692 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			692 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements some loop unrolling utilities for loops with run-time
 | 
						|
// trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
 | 
						|
// trip counts.
 | 
						|
//
 | 
						|
// The functions in this file are used to generate extra code when the
 | 
						|
// run-time trip count modulo the unroll factor is not 0.  When this is the
 | 
						|
// case, we need to generate code to execute these 'left over' iterations.
 | 
						|
//
 | 
						|
// The current strategy generates an if-then-else sequence prior to the
 | 
						|
// unrolled loop to execute the 'left over' iterations before or after the
 | 
						|
// unrolled loop.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/UnrollLoop.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unroll"
 | 
						|
 | 
						|
STATISTIC(NumRuntimeUnrolled,
 | 
						|
          "Number of loops unrolled with run-time trip counts");
 | 
						|
 | 
						|
/// Connect the unrolling prolog code to the original loop.
 | 
						|
/// The unrolling prolog code contains code to execute the
 | 
						|
/// 'extra' iterations if the run-time trip count modulo the
 | 
						|
/// unroll count is non-zero.
 | 
						|
///
 | 
						|
/// This function performs the following:
 | 
						|
/// - Create PHI nodes at prolog end block to combine values
 | 
						|
///   that exit the prolog code and jump around the prolog.
 | 
						|
/// - Add a PHI operand to a PHI node at the loop exit block
 | 
						|
///   for values that exit the prolog and go around the loop.
 | 
						|
/// - Branch around the original loop if the trip count is less
 | 
						|
///   than the unroll factor.
 | 
						|
///
 | 
						|
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
 | 
						|
                          BasicBlock *PrologExit, BasicBlock *PreHeader,
 | 
						|
                          BasicBlock *NewPreHeader, ValueToValueMapTy &VMap,
 | 
						|
                          DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) {
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  assert(Latch && "Loop must have a latch");
 | 
						|
  BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
 | 
						|
 | 
						|
  // Create a PHI node for each outgoing value from the original loop
 | 
						|
  // (which means it is an outgoing value from the prolog code too).
 | 
						|
  // The new PHI node is inserted in the prolog end basic block.
 | 
						|
  // The new PHI node value is added as an operand of a PHI node in either
 | 
						|
  // the loop header or the loop exit block.
 | 
						|
  for (BasicBlock *Succ : successors(Latch)) {
 | 
						|
    for (Instruction &BBI : *Succ) {
 | 
						|
      PHINode *PN = dyn_cast<PHINode>(&BBI);
 | 
						|
      // Exit when we passed all PHI nodes.
 | 
						|
      if (!PN)
 | 
						|
        break;
 | 
						|
      // Add a new PHI node to the prolog end block and add the
 | 
						|
      // appropriate incoming values.
 | 
						|
      PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
 | 
						|
                                       PrologExit->getFirstNonPHI());
 | 
						|
      // Adding a value to the new PHI node from the original loop preheader.
 | 
						|
      // This is the value that skips all the prolog code.
 | 
						|
      if (L->contains(PN)) {
 | 
						|
        NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
 | 
						|
                           PreHeader);
 | 
						|
      } else {
 | 
						|
        NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
 | 
						|
      }
 | 
						|
 | 
						|
      Value *V = PN->getIncomingValueForBlock(Latch);
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
        if (L->contains(I)) {
 | 
						|
          V = VMap.lookup(I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Adding a value to the new PHI node from the last prolog block
 | 
						|
      // that was created.
 | 
						|
      NewPN->addIncoming(V, PrologLatch);
 | 
						|
 | 
						|
      // Update the existing PHI node operand with the value from the
 | 
						|
      // new PHI node.  How this is done depends on if the existing
 | 
						|
      // PHI node is in the original loop block, or the exit block.
 | 
						|
      if (L->contains(PN)) {
 | 
						|
        PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
 | 
						|
      } else {
 | 
						|
        PN->addIncoming(NewPN, PrologExit);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that created prolog loop is in simplified form
 | 
						|
  SmallVector<BasicBlock *, 4> PrologExitPreds;
 | 
						|
  Loop *PrologLoop = LI->getLoopFor(PrologLatch);
 | 
						|
  if (PrologLoop) {
 | 
						|
    for (BasicBlock *PredBB : predecessors(PrologExit))
 | 
						|
      if (PrologLoop->contains(PredBB))
 | 
						|
        PrologExitPreds.push_back(PredBB);
 | 
						|
 | 
						|
    SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
 | 
						|
                           PreserveLCSSA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a branch around the original loop, which is taken if there are no
 | 
						|
  // iterations remaining to be executed after running the prologue.
 | 
						|
  Instruction *InsertPt = PrologExit->getTerminator();
 | 
						|
  IRBuilder<> B(InsertPt);
 | 
						|
 | 
						|
  assert(Count != 0 && "nonsensical Count!");
 | 
						|
 | 
						|
  // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
 | 
						|
  // This means %xtraiter is (BECount + 1) and all of the iterations of this
 | 
						|
  // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
 | 
						|
  // then (BECount + 1) cannot unsigned-overflow.
 | 
						|
  Value *BrLoopExit =
 | 
						|
      B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
 | 
						|
  BasicBlock *Exit = L->getUniqueExitBlock();
 | 
						|
  assert(Exit && "Loop must have a single exit block only");
 | 
						|
  // Split the exit to maintain loop canonicalization guarantees
 | 
						|
  SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
 | 
						|
  SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
 | 
						|
                         PreserveLCSSA);
 | 
						|
  // Add the branch to the exit block (around the unrolled loop)
 | 
						|
  B.CreateCondBr(BrLoopExit, Exit, NewPreHeader);
 | 
						|
  InsertPt->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Connect the unrolling epilog code to the original loop.
 | 
						|
/// The unrolling epilog code contains code to execute the
 | 
						|
/// 'extra' iterations if the run-time trip count modulo the
 | 
						|
/// unroll count is non-zero.
 | 
						|
///
 | 
						|
/// This function performs the following:
 | 
						|
/// - Update PHI nodes at the unrolling loop exit and epilog loop exit
 | 
						|
/// - Create PHI nodes at the unrolling loop exit to combine
 | 
						|
///   values that exit the unrolling loop code and jump around it.
 | 
						|
/// - Update PHI operands in the epilog loop by the new PHI nodes
 | 
						|
/// - Branch around the epilog loop if extra iters (ModVal) is zero.
 | 
						|
///
 | 
						|
static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
 | 
						|
                          BasicBlock *Exit, BasicBlock *PreHeader,
 | 
						|
                          BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
 | 
						|
                          ValueToValueMapTy &VMap, DominatorTree *DT,
 | 
						|
                          LoopInfo *LI, bool PreserveLCSSA)  {
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  assert(Latch && "Loop must have a latch");
 | 
						|
  BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
 | 
						|
 | 
						|
  // Loop structure should be the following:
 | 
						|
  //
 | 
						|
  // PreHeader
 | 
						|
  // NewPreHeader
 | 
						|
  //   Header
 | 
						|
  //   ...
 | 
						|
  //   Latch
 | 
						|
  // NewExit (PN)
 | 
						|
  // EpilogPreHeader
 | 
						|
  //   EpilogHeader
 | 
						|
  //   ...
 | 
						|
  //   EpilogLatch
 | 
						|
  // Exit (EpilogPN)
 | 
						|
 | 
						|
  // Update PHI nodes at NewExit and Exit.
 | 
						|
  for (Instruction &BBI : *NewExit) {
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(&BBI);
 | 
						|
    // Exit when we passed all PHI nodes.
 | 
						|
    if (!PN)
 | 
						|
      break;
 | 
						|
    // PN should be used in another PHI located in Exit block as
 | 
						|
    // Exit was split by SplitBlockPredecessors into Exit and NewExit
 | 
						|
    // Basicaly it should look like:
 | 
						|
    // NewExit:
 | 
						|
    //   PN = PHI [I, Latch]
 | 
						|
    // ...
 | 
						|
    // Exit:
 | 
						|
    //   EpilogPN = PHI [PN, EpilogPreHeader]
 | 
						|
    //
 | 
						|
    // There is EpilogPreHeader incoming block instead of NewExit as
 | 
						|
    // NewExit was spilt 1 more time to get EpilogPreHeader.
 | 
						|
    assert(PN->hasOneUse() && "The phi should have 1 use");
 | 
						|
    PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
 | 
						|
    assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
 | 
						|
 | 
						|
    // Add incoming PreHeader from branch around the Loop
 | 
						|
    PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
 | 
						|
 | 
						|
    Value *V = PN->getIncomingValueForBlock(Latch);
 | 
						|
    Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
    if (I && L->contains(I))
 | 
						|
      // If value comes from an instruction in the loop add VMap value.
 | 
						|
      V = VMap.lookup(I);
 | 
						|
    // For the instruction out of the loop, constant or undefined value
 | 
						|
    // insert value itself.
 | 
						|
    EpilogPN->addIncoming(V, EpilogLatch);
 | 
						|
 | 
						|
    assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
 | 
						|
          "EpilogPN should have EpilogPreHeader incoming block");
 | 
						|
    // Change EpilogPreHeader incoming block to NewExit.
 | 
						|
    EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
 | 
						|
                               NewExit);
 | 
						|
    // Now PHIs should look like:
 | 
						|
    // NewExit:
 | 
						|
    //   PN = PHI [I, Latch], [undef, PreHeader]
 | 
						|
    // ...
 | 
						|
    // Exit:
 | 
						|
    //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
 | 
						|
  }
 | 
						|
 | 
						|
  // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
 | 
						|
  // Update corresponding PHI nodes in epilog loop.
 | 
						|
  for (BasicBlock *Succ : successors(Latch)) {
 | 
						|
    // Skip this as we already updated phis in exit blocks.
 | 
						|
    if (!L->contains(Succ))
 | 
						|
      continue;
 | 
						|
    for (Instruction &BBI : *Succ) {
 | 
						|
      PHINode *PN = dyn_cast<PHINode>(&BBI);
 | 
						|
      // Exit when we passed all PHI nodes.
 | 
						|
      if (!PN)
 | 
						|
        break;
 | 
						|
      // Add new PHI nodes to the loop exit block and update epilog
 | 
						|
      // PHIs with the new PHI values.
 | 
						|
      PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
 | 
						|
                                       NewExit->getFirstNonPHI());
 | 
						|
      // Adding a value to the new PHI node from the unrolling loop preheader.
 | 
						|
      NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
 | 
						|
      // Adding a value to the new PHI node from the unrolling loop latch.
 | 
						|
      NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
 | 
						|
 | 
						|
      // Update the existing PHI node operand with the value from the new PHI
 | 
						|
      // node.  Corresponding instruction in epilog loop should be PHI.
 | 
						|
      PHINode *VPN = cast<PHINode>(VMap[&BBI]);
 | 
						|
      VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *InsertPt = NewExit->getTerminator();
 | 
						|
  IRBuilder<> B(InsertPt);
 | 
						|
  Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
 | 
						|
  assert(Exit && "Loop must have a single exit block only");
 | 
						|
  // Split the exit to maintain loop canonicalization guarantees
 | 
						|
  SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
 | 
						|
  SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
 | 
						|
                         PreserveLCSSA);
 | 
						|
  // Add the branch to the exit block (around the unrolling loop)
 | 
						|
  B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
 | 
						|
  InsertPt->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Create a clone of the blocks in a loop and connect them together.
 | 
						|
/// If CreateRemainderLoop is false, loop structure will not be cloned,
 | 
						|
/// otherwise a new loop will be created including all cloned blocks, and the
 | 
						|
/// iterator of it switches to count NewIter down to 0.
 | 
						|
/// The cloned blocks should be inserted between InsertTop and InsertBot.
 | 
						|
/// If loop structure is cloned InsertTop should be new preheader, InsertBot
 | 
						|
/// new loop exit.
 | 
						|
///
 | 
						|
static void CloneLoopBlocks(Loop *L, Value *NewIter,
 | 
						|
                            const bool CreateRemainderLoop,
 | 
						|
                            const bool UseEpilogRemainder,
 | 
						|
                            BasicBlock *InsertTop, BasicBlock *InsertBot,
 | 
						|
                            BasicBlock *Preheader,
 | 
						|
                            std::vector<BasicBlock *> &NewBlocks,
 | 
						|
                            LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
 | 
						|
                            LoopInfo *LI) {
 | 
						|
  StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
 | 
						|
  Loop *NewLoop = nullptr;
 | 
						|
  Loop *ParentLoop = L->getParentLoop();
 | 
						|
  if (CreateRemainderLoop) {
 | 
						|
    NewLoop = new Loop();
 | 
						|
    if (ParentLoop)
 | 
						|
      ParentLoop->addChildLoop(NewLoop);
 | 
						|
    else
 | 
						|
      LI->addTopLevelLoop(NewLoop);
 | 
						|
  }
 | 
						|
 | 
						|
  // For each block in the original loop, create a new copy,
 | 
						|
  // and update the value map with the newly created values.
 | 
						|
  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | 
						|
    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
 | 
						|
    NewBlocks.push_back(NewBB);
 | 
						|
 | 
						|
    if (NewLoop)
 | 
						|
      NewLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
    else if (ParentLoop)
 | 
						|
      ParentLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
 | 
						|
    VMap[*BB] = NewBB;
 | 
						|
    if (Header == *BB) {
 | 
						|
      // For the first block, add a CFG connection to this newly
 | 
						|
      // created block.
 | 
						|
      InsertTop->getTerminator()->setSuccessor(0, NewBB);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Latch == *BB) {
 | 
						|
      // For the last block, if CreateRemainderLoop is false, create a direct
 | 
						|
      // jump to InsertBot. If not, create a loop back to cloned head.
 | 
						|
      VMap.erase((*BB)->getTerminator());
 | 
						|
      BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
 | 
						|
      BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
 | 
						|
      IRBuilder<> Builder(LatchBR);
 | 
						|
      if (!CreateRemainderLoop) {
 | 
						|
        Builder.CreateBr(InsertBot);
 | 
						|
      } else {
 | 
						|
        PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
 | 
						|
                                          suffix + ".iter",
 | 
						|
                                          FirstLoopBB->getFirstNonPHI());
 | 
						|
        Value *IdxSub =
 | 
						|
            Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
 | 
						|
                              NewIdx->getName() + ".sub");
 | 
						|
        Value *IdxCmp =
 | 
						|
            Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
 | 
						|
        Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
 | 
						|
        NewIdx->addIncoming(NewIter, InsertTop);
 | 
						|
        NewIdx->addIncoming(IdxSub, NewBB);
 | 
						|
      }
 | 
						|
      LatchBR->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Change the incoming values to the ones defined in the preheader or
 | 
						|
  // cloned loop.
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
 | 
						|
    if (!CreateRemainderLoop) {
 | 
						|
      if (UseEpilogRemainder) {
 | 
						|
        unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
 | 
						|
        NewPHI->setIncomingBlock(idx, InsertTop);
 | 
						|
        NewPHI->removeIncomingValue(Latch, false);
 | 
						|
      } else {
 | 
						|
        VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
 | 
						|
        cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
 | 
						|
      NewPHI->setIncomingBlock(idx, InsertTop);
 | 
						|
      BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
 | 
						|
      idx = NewPHI->getBasicBlockIndex(Latch);
 | 
						|
      Value *InVal = NewPHI->getIncomingValue(idx);
 | 
						|
      NewPHI->setIncomingBlock(idx, NewLatch);
 | 
						|
      if (Value *V = VMap.lookup(InVal))
 | 
						|
        NewPHI->setIncomingValue(idx, V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (NewLoop) {
 | 
						|
    // Add unroll disable metadata to disable future unrolling for this loop.
 | 
						|
    SmallVector<Metadata *, 4> MDs;
 | 
						|
    // Reserve first location for self reference to the LoopID metadata node.
 | 
						|
    MDs.push_back(nullptr);
 | 
						|
    MDNode *LoopID = NewLoop->getLoopID();
 | 
						|
    if (LoopID) {
 | 
						|
      // First remove any existing loop unrolling metadata.
 | 
						|
      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | 
						|
        bool IsUnrollMetadata = false;
 | 
						|
        MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | 
						|
        if (MD) {
 | 
						|
          const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | 
						|
          IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
 | 
						|
        }
 | 
						|
        if (!IsUnrollMetadata)
 | 
						|
          MDs.push_back(LoopID->getOperand(i));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    LLVMContext &Context = NewLoop->getHeader()->getContext();
 | 
						|
    SmallVector<Metadata *, 1> DisableOperands;
 | 
						|
    DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
 | 
						|
    MDNode *DisableNode = MDNode::get(Context, DisableOperands);
 | 
						|
    MDs.push_back(DisableNode);
 | 
						|
 | 
						|
    MDNode *NewLoopID = MDNode::get(Context, MDs);
 | 
						|
    // Set operand 0 to refer to the loop id itself.
 | 
						|
    NewLoopID->replaceOperandWith(0, NewLoopID);
 | 
						|
    NewLoop->setLoopID(NewLoopID);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Insert code in the prolog/epilog code when unrolling a loop with a
 | 
						|
/// run-time trip-count.
 | 
						|
///
 | 
						|
/// This method assumes that the loop unroll factor is total number
 | 
						|
/// of loop bodies in the loop after unrolling. (Some folks refer
 | 
						|
/// to the unroll factor as the number of *extra* copies added).
 | 
						|
/// We assume also that the loop unroll factor is a power-of-two. So, after
 | 
						|
/// unrolling the loop, the number of loop bodies executed is 2,
 | 
						|
/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
 | 
						|
/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
 | 
						|
/// the switch instruction is generated.
 | 
						|
///
 | 
						|
/// ***Prolog case***
 | 
						|
///        extraiters = tripcount % loopfactor
 | 
						|
///        if (extraiters == 0) jump Loop:
 | 
						|
///        else jump Prol:
 | 
						|
/// Prol:  LoopBody;
 | 
						|
///        extraiters -= 1                 // Omitted if unroll factor is 2.
 | 
						|
///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
 | 
						|
///        if (tripcount < loopfactor) jump End:
 | 
						|
/// Loop:
 | 
						|
/// ...
 | 
						|
/// End:
 | 
						|
///
 | 
						|
/// ***Epilog case***
 | 
						|
///        extraiters = tripcount % loopfactor
 | 
						|
///        if (tripcount < loopfactor) jump LoopExit:
 | 
						|
///        unroll_iters = tripcount - extraiters
 | 
						|
/// Loop:  LoopBody; (executes unroll_iter times);
 | 
						|
///        unroll_iter -= 1
 | 
						|
///        if (unroll_iter != 0) jump Loop:
 | 
						|
/// LoopExit:
 | 
						|
///        if (extraiters == 0) jump EpilExit:
 | 
						|
/// Epil:  LoopBody; (executes extraiters times)
 | 
						|
///        extraiters -= 1                 // Omitted if unroll factor is 2.
 | 
						|
///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
 | 
						|
/// EpilExit:
 | 
						|
 | 
						|
bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
 | 
						|
                                      bool AllowExpensiveTripCount,
 | 
						|
                                      bool UseEpilogRemainder,
 | 
						|
                                      LoopInfo *LI, ScalarEvolution *SE,
 | 
						|
                                      DominatorTree *DT, bool PreserveLCSSA) {
 | 
						|
  // for now, only unroll loops that contain a single exit
 | 
						|
  if (!L->getExitingBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure the loop is in canonical form, and there is a single
 | 
						|
  // exit block only.
 | 
						|
  if (!L->isLoopSimplifyForm())
 | 
						|
    return false;
 | 
						|
  BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop
 | 
						|
  if (!Exit)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Use Scalar Evolution to compute the trip count. This allows more loops to
 | 
						|
  // be unrolled than relying on induction var simplification.
 | 
						|
  if (!SE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only unroll loops with a computable trip count, and the trip count needs
 | 
						|
  // to be an int value (allowing a pointer type is a TODO item).
 | 
						|
  const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(BECountSC) ||
 | 
						|
      !BECountSC->getType()->isIntegerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
 | 
						|
 | 
						|
  // Add 1 since the backedge count doesn't include the first loop iteration.
 | 
						|
  const SCEV *TripCountSC =
 | 
						|
      SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
 | 
						|
  if (isa<SCEVCouldNotCompute>(TripCountSC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *PreHeader = L->getLoopPreheader();
 | 
						|
  BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
 | 
						|
  const DataLayout &DL = Header->getModule()->getDataLayout();
 | 
						|
  SCEVExpander Expander(*SE, DL, "loop-unroll");
 | 
						|
  if (!AllowExpensiveTripCount &&
 | 
						|
      Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This constraint lets us deal with an overflowing trip count easily; see the
 | 
						|
  // comment on ModVal below.
 | 
						|
  if (Log2_32(Count) > BEWidth)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
 | 
						|
  // Loop structure is the following:
 | 
						|
  //
 | 
						|
  // PreHeader
 | 
						|
  //   Header
 | 
						|
  //   ...
 | 
						|
  //   Latch
 | 
						|
  // Exit
 | 
						|
 | 
						|
  BasicBlock *NewPreHeader;
 | 
						|
  BasicBlock *NewExit = nullptr;
 | 
						|
  BasicBlock *PrologExit = nullptr;
 | 
						|
  BasicBlock *EpilogPreHeader = nullptr;
 | 
						|
  BasicBlock *PrologPreHeader = nullptr;
 | 
						|
 | 
						|
  if (UseEpilogRemainder) {
 | 
						|
    // If epilog remainder
 | 
						|
    // Split PreHeader to insert a branch around loop for unrolling.
 | 
						|
    NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
 | 
						|
    NewPreHeader->setName(PreHeader->getName() + ".new");
 | 
						|
    // Split Exit to create phi nodes from branch above.
 | 
						|
    SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
 | 
						|
    NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa",
 | 
						|
                                     DT, LI, PreserveLCSSA);
 | 
						|
    // Split NewExit to insert epilog remainder loop.
 | 
						|
    EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
 | 
						|
    EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
 | 
						|
  } else {
 | 
						|
    // If prolog remainder
 | 
						|
    // Split the original preheader twice to insert prolog remainder loop
 | 
						|
    PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
 | 
						|
    PrologPreHeader->setName(Header->getName() + ".prol.preheader");
 | 
						|
    PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
 | 
						|
                            DT, LI);
 | 
						|
    PrologExit->setName(Header->getName() + ".prol.loopexit");
 | 
						|
    // Split PrologExit to get NewPreHeader.
 | 
						|
    NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
 | 
						|
    NewPreHeader->setName(PreHeader->getName() + ".new");
 | 
						|
  }
 | 
						|
  // Loop structure should be the following:
 | 
						|
  //  Epilog             Prolog
 | 
						|
  //
 | 
						|
  // PreHeader         PreHeader
 | 
						|
  // *NewPreHeader     *PrologPreHeader
 | 
						|
  //   Header          *PrologExit
 | 
						|
  //   ...             *NewPreHeader
 | 
						|
  //   Latch             Header
 | 
						|
  // *NewExit            ...
 | 
						|
  // *EpilogPreHeader    Latch
 | 
						|
  // Exit              Exit
 | 
						|
 | 
						|
  // Calculate conditions for branch around loop for unrolling
 | 
						|
  // in epilog case and around prolog remainder loop in prolog case.
 | 
						|
  // Compute the number of extra iterations required, which is:
 | 
						|
  //  extra iterations = run-time trip count % loop unroll factor
 | 
						|
  PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
 | 
						|
  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
 | 
						|
                                            PreHeaderBR);
 | 
						|
  Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
 | 
						|
                                          PreHeaderBR);
 | 
						|
  IRBuilder<> B(PreHeaderBR);
 | 
						|
  Value *ModVal;
 | 
						|
  // Calculate ModVal = (BECount + 1) % Count.
 | 
						|
  // Note that TripCount is BECount + 1.
 | 
						|
  if (isPowerOf2_32(Count)) {
 | 
						|
    // When Count is power of 2 we don't BECount for epilog case, however we'll
 | 
						|
    // need it for a branch around unrolling loop for prolog case.
 | 
						|
    ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
 | 
						|
    //  1. There are no iterations to be run in the prolog/epilog loop.
 | 
						|
    // OR
 | 
						|
    //  2. The addition computing TripCount overflowed.
 | 
						|
    //
 | 
						|
    // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
 | 
						|
    // the number of iterations that remain to be run in the original loop is a
 | 
						|
    // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
 | 
						|
    // explicitly check this above).
 | 
						|
  } else {
 | 
						|
    // As (BECount + 1) can potentially unsigned overflow we count
 | 
						|
    // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
 | 
						|
    Value *ModValTmp = B.CreateURem(BECount,
 | 
						|
                                    ConstantInt::get(BECount->getType(),
 | 
						|
                                                     Count));
 | 
						|
    Value *ModValAdd = B.CreateAdd(ModValTmp,
 | 
						|
                                   ConstantInt::get(ModValTmp->getType(), 1));
 | 
						|
    // At that point (BECount % Count) + 1 could be equal to Count.
 | 
						|
    // To handle this case we need to take mod by Count one more time.
 | 
						|
    ModVal = B.CreateURem(ModValAdd,
 | 
						|
                          ConstantInt::get(BECount->getType(), Count),
 | 
						|
                          "xtraiter");
 | 
						|
  }
 | 
						|
  Value *BranchVal =
 | 
						|
      UseEpilogRemainder ? B.CreateICmpULT(BECount,
 | 
						|
                                           ConstantInt::get(BECount->getType(),
 | 
						|
                                                            Count - 1)) :
 | 
						|
                           B.CreateIsNotNull(ModVal, "lcmp.mod");
 | 
						|
  BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
 | 
						|
  BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
 | 
						|
  // Branch to either remainder (extra iterations) loop or unrolling loop.
 | 
						|
  B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
 | 
						|
  PreHeaderBR->eraseFromParent();
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  // Get an ordered list of blocks in the loop to help with the ordering of the
 | 
						|
  // cloned blocks in the prolog/epilog code
 | 
						|
  LoopBlocksDFS LoopBlocks(L);
 | 
						|
  LoopBlocks.perform(LI);
 | 
						|
 | 
						|
  //
 | 
						|
  // For each extra loop iteration, create a copy of the loop's basic blocks
 | 
						|
  // and generate a condition that branches to the copy depending on the
 | 
						|
  // number of 'left over' iterations.
 | 
						|
  //
 | 
						|
  std::vector<BasicBlock *> NewBlocks;
 | 
						|
  ValueToValueMapTy VMap;
 | 
						|
 | 
						|
  // For unroll factor 2 remainder loop will have 1 iterations.
 | 
						|
  // Do not create 1 iteration loop.
 | 
						|
  bool CreateRemainderLoop = (Count != 2);
 | 
						|
 | 
						|
  // Clone all the basic blocks in the loop. If Count is 2, we don't clone
 | 
						|
  // the loop, otherwise we create a cloned loop to execute the extra
 | 
						|
  // iterations. This function adds the appropriate CFG connections.
 | 
						|
  BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit;
 | 
						|
  BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
 | 
						|
  CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop,
 | 
						|
                  InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, LI);
 | 
						|
 | 
						|
  // Insert the cloned blocks into the function.
 | 
						|
  F->getBasicBlockList().splice(InsertBot->getIterator(),
 | 
						|
                                F->getBasicBlockList(),
 | 
						|
                                NewBlocks[0]->getIterator(),
 | 
						|
                                F->end());
 | 
						|
 | 
						|
  // Loop structure should be the following:
 | 
						|
  //  Epilog             Prolog
 | 
						|
  //
 | 
						|
  // PreHeader         PreHeader
 | 
						|
  // NewPreHeader      PrologPreHeader
 | 
						|
  //   Header            PrologHeader
 | 
						|
  //   ...               ...
 | 
						|
  //   Latch             PrologLatch
 | 
						|
  // NewExit           PrologExit
 | 
						|
  // EpilogPreHeader   NewPreHeader
 | 
						|
  //   EpilogHeader      Header
 | 
						|
  //   ...               ...
 | 
						|
  //   EpilogLatch       Latch
 | 
						|
  // Exit              Exit
 | 
						|
 | 
						|
  // Rewrite the cloned instruction operands to use the values created when the
 | 
						|
  // clone is created.
 | 
						|
  for (BasicBlock *BB : NewBlocks) {
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      RemapInstruction(&I, VMap,
 | 
						|
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (UseEpilogRemainder) {
 | 
						|
    // Connect the epilog code to the original loop and update the
 | 
						|
    // PHI functions.
 | 
						|
    ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader,
 | 
						|
                  EpilogPreHeader, NewPreHeader, VMap, DT, LI,
 | 
						|
                  PreserveLCSSA);
 | 
						|
 | 
						|
    // Update counter in loop for unrolling.
 | 
						|
    // I should be multiply of Count.
 | 
						|
    IRBuilder<> B2(NewPreHeader->getTerminator());
 | 
						|
    Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
 | 
						|
    BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
 | 
						|
    B2.SetInsertPoint(LatchBR);
 | 
						|
    PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
 | 
						|
                                      Header->getFirstNonPHI());
 | 
						|
    Value *IdxSub =
 | 
						|
        B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
 | 
						|
                     NewIdx->getName() + ".nsub");
 | 
						|
    Value *IdxCmp;
 | 
						|
    if (LatchBR->getSuccessor(0) == Header)
 | 
						|
      IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
 | 
						|
    else
 | 
						|
      IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
 | 
						|
    NewIdx->addIncoming(TestVal, NewPreHeader);
 | 
						|
    NewIdx->addIncoming(IdxSub, Latch);
 | 
						|
    LatchBR->setCondition(IdxCmp);
 | 
						|
  } else {
 | 
						|
    // Connect the prolog code to the original loop and update the
 | 
						|
    // PHI functions.
 | 
						|
    ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader,
 | 
						|
                  VMap, DT, LI, PreserveLCSSA);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this loop is nested, then the loop unroller changes the code in the
 | 
						|
  // parent loop, so the Scalar Evolution pass needs to be run again.
 | 
						|
  if (Loop *ParentLoop = L->getParentLoop())
 | 
						|
    SE->forgetLoop(ParentLoop);
 | 
						|
 | 
						|
  NumRuntimeUnrolled++;
 | 
						|
  return true;
 | 
						|
}
 |