1981 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1981 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- Local.cpp - Functions to perform local transformations ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This family of functions perform various local transformations to the
 | 
						|
// program.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/EHPersonalities.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/LazyValueInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "local"
 | 
						|
 | 
						|
STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Local constant propagation.
 | 
						|
//
 | 
						|
 | 
						|
/// ConstantFoldTerminator - If a terminator instruction is predicated on a
 | 
						|
/// constant value, convert it into an unconditional branch to the constant
 | 
						|
/// destination.  This is a nontrivial operation because the successors of this
 | 
						|
/// basic block must have their PHI nodes updated.
 | 
						|
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
 | 
						|
/// conditions and indirectbr addresses this might make dead if
 | 
						|
/// DeleteDeadConditions is true.
 | 
						|
bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
 | 
						|
                                  const TargetLibraryInfo *TLI) {
 | 
						|
  TerminatorInst *T = BB->getTerminator();
 | 
						|
  IRBuilder<> Builder(T);
 | 
						|
 | 
						|
  // Branch - See if we are conditional jumping on constant
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
 | 
						|
    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
 | 
						|
    BasicBlock *Dest1 = BI->getSuccessor(0);
 | 
						|
    BasicBlock *Dest2 = BI->getSuccessor(1);
 | 
						|
 | 
						|
    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
 | 
						|
      // Are we branching on constant?
 | 
						|
      // YES.  Change to unconditional branch...
 | 
						|
      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
 | 
						|
      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
 | 
						|
 | 
						|
      //cerr << "Function: " << T->getParent()->getParent()
 | 
						|
      //     << "\nRemoving branch from " << T->getParent()
 | 
						|
      //     << "\n\nTo: " << OldDest << endl;
 | 
						|
 | 
						|
      // Let the basic block know that we are letting go of it.  Based on this,
 | 
						|
      // it will adjust it's PHI nodes.
 | 
						|
      OldDest->removePredecessor(BB);
 | 
						|
 | 
						|
      // Replace the conditional branch with an unconditional one.
 | 
						|
      Builder.CreateBr(Destination);
 | 
						|
      BI->eraseFromParent();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Dest2 == Dest1) {       // Conditional branch to same location?
 | 
						|
      // This branch matches something like this:
 | 
						|
      //     br bool %cond, label %Dest, label %Dest
 | 
						|
      // and changes it into:  br label %Dest
 | 
						|
 | 
						|
      // Let the basic block know that we are letting go of one copy of it.
 | 
						|
      assert(BI->getParent() && "Terminator not inserted in block!");
 | 
						|
      Dest1->removePredecessor(BI->getParent());
 | 
						|
 | 
						|
      // Replace the conditional branch with an unconditional one.
 | 
						|
      Builder.CreateBr(Dest1);
 | 
						|
      Value *Cond = BI->getCondition();
 | 
						|
      BI->eraseFromParent();
 | 
						|
      if (DeleteDeadConditions)
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
 | 
						|
    // If we are switching on a constant, we can convert the switch to an
 | 
						|
    // unconditional branch.
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
 | 
						|
    BasicBlock *DefaultDest = SI->getDefaultDest();
 | 
						|
    BasicBlock *TheOnlyDest = DefaultDest;
 | 
						|
 | 
						|
    // If the default is unreachable, ignore it when searching for TheOnlyDest.
 | 
						|
    if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
 | 
						|
        SI->getNumCases() > 0) {
 | 
						|
      TheOnlyDest = SI->case_begin().getCaseSuccessor();
 | 
						|
    }
 | 
						|
 | 
						|
    // Figure out which case it goes to.
 | 
						|
    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      // Found case matching a constant operand?
 | 
						|
      if (i.getCaseValue() == CI) {
 | 
						|
        TheOnlyDest = i.getCaseSuccessor();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check to see if this branch is going to the same place as the default
 | 
						|
      // dest.  If so, eliminate it as an explicit compare.
 | 
						|
      if (i.getCaseSuccessor() == DefaultDest) {
 | 
						|
        MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
 | 
						|
        unsigned NCases = SI->getNumCases();
 | 
						|
        // Fold the case metadata into the default if there will be any branches
 | 
						|
        // left, unless the metadata doesn't match the switch.
 | 
						|
        if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
 | 
						|
          // Collect branch weights into a vector.
 | 
						|
          SmallVector<uint32_t, 8> Weights;
 | 
						|
          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
 | 
						|
               ++MD_i) {
 | 
						|
            auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
 | 
						|
            Weights.push_back(CI->getValue().getZExtValue());
 | 
						|
          }
 | 
						|
          // Merge weight of this case to the default weight.
 | 
						|
          unsigned idx = i.getCaseIndex();
 | 
						|
          Weights[0] += Weights[idx+1];
 | 
						|
          // Remove weight for this case.
 | 
						|
          std::swap(Weights[idx+1], Weights.back());
 | 
						|
          Weights.pop_back();
 | 
						|
          SI->setMetadata(LLVMContext::MD_prof,
 | 
						|
                          MDBuilder(BB->getContext()).
 | 
						|
                          createBranchWeights(Weights));
 | 
						|
        }
 | 
						|
        // Remove this entry.
 | 
						|
        DefaultDest->removePredecessor(SI->getParent());
 | 
						|
        SI->removeCase(i);
 | 
						|
        --i; --e;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, check to see if the switch only branches to one destination.
 | 
						|
      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
 | 
						|
      // destinations.
 | 
						|
      if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CI && !TheOnlyDest) {
 | 
						|
      // Branching on a constant, but not any of the cases, go to the default
 | 
						|
      // successor.
 | 
						|
      TheOnlyDest = SI->getDefaultDest();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a single destination that we can fold the switch into, do so
 | 
						|
    // now.
 | 
						|
    if (TheOnlyDest) {
 | 
						|
      // Insert the new branch.
 | 
						|
      Builder.CreateBr(TheOnlyDest);
 | 
						|
      BasicBlock *BB = SI->getParent();
 | 
						|
 | 
						|
      // Remove entries from PHI nodes which we no longer branch to...
 | 
						|
      for (BasicBlock *Succ : SI->successors()) {
 | 
						|
        // Found case matching a constant operand?
 | 
						|
        if (Succ == TheOnlyDest)
 | 
						|
          TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
 | 
						|
        else
 | 
						|
          Succ->removePredecessor(BB);
 | 
						|
      }
 | 
						|
 | 
						|
      // Delete the old switch.
 | 
						|
      Value *Cond = SI->getCondition();
 | 
						|
      SI->eraseFromParent();
 | 
						|
      if (DeleteDeadConditions)
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SI->getNumCases() == 1) {
 | 
						|
      // Otherwise, we can fold this switch into a conditional branch
 | 
						|
      // instruction if it has only one non-default destination.
 | 
						|
      SwitchInst::CaseIt FirstCase = SI->case_begin();
 | 
						|
      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
 | 
						|
          FirstCase.getCaseValue(), "cond");
 | 
						|
 | 
						|
      // Insert the new branch.
 | 
						|
      BranchInst *NewBr = Builder.CreateCondBr(Cond,
 | 
						|
                                               FirstCase.getCaseSuccessor(),
 | 
						|
                                               SI->getDefaultDest());
 | 
						|
      MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
 | 
						|
      if (MD && MD->getNumOperands() == 3) {
 | 
						|
        ConstantInt *SICase =
 | 
						|
            mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
 | 
						|
        ConstantInt *SIDef =
 | 
						|
            mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
 | 
						|
        assert(SICase && SIDef);
 | 
						|
        // The TrueWeight should be the weight for the single case of SI.
 | 
						|
        NewBr->setMetadata(LLVMContext::MD_prof,
 | 
						|
                        MDBuilder(BB->getContext()).
 | 
						|
                        createBranchWeights(SICase->getValue().getZExtValue(),
 | 
						|
                                            SIDef->getValue().getZExtValue()));
 | 
						|
      }
 | 
						|
 | 
						|
      // Update make.implicit metadata to the newly-created conditional branch.
 | 
						|
      MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
 | 
						|
      if (MakeImplicitMD)
 | 
						|
        NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
 | 
						|
 | 
						|
      // Delete the old switch.
 | 
						|
      SI->eraseFromParent();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
 | 
						|
    // indirectbr blockaddress(@F, @BB) -> br label @BB
 | 
						|
    if (BlockAddress *BA =
 | 
						|
          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
 | 
						|
      BasicBlock *TheOnlyDest = BA->getBasicBlock();
 | 
						|
      // Insert the new branch.
 | 
						|
      Builder.CreateBr(TheOnlyDest);
 | 
						|
 | 
						|
      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
 | 
						|
        if (IBI->getDestination(i) == TheOnlyDest)
 | 
						|
          TheOnlyDest = nullptr;
 | 
						|
        else
 | 
						|
          IBI->getDestination(i)->removePredecessor(IBI->getParent());
 | 
						|
      }
 | 
						|
      Value *Address = IBI->getAddress();
 | 
						|
      IBI->eraseFromParent();
 | 
						|
      if (DeleteDeadConditions)
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
 | 
						|
 | 
						|
      // If we didn't find our destination in the IBI successor list, then we
 | 
						|
      // have undefined behavior.  Replace the unconditional branch with an
 | 
						|
      // 'unreachable' instruction.
 | 
						|
      if (TheOnlyDest) {
 | 
						|
        BB->getTerminator()->eraseFromParent();
 | 
						|
        new UnreachableInst(BB->getContext(), BB);
 | 
						|
      }
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Local dead code elimination.
 | 
						|
//
 | 
						|
 | 
						|
/// isInstructionTriviallyDead - Return true if the result produced by the
 | 
						|
/// instruction is not used, and the instruction has no side effects.
 | 
						|
///
 | 
						|
bool llvm::isInstructionTriviallyDead(Instruction *I,
 | 
						|
                                      const TargetLibraryInfo *TLI) {
 | 
						|
  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
 | 
						|
 | 
						|
  // We don't want the landingpad-like instructions removed by anything this
 | 
						|
  // general.
 | 
						|
  if (I->isEHPad())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We don't want debug info removed by anything this general, unless
 | 
						|
  // debug info is empty.
 | 
						|
  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
 | 
						|
    if (DDI->getAddress())
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
 | 
						|
    if (DVI->getValue())
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!I->mayHaveSideEffects()) return true;
 | 
						|
 | 
						|
  // Special case intrinsics that "may have side effects" but can be deleted
 | 
						|
  // when dead.
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    // Safe to delete llvm.stacksave if dead.
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::stacksave)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Lifetime intrinsics are dead when their right-hand is undef.
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
        II->getIntrinsicID() == Intrinsic::lifetime_end)
 | 
						|
      return isa<UndefValue>(II->getArgOperand(1));
 | 
						|
 | 
						|
    // Assumptions are dead if their condition is trivially true.  Guards on
 | 
						|
    // true are operationally no-ops.  In the future we can consider more
 | 
						|
    // sophisticated tradeoffs for guards considering potential for check
 | 
						|
    // widening, but for now we keep things simple.
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::assume ||
 | 
						|
        II->getIntrinsicID() == Intrinsic::experimental_guard) {
 | 
						|
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
 | 
						|
        return !Cond->isZero();
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isAllocLikeFn(I, TLI)) return true;
 | 
						|
 | 
						|
  if (CallInst *CI = isFreeCall(I, TLI))
 | 
						|
    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
 | 
						|
      return C->isNullValue() || isa<UndefValue>(C);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
 | 
						|
/// trivially dead instruction, delete it.  If that makes any of its operands
 | 
						|
/// trivially dead, delete them too, recursively.  Return true if any
 | 
						|
/// instructions were deleted.
 | 
						|
bool
 | 
						|
llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
 | 
						|
                                                 const TargetLibraryInfo *TLI) {
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<Instruction*, 16> DeadInsts;
 | 
						|
  DeadInsts.push_back(I);
 | 
						|
 | 
						|
  do {
 | 
						|
    I = DeadInsts.pop_back_val();
 | 
						|
 | 
						|
    // Null out all of the instruction's operands to see if any operand becomes
 | 
						|
    // dead as we go.
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
      Value *OpV = I->getOperand(i);
 | 
						|
      I->setOperand(i, nullptr);
 | 
						|
 | 
						|
      if (!OpV->use_empty()) continue;
 | 
						|
 | 
						|
      // If the operand is an instruction that became dead as we nulled out the
 | 
						|
      // operand, and if it is 'trivially' dead, delete it in a future loop
 | 
						|
      // iteration.
 | 
						|
      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
 | 
						|
        if (isInstructionTriviallyDead(OpI, TLI))
 | 
						|
          DeadInsts.push_back(OpI);
 | 
						|
    }
 | 
						|
 | 
						|
    I->eraseFromParent();
 | 
						|
  } while (!DeadInsts.empty());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// areAllUsesEqual - Check whether the uses of a value are all the same.
 | 
						|
/// This is similar to Instruction::hasOneUse() except this will also return
 | 
						|
/// true when there are no uses or multiple uses that all refer to the same
 | 
						|
/// value.
 | 
						|
static bool areAllUsesEqual(Instruction *I) {
 | 
						|
  Value::user_iterator UI = I->user_begin();
 | 
						|
  Value::user_iterator UE = I->user_end();
 | 
						|
  if (UI == UE)
 | 
						|
    return true;
 | 
						|
 | 
						|
  User *TheUse = *UI;
 | 
						|
  for (++UI; UI != UE; ++UI) {
 | 
						|
    if (*UI != TheUse)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
 | 
						|
/// dead PHI node, due to being a def-use chain of single-use nodes that
 | 
						|
/// either forms a cycle or is terminated by a trivially dead instruction,
 | 
						|
/// delete it.  If that makes any of its operands trivially dead, delete them
 | 
						|
/// too, recursively.  Return true if a change was made.
 | 
						|
bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
 | 
						|
                                        const TargetLibraryInfo *TLI) {
 | 
						|
  SmallPtrSet<Instruction*, 4> Visited;
 | 
						|
  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
 | 
						|
       I = cast<Instruction>(*I->user_begin())) {
 | 
						|
    if (I->use_empty())
 | 
						|
      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
 | 
						|
 | 
						|
    // If we find an instruction more than once, we're on a cycle that
 | 
						|
    // won't prove fruitful.
 | 
						|
    if (!Visited.insert(I).second) {
 | 
						|
      // Break the cycle and delete the instruction and its operands.
 | 
						|
      I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | 
						|
      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
simplifyAndDCEInstruction(Instruction *I,
 | 
						|
                          SmallSetVector<Instruction *, 16> &WorkList,
 | 
						|
                          const DataLayout &DL,
 | 
						|
                          const TargetLibraryInfo *TLI) {
 | 
						|
  if (isInstructionTriviallyDead(I, TLI)) {
 | 
						|
    // Null out all of the instruction's operands to see if any operand becomes
 | 
						|
    // dead as we go.
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
      Value *OpV = I->getOperand(i);
 | 
						|
      I->setOperand(i, nullptr);
 | 
						|
 | 
						|
      if (!OpV->use_empty() || I == OpV)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the operand is an instruction that became dead as we nulled out the
 | 
						|
      // operand, and if it is 'trivially' dead, delete it in a future loop
 | 
						|
      // iteration.
 | 
						|
      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
 | 
						|
        if (isInstructionTriviallyDead(OpI, TLI))
 | 
						|
          WorkList.insert(OpI);
 | 
						|
    }
 | 
						|
 | 
						|
    I->eraseFromParent();
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *SimpleV = SimplifyInstruction(I, DL)) {
 | 
						|
    // Add the users to the worklist. CAREFUL: an instruction can use itself,
 | 
						|
    // in the case of a phi node.
 | 
						|
    for (User *U : I->users()) {
 | 
						|
      if (U != I) {
 | 
						|
        WorkList.insert(cast<Instruction>(U));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace the instruction with its simplified value.
 | 
						|
    bool Changed = false;
 | 
						|
    if (!I->use_empty()) {
 | 
						|
      I->replaceAllUsesWith(SimpleV);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
    if (isInstructionTriviallyDead(I, TLI)) {
 | 
						|
      I->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
 | 
						|
/// simplify any instructions in it and recursively delete dead instructions.
 | 
						|
///
 | 
						|
/// This returns true if it changed the code, note that it can delete
 | 
						|
/// instructions in other blocks as well in this block.
 | 
						|
bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
 | 
						|
                                       const TargetLibraryInfo *TLI) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  const DataLayout &DL = BB->getModule()->getDataLayout();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // In debug builds, ensure that the terminator of the block is never replaced
 | 
						|
  // or deleted by these simplifications. The idea of simplification is that it
 | 
						|
  // cannot introduce new instructions, and there is no way to replace the
 | 
						|
  // terminator of a block without introducing a new instruction.
 | 
						|
  AssertingVH<Instruction> TerminatorVH(&BB->back());
 | 
						|
#endif
 | 
						|
 | 
						|
  SmallSetVector<Instruction *, 16> WorkList;
 | 
						|
  // Iterate over the original function, only adding insts to the worklist
 | 
						|
  // if they actually need to be revisited. This avoids having to pre-init
 | 
						|
  // the worklist with the entire function's worth of instructions.
 | 
						|
  for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
 | 
						|
       BI != E;) {
 | 
						|
    assert(!BI->isTerminator());
 | 
						|
    Instruction *I = &*BI;
 | 
						|
    ++BI;
 | 
						|
 | 
						|
    // We're visiting this instruction now, so make sure it's not in the
 | 
						|
    // worklist from an earlier visit.
 | 
						|
    if (!WorkList.count(I))
 | 
						|
      MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Instruction *I = WorkList.pop_back_val();
 | 
						|
    MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Control Flow Graph Restructuring.
 | 
						|
//
 | 
						|
 | 
						|
 | 
						|
/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
 | 
						|
/// method is called when we're about to delete Pred as a predecessor of BB.  If
 | 
						|
/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
 | 
						|
///
 | 
						|
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
 | 
						|
/// nodes that collapse into identity values.  For example, if we have:
 | 
						|
///   x = phi(1, 0, 0, 0)
 | 
						|
///   y = and x, z
 | 
						|
///
 | 
						|
/// .. and delete the predecessor corresponding to the '1', this will attempt to
 | 
						|
/// recursively fold the and to 0.
 | 
						|
void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
 | 
						|
  // This only adjusts blocks with PHI nodes.
 | 
						|
  if (!isa<PHINode>(BB->begin()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
 | 
						|
  // them down.  This will leave us with single entry phi nodes and other phis
 | 
						|
  // that can be removed.
 | 
						|
  BB->removePredecessor(Pred, true);
 | 
						|
 | 
						|
  WeakVH PhiIt = &BB->front();
 | 
						|
  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
 | 
						|
    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
 | 
						|
    Value *OldPhiIt = PhiIt;
 | 
						|
 | 
						|
    if (!recursivelySimplifyInstruction(PN))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If recursive simplification ended up deleting the next PHI node we would
 | 
						|
    // iterate to, then our iterator is invalid, restart scanning from the top
 | 
						|
    // of the block.
 | 
						|
    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
 | 
						|
/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
 | 
						|
/// between them, moving the instructions in the predecessor into DestBB and
 | 
						|
/// deleting the predecessor block.
 | 
						|
///
 | 
						|
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
 | 
						|
  // If BB has single-entry PHI nodes, fold them.
 | 
						|
  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
 | 
						|
    Value *NewVal = PN->getIncomingValue(0);
 | 
						|
    // Replace self referencing PHI with undef, it must be dead.
 | 
						|
    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
 | 
						|
    PN->replaceAllUsesWith(NewVal);
 | 
						|
    PN->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *PredBB = DestBB->getSinglePredecessor();
 | 
						|
  assert(PredBB && "Block doesn't have a single predecessor!");
 | 
						|
 | 
						|
  // Zap anything that took the address of DestBB.  Not doing this will give the
 | 
						|
  // address an invalid value.
 | 
						|
  if (DestBB->hasAddressTaken()) {
 | 
						|
    BlockAddress *BA = BlockAddress::get(DestBB);
 | 
						|
    Constant *Replacement =
 | 
						|
      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
 | 
						|
    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
 | 
						|
                                                     BA->getType()));
 | 
						|
    BA->destroyConstant();
 | 
						|
  }
 | 
						|
 | 
						|
  // Anything that branched to PredBB now branches to DestBB.
 | 
						|
  PredBB->replaceAllUsesWith(DestBB);
 | 
						|
 | 
						|
  // Splice all the instructions from PredBB to DestBB.
 | 
						|
  PredBB->getTerminator()->eraseFromParent();
 | 
						|
  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
 | 
						|
 | 
						|
  // If the PredBB is the entry block of the function, move DestBB up to
 | 
						|
  // become the entry block after we erase PredBB.
 | 
						|
  if (PredBB == &DestBB->getParent()->getEntryBlock())
 | 
						|
    DestBB->moveAfter(PredBB);
 | 
						|
 | 
						|
  if (DT) {
 | 
						|
    BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
 | 
						|
    DT->changeImmediateDominator(DestBB, PredBBIDom);
 | 
						|
    DT->eraseNode(PredBB);
 | 
						|
  }
 | 
						|
  // Nuke BB.
 | 
						|
  PredBB->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// CanMergeValues - Return true if we can choose one of these values to use
 | 
						|
/// in place of the other. Note that we will always choose the non-undef
 | 
						|
/// value to keep.
 | 
						|
static bool CanMergeValues(Value *First, Value *Second) {
 | 
						|
  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
 | 
						|
}
 | 
						|
 | 
						|
/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
 | 
						|
/// almost-empty BB ending in an unconditional branch to Succ, into Succ.
 | 
						|
///
 | 
						|
/// Assumption: Succ is the single successor for BB.
 | 
						|
///
 | 
						|
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
 | 
						|
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
 | 
						|
        << Succ->getName() << "\n");
 | 
						|
  // Shortcut, if there is only a single predecessor it must be BB and merging
 | 
						|
  // is always safe
 | 
						|
  if (Succ->getSinglePredecessor()) return true;
 | 
						|
 | 
						|
  // Make a list of the predecessors of BB
 | 
						|
  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
 | 
						|
 | 
						|
  // Look at all the phi nodes in Succ, to see if they present a conflict when
 | 
						|
  // merging these blocks
 | 
						|
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
 | 
						|
    // If the incoming value from BB is again a PHINode in
 | 
						|
    // BB which has the same incoming value for *PI as PN does, we can
 | 
						|
    // merge the phi nodes and then the blocks can still be merged
 | 
						|
    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
 | 
						|
    if (BBPN && BBPN->getParent() == BB) {
 | 
						|
      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
 | 
						|
        BasicBlock *IBB = PN->getIncomingBlock(PI);
 | 
						|
        if (BBPreds.count(IBB) &&
 | 
						|
            !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
 | 
						|
                            PN->getIncomingValue(PI))) {
 | 
						|
          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
 | 
						|
                << Succ->getName() << " is conflicting with "
 | 
						|
                << BBPN->getName() << " with regard to common predecessor "
 | 
						|
                << IBB->getName() << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Value* Val = PN->getIncomingValueForBlock(BB);
 | 
						|
      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
 | 
						|
        // See if the incoming value for the common predecessor is equal to the
 | 
						|
        // one for BB, in which case this phi node will not prevent the merging
 | 
						|
        // of the block.
 | 
						|
        BasicBlock *IBB = PN->getIncomingBlock(PI);
 | 
						|
        if (BBPreds.count(IBB) &&
 | 
						|
            !CanMergeValues(Val, PN->getIncomingValue(PI))) {
 | 
						|
          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
 | 
						|
                << Succ->getName() << " is conflicting with regard to common "
 | 
						|
                << "predecessor " << IBB->getName() << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
typedef SmallVector<BasicBlock *, 16> PredBlockVector;
 | 
						|
typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
 | 
						|
 | 
						|
/// \brief Determines the value to use as the phi node input for a block.
 | 
						|
///
 | 
						|
/// Select between \p OldVal any value that we know flows from \p BB
 | 
						|
/// to a particular phi on the basis of which one (if either) is not
 | 
						|
/// undef. Update IncomingValues based on the selected value.
 | 
						|
///
 | 
						|
/// \param OldVal The value we are considering selecting.
 | 
						|
/// \param BB The block that the value flows in from.
 | 
						|
/// \param IncomingValues A map from block-to-value for other phi inputs
 | 
						|
/// that we have examined.
 | 
						|
///
 | 
						|
/// \returns the selected value.
 | 
						|
static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
 | 
						|
                                          IncomingValueMap &IncomingValues) {
 | 
						|
  if (!isa<UndefValue>(OldVal)) {
 | 
						|
    assert((!IncomingValues.count(BB) ||
 | 
						|
            IncomingValues.find(BB)->second == OldVal) &&
 | 
						|
           "Expected OldVal to match incoming value from BB!");
 | 
						|
 | 
						|
    IncomingValues.insert(std::make_pair(BB, OldVal));
 | 
						|
    return OldVal;
 | 
						|
  }
 | 
						|
 | 
						|
  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
 | 
						|
  if (It != IncomingValues.end()) return It->second;
 | 
						|
 | 
						|
  return OldVal;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Create a map from block to value for the operands of a
 | 
						|
/// given phi.
 | 
						|
///
 | 
						|
/// Create a map from block to value for each non-undef value flowing
 | 
						|
/// into \p PN.
 | 
						|
///
 | 
						|
/// \param PN The phi we are collecting the map for.
 | 
						|
/// \param IncomingValues [out] The map from block to value for this phi.
 | 
						|
static void gatherIncomingValuesToPhi(PHINode *PN,
 | 
						|
                                      IncomingValueMap &IncomingValues) {
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *BB = PN->getIncomingBlock(i);
 | 
						|
    Value *V = PN->getIncomingValue(i);
 | 
						|
 | 
						|
    if (!isa<UndefValue>(V))
 | 
						|
      IncomingValues.insert(std::make_pair(BB, V));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Replace the incoming undef values to a phi with the values
 | 
						|
/// from a block-to-value map.
 | 
						|
///
 | 
						|
/// \param PN The phi we are replacing the undefs in.
 | 
						|
/// \param IncomingValues A map from block to value.
 | 
						|
static void replaceUndefValuesInPhi(PHINode *PN,
 | 
						|
                                    const IncomingValueMap &IncomingValues) {
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *V = PN->getIncomingValue(i);
 | 
						|
 | 
						|
    if (!isa<UndefValue>(V)) continue;
 | 
						|
 | 
						|
    BasicBlock *BB = PN->getIncomingBlock(i);
 | 
						|
    IncomingValueMap::const_iterator It = IncomingValues.find(BB);
 | 
						|
    if (It == IncomingValues.end()) continue;
 | 
						|
 | 
						|
    PN->setIncomingValue(i, It->second);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Replace a value flowing from a block to a phi with
 | 
						|
/// potentially multiple instances of that value flowing from the
 | 
						|
/// block's predecessors to the phi.
 | 
						|
///
 | 
						|
/// \param BB The block with the value flowing into the phi.
 | 
						|
/// \param BBPreds The predecessors of BB.
 | 
						|
/// \param PN The phi that we are updating.
 | 
						|
static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
 | 
						|
                                                const PredBlockVector &BBPreds,
 | 
						|
                                                PHINode *PN) {
 | 
						|
  Value *OldVal = PN->removeIncomingValue(BB, false);
 | 
						|
  assert(OldVal && "No entry in PHI for Pred BB!");
 | 
						|
 | 
						|
  IncomingValueMap IncomingValues;
 | 
						|
 | 
						|
  // We are merging two blocks - BB, and the block containing PN - and
 | 
						|
  // as a result we need to redirect edges from the predecessors of BB
 | 
						|
  // to go to the block containing PN, and update PN
 | 
						|
  // accordingly. Since we allow merging blocks in the case where the
 | 
						|
  // predecessor and successor blocks both share some predecessors,
 | 
						|
  // and where some of those common predecessors might have undef
 | 
						|
  // values flowing into PN, we want to rewrite those values to be
 | 
						|
  // consistent with the non-undef values.
 | 
						|
 | 
						|
  gatherIncomingValuesToPhi(PN, IncomingValues);
 | 
						|
 | 
						|
  // If this incoming value is one of the PHI nodes in BB, the new entries
 | 
						|
  // in the PHI node are the entries from the old PHI.
 | 
						|
  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
 | 
						|
    PHINode *OldValPN = cast<PHINode>(OldVal);
 | 
						|
    for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      // Note that, since we are merging phi nodes and BB and Succ might
 | 
						|
      // have common predecessors, we could end up with a phi node with
 | 
						|
      // identical incoming branches. This will be cleaned up later (and
 | 
						|
      // will trigger asserts if we try to clean it up now, without also
 | 
						|
      // simplifying the corresponding conditional branch).
 | 
						|
      BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
 | 
						|
      Value *PredVal = OldValPN->getIncomingValue(i);
 | 
						|
      Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
 | 
						|
                                                    IncomingValues);
 | 
						|
 | 
						|
      // And add a new incoming value for this predecessor for the
 | 
						|
      // newly retargeted branch.
 | 
						|
      PN->addIncoming(Selected, PredBB);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
 | 
						|
      // Update existing incoming values in PN for this
 | 
						|
      // predecessor of BB.
 | 
						|
      BasicBlock *PredBB = BBPreds[i];
 | 
						|
      Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
 | 
						|
                                                    IncomingValues);
 | 
						|
 | 
						|
      // And add a new incoming value for this predecessor for the
 | 
						|
      // newly retargeted branch.
 | 
						|
      PN->addIncoming(Selected, PredBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  replaceUndefValuesInPhi(PN, IncomingValues);
 | 
						|
}
 | 
						|
 | 
						|
/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
 | 
						|
/// unconditional branch, and contains no instructions other than PHI nodes,
 | 
						|
/// potential side-effect free intrinsics and the branch.  If possible,
 | 
						|
/// eliminate BB by rewriting all the predecessors to branch to the successor
 | 
						|
/// block and return true.  If we can't transform, return false.
 | 
						|
bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
 | 
						|
  assert(BB != &BB->getParent()->getEntryBlock() &&
 | 
						|
         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
 | 
						|
 | 
						|
  // We can't eliminate infinite loops.
 | 
						|
  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
 | 
						|
  if (BB == Succ) return false;
 | 
						|
 | 
						|
  // Check to see if merging these blocks would cause conflicts for any of the
 | 
						|
  // phi nodes in BB or Succ. If not, we can safely merge.
 | 
						|
  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
 | 
						|
 | 
						|
  // Check for cases where Succ has multiple predecessors and a PHI node in BB
 | 
						|
  // has uses which will not disappear when the PHI nodes are merged.  It is
 | 
						|
  // possible to handle such cases, but difficult: it requires checking whether
 | 
						|
  // BB dominates Succ, which is non-trivial to calculate in the case where
 | 
						|
  // Succ has multiple predecessors.  Also, it requires checking whether
 | 
						|
  // constructing the necessary self-referential PHI node doesn't introduce any
 | 
						|
  // conflicts; this isn't too difficult, but the previous code for doing this
 | 
						|
  // was incorrect.
 | 
						|
  //
 | 
						|
  // Note that if this check finds a live use, BB dominates Succ, so BB is
 | 
						|
  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
 | 
						|
  // folding the branch isn't profitable in that case anyway.
 | 
						|
  if (!Succ->getSinglePredecessor()) {
 | 
						|
    BasicBlock::iterator BBI = BB->begin();
 | 
						|
    while (isa<PHINode>(*BBI)) {
 | 
						|
      for (Use &U : BBI->uses()) {
 | 
						|
        if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
 | 
						|
          if (PN->getIncomingBlock(U) != BB)
 | 
						|
            return false;
 | 
						|
        } else {
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ++BBI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
 | 
						|
 | 
						|
  if (isa<PHINode>(Succ->begin())) {
 | 
						|
    // If there is more than one pred of succ, and there are PHI nodes in
 | 
						|
    // the successor, then we need to add incoming edges for the PHI nodes
 | 
						|
    //
 | 
						|
    const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
 | 
						|
 | 
						|
    // Loop over all of the PHI nodes in the successor of BB.
 | 
						|
    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
      PHINode *PN = cast<PHINode>(I);
 | 
						|
 | 
						|
      redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Succ->getSinglePredecessor()) {
 | 
						|
    // BB is the only predecessor of Succ, so Succ will end up with exactly
 | 
						|
    // the same predecessors BB had.
 | 
						|
 | 
						|
    // Copy over any phi, debug or lifetime instruction.
 | 
						|
    BB->getTerminator()->eraseFromParent();
 | 
						|
    Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
 | 
						|
                               BB->getInstList());
 | 
						|
  } else {
 | 
						|
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | 
						|
      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
 | 
						|
      assert(PN->use_empty() && "There shouldn't be any uses here!");
 | 
						|
      PN->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything that jumped to BB now goes to Succ.
 | 
						|
  BB->replaceAllUsesWith(Succ);
 | 
						|
  if (!Succ->hasName()) Succ->takeName(BB);
 | 
						|
  BB->eraseFromParent();              // Delete the old basic block.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
 | 
						|
/// nodes in this block. This doesn't try to be clever about PHI nodes
 | 
						|
/// which differ only in the order of the incoming values, but instcombine
 | 
						|
/// orders them so it usually won't matter.
 | 
						|
///
 | 
						|
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
 | 
						|
  // This implementation doesn't currently consider undef operands
 | 
						|
  // specially. Theoretically, two phis which are identical except for
 | 
						|
  // one having an undef where the other doesn't could be collapsed.
 | 
						|
 | 
						|
  struct PHIDenseMapInfo {
 | 
						|
    static PHINode *getEmptyKey() {
 | 
						|
      return DenseMapInfo<PHINode *>::getEmptyKey();
 | 
						|
    }
 | 
						|
    static PHINode *getTombstoneKey() {
 | 
						|
      return DenseMapInfo<PHINode *>::getTombstoneKey();
 | 
						|
    }
 | 
						|
    static unsigned getHashValue(PHINode *PN) {
 | 
						|
      // Compute a hash value on the operands. Instcombine will likely have
 | 
						|
      // sorted them, which helps expose duplicates, but we have to check all
 | 
						|
      // the operands to be safe in case instcombine hasn't run.
 | 
						|
      return static_cast<unsigned>(hash_combine(
 | 
						|
          hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
 | 
						|
          hash_combine_range(PN->block_begin(), PN->block_end())));
 | 
						|
    }
 | 
						|
    static bool isEqual(PHINode *LHS, PHINode *RHS) {
 | 
						|
      if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
 | 
						|
          RHS == getEmptyKey() || RHS == getTombstoneKey())
 | 
						|
        return LHS == RHS;
 | 
						|
      return LHS->isIdenticalTo(RHS);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // Set of unique PHINodes.
 | 
						|
  DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
 | 
						|
 | 
						|
  // Examine each PHI.
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
 | 
						|
    auto Inserted = PHISet.insert(PN);
 | 
						|
    if (!Inserted.second) {
 | 
						|
      // A duplicate. Replace this PHI with its duplicate.
 | 
						|
      PN->replaceAllUsesWith(*Inserted.first);
 | 
						|
      PN->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
 | 
						|
      // The RAUW can change PHIs that we already visited. Start over from the
 | 
						|
      // beginning.
 | 
						|
      PHISet.clear();
 | 
						|
      I = BB->begin();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// enforceKnownAlignment - If the specified pointer points to an object that
 | 
						|
/// we control, modify the object's alignment to PrefAlign. This isn't
 | 
						|
/// often possible though. If alignment is important, a more reliable approach
 | 
						|
/// is to simply align all global variables and allocation instructions to
 | 
						|
/// their preferred alignment from the beginning.
 | 
						|
///
 | 
						|
static unsigned enforceKnownAlignment(Value *V, unsigned Align,
 | 
						|
                                      unsigned PrefAlign,
 | 
						|
                                      const DataLayout &DL) {
 | 
						|
  assert(PrefAlign > Align);
 | 
						|
 | 
						|
  V = V->stripPointerCasts();
 | 
						|
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | 
						|
    // TODO: ideally, computeKnownBits ought to have used
 | 
						|
    // AllocaInst::getAlignment() in its computation already, making
 | 
						|
    // the below max redundant. But, as it turns out,
 | 
						|
    // stripPointerCasts recurses through infinite layers of bitcasts,
 | 
						|
    // while computeKnownBits is not allowed to traverse more than 6
 | 
						|
    // levels.
 | 
						|
    Align = std::max(AI->getAlignment(), Align);
 | 
						|
    if (PrefAlign <= Align)
 | 
						|
      return Align;
 | 
						|
 | 
						|
    // If the preferred alignment is greater than the natural stack alignment
 | 
						|
    // then don't round up. This avoids dynamic stack realignment.
 | 
						|
    if (DL.exceedsNaturalStackAlignment(PrefAlign))
 | 
						|
      return Align;
 | 
						|
    AI->setAlignment(PrefAlign);
 | 
						|
    return PrefAlign;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *GO = dyn_cast<GlobalObject>(V)) {
 | 
						|
    // TODO: as above, this shouldn't be necessary.
 | 
						|
    Align = std::max(GO->getAlignment(), Align);
 | 
						|
    if (PrefAlign <= Align)
 | 
						|
      return Align;
 | 
						|
 | 
						|
    // If there is a large requested alignment and we can, bump up the alignment
 | 
						|
    // of the global.  If the memory we set aside for the global may not be the
 | 
						|
    // memory used by the final program then it is impossible for us to reliably
 | 
						|
    // enforce the preferred alignment.
 | 
						|
    if (!GO->canIncreaseAlignment())
 | 
						|
      return Align;
 | 
						|
 | 
						|
    GO->setAlignment(PrefAlign);
 | 
						|
    return PrefAlign;
 | 
						|
  }
 | 
						|
 | 
						|
  return Align;
 | 
						|
}
 | 
						|
 | 
						|
/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
 | 
						|
/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
 | 
						|
/// and it is more than the alignment of the ultimate object, see if we can
 | 
						|
/// increase the alignment of the ultimate object, making this check succeed.
 | 
						|
unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
 | 
						|
                                          const DataLayout &DL,
 | 
						|
                                          const Instruction *CxtI,
 | 
						|
                                          AssumptionCache *AC,
 | 
						|
                                          const DominatorTree *DT) {
 | 
						|
  assert(V->getType()->isPointerTy() &&
 | 
						|
         "getOrEnforceKnownAlignment expects a pointer!");
 | 
						|
  unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
 | 
						|
 | 
						|
  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | 
						|
  computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
 | 
						|
  unsigned TrailZ = KnownZero.countTrailingOnes();
 | 
						|
 | 
						|
  // Avoid trouble with ridiculously large TrailZ values, such as
 | 
						|
  // those computed from a null pointer.
 | 
						|
  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
 | 
						|
 | 
						|
  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
 | 
						|
 | 
						|
  // LLVM doesn't support alignments larger than this currently.
 | 
						|
  Align = std::min(Align, +Value::MaximumAlignment);
 | 
						|
 | 
						|
  if (PrefAlign > Align)
 | 
						|
    Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
 | 
						|
 | 
						|
  // We don't need to make any adjustment.
 | 
						|
  return Align;
 | 
						|
}
 | 
						|
 | 
						|
///===---------------------------------------------------------------------===//
 | 
						|
///  Dbg Intrinsic utilities
 | 
						|
///
 | 
						|
 | 
						|
/// See if there is a dbg.value intrinsic for DIVar before I.
 | 
						|
static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
 | 
						|
                              Instruction *I) {
 | 
						|
  // Since we can't guarantee that the original dbg.declare instrinsic
 | 
						|
  // is removed by LowerDbgDeclare(), we need to make sure that we are
 | 
						|
  // not inserting the same dbg.value intrinsic over and over.
 | 
						|
  llvm::BasicBlock::InstListType::iterator PrevI(I);
 | 
						|
  if (PrevI != I->getParent()->getInstList().begin()) {
 | 
						|
    --PrevI;
 | 
						|
    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
 | 
						|
      if (DVI->getValue() == I->getOperand(0) &&
 | 
						|
          DVI->getOffset() == 0 &&
 | 
						|
          DVI->getVariable() == DIVar &&
 | 
						|
          DVI->getExpression() == DIExpr)
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
 | 
						|
/// that has an associated llvm.dbg.decl intrinsic.
 | 
						|
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
 | 
						|
                                           StoreInst *SI, DIBuilder &Builder) {
 | 
						|
  auto *DIVar = DDI->getVariable();
 | 
						|
  auto *DIExpr = DDI->getExpression();
 | 
						|
  assert(DIVar && "Missing variable");
 | 
						|
 | 
						|
  // If an argument is zero extended then use argument directly. The ZExt
 | 
						|
  // may be zapped by an optimization pass in future.
 | 
						|
  Argument *ExtendedArg = nullptr;
 | 
						|
  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
 | 
						|
    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
 | 
						|
  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
 | 
						|
    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
 | 
						|
  if (ExtendedArg) {
 | 
						|
    // We're now only describing a subset of the variable. The piece we're
 | 
						|
    // describing will always be smaller than the variable size, because
 | 
						|
    // VariableSize == Size of Alloca described by DDI. Since SI stores
 | 
						|
    // to the alloca described by DDI, if it's first operand is an extend,
 | 
						|
    // we're guaranteed that before extension, the value was narrower than
 | 
						|
    // the size of the alloca, hence the size of the described variable.
 | 
						|
    SmallVector<uint64_t, 3> Ops;
 | 
						|
    unsigned PieceOffset = 0;
 | 
						|
    // If this already is a bit piece, we drop the bit piece from the expression
 | 
						|
    // and record the offset.
 | 
						|
    if (DIExpr->isBitPiece()) {
 | 
						|
      Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3);
 | 
						|
      PieceOffset = DIExpr->getBitPieceOffset();
 | 
						|
    } else {
 | 
						|
      Ops.append(DIExpr->elements_begin(), DIExpr->elements_end());
 | 
						|
    }
 | 
						|
    Ops.push_back(dwarf::DW_OP_bit_piece);
 | 
						|
    Ops.push_back(PieceOffset); // Offset
 | 
						|
    const DataLayout &DL = DDI->getModule()->getDataLayout();
 | 
						|
    Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size
 | 
						|
    auto NewDIExpr = Builder.createExpression(Ops);
 | 
						|
    if (!LdStHasDebugValue(DIVar, NewDIExpr, SI))
 | 
						|
      Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr,
 | 
						|
                                      DDI->getDebugLoc(), SI);
 | 
						|
  } else if (!LdStHasDebugValue(DIVar, DIExpr, SI))
 | 
						|
    Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
 | 
						|
                                    DDI->getDebugLoc(), SI);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
 | 
						|
/// that has an associated llvm.dbg.decl intrinsic.
 | 
						|
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
 | 
						|
                                           LoadInst *LI, DIBuilder &Builder) {
 | 
						|
  auto *DIVar = DDI->getVariable();
 | 
						|
  auto *DIExpr = DDI->getExpression();
 | 
						|
  assert(DIVar && "Missing variable");
 | 
						|
 | 
						|
  if (LdStHasDebugValue(DIVar, DIExpr, LI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We are now tracking the loaded value instead of the address. In the
 | 
						|
  // future if multi-location support is added to the IR, it might be
 | 
						|
  // preferable to keep tracking both the loaded value and the original
 | 
						|
  // address in case the alloca can not be elided.
 | 
						|
  Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
 | 
						|
      LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
 | 
						|
  DbgValue->insertAfter(LI);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether this alloca is either a VLA or an array.
 | 
						|
static bool isArray(AllocaInst *AI) {
 | 
						|
  return AI->isArrayAllocation() ||
 | 
						|
    AI->getType()->getElementType()->isArrayTy();
 | 
						|
}
 | 
						|
 | 
						|
/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
 | 
						|
/// of llvm.dbg.value intrinsics.
 | 
						|
bool llvm::LowerDbgDeclare(Function &F) {
 | 
						|
  DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
 | 
						|
  SmallVector<DbgDeclareInst *, 4> Dbgs;
 | 
						|
  for (auto &FI : F)
 | 
						|
    for (Instruction &BI : FI)
 | 
						|
      if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
 | 
						|
        Dbgs.push_back(DDI);
 | 
						|
 | 
						|
  if (Dbgs.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto &I : Dbgs) {
 | 
						|
    DbgDeclareInst *DDI = I;
 | 
						|
    AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
 | 
						|
    // If this is an alloca for a scalar variable, insert a dbg.value
 | 
						|
    // at each load and store to the alloca and erase the dbg.declare.
 | 
						|
    // The dbg.values allow tracking a variable even if it is not
 | 
						|
    // stored on the stack, while the dbg.declare can only describe
 | 
						|
    // the stack slot (and at a lexical-scope granularity). Later
 | 
						|
    // passes will attempt to elide the stack slot.
 | 
						|
    if (AI && !isArray(AI)) {
 | 
						|
      for (auto &AIUse : AI->uses()) {
 | 
						|
        User *U = AIUse.getUser();
 | 
						|
        if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | 
						|
          if (AIUse.getOperandNo() == 1)
 | 
						|
            ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
 | 
						|
        } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | 
						|
          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
 | 
						|
        } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
 | 
						|
          // This is a call by-value or some other instruction that
 | 
						|
          // takes a pointer to the variable. Insert a *value*
 | 
						|
          // intrinsic that describes the alloca.
 | 
						|
          SmallVector<uint64_t, 1> NewDIExpr;
 | 
						|
          auto *DIExpr = DDI->getExpression();
 | 
						|
          NewDIExpr.push_back(dwarf::DW_OP_deref);
 | 
						|
          NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
 | 
						|
          DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
 | 
						|
                                      DIB.createExpression(NewDIExpr),
 | 
						|
                                      DDI->getDebugLoc(), CI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      DDI->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
 | 
						|
/// alloca 'V', if any.
 | 
						|
DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
 | 
						|
  if (auto *L = LocalAsMetadata::getIfExists(V))
 | 
						|
    if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
 | 
						|
      for (User *U : MDV->users())
 | 
						|
        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
 | 
						|
          return DDI;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static void DIExprAddDeref(SmallVectorImpl<uint64_t> &Expr) {
 | 
						|
  Expr.push_back(dwarf::DW_OP_deref);
 | 
						|
}
 | 
						|
 | 
						|
static void DIExprAddOffset(SmallVectorImpl<uint64_t> &Expr, int Offset) {
 | 
						|
  if (Offset > 0) {
 | 
						|
    Expr.push_back(dwarf::DW_OP_plus);
 | 
						|
    Expr.push_back(Offset);
 | 
						|
  } else if (Offset < 0) {
 | 
						|
    Expr.push_back(dwarf::DW_OP_minus);
 | 
						|
    Expr.push_back(-Offset);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static DIExpression *BuildReplacementDIExpr(DIBuilder &Builder,
 | 
						|
                                            DIExpression *DIExpr, bool Deref,
 | 
						|
                                            int Offset) {
 | 
						|
  if (!Deref && !Offset)
 | 
						|
    return DIExpr;
 | 
						|
  // Create a copy of the original DIDescriptor for user variable, prepending
 | 
						|
  // "deref" operation to a list of address elements, as new llvm.dbg.declare
 | 
						|
  // will take a value storing address of the memory for variable, not
 | 
						|
  // alloca itself.
 | 
						|
  SmallVector<uint64_t, 4> NewDIExpr;
 | 
						|
  if (Deref)
 | 
						|
    DIExprAddDeref(NewDIExpr);
 | 
						|
  DIExprAddOffset(NewDIExpr, Offset);
 | 
						|
  if (DIExpr)
 | 
						|
    NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
 | 
						|
  return Builder.createExpression(NewDIExpr);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
 | 
						|
                             Instruction *InsertBefore, DIBuilder &Builder,
 | 
						|
                             bool Deref, int Offset) {
 | 
						|
  DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
 | 
						|
  if (!DDI)
 | 
						|
    return false;
 | 
						|
  DebugLoc Loc = DDI->getDebugLoc();
 | 
						|
  auto *DIVar = DDI->getVariable();
 | 
						|
  auto *DIExpr = DDI->getExpression();
 | 
						|
  assert(DIVar && "Missing variable");
 | 
						|
 | 
						|
  DIExpr = BuildReplacementDIExpr(Builder, DIExpr, Deref, Offset);
 | 
						|
 | 
						|
  // Insert llvm.dbg.declare immediately after the original alloca, and remove
 | 
						|
  // old llvm.dbg.declare.
 | 
						|
  Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
 | 
						|
  DDI->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
 | 
						|
                                      DIBuilder &Builder, bool Deref, int Offset) {
 | 
						|
  return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
 | 
						|
                           Deref, Offset);
 | 
						|
}
 | 
						|
 | 
						|
static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
 | 
						|
                                        DIBuilder &Builder, int Offset) {
 | 
						|
  DebugLoc Loc = DVI->getDebugLoc();
 | 
						|
  auto *DIVar = DVI->getVariable();
 | 
						|
  auto *DIExpr = DVI->getExpression();
 | 
						|
  assert(DIVar && "Missing variable");
 | 
						|
 | 
						|
  // This is an alloca-based llvm.dbg.value. The first thing it should do with
 | 
						|
  // the alloca pointer is dereference it. Otherwise we don't know how to handle
 | 
						|
  // it and give up.
 | 
						|
  if (!DIExpr || DIExpr->getNumElements() < 1 ||
 | 
						|
      DIExpr->getElement(0) != dwarf::DW_OP_deref)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Insert the offset immediately after the first deref.
 | 
						|
  // We could just change the offset argument of dbg.value, but it's unsigned...
 | 
						|
  if (Offset) {
 | 
						|
    SmallVector<uint64_t, 4> NewDIExpr;
 | 
						|
    DIExprAddDeref(NewDIExpr);
 | 
						|
    DIExprAddOffset(NewDIExpr, Offset);
 | 
						|
    NewDIExpr.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
 | 
						|
    DIExpr = Builder.createExpression(NewDIExpr);
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr,
 | 
						|
                                  Loc, DVI);
 | 
						|
  DVI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
 | 
						|
                                    DIBuilder &Builder, int Offset) {
 | 
						|
  if (auto *L = LocalAsMetadata::getIfExists(AI))
 | 
						|
    if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
 | 
						|
      for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
 | 
						|
        Use &U = *UI++;
 | 
						|
        if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
 | 
						|
          replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
 | 
						|
  unsigned NumDeadInst = 0;
 | 
						|
  // Delete the instructions backwards, as it has a reduced likelihood of
 | 
						|
  // having to update as many def-use and use-def chains.
 | 
						|
  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
 | 
						|
  while (EndInst != &BB->front()) {
 | 
						|
    // Delete the next to last instruction.
 | 
						|
    Instruction *Inst = &*--EndInst->getIterator();
 | 
						|
    if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
 | 
						|
      Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
 | 
						|
    if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
 | 
						|
      EndInst = Inst;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (!isa<DbgInfoIntrinsic>(Inst))
 | 
						|
      ++NumDeadInst;
 | 
						|
    Inst->eraseFromParent();
 | 
						|
  }
 | 
						|
  return NumDeadInst;
 | 
						|
}
 | 
						|
 | 
						|
unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
 | 
						|
  BasicBlock *BB = I->getParent();
 | 
						|
  // Loop over all of the successors, removing BB's entry from any PHI
 | 
						|
  // nodes.
 | 
						|
  for (BasicBlock *Successor : successors(BB))
 | 
						|
    Successor->removePredecessor(BB);
 | 
						|
 | 
						|
  // Insert a call to llvm.trap right before this.  This turns the undefined
 | 
						|
  // behavior into a hard fail instead of falling through into random code.
 | 
						|
  if (UseLLVMTrap) {
 | 
						|
    Function *TrapFn =
 | 
						|
      Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
 | 
						|
    CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
 | 
						|
    CallTrap->setDebugLoc(I->getDebugLoc());
 | 
						|
  }
 | 
						|
  new UnreachableInst(I->getContext(), I);
 | 
						|
 | 
						|
  // All instructions after this are dead.
 | 
						|
  unsigned NumInstrsRemoved = 0;
 | 
						|
  BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
 | 
						|
  while (BBI != BBE) {
 | 
						|
    if (!BBI->use_empty())
 | 
						|
      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
 | 
						|
    BB->getInstList().erase(BBI++);
 | 
						|
    ++NumInstrsRemoved;
 | 
						|
  }
 | 
						|
  return NumInstrsRemoved;
 | 
						|
}
 | 
						|
 | 
						|
/// changeToCall - Convert the specified invoke into a normal call.
 | 
						|
static void changeToCall(InvokeInst *II) {
 | 
						|
  SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
 | 
						|
  SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						|
  II->getOperandBundlesAsDefs(OpBundles);
 | 
						|
  CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
 | 
						|
                                       "", II);
 | 
						|
  NewCall->takeName(II);
 | 
						|
  NewCall->setCallingConv(II->getCallingConv());
 | 
						|
  NewCall->setAttributes(II->getAttributes());
 | 
						|
  NewCall->setDebugLoc(II->getDebugLoc());
 | 
						|
  II->replaceAllUsesWith(NewCall);
 | 
						|
 | 
						|
  // Follow the call by a branch to the normal destination.
 | 
						|
  BranchInst::Create(II->getNormalDest(), II);
 | 
						|
 | 
						|
  // Update PHI nodes in the unwind destination
 | 
						|
  II->getUnwindDest()->removePredecessor(II->getParent());
 | 
						|
  II->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
static bool markAliveBlocks(Function &F,
 | 
						|
                            SmallPtrSetImpl<BasicBlock*> &Reachable) {
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 128> Worklist;
 | 
						|
  BasicBlock *BB = &F.front();
 | 
						|
  Worklist.push_back(BB);
 | 
						|
  Reachable.insert(BB);
 | 
						|
  bool Changed = false;
 | 
						|
  do {
 | 
						|
    BB = Worklist.pop_back_val();
 | 
						|
 | 
						|
    // Do a quick scan of the basic block, turning any obviously unreachable
 | 
						|
    // instructions into LLVM unreachable insts.  The instruction combining pass
 | 
						|
    // canonicalizes unreachable insts into stores to null or undef.
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      // Assumptions that are known to be false are equivalent to unreachable.
 | 
						|
      // Also, if the condition is undefined, then we make the choice most
 | 
						|
      // beneficial to the optimizer, and choose that to also be unreachable.
 | 
						|
      if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::assume) {
 | 
						|
          if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
 | 
						|
            // Don't insert a call to llvm.trap right before the unreachable.
 | 
						|
            changeToUnreachable(II, false);
 | 
						|
            Changed = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
 | 
						|
          // A call to the guard intrinsic bails out of the current compilation
 | 
						|
          // unit if the predicate passed to it is false.  If the predicate is a
 | 
						|
          // constant false, then we know the guard will bail out of the current
 | 
						|
          // compile unconditionally, so all code following it is dead.
 | 
						|
          //
 | 
						|
          // Note: unlike in llvm.assume, it is not "obviously profitable" for
 | 
						|
          // guards to treat `undef` as `false` since a guard on `undef` can
 | 
						|
          // still be useful for widening.
 | 
						|
          if (match(II->getArgOperand(0), m_Zero()))
 | 
						|
            if (!isa<UnreachableInst>(II->getNextNode())) {
 | 
						|
              changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
 | 
						|
              Changed = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (auto *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
        Value *Callee = CI->getCalledValue();
 | 
						|
        if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | 
						|
          changeToUnreachable(CI, /*UseLLVMTrap=*/false);
 | 
						|
          Changed = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (CI->doesNotReturn()) {
 | 
						|
          // If we found a call to a no-return function, insert an unreachable
 | 
						|
          // instruction after it.  Make sure there isn't *already* one there
 | 
						|
          // though.
 | 
						|
          if (!isa<UnreachableInst>(CI->getNextNode())) {
 | 
						|
            // Don't insert a call to llvm.trap right before the unreachable.
 | 
						|
            changeToUnreachable(CI->getNextNode(), false);
 | 
						|
            Changed = true;
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Store to undef and store to null are undefined and used to signal that
 | 
						|
      // they should be changed to unreachable by passes that can't modify the
 | 
						|
      // CFG.
 | 
						|
      if (auto *SI = dyn_cast<StoreInst>(&I)) {
 | 
						|
        // Don't touch volatile stores.
 | 
						|
        if (SI->isVolatile()) continue;
 | 
						|
 | 
						|
        Value *Ptr = SI->getOperand(1);
 | 
						|
 | 
						|
        if (isa<UndefValue>(Ptr) ||
 | 
						|
            (isa<ConstantPointerNull>(Ptr) &&
 | 
						|
             SI->getPointerAddressSpace() == 0)) {
 | 
						|
          changeToUnreachable(SI, true);
 | 
						|
          Changed = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    TerminatorInst *Terminator = BB->getTerminator();
 | 
						|
    if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
 | 
						|
      // Turn invokes that call 'nounwind' functions into ordinary calls.
 | 
						|
      Value *Callee = II->getCalledValue();
 | 
						|
      if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | 
						|
        changeToUnreachable(II, true);
 | 
						|
        Changed = true;
 | 
						|
      } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
 | 
						|
        if (II->use_empty() && II->onlyReadsMemory()) {
 | 
						|
          // jump to the normal destination branch.
 | 
						|
          BranchInst::Create(II->getNormalDest(), II);
 | 
						|
          II->getUnwindDest()->removePredecessor(II->getParent());
 | 
						|
          II->eraseFromParent();
 | 
						|
        } else
 | 
						|
          changeToCall(II);
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
 | 
						|
      // Remove catchpads which cannot be reached.
 | 
						|
      struct CatchPadDenseMapInfo {
 | 
						|
        static CatchPadInst *getEmptyKey() {
 | 
						|
          return DenseMapInfo<CatchPadInst *>::getEmptyKey();
 | 
						|
        }
 | 
						|
        static CatchPadInst *getTombstoneKey() {
 | 
						|
          return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
 | 
						|
        }
 | 
						|
        static unsigned getHashValue(CatchPadInst *CatchPad) {
 | 
						|
          return static_cast<unsigned>(hash_combine_range(
 | 
						|
              CatchPad->value_op_begin(), CatchPad->value_op_end()));
 | 
						|
        }
 | 
						|
        static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
 | 
						|
          if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
 | 
						|
              RHS == getEmptyKey() || RHS == getTombstoneKey())
 | 
						|
            return LHS == RHS;
 | 
						|
          return LHS->isIdenticalTo(RHS);
 | 
						|
        }
 | 
						|
      };
 | 
						|
 | 
						|
      // Set of unique CatchPads.
 | 
						|
      SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
 | 
						|
                    CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
 | 
						|
          HandlerSet;
 | 
						|
      detail::DenseSetEmpty Empty;
 | 
						|
      for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
 | 
						|
                                             E = CatchSwitch->handler_end();
 | 
						|
           I != E; ++I) {
 | 
						|
        BasicBlock *HandlerBB = *I;
 | 
						|
        auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
 | 
						|
        if (!HandlerSet.insert({CatchPad, Empty}).second) {
 | 
						|
          CatchSwitch->removeHandler(I);
 | 
						|
          --I;
 | 
						|
          --E;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Changed |= ConstantFoldTerminator(BB, true);
 | 
						|
    for (BasicBlock *Successor : successors(BB))
 | 
						|
      if (Reachable.insert(Successor).second)
 | 
						|
        Worklist.push_back(Successor);
 | 
						|
  } while (!Worklist.empty());
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::removeUnwindEdge(BasicBlock *BB) {
 | 
						|
  TerminatorInst *TI = BB->getTerminator();
 | 
						|
 | 
						|
  if (auto *II = dyn_cast<InvokeInst>(TI)) {
 | 
						|
    changeToCall(II);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  TerminatorInst *NewTI;
 | 
						|
  BasicBlock *UnwindDest;
 | 
						|
 | 
						|
  if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
 | 
						|
    NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
 | 
						|
    UnwindDest = CRI->getUnwindDest();
 | 
						|
  } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
 | 
						|
    auto *NewCatchSwitch = CatchSwitchInst::Create(
 | 
						|
        CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
 | 
						|
        CatchSwitch->getName(), CatchSwitch);
 | 
						|
    for (BasicBlock *PadBB : CatchSwitch->handlers())
 | 
						|
      NewCatchSwitch->addHandler(PadBB);
 | 
						|
 | 
						|
    NewTI = NewCatchSwitch;
 | 
						|
    UnwindDest = CatchSwitch->getUnwindDest();
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Could not find unwind successor");
 | 
						|
  }
 | 
						|
 | 
						|
  NewTI->takeName(TI);
 | 
						|
  NewTI->setDebugLoc(TI->getDebugLoc());
 | 
						|
  UnwindDest->removePredecessor(BB);
 | 
						|
  TI->replaceAllUsesWith(NewTI);
 | 
						|
  TI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
 | 
						|
/// if they are in a dead cycle.  Return true if a change was made, false
 | 
						|
/// otherwise.
 | 
						|
bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
 | 
						|
  SmallPtrSet<BasicBlock*, 16> Reachable;
 | 
						|
  bool Changed = markAliveBlocks(F, Reachable);
 | 
						|
 | 
						|
  // If there are unreachable blocks in the CFG...
 | 
						|
  if (Reachable.size() == F.size())
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  assert(Reachable.size() < F.size());
 | 
						|
  NumRemoved += F.size()-Reachable.size();
 | 
						|
 | 
						|
  // Loop over all of the basic blocks that are not reachable, dropping all of
 | 
						|
  // their internal references...
 | 
						|
  for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
 | 
						|
    if (Reachable.count(&*BB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (BasicBlock *Successor : successors(&*BB))
 | 
						|
      if (Reachable.count(Successor))
 | 
						|
        Successor->removePredecessor(&*BB);
 | 
						|
    if (LVI)
 | 
						|
      LVI->eraseBlock(&*BB);
 | 
						|
    BB->dropAllReferences();
 | 
						|
  }
 | 
						|
 | 
						|
  for (Function::iterator I = ++F.begin(); I != F.end();)
 | 
						|
    if (!Reachable.count(&*I))
 | 
						|
      I = F.getBasicBlockList().erase(I);
 | 
						|
    else
 | 
						|
      ++I;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::combineMetadata(Instruction *K, const Instruction *J,
 | 
						|
                           ArrayRef<unsigned> KnownIDs) {
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
 | 
						|
  K->dropUnknownNonDebugMetadata(KnownIDs);
 | 
						|
  K->getAllMetadataOtherThanDebugLoc(Metadata);
 | 
						|
  for (const auto &MD : Metadata) {
 | 
						|
    unsigned Kind = MD.first;
 | 
						|
    MDNode *JMD = J->getMetadata(Kind);
 | 
						|
    MDNode *KMD = MD.second;
 | 
						|
 | 
						|
    switch (Kind) {
 | 
						|
      default:
 | 
						|
        K->setMetadata(Kind, nullptr); // Remove unknown metadata
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_dbg:
 | 
						|
        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
 | 
						|
      case LLVMContext::MD_tbaa:
 | 
						|
        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_alias_scope:
 | 
						|
        K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_noalias:
 | 
						|
      case LLVMContext::MD_mem_parallel_loop_access:
 | 
						|
        K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_range:
 | 
						|
        K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_fpmath:
 | 
						|
        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_invariant_load:
 | 
						|
        // Only set the !invariant.load if it is present in both instructions.
 | 
						|
        K->setMetadata(Kind, JMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_nonnull:
 | 
						|
        // Only set the !nonnull if it is present in both instructions.
 | 
						|
        K->setMetadata(Kind, JMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_invariant_group:
 | 
						|
        // Preserve !invariant.group in K.
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_align:
 | 
						|
        K->setMetadata(Kind, 
 | 
						|
          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_dereferenceable:
 | 
						|
      case LLVMContext::MD_dereferenceable_or_null:
 | 
						|
        K->setMetadata(Kind, 
 | 
						|
          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Set !invariant.group from J if J has it. If both instructions have it
 | 
						|
  // then we will just pick it from J - even when they are different.
 | 
						|
  // Also make sure that K is load or store - f.e. combining bitcast with load
 | 
						|
  // could produce bitcast with invariant.group metadata, which is invalid.
 | 
						|
  // FIXME: we should try to preserve both invariant.group md if they are
 | 
						|
  // different, but right now instruction can only have one invariant.group.
 | 
						|
  if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
 | 
						|
    if (isa<LoadInst>(K) || isa<StoreInst>(K))
 | 
						|
      K->setMetadata(LLVMContext::MD_invariant_group, JMD);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
 | 
						|
  unsigned KnownIDs[] = {
 | 
						|
      LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
 | 
						|
      LLVMContext::MD_noalias,         LLVMContext::MD_range,
 | 
						|
      LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
 | 
						|
      LLVMContext::MD_invariant_group, LLVMContext::MD_align,
 | 
						|
      LLVMContext::MD_dereferenceable,
 | 
						|
      LLVMContext::MD_dereferenceable_or_null};
 | 
						|
  combineMetadata(K, J, KnownIDs);
 | 
						|
}
 | 
						|
 | 
						|
unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
 | 
						|
                                        DominatorTree &DT,
 | 
						|
                                        const BasicBlockEdge &Root) {
 | 
						|
  assert(From->getType() == To->getType());
 | 
						|
  
 | 
						|
  unsigned Count = 0;
 | 
						|
  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
 | 
						|
       UI != UE; ) {
 | 
						|
    Use &U = *UI++;
 | 
						|
    if (DT.dominates(Root, U)) {
 | 
						|
      U.set(To);
 | 
						|
      DEBUG(dbgs() << "Replace dominated use of '"
 | 
						|
            << From->getName() << "' as "
 | 
						|
            << *To << " in " << *U << "\n");
 | 
						|
      ++Count;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
 | 
						|
                                        DominatorTree &DT,
 | 
						|
                                        const BasicBlock *BB,
 | 
						|
                                        bool IncludeSelf) {
 | 
						|
  assert(From->getType() == To->getType());
 | 
						|
 | 
						|
  unsigned Count = 0;
 | 
						|
  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
 | 
						|
       UI != UE;) {
 | 
						|
    Use &U = *UI++;
 | 
						|
    auto *I = cast<Instruction>(U.getUser());
 | 
						|
    if ((IncludeSelf && BB == I->getParent()) ||
 | 
						|
        DT.properlyDominates(BB, I->getParent())) {
 | 
						|
      U.set(To);
 | 
						|
      DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
 | 
						|
                   << *To << " in " << *U << "\n");
 | 
						|
      ++Count;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
 | 
						|
  // Check if the function is specifically marked as a gc leaf function.
 | 
						|
  if (CS.hasFnAttr("gc-leaf-function"))
 | 
						|
    return true;
 | 
						|
  if (const Function *F = CS.getCalledFunction()) {
 | 
						|
    if (F->hasFnAttribute("gc-leaf-function"))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (auto IID = F->getIntrinsicID())
 | 
						|
      // Most LLVM intrinsics do not take safepoints.
 | 
						|
      return IID != Intrinsic::experimental_gc_statepoint &&
 | 
						|
             IID != Intrinsic::experimental_deoptimize;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// A potential constituent of a bitreverse or bswap expression. See
 | 
						|
/// collectBitParts for a fuller explanation.
 | 
						|
struct BitPart {
 | 
						|
  BitPart(Value *P, unsigned BW) : Provider(P) {
 | 
						|
    Provenance.resize(BW);
 | 
						|
  }
 | 
						|
 | 
						|
  /// The Value that this is a bitreverse/bswap of.
 | 
						|
  Value *Provider;
 | 
						|
  /// The "provenance" of each bit. Provenance[A] = B means that bit A
 | 
						|
  /// in Provider becomes bit B in the result of this expression.
 | 
						|
  SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
 | 
						|
 | 
						|
  enum { Unset = -1 };
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Analyze the specified subexpression and see if it is capable of providing
 | 
						|
/// pieces of a bswap or bitreverse. The subexpression provides a potential
 | 
						|
/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
 | 
						|
/// the output of the expression came from a corresponding bit in some other
 | 
						|
/// value. This function is recursive, and the end result is a mapping of
 | 
						|
/// bitnumber to bitnumber. It is the caller's responsibility to validate that
 | 
						|
/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
 | 
						|
///
 | 
						|
/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
 | 
						|
/// that the expression deposits the low byte of %X into the high byte of the
 | 
						|
/// result and that all other bits are zero. This expression is accepted and a
 | 
						|
/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
 | 
						|
/// [0-7].
 | 
						|
///
 | 
						|
/// To avoid revisiting values, the BitPart results are memoized into the
 | 
						|
/// provided map. To avoid unnecessary copying of BitParts, BitParts are
 | 
						|
/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
 | 
						|
/// store BitParts objects, not pointers. As we need the concept of a nullptr
 | 
						|
/// BitParts (Value has been analyzed and the analysis failed), we an Optional
 | 
						|
/// type instead to provide the same functionality.
 | 
						|
///
 | 
						|
/// Because we pass around references into \c BPS, we must use a container that
 | 
						|
/// does not invalidate internal references (std::map instead of DenseMap).
 | 
						|
///
 | 
						|
static const Optional<BitPart> &
 | 
						|
collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
 | 
						|
                std::map<Value *, Optional<BitPart>> &BPS) {
 | 
						|
  auto I = BPS.find(V);
 | 
						|
  if (I != BPS.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  auto &Result = BPS[V] = None;
 | 
						|
  auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | 
						|
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    // If this is an or instruction, it may be an inner node of the bswap.
 | 
						|
    if (I->getOpcode() == Instruction::Or) {
 | 
						|
      auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
 | 
						|
                                MatchBitReversals, BPS);
 | 
						|
      auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
 | 
						|
                                MatchBitReversals, BPS);
 | 
						|
      if (!A || !B)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      // Try and merge the two together.
 | 
						|
      if (!A->Provider || A->Provider != B->Provider)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      Result = BitPart(A->Provider, BitWidth);
 | 
						|
      for (unsigned i = 0; i < A->Provenance.size(); ++i) {
 | 
						|
        if (A->Provenance[i] != BitPart::Unset &&
 | 
						|
            B->Provenance[i] != BitPart::Unset &&
 | 
						|
            A->Provenance[i] != B->Provenance[i])
 | 
						|
          return Result = None;
 | 
						|
 | 
						|
        if (A->Provenance[i] == BitPart::Unset)
 | 
						|
          Result->Provenance[i] = B->Provenance[i];
 | 
						|
        else
 | 
						|
          Result->Provenance[i] = A->Provenance[i];
 | 
						|
      }
 | 
						|
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a logical shift by a constant, recurse then shift the result.
 | 
						|
    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
 | 
						|
      unsigned BitShift =
 | 
						|
          cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
 | 
						|
      // Ensure the shift amount is defined.
 | 
						|
      if (BitShift > BitWidth)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
 | 
						|
                                  MatchBitReversals, BPS);
 | 
						|
      if (!Res)
 | 
						|
        return Result;
 | 
						|
      Result = Res;
 | 
						|
 | 
						|
      // Perform the "shift" on BitProvenance.
 | 
						|
      auto &P = Result->Provenance;
 | 
						|
      if (I->getOpcode() == Instruction::Shl) {
 | 
						|
        P.erase(std::prev(P.end(), BitShift), P.end());
 | 
						|
        P.insert(P.begin(), BitShift, BitPart::Unset);
 | 
						|
      } else {
 | 
						|
        P.erase(P.begin(), std::next(P.begin(), BitShift));
 | 
						|
        P.insert(P.end(), BitShift, BitPart::Unset);
 | 
						|
      }
 | 
						|
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a logical 'and' with a mask that clears bits, recurse then
 | 
						|
    // unset the appropriate bits.
 | 
						|
    if (I->getOpcode() == Instruction::And &&
 | 
						|
        isa<ConstantInt>(I->getOperand(1))) {
 | 
						|
      APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
 | 
						|
      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
 | 
						|
 | 
						|
      // Check that the mask allows a multiple of 8 bits for a bswap, for an
 | 
						|
      // early exit.
 | 
						|
      unsigned NumMaskedBits = AndMask.countPopulation();
 | 
						|
      if (!MatchBitReversals && NumMaskedBits % 8 != 0)
 | 
						|
        return Result;
 | 
						|
      
 | 
						|
      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
 | 
						|
                                  MatchBitReversals, BPS);
 | 
						|
      if (!Res)
 | 
						|
        return Result;
 | 
						|
      Result = Res;
 | 
						|
 | 
						|
      for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
 | 
						|
        // If the AndMask is zero for this bit, clear the bit.
 | 
						|
        if ((AndMask & Bit) == 0)
 | 
						|
          Result->Provenance[i] = BitPart::Unset;
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a zext instruction zero extend the result.
 | 
						|
    if (I->getOpcode() == Instruction::ZExt) {
 | 
						|
      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
 | 
						|
                                  MatchBitReversals, BPS);
 | 
						|
      if (!Res)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      Result = BitPart(Res->Provider, BitWidth);
 | 
						|
      auto NarrowBitWidth =
 | 
						|
          cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
 | 
						|
      for (unsigned i = 0; i < NarrowBitWidth; ++i)
 | 
						|
        Result->Provenance[i] = Res->Provenance[i];
 | 
						|
      for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
 | 
						|
        Result->Provenance[i] = BitPart::Unset;
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
 | 
						|
  // the input value to the bswap/bitreverse.
 | 
						|
  Result = BitPart(V, BitWidth);
 | 
						|
  for (unsigned i = 0; i < BitWidth; ++i)
 | 
						|
    Result->Provenance[i] = i;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
 | 
						|
                                          unsigned BitWidth) {
 | 
						|
  if (From % 8 != To % 8)
 | 
						|
    return false;
 | 
						|
  // Convert from bit indices to byte indices and check for a byte reversal.
 | 
						|
  From >>= 3;
 | 
						|
  To >>= 3;
 | 
						|
  BitWidth >>= 3;
 | 
						|
  return From == BitWidth - To - 1;
 | 
						|
}
 | 
						|
 | 
						|
static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
 | 
						|
                                               unsigned BitWidth) {
 | 
						|
  return From == BitWidth - To - 1;
 | 
						|
}
 | 
						|
 | 
						|
/// Given an OR instruction, check to see if this is a bitreverse
 | 
						|
/// idiom. If so, insert the new intrinsic and return true.
 | 
						|
bool llvm::recognizeBSwapOrBitReverseIdiom(
 | 
						|
    Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
 | 
						|
    SmallVectorImpl<Instruction *> &InsertedInsts) {
 | 
						|
  if (Operator::getOpcode(I) != Instruction::Or)
 | 
						|
    return false;
 | 
						|
  if (!MatchBSwaps && !MatchBitReversals)
 | 
						|
    return false;
 | 
						|
  IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
 | 
						|
  if (!ITy || ITy->getBitWidth() > 128)
 | 
						|
    return false;   // Can't do vectors or integers > 128 bits.
 | 
						|
  unsigned BW = ITy->getBitWidth();
 | 
						|
 | 
						|
  unsigned DemandedBW = BW;
 | 
						|
  IntegerType *DemandedTy = ITy;
 | 
						|
  if (I->hasOneUse()) {
 | 
						|
    if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
 | 
						|
      DemandedTy = cast<IntegerType>(Trunc->getType());
 | 
						|
      DemandedBW = DemandedTy->getBitWidth();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to find all the pieces corresponding to the bswap.
 | 
						|
  std::map<Value *, Optional<BitPart>> BPS;
 | 
						|
  auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
 | 
						|
  if (!Res)
 | 
						|
    return false;
 | 
						|
  auto &BitProvenance = Res->Provenance;
 | 
						|
 | 
						|
  // Now, is the bit permutation correct for a bswap or a bitreverse? We can
 | 
						|
  // only byteswap values with an even number of bytes.
 | 
						|
  bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
 | 
						|
  for (unsigned i = 0; i < DemandedBW; ++i) {
 | 
						|
    OKForBSwap &=
 | 
						|
        bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
 | 
						|
    OKForBitReverse &=
 | 
						|
        bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
 | 
						|
  }
 | 
						|
 | 
						|
  Intrinsic::ID Intrin;
 | 
						|
  if (OKForBSwap && MatchBSwaps)
 | 
						|
    Intrin = Intrinsic::bswap;
 | 
						|
  else if (OKForBitReverse && MatchBitReversals)
 | 
						|
    Intrin = Intrinsic::bitreverse;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (ITy != DemandedTy) {
 | 
						|
    Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
 | 
						|
    Value *Provider = Res->Provider;
 | 
						|
    IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
 | 
						|
    // We may need to truncate the provider.
 | 
						|
    if (DemandedTy != ProviderTy) {
 | 
						|
      auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
 | 
						|
                                     "trunc", I);
 | 
						|
      InsertedInsts.push_back(Trunc);
 | 
						|
      Provider = Trunc;
 | 
						|
    }
 | 
						|
    auto *CI = CallInst::Create(F, Provider, "rev", I);
 | 
						|
    InsertedInsts.push_back(CI);
 | 
						|
    auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
 | 
						|
    InsertedInsts.push_back(ExtInst);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
 | 
						|
  InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// CodeGen has special handling for some string functions that may replace
 | 
						|
// them with target-specific intrinsics.  Since that'd skip our interceptors
 | 
						|
// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
 | 
						|
// we mark affected calls as NoBuiltin, which will disable optimization
 | 
						|
// in CodeGen.
 | 
						|
void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
 | 
						|
    CallInst *CI, const TargetLibraryInfo *TLI) {
 | 
						|
  Function *F = CI->getCalledFunction();
 | 
						|
  LibFunc::Func Func;
 | 
						|
  if (F && !F->hasLocalLinkage() && F->hasName() &&
 | 
						|
      TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
 | 
						|
      !F->doesNotAccessMemory())
 | 
						|
    CI->addAttribute(AttributeSet::FunctionIndex, Attribute::NoBuiltin);
 | 
						|
}
 |