378 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			378 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass transforms loops by placing phi nodes at the end of the loops for
 | 
						|
// all values that are live across the loop boundary.  For example, it turns
 | 
						|
// the left into the right code:
 | 
						|
// 
 | 
						|
// for (...)                for (...)
 | 
						|
//   if (c)                   if (c)
 | 
						|
//     X1 = ...                 X1 = ...
 | 
						|
//   else                     else
 | 
						|
//     X2 = ...                 X2 = ...
 | 
						|
//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
 | 
						|
// ... = X3 + 4             X4 = phi(X3)
 | 
						|
//                          ... = X4 + 4
 | 
						|
//
 | 
						|
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
 | 
						|
// be trivially eliminated by InstCombine.  The major benefit of this 
 | 
						|
// transformation is that it makes many other loop optimizations, such as 
 | 
						|
// LoopUnswitching, simpler.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/LCSSA.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/PredIteratorCache.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "lcssa"
 | 
						|
 | 
						|
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
 | 
						|
 | 
						|
/// Return true if the specified block is in the list.
 | 
						|
static bool isExitBlock(BasicBlock *BB,
 | 
						|
                        const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
 | 
						|
  return is_contained(ExitBlocks, BB);
 | 
						|
}
 | 
						|
 | 
						|
/// For every instruction from the worklist, check to see if it has any uses
 | 
						|
/// that are outside the current loop.  If so, insert LCSSA PHI nodes and
 | 
						|
/// rewrite the uses.
 | 
						|
bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
 | 
						|
                                    DominatorTree &DT, LoopInfo &LI) {
 | 
						|
  SmallVector<Use *, 16> UsesToRewrite;
 | 
						|
  SmallVector<BasicBlock *, 8> ExitBlocks;
 | 
						|
  SmallSetVector<PHINode *, 16> PHIsToRemove;
 | 
						|
  PredIteratorCache PredCache;
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    UsesToRewrite.clear();
 | 
						|
    ExitBlocks.clear();
 | 
						|
 | 
						|
    Instruction *I = Worklist.pop_back_val();
 | 
						|
    BasicBlock *InstBB = I->getParent();
 | 
						|
    Loop *L = LI.getLoopFor(InstBB);
 | 
						|
    L->getExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
    if (ExitBlocks.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Tokens cannot be used in PHI nodes, so we skip over them.
 | 
						|
    // We can run into tokens which are live out of a loop with catchswitch
 | 
						|
    // instructions in Windows EH if the catchswitch has one catchpad which
 | 
						|
    // is inside the loop and another which is not.
 | 
						|
    if (I->getType()->isTokenTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (Use &U : I->uses()) {
 | 
						|
      Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
      BasicBlock *UserBB = User->getParent();
 | 
						|
      if (PHINode *PN = dyn_cast<PHINode>(User))
 | 
						|
        UserBB = PN->getIncomingBlock(U);
 | 
						|
 | 
						|
      if (InstBB != UserBB && !L->contains(UserBB))
 | 
						|
        UsesToRewrite.push_back(&U);
 | 
						|
    }
 | 
						|
 | 
						|
    // If there are no uses outside the loop, exit with no change.
 | 
						|
    if (UsesToRewrite.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    ++NumLCSSA; // We are applying the transformation
 | 
						|
 | 
						|
    // Invoke instructions are special in that their result value is not
 | 
						|
    // available along their unwind edge. The code below tests to see whether
 | 
						|
    // DomBB dominates the value, so adjust DomBB to the normal destination
 | 
						|
    // block, which is effectively where the value is first usable.
 | 
						|
    BasicBlock *DomBB = InstBB;
 | 
						|
    if (InvokeInst *Inv = dyn_cast<InvokeInst>(I))
 | 
						|
      DomBB = Inv->getNormalDest();
 | 
						|
 | 
						|
    DomTreeNode *DomNode = DT.getNode(DomBB);
 | 
						|
 | 
						|
    SmallVector<PHINode *, 16> AddedPHIs;
 | 
						|
    SmallVector<PHINode *, 8> PostProcessPHIs;
 | 
						|
 | 
						|
    SmallVector<PHINode *, 4> InsertedPHIs;
 | 
						|
    SSAUpdater SSAUpdate(&InsertedPHIs);
 | 
						|
    SSAUpdate.Initialize(I->getType(), I->getName());
 | 
						|
 | 
						|
    // Insert the LCSSA phi's into all of the exit blocks dominated by the
 | 
						|
    // value, and add them to the Phi's map.
 | 
						|
    for (BasicBlock *ExitBB : ExitBlocks) {
 | 
						|
      if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If we already inserted something for this BB, don't reprocess it.
 | 
						|
      if (SSAUpdate.HasValueForBlock(ExitBB))
 | 
						|
        continue;
 | 
						|
 | 
						|
      PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
 | 
						|
                                    I->getName() + ".lcssa", &ExitBB->front());
 | 
						|
 | 
						|
      // Add inputs from inside the loop for this PHI.
 | 
						|
      for (BasicBlock *Pred : PredCache.get(ExitBB)) {
 | 
						|
        PN->addIncoming(I, Pred);
 | 
						|
 | 
						|
        // If the exit block has a predecessor not within the loop, arrange for
 | 
						|
        // the incoming value use corresponding to that predecessor to be
 | 
						|
        // rewritten in terms of a different LCSSA PHI.
 | 
						|
        if (!L->contains(Pred))
 | 
						|
          UsesToRewrite.push_back(
 | 
						|
              &PN->getOperandUse(PN->getOperandNumForIncomingValue(
 | 
						|
                  PN->getNumIncomingValues() - 1)));
 | 
						|
      }
 | 
						|
 | 
						|
      AddedPHIs.push_back(PN);
 | 
						|
 | 
						|
      // Remember that this phi makes the value alive in this block.
 | 
						|
      SSAUpdate.AddAvailableValue(ExitBB, PN);
 | 
						|
 | 
						|
      // LoopSimplify might fail to simplify some loops (e.g. when indirect
 | 
						|
      // branches are involved). In such situations, it might happen that an
 | 
						|
      // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
 | 
						|
      // create PHIs in such an exit block, we are also inserting PHIs into L2's
 | 
						|
      // header. This could break LCSSA form for L2 because these inserted PHIs
 | 
						|
      // can also have uses outside of L2. Remember all PHIs in such situation
 | 
						|
      // as to revisit than later on. FIXME: Remove this if indirectbr support
 | 
						|
      // into LoopSimplify gets improved.
 | 
						|
      if (auto *OtherLoop = LI.getLoopFor(ExitBB))
 | 
						|
        if (!L->contains(OtherLoop))
 | 
						|
          PostProcessPHIs.push_back(PN);
 | 
						|
    }
 | 
						|
 | 
						|
    // Rewrite all uses outside the loop in terms of the new PHIs we just
 | 
						|
    // inserted.
 | 
						|
    for (Use *UseToRewrite : UsesToRewrite) {
 | 
						|
      // If this use is in an exit block, rewrite to use the newly inserted PHI.
 | 
						|
      // This is required for correctness because SSAUpdate doesn't handle uses
 | 
						|
      // in the same block.  It assumes the PHI we inserted is at the end of the
 | 
						|
      // block.
 | 
						|
      Instruction *User = cast<Instruction>(UseToRewrite->getUser());
 | 
						|
      BasicBlock *UserBB = User->getParent();
 | 
						|
      if (PHINode *PN = dyn_cast<PHINode>(User))
 | 
						|
        UserBB = PN->getIncomingBlock(*UseToRewrite);
 | 
						|
 | 
						|
      if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
 | 
						|
        // Tell the VHs that the uses changed. This updates SCEV's caches.
 | 
						|
        if (UseToRewrite->get()->hasValueHandle())
 | 
						|
          ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
 | 
						|
        UseToRewrite->set(&UserBB->front());
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, do full PHI insertion.
 | 
						|
      SSAUpdate.RewriteUse(*UseToRewrite);
 | 
						|
    }
 | 
						|
 | 
						|
    // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
 | 
						|
    // to post-process them to keep LCSSA form.
 | 
						|
    for (PHINode *InsertedPN : InsertedPHIs) {
 | 
						|
      if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
 | 
						|
        if (!L->contains(OtherLoop))
 | 
						|
          PostProcessPHIs.push_back(InsertedPN);
 | 
						|
    }
 | 
						|
 | 
						|
    // Post process PHI instructions that were inserted into another disjoint
 | 
						|
    // loop and update their exits properly.
 | 
						|
    for (auto *PostProcessPN : PostProcessPHIs) {
 | 
						|
      if (PostProcessPN->use_empty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Reprocess each PHI instruction.
 | 
						|
      Worklist.push_back(PostProcessPN);
 | 
						|
    }
 | 
						|
 | 
						|
    // Keep track of PHI nodes that we want to remove because they did not have
 | 
						|
    // any uses rewritten.
 | 
						|
    for (PHINode *PN : AddedPHIs)
 | 
						|
      if (PN->use_empty())
 | 
						|
        PHIsToRemove.insert(PN);
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
  // Remove PHI nodes that did not have any uses rewritten.
 | 
						|
  for (PHINode *PN : PHIsToRemove) {
 | 
						|
    assert (PN->use_empty() && "Trying to remove a phi with uses.");
 | 
						|
    PN->eraseFromParent();
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the specified block dominates at least
 | 
						|
/// one of the blocks in the specified list.
 | 
						|
static bool
 | 
						|
blockDominatesAnExit(BasicBlock *BB,
 | 
						|
                     DominatorTree &DT,
 | 
						|
                     const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
 | 
						|
  DomTreeNode *DomNode = DT.getNode(BB);
 | 
						|
  return any_of(ExitBlocks, [&](BasicBlock *EB) {
 | 
						|
    return DT.dominates(DomNode, DT.getNode(EB));
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
 | 
						|
                     ScalarEvolution *SE) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Get the set of exiting blocks.
 | 
						|
  SmallVector<BasicBlock *, 8> ExitBlocks;
 | 
						|
  L.getExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  if (ExitBlocks.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<Instruction *, 8> Worklist;
 | 
						|
 | 
						|
  // Look at all the instructions in the loop, checking to see if they have uses
 | 
						|
  // outside the loop.  If so, put them into the worklist to rewrite those uses.
 | 
						|
  for (BasicBlock *BB : L.blocks()) {
 | 
						|
    // For large loops, avoid use-scanning by using dominance information:  In
 | 
						|
    // particular, if a block does not dominate any of the loop exits, then none
 | 
						|
    // of the values defined in the block could be used outside the loop.
 | 
						|
    if (!blockDominatesAnExit(BB, DT, ExitBlocks))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      // Reject two common cases fast: instructions with no uses (like stores)
 | 
						|
      // and instructions with one use that is in the same block as this.
 | 
						|
      if (I.use_empty() ||
 | 
						|
          (I.hasOneUse() && I.user_back()->getParent() == BB &&
 | 
						|
           !isa<PHINode>(I.user_back())))
 | 
						|
        continue;
 | 
						|
 | 
						|
      Worklist.push_back(&I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Changed = formLCSSAForInstructions(Worklist, DT, *LI);
 | 
						|
 | 
						|
  // If we modified the code, remove any caches about the loop from SCEV to
 | 
						|
  // avoid dangling entries.
 | 
						|
  // FIXME: This is a big hammer, can we clear the cache more selectively?
 | 
						|
  if (SE && Changed)
 | 
						|
    SE->forgetLoop(&L);
 | 
						|
 | 
						|
  assert(L.isLCSSAForm(DT));
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Process a loop nest depth first.
 | 
						|
bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
 | 
						|
                                ScalarEvolution *SE) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Recurse depth-first through inner loops.
 | 
						|
  for (Loop *SubLoop : L.getSubLoops())
 | 
						|
    Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
 | 
						|
 | 
						|
  Changed |= formLCSSA(L, DT, LI, SE);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Process all loops in the function, inner-most out.
 | 
						|
static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
 | 
						|
                                ScalarEvolution *SE) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto &L : *LI)
 | 
						|
    Changed |= formLCSSARecursively(*L, DT, LI, SE);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct LCSSAWrapperPass : public FunctionPass {
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
  LCSSAWrapperPass() : FunctionPass(ID) {
 | 
						|
    initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  // Cached analysis information for the current function.
 | 
						|
  DominatorTree *DT;
 | 
						|
  LoopInfo *LI;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
  void verifyAnalysis() const override {
 | 
						|
    assert(
 | 
						|
        all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); }) &&
 | 
						|
        "LCSSA form is broken!");
 | 
						|
  };
 | 
						|
 | 
						|
  /// This transformation requires natural loop information & requires that
 | 
						|
  /// loop preheaders be inserted into the CFG.  It maintains both of these,
 | 
						|
  /// as well as the CFG.  It also requires dominator information.
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
    AU.addPreservedID(LoopSimplifyID);
 | 
						|
    AU.addPreserved<AAResultsWrapperPass>();
 | 
						|
    AU.addPreserved<BasicAAWrapperPass>();
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
    AU.addPreserved<ScalarEvolutionWrapperPass>();
 | 
						|
    AU.addPreserved<SCEVAAWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char LCSSAWrapperPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
 | 
						|
char &llvm::LCSSAID = LCSSAWrapperPass::ID;
 | 
						|
 | 
						|
/// Transform \p F into loop-closed SSA form.
 | 
						|
bool LCSSAWrapperPass::runOnFunction(Function &F) {
 | 
						|
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
 | 
						|
  SE = SEWP ? &SEWP->getSE() : nullptr;
 | 
						|
 | 
						|
  return formLCSSAOnAllLoops(LI, *DT, SE);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  auto &LI = AM.getResult<LoopAnalysis>(F);
 | 
						|
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
 | 
						|
  if (!formLCSSAOnAllLoops(&LI, DT, SE))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  // FIXME: This should also 'preserve the CFG'.
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<BasicAA>();
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  PA.preserve<SCEVAA>();
 | 
						|
  PA.preserve<ScalarEvolutionAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 |