|
    Dest->replaceAllUsesWith(&*I);
 | 
						|
 | 
						|
    // Move all the instructions in the succ to the pred.
 | 
						|
    I->getInstList().splice(I->end(), Dest->getInstList());
 | 
						|
    
 | 
						|
    // Remove the dest block.
 | 
						|
    Dest->eraseFromParent();
 | 
						|
    
 | 
						|
    // Do not increment I, iteratively merge all things this block branches to.
 | 
						|
  }
 | 
						|
 | 
						|
  // Make a final pass over the basic blocks from the old function to gather
 | 
						|
  // any return instructions which survived folding. We have to do this here
 | 
						|
  // because we can iteratively remove and merge returns above.
 | 
						|
  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
 | 
						|
                          E = NewFunc->end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
 | 
						|
      Returns.push_back(RI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// This works exactly like CloneFunctionInto,
 | 
						|
/// except that it does some simple constant prop and DCE on the fly.  The
 | 
						|
/// effect of this is to copy significantly less code in cases where (for
 | 
						|
/// example) a function call with constant arguments is inlined, and those
 | 
						|
/// constant arguments cause a significant amount of code in the callee to be
 | 
						|
/// dead.  Since this doesn't produce an exact copy of the input, it can't be
 | 
						|
/// used for things like CloneFunction or CloneModule.
 | 
						|
void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
 | 
						|
                                     ValueToValueMapTy &VMap,
 | 
						|
                                     bool ModuleLevelChanges,
 | 
						|
                                     SmallVectorImpl<ReturnInst*> &Returns,
 | 
						|
                                     const char *NameSuffix, 
 | 
						|
                                     ClonedCodeInfo *CodeInfo,
 | 
						|
                                     Instruction *TheCall) {
 | 
						|
  CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
 | 
						|
                            ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
 | 
						|
void llvm::remapInstructionsInBlocks(
 | 
						|
    const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
 | 
						|
  // Rewrite the code to refer to itself.
 | 
						|
  for (auto *BB : Blocks)
 | 
						|
    for (auto &Inst : *BB)
 | 
						|
      RemapInstruction(&Inst, VMap,
 | 
						|
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
 | 
						|
/// Blocks.
 | 
						|
///
 | 
						|
/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
 | 
						|
/// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
 | 
						|
Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
 | 
						|
                                   Loop *OrigLoop, ValueToValueMapTy &VMap,
 | 
						|
                                   const Twine &NameSuffix, LoopInfo *LI,
 | 
						|
                                   DominatorTree *DT,
 | 
						|
                                   SmallVectorImpl<BasicBlock *> &Blocks) {
 | 
						|
  assert(OrigLoop->getSubLoops().empty() && 
 | 
						|
         "Loop to be cloned cannot have inner loop");
 | 
						|
  Function *F = OrigLoop->getHeader()->getParent();
 | 
						|
  Loop *ParentLoop = OrigLoop->getParentLoop();
 | 
						|
 | 
						|
  Loop *NewLoop = new Loop();
 | 
						|
  if (ParentLoop)
 | 
						|
    ParentLoop->addChildLoop(NewLoop);
 | 
						|
  else
 | 
						|
    LI->addTopLevelLoop(NewLoop);
 | 
						|
 | 
						|
  BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
 | 
						|
  assert(OrigPH && "No preheader");
 | 
						|
  BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
 | 
						|
  // To rename the loop PHIs.
 | 
						|
  VMap[OrigPH] = NewPH;
 | 
						|
  Blocks.push_back(NewPH);
 | 
						|
 | 
						|
  // Update LoopInfo.
 | 
						|
  if (ParentLoop)
 | 
						|
    ParentLoop->addBasicBlockToLoop(NewPH, *LI);
 | 
						|
 | 
						|
  // Update DominatorTree.
 | 
						|
  DT->addNewBlock(NewPH, LoopDomBB);
 | 
						|
 | 
						|
  for (BasicBlock *BB : OrigLoop->getBlocks()) {
 | 
						|
    BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
 | 
						|
    VMap[BB] = NewBB;
 | 
						|
 | 
						|
    // Update LoopInfo.
 | 
						|
    NewLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
 | 
						|
    // Add DominatorTree node. After seeing all blocks, update to correct IDom.
 | 
						|
    DT->addNewBlock(NewBB, NewPH);
 | 
						|
 | 
						|
    Blocks.push_back(NewBB);
 | 
						|
  }
 | 
						|
 | 
						|
  for (BasicBlock *BB : OrigLoop->getBlocks()) {
 | 
						|
    // Update DominatorTree.
 | 
						|
    BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
 | 
						|
    DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
 | 
						|
                                 cast<BasicBlock>(VMap[IDomBB]));
 | 
						|
  }
 | 
						|
 | 
						|
  // Move them physically from the end of the block list.
 | 
						|
  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
 | 
						|
                                NewPH);
 | 
						|
  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
 | 
						|
                                NewLoop->getHeader()->getIterator(), F->end());
 | 
						|
 | 
						|
  return NewLoop;
 | 
						|
}
 |