1065 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1065 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines common loop utility functions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-utils"
 | 
						|
 | 
						|
bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
 | 
						|
                                        SmallPtrSetImpl<Instruction *> &Set) {
 | 
						|
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
 | 
						|
    if (!Set.count(dyn_cast<Instruction>(*Use)))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case RK_IntegerAdd:
 | 
						|
  case RK_IntegerMult:
 | 
						|
  case RK_IntegerOr:
 | 
						|
  case RK_IntegerAnd:
 | 
						|
  case RK_IntegerXor:
 | 
						|
  case RK_IntegerMinMax:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
 | 
						|
  return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case RK_IntegerAdd:
 | 
						|
  case RK_IntegerMult:
 | 
						|
  case RK_FloatAdd:
 | 
						|
  case RK_FloatMult:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *
 | 
						|
RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
 | 
						|
                                     SmallPtrSetImpl<Instruction *> &Visited,
 | 
						|
                                     SmallPtrSetImpl<Instruction *> &CI) {
 | 
						|
  if (!Phi->hasOneUse())
 | 
						|
    return Phi;
 | 
						|
 | 
						|
  const APInt *M = nullptr;
 | 
						|
  Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
 | 
						|
 | 
						|
  // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
 | 
						|
  // with a new integer type of the corresponding bit width.
 | 
						|
  if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
 | 
						|
                           m_And(m_APInt(M), m_Instruction(I))))) {
 | 
						|
    int32_t Bits = (*M + 1).exactLogBase2();
 | 
						|
    if (Bits > 0) {
 | 
						|
      RT = IntegerType::get(Phi->getContext(), Bits);
 | 
						|
      Visited.insert(Phi);
 | 
						|
      CI.insert(J);
 | 
						|
      return J;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Phi;
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::getSourceExtensionKind(
 | 
						|
    Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
 | 
						|
    SmallPtrSetImpl<Instruction *> &Visited,
 | 
						|
    SmallPtrSetImpl<Instruction *> &CI) {
 | 
						|
 | 
						|
  SmallVector<Instruction *, 8> Worklist;
 | 
						|
  bool FoundOneOperand = false;
 | 
						|
  unsigned DstSize = RT->getPrimitiveSizeInBits();
 | 
						|
  Worklist.push_back(Exit);
 | 
						|
 | 
						|
  // Traverse the instructions in the reduction expression, beginning with the
 | 
						|
  // exit value.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *I = Worklist.pop_back_val();
 | 
						|
    for (Use &U : I->operands()) {
 | 
						|
 | 
						|
      // Terminate the traversal if the operand is not an instruction, or we
 | 
						|
      // reach the starting value.
 | 
						|
      Instruction *J = dyn_cast<Instruction>(U.get());
 | 
						|
      if (!J || J == Start)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Otherwise, investigate the operation if it is also in the expression.
 | 
						|
      if (Visited.count(J)) {
 | 
						|
        Worklist.push_back(J);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If the operand is not in Visited, it is not a reduction operation, but
 | 
						|
      // it does feed into one. Make sure it is either a single-use sign- or
 | 
						|
      // zero-extend instruction.
 | 
						|
      CastInst *Cast = dyn_cast<CastInst>(J);
 | 
						|
      bool IsSExtInst = isa<SExtInst>(J);
 | 
						|
      if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Ensure the source type of the extend is no larger than the reduction
 | 
						|
      // type. It is not necessary for the types to be identical.
 | 
						|
      unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
 | 
						|
      if (SrcSize > DstSize)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Furthermore, ensure that all such extends are of the same kind.
 | 
						|
      if (FoundOneOperand) {
 | 
						|
        if (IsSigned != IsSExtInst)
 | 
						|
          return false;
 | 
						|
      } else {
 | 
						|
        FoundOneOperand = true;
 | 
						|
        IsSigned = IsSExtInst;
 | 
						|
      }
 | 
						|
 | 
						|
      // Lastly, if the source type of the extend matches the reduction type,
 | 
						|
      // add the extend to CI so that we can avoid accounting for it in the
 | 
						|
      // cost model.
 | 
						|
      if (SrcSize == DstSize)
 | 
						|
        CI.insert(Cast);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
 | 
						|
                                           Loop *TheLoop, bool HasFunNoNaNAttr,
 | 
						|
                                           RecurrenceDescriptor &RedDes) {
 | 
						|
  if (Phi->getNumIncomingValues() != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Reduction variables are only found in the loop header block.
 | 
						|
  if (Phi->getParent() != TheLoop->getHeader())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Obtain the reduction start value from the value that comes from the loop
 | 
						|
  // preheader.
 | 
						|
  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
 | 
						|
 | 
						|
  // ExitInstruction is the single value which is used outside the loop.
 | 
						|
  // We only allow for a single reduction value to be used outside the loop.
 | 
						|
  // This includes users of the reduction, variables (which form a cycle
 | 
						|
  // which ends in the phi node).
 | 
						|
  Instruction *ExitInstruction = nullptr;
 | 
						|
  // Indicates that we found a reduction operation in our scan.
 | 
						|
  bool FoundReduxOp = false;
 | 
						|
 | 
						|
  // We start with the PHI node and scan for all of the users of this
 | 
						|
  // instruction. All users must be instructions that can be used as reduction
 | 
						|
  // variables (such as ADD). We must have a single out-of-block user. The cycle
 | 
						|
  // must include the original PHI.
 | 
						|
  bool FoundStartPHI = false;
 | 
						|
 | 
						|
  // To recognize min/max patterns formed by a icmp select sequence, we store
 | 
						|
  // the number of instruction we saw from the recognized min/max pattern,
 | 
						|
  //  to make sure we only see exactly the two instructions.
 | 
						|
  unsigned NumCmpSelectPatternInst = 0;
 | 
						|
  InstDesc ReduxDesc(false, nullptr);
 | 
						|
 | 
						|
  // Data used for determining if the recurrence has been type-promoted.
 | 
						|
  Type *RecurrenceType = Phi->getType();
 | 
						|
  SmallPtrSet<Instruction *, 4> CastInsts;
 | 
						|
  Instruction *Start = Phi;
 | 
						|
  bool IsSigned = false;
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 8> VisitedInsts;
 | 
						|
  SmallVector<Instruction *, 8> Worklist;
 | 
						|
 | 
						|
  // Return early if the recurrence kind does not match the type of Phi. If the
 | 
						|
  // recurrence kind is arithmetic, we attempt to look through AND operations
 | 
						|
  // resulting from the type promotion performed by InstCombine.  Vector
 | 
						|
  // operations are not limited to the legal integer widths, so we may be able
 | 
						|
  // to evaluate the reduction in the narrower width.
 | 
						|
  if (RecurrenceType->isFloatingPointTy()) {
 | 
						|
    if (!isFloatingPointRecurrenceKind(Kind))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (!isIntegerRecurrenceKind(Kind))
 | 
						|
      return false;
 | 
						|
    if (isArithmeticRecurrenceKind(Kind))
 | 
						|
      Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
 | 
						|
  }
 | 
						|
 | 
						|
  Worklist.push_back(Start);
 | 
						|
  VisitedInsts.insert(Start);
 | 
						|
 | 
						|
  // A value in the reduction can be used:
 | 
						|
  //  - By the reduction:
 | 
						|
  //      - Reduction operation:
 | 
						|
  //        - One use of reduction value (safe).
 | 
						|
  //        - Multiple use of reduction value (not safe).
 | 
						|
  //      - PHI:
 | 
						|
  //        - All uses of the PHI must be the reduction (safe).
 | 
						|
  //        - Otherwise, not safe.
 | 
						|
  //  - By one instruction outside of the loop (safe).
 | 
						|
  //  - By further instructions outside of the loop (not safe).
 | 
						|
  //  - By an instruction that is not part of the reduction (not safe).
 | 
						|
  //    This is either:
 | 
						|
  //      * An instruction type other than PHI or the reduction operation.
 | 
						|
  //      * A PHI in the header other than the initial PHI.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *Cur = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
 | 
						|
    // No Users.
 | 
						|
    // If the instruction has no users then this is a broken chain and can't be
 | 
						|
    // a reduction variable.
 | 
						|
    if (Cur->use_empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    bool IsAPhi = isa<PHINode>(Cur);
 | 
						|
 | 
						|
    // A header PHI use other than the original PHI.
 | 
						|
    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Reductions of instructions such as Div, and Sub is only possible if the
 | 
						|
    // LHS is the reduction variable.
 | 
						|
    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
 | 
						|
        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
 | 
						|
        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Any reduction instruction must be of one of the allowed kinds. We ignore
 | 
						|
    // the starting value (the Phi or an AND instruction if the Phi has been
 | 
						|
    // type-promoted).
 | 
						|
    if (Cur != Start) {
 | 
						|
      ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
 | 
						|
      if (!ReduxDesc.isRecurrence())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // A reduction operation must only have one use of the reduction value.
 | 
						|
    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
 | 
						|
        hasMultipleUsesOf(Cur, VisitedInsts))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // All inputs to a PHI node must be a reduction value.
 | 
						|
    if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Kind == RK_IntegerMinMax &&
 | 
						|
        (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
 | 
						|
      ++NumCmpSelectPatternInst;
 | 
						|
    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
 | 
						|
      ++NumCmpSelectPatternInst;
 | 
						|
 | 
						|
    // Check  whether we found a reduction operator.
 | 
						|
    FoundReduxOp |= !IsAPhi && Cur != Start;
 | 
						|
 | 
						|
    // Process users of current instruction. Push non-PHI nodes after PHI nodes
 | 
						|
    // onto the stack. This way we are going to have seen all inputs to PHI
 | 
						|
    // nodes once we get to them.
 | 
						|
    SmallVector<Instruction *, 8> NonPHIs;
 | 
						|
    SmallVector<Instruction *, 8> PHIs;
 | 
						|
    for (User *U : Cur->users()) {
 | 
						|
      Instruction *UI = cast<Instruction>(U);
 | 
						|
 | 
						|
      // Check if we found the exit user.
 | 
						|
      BasicBlock *Parent = UI->getParent();
 | 
						|
      if (!TheLoop->contains(Parent)) {
 | 
						|
        // Exit if you find multiple outside users or if the header phi node is
 | 
						|
        // being used. In this case the user uses the value of the previous
 | 
						|
        // iteration, in which case we would loose "VF-1" iterations of the
 | 
						|
        // reduction operation if we vectorize.
 | 
						|
        if (ExitInstruction != nullptr || Cur == Phi)
 | 
						|
          return false;
 | 
						|
 | 
						|
        // The instruction used by an outside user must be the last instruction
 | 
						|
        // before we feed back to the reduction phi. Otherwise, we loose VF-1
 | 
						|
        // operations on the value.
 | 
						|
        if (!is_contained(Phi->operands(), Cur))
 | 
						|
          return false;
 | 
						|
 | 
						|
        ExitInstruction = Cur;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Process instructions only once (termination). Each reduction cycle
 | 
						|
      // value must only be used once, except by phi nodes and min/max
 | 
						|
      // reductions which are represented as a cmp followed by a select.
 | 
						|
      InstDesc IgnoredVal(false, nullptr);
 | 
						|
      if (VisitedInsts.insert(UI).second) {
 | 
						|
        if (isa<PHINode>(UI))
 | 
						|
          PHIs.push_back(UI);
 | 
						|
        else
 | 
						|
          NonPHIs.push_back(UI);
 | 
						|
      } else if (!isa<PHINode>(UI) &&
 | 
						|
                 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
 | 
						|
                   !isa<SelectInst>(UI)) ||
 | 
						|
                  !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Remember that we completed the cycle.
 | 
						|
      if (UI == Phi)
 | 
						|
        FoundStartPHI = true;
 | 
						|
    }
 | 
						|
    Worklist.append(PHIs.begin(), PHIs.end());
 | 
						|
    Worklist.append(NonPHIs.begin(), NonPHIs.end());
 | 
						|
  }
 | 
						|
 | 
						|
  // This means we have seen one but not the other instruction of the
 | 
						|
  // pattern or more than just a select and cmp.
 | 
						|
  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
 | 
						|
      NumCmpSelectPatternInst != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we think Phi may have been type-promoted, we also need to ensure that
 | 
						|
  // all source operands of the reduction are either SExtInsts or ZEstInsts. If
 | 
						|
  // so, we will be able to evaluate the reduction in the narrower bit width.
 | 
						|
  if (Start != Phi)
 | 
						|
    if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
 | 
						|
                                IsSigned, VisitedInsts, CastInsts))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // We found a reduction var if we have reached the original phi node and we
 | 
						|
  // only have a single instruction with out-of-loop users.
 | 
						|
 | 
						|
  // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
 | 
						|
  // is saved as part of the RecurrenceDescriptor.
 | 
						|
 | 
						|
  // Save the description of this reduction variable.
 | 
						|
  RecurrenceDescriptor RD(
 | 
						|
      RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
 | 
						|
      ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
 | 
						|
  RedDes = RD;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
 | 
						|
/// pattern corresponding to a min(X, Y) or max(X, Y).
 | 
						|
RecurrenceDescriptor::InstDesc
 | 
						|
RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
 | 
						|
 | 
						|
  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
 | 
						|
         "Expect a select instruction");
 | 
						|
  Instruction *Cmp = nullptr;
 | 
						|
  SelectInst *Select = nullptr;
 | 
						|
 | 
						|
  // We must handle the select(cmp()) as a single instruction. Advance to the
 | 
						|
  // select.
 | 
						|
  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
 | 
						|
    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
 | 
						|
      return InstDesc(false, I);
 | 
						|
    return InstDesc(Select, Prev.getMinMaxKind());
 | 
						|
  }
 | 
						|
 | 
						|
  // Only handle single use cases for now.
 | 
						|
  if (!(Select = dyn_cast<SelectInst>(I)))
 | 
						|
    return InstDesc(false, I);
 | 
						|
  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
 | 
						|
      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
 | 
						|
    return InstDesc(false, I);
 | 
						|
  if (!Cmp->hasOneUse())
 | 
						|
    return InstDesc(false, I);
 | 
						|
 | 
						|
  Value *CmpLeft;
 | 
						|
  Value *CmpRight;
 | 
						|
 | 
						|
  // Look for a min/max pattern.
 | 
						|
  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_UIntMin);
 | 
						|
  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_UIntMax);
 | 
						|
  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_SIntMax);
 | 
						|
  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_SIntMin);
 | 
						|
  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_FloatMin);
 | 
						|
  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_FloatMax);
 | 
						|
  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_FloatMin);
 | 
						|
  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_FloatMax);
 | 
						|
 | 
						|
  return InstDesc(false, I);
 | 
						|
}
 | 
						|
 | 
						|
RecurrenceDescriptor::InstDesc
 | 
						|
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
 | 
						|
                                        InstDesc &Prev, bool HasFunNoNaNAttr) {
 | 
						|
  bool FP = I->getType()->isFloatingPointTy();
 | 
						|
  Instruction *UAI = Prev.getUnsafeAlgebraInst();
 | 
						|
  if (!UAI && FP && !I->hasUnsafeAlgebra())
 | 
						|
    UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return InstDesc(false, I);
 | 
						|
  case Instruction::PHI:
 | 
						|
    return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Add:
 | 
						|
    return InstDesc(Kind == RK_IntegerAdd, I);
 | 
						|
  case Instruction::Mul:
 | 
						|
    return InstDesc(Kind == RK_IntegerMult, I);
 | 
						|
  case Instruction::And:
 | 
						|
    return InstDesc(Kind == RK_IntegerAnd, I);
 | 
						|
  case Instruction::Or:
 | 
						|
    return InstDesc(Kind == RK_IntegerOr, I);
 | 
						|
  case Instruction::Xor:
 | 
						|
    return InstDesc(Kind == RK_IntegerXor, I);
 | 
						|
  case Instruction::FMul:
 | 
						|
    return InstDesc(Kind == RK_FloatMult, I, UAI);
 | 
						|
  case Instruction::FSub:
 | 
						|
  case Instruction::FAdd:
 | 
						|
    return InstDesc(Kind == RK_FloatAdd, I, UAI);
 | 
						|
  case Instruction::FCmp:
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::Select:
 | 
						|
    if (Kind != RK_IntegerMinMax &&
 | 
						|
        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
 | 
						|
      return InstDesc(false, I);
 | 
						|
    return isMinMaxSelectCmpPattern(I, Prev);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::hasMultipleUsesOf(
 | 
						|
    Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
 | 
						|
  unsigned NumUses = 0;
 | 
						|
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
 | 
						|
       ++Use) {
 | 
						|
    if (Insts.count(dyn_cast<Instruction>(*Use)))
 | 
						|
      ++NumUses;
 | 
						|
    if (NumUses > 1)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
 | 
						|
                                          RecurrenceDescriptor &RedDes) {
 | 
						|
 | 
						|
  BasicBlock *Header = TheLoop->getHeader();
 | 
						|
  Function &F = *Header->getParent();
 | 
						|
  bool HasFunNoNaNAttr =
 | 
						|
      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
 | 
						|
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
 | 
						|
                      RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | 
						|
    DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Not a reduction of known type.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
 | 
						|
                                                  DominatorTree *DT) {
 | 
						|
 | 
						|
  // Ensure the phi node is in the loop header and has two incoming values.
 | 
						|
  if (Phi->getParent() != TheLoop->getHeader() ||
 | 
						|
      Phi->getNumIncomingValues() != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure the loop has a preheader and a single latch block. The loop
 | 
						|
  // vectorizer will need the latch to set up the next iteration of the loop.
 | 
						|
  auto *Preheader = TheLoop->getLoopPreheader();
 | 
						|
  auto *Latch = TheLoop->getLoopLatch();
 | 
						|
  if (!Preheader || !Latch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure the phi node's incoming blocks are the loop preheader and latch.
 | 
						|
  if (Phi->getBasicBlockIndex(Preheader) < 0 ||
 | 
						|
      Phi->getBasicBlockIndex(Latch) < 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the previous value. The previous value comes from the latch edge while
 | 
						|
  // the initial value comes form the preheader edge.
 | 
						|
  auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
 | 
						|
  if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure every user of the phi node is dominated by the previous value. The
 | 
						|
  // dominance requirement ensures the loop vectorizer will not need to
 | 
						|
  // vectorize the initial value prior to the first iteration of the loop.
 | 
						|
  for (User *U : Phi->users())
 | 
						|
    if (auto *I = dyn_cast<Instruction>(U))
 | 
						|
      if (!DT->dominates(Previous, I))
 | 
						|
        return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This function returns the identity element (or neutral element) for
 | 
						|
/// the operation K.
 | 
						|
Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
 | 
						|
                                                      Type *Tp) {
 | 
						|
  switch (K) {
 | 
						|
  case RK_IntegerXor:
 | 
						|
  case RK_IntegerAdd:
 | 
						|
  case RK_IntegerOr:
 | 
						|
    // Adding, Xoring, Oring zero to a number does not change it.
 | 
						|
    return ConstantInt::get(Tp, 0);
 | 
						|
  case RK_IntegerMult:
 | 
						|
    // Multiplying a number by 1 does not change it.
 | 
						|
    return ConstantInt::get(Tp, 1);
 | 
						|
  case RK_IntegerAnd:
 | 
						|
    // AND-ing a number with an all-1 value does not change it.
 | 
						|
    return ConstantInt::get(Tp, -1, true);
 | 
						|
  case RK_FloatMult:
 | 
						|
    // Multiplying a number by 1 does not change it.
 | 
						|
    return ConstantFP::get(Tp, 1.0L);
 | 
						|
  case RK_FloatAdd:
 | 
						|
    // Adding zero to a number does not change it.
 | 
						|
    return ConstantFP::get(Tp, 0.0L);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown recurrence kind");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// This function translates the recurrence kind to an LLVM binary operator.
 | 
						|
unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  case RK_IntegerAdd:
 | 
						|
    return Instruction::Add;
 | 
						|
  case RK_IntegerMult:
 | 
						|
    return Instruction::Mul;
 | 
						|
  case RK_IntegerOr:
 | 
						|
    return Instruction::Or;
 | 
						|
  case RK_IntegerAnd:
 | 
						|
    return Instruction::And;
 | 
						|
  case RK_IntegerXor:
 | 
						|
    return Instruction::Xor;
 | 
						|
  case RK_FloatMult:
 | 
						|
    return Instruction::FMul;
 | 
						|
  case RK_FloatAdd:
 | 
						|
    return Instruction::FAdd;
 | 
						|
  case RK_IntegerMinMax:
 | 
						|
    return Instruction::ICmp;
 | 
						|
  case RK_FloatMinMax:
 | 
						|
    return Instruction::FCmp;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown recurrence operation");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
 | 
						|
                                            MinMaxRecurrenceKind RK,
 | 
						|
                                            Value *Left, Value *Right) {
 | 
						|
  CmpInst::Predicate P = CmpInst::ICMP_NE;
 | 
						|
  switch (RK) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown min/max recurrence kind");
 | 
						|
  case MRK_UIntMin:
 | 
						|
    P = CmpInst::ICMP_ULT;
 | 
						|
    break;
 | 
						|
  case MRK_UIntMax:
 | 
						|
    P = CmpInst::ICMP_UGT;
 | 
						|
    break;
 | 
						|
  case MRK_SIntMin:
 | 
						|
    P = CmpInst::ICMP_SLT;
 | 
						|
    break;
 | 
						|
  case MRK_SIntMax:
 | 
						|
    P = CmpInst::ICMP_SGT;
 | 
						|
    break;
 | 
						|
  case MRK_FloatMin:
 | 
						|
    P = CmpInst::FCMP_OLT;
 | 
						|
    break;
 | 
						|
  case MRK_FloatMax:
 | 
						|
    P = CmpInst::FCMP_OGT;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // We only match FP sequences with unsafe algebra, so we can unconditionally
 | 
						|
  // set it on any generated instructions.
 | 
						|
  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
 | 
						|
  FastMathFlags FMF;
 | 
						|
  FMF.setUnsafeAlgebra();
 | 
						|
  Builder.setFastMathFlags(FMF);
 | 
						|
 | 
						|
  Value *Cmp;
 | 
						|
  if (RK == MRK_FloatMin || RK == MRK_FloatMax)
 | 
						|
    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
 | 
						|
  else
 | 
						|
    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
 | 
						|
 | 
						|
  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
 | 
						|
  return Select;
 | 
						|
}
 | 
						|
 | 
						|
InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
 | 
						|
                                         const SCEV *Step, BinaryOperator *BOp)
 | 
						|
  : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
 | 
						|
  assert(IK != IK_NoInduction && "Not an induction");
 | 
						|
 | 
						|
  // Start value type should match the induction kind and the value
 | 
						|
  // itself should not be null.
 | 
						|
  assert(StartValue && "StartValue is null");
 | 
						|
  assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
 | 
						|
         "StartValue is not a pointer for pointer induction");
 | 
						|
  assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
 | 
						|
         "StartValue is not an integer for integer induction");
 | 
						|
 | 
						|
  // Check the Step Value. It should be non-zero integer value.
 | 
						|
  assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
 | 
						|
         "Step value is zero");
 | 
						|
 | 
						|
  assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
 | 
						|
         "Step value should be constant for pointer induction");
 | 
						|
  assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
 | 
						|
         "StepValue is not an integer");
 | 
						|
 | 
						|
  assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
 | 
						|
         "StepValue is not FP for FpInduction");
 | 
						|
  assert((IK != IK_FpInduction || (InductionBinOp &&
 | 
						|
          (InductionBinOp->getOpcode() == Instruction::FAdd ||
 | 
						|
           InductionBinOp->getOpcode() == Instruction::FSub))) &&
 | 
						|
         "Binary opcode should be specified for FP induction");
 | 
						|
}
 | 
						|
 | 
						|
int InductionDescriptor::getConsecutiveDirection() const {
 | 
						|
  ConstantInt *ConstStep = getConstIntStepValue();
 | 
						|
  if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
 | 
						|
    return ConstStep->getSExtValue();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
ConstantInt *InductionDescriptor::getConstIntStepValue() const {
 | 
						|
  if (isa<SCEVConstant>(Step))
 | 
						|
    return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
 | 
						|
                                      ScalarEvolution *SE,
 | 
						|
                                      const DataLayout& DL) const {
 | 
						|
 | 
						|
  SCEVExpander Exp(*SE, DL, "induction");
 | 
						|
  assert(Index->getType() == Step->getType() &&
 | 
						|
         "Index type does not match StepValue type");
 | 
						|
  switch (IK) {
 | 
						|
  case IK_IntInduction: {
 | 
						|
    assert(Index->getType() == StartValue->getType() &&
 | 
						|
           "Index type does not match StartValue type");
 | 
						|
 | 
						|
    // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
 | 
						|
    // and calculate (Start + Index * Step) for all cases, without
 | 
						|
    // special handling for "isOne" and "isMinusOne".
 | 
						|
    // But in the real life the result code getting worse. We mix SCEV
 | 
						|
    // expressions and ADD/SUB operations and receive redundant
 | 
						|
    // intermediate values being calculated in different ways and
 | 
						|
    // Instcombine is unable to reduce them all.
 | 
						|
 | 
						|
    if (getConstIntStepValue() &&
 | 
						|
        getConstIntStepValue()->isMinusOne())
 | 
						|
      return B.CreateSub(StartValue, Index);
 | 
						|
    if (getConstIntStepValue() &&
 | 
						|
        getConstIntStepValue()->isOne())
 | 
						|
      return B.CreateAdd(StartValue, Index);
 | 
						|
    const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
 | 
						|
                                   SE->getMulExpr(Step, SE->getSCEV(Index)));
 | 
						|
    return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
 | 
						|
  }
 | 
						|
  case IK_PtrInduction: {
 | 
						|
    assert(isa<SCEVConstant>(Step) &&
 | 
						|
           "Expected constant step for pointer induction");
 | 
						|
    const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
 | 
						|
    Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
 | 
						|
    return B.CreateGEP(nullptr, StartValue, Index);
 | 
						|
  }
 | 
						|
  case IK_FpInduction: {
 | 
						|
    assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
 | 
						|
    assert(InductionBinOp &&
 | 
						|
           (InductionBinOp->getOpcode() == Instruction::FAdd ||
 | 
						|
            InductionBinOp->getOpcode() == Instruction::FSub) &&
 | 
						|
           "Original bin op should be defined for FP induction");
 | 
						|
 | 
						|
    Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
 | 
						|
 | 
						|
    // Floating point operations had to be 'fast' to enable the induction.
 | 
						|
    FastMathFlags Flags;
 | 
						|
    Flags.setUnsafeAlgebra();
 | 
						|
 | 
						|
    Value *MulExp = B.CreateFMul(StepValue, Index);
 | 
						|
    if (isa<Instruction>(MulExp))
 | 
						|
      // We have to check, the MulExp may be a constant.
 | 
						|
      cast<Instruction>(MulExp)->setFastMathFlags(Flags);
 | 
						|
 | 
						|
    Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
 | 
						|
                               MulExp, "induction");
 | 
						|
    if (isa<Instruction>(BOp))
 | 
						|
      cast<Instruction>(BOp)->setFastMathFlags(Flags);
 | 
						|
 | 
						|
    return BOp;
 | 
						|
  }
 | 
						|
  case IK_NoInduction:
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  llvm_unreachable("invalid enum");
 | 
						|
}
 | 
						|
 | 
						|
bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
 | 
						|
                                           ScalarEvolution *SE,
 | 
						|
                                           InductionDescriptor &D) {
 | 
						|
 | 
						|
  // Here we only handle FP induction variables.
 | 
						|
  assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
 | 
						|
 | 
						|
  if (TheLoop->getHeader() != Phi->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The loop may have multiple entrances or multiple exits; we can analyze
 | 
						|
  // this phi if it has a unique entry value and a unique backedge value.
 | 
						|
  if (Phi->getNumIncomingValues() != 2)
 | 
						|
    return false;
 | 
						|
  Value *BEValue = nullptr, *StartValue = nullptr;
 | 
						|
  if (TheLoop->contains(Phi->getIncomingBlock(0))) {
 | 
						|
    BEValue = Phi->getIncomingValue(0);
 | 
						|
    StartValue = Phi->getIncomingValue(1);
 | 
						|
  } else {
 | 
						|
    assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
 | 
						|
           "Unexpected Phi node in the loop"); 
 | 
						|
    BEValue = Phi->getIncomingValue(1);
 | 
						|
    StartValue = Phi->getIncomingValue(0);
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
 | 
						|
  if (!BOp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Addend = nullptr;
 | 
						|
  if (BOp->getOpcode() == Instruction::FAdd) {
 | 
						|
    if (BOp->getOperand(0) == Phi)
 | 
						|
      Addend = BOp->getOperand(1);
 | 
						|
    else if (BOp->getOperand(1) == Phi)
 | 
						|
      Addend = BOp->getOperand(0);
 | 
						|
  } else if (BOp->getOpcode() == Instruction::FSub)
 | 
						|
    if (BOp->getOperand(0) == Phi)
 | 
						|
      Addend = BOp->getOperand(1);
 | 
						|
 | 
						|
  if (!Addend)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The addend should be loop invariant
 | 
						|
  if (auto *I = dyn_cast<Instruction>(Addend))
 | 
						|
    if (TheLoop->contains(I))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // FP Step has unknown SCEV
 | 
						|
  const SCEV *Step = SE->getUnknown(Addend);
 | 
						|
  D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
 | 
						|
                                         PredicatedScalarEvolution &PSE,
 | 
						|
                                         InductionDescriptor &D,
 | 
						|
                                         bool Assume) {
 | 
						|
  Type *PhiTy = Phi->getType();
 | 
						|
 | 
						|
  // Handle integer and pointer inductions variables.
 | 
						|
  // Now we handle also FP induction but not trying to make a
 | 
						|
  // recurrent expression from the PHI node in-place.
 | 
						|
 | 
						|
  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
 | 
						|
      !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (PhiTy->isFloatingPointTy())
 | 
						|
    return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
 | 
						|
 | 
						|
  const SCEV *PhiScev = PSE.getSCEV(Phi);
 | 
						|
  const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | 
						|
 | 
						|
  // We need this expression to be an AddRecExpr.
 | 
						|
  if (Assume && !AR)
 | 
						|
    AR = PSE.getAsAddRec(Phi);
 | 
						|
 | 
						|
  if (!AR) {
 | 
						|
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
 | 
						|
}
 | 
						|
 | 
						|
bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
 | 
						|
                                         ScalarEvolution *SE,
 | 
						|
                                         InductionDescriptor &D,
 | 
						|
                                         const SCEV *Expr) {
 | 
						|
  Type *PhiTy = Phi->getType();
 | 
						|
  // We only handle integer and pointer inductions variables.
 | 
						|
  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the PHI is consecutive.
 | 
						|
  const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | 
						|
 | 
						|
  if (!AR) {
 | 
						|
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(TheLoop->getHeader() == Phi->getParent() &&
 | 
						|
         "PHI is an AddRec for a different loop?!");
 | 
						|
  Value *StartValue =
 | 
						|
    Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
 | 
						|
  const SCEV *Step = AR->getStepRecurrence(*SE);
 | 
						|
  // Calculate the pointer stride and check if it is consecutive.
 | 
						|
  // The stride may be a constant or a loop invariant integer value.
 | 
						|
  const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
 | 
						|
  if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (PhiTy->isIntegerTy()) {
 | 
						|
    D = InductionDescriptor(StartValue, IK_IntInduction, Step);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
 | 
						|
  // Pointer induction should be a constant.
 | 
						|
  if (!ConstStep)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ConstantInt *CV = ConstStep->getValue();
 | 
						|
  Type *PointerElementType = PhiTy->getPointerElementType();
 | 
						|
  // The pointer stride cannot be determined if the pointer element type is not
 | 
						|
  // sized.
 | 
						|
  if (!PointerElementType->isSized())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const DataLayout &DL = Phi->getModule()->getDataLayout();
 | 
						|
  int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
 | 
						|
  if (!Size)
 | 
						|
    return false;
 | 
						|
 | 
						|
  int64_t CVSize = CV->getSExtValue();
 | 
						|
  if (CVSize % Size)
 | 
						|
    return false;
 | 
						|
  auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
 | 
						|
                                    true /* signed */);
 | 
						|
  D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns the instructions that use values defined in the loop.
 | 
						|
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
 | 
						|
  SmallVector<Instruction *, 8> UsedOutside;
 | 
						|
 | 
						|
  for (auto *Block : L->getBlocks())
 | 
						|
    // FIXME: I believe that this could use copy_if if the Inst reference could
 | 
						|
    // be adapted into a pointer.
 | 
						|
    for (auto &Inst : *Block) {
 | 
						|
      auto Users = Inst.users();
 | 
						|
      if (any_of(Users, [&](User *U) {
 | 
						|
            auto *Use = cast<Instruction>(U);
 | 
						|
            return !L->contains(Use->getParent());
 | 
						|
          }))
 | 
						|
        UsedOutside.push_back(&Inst);
 | 
						|
    }
 | 
						|
 | 
						|
  return UsedOutside;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
 | 
						|
  // By definition, all loop passes need the LoopInfo analysis and the
 | 
						|
  // Dominator tree it depends on. Because they all participate in the loop
 | 
						|
  // pass manager, they must also preserve these.
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
  AU.addPreserved<LoopInfoWrapperPass>();
 | 
						|
 | 
						|
  // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
 | 
						|
  // here because users shouldn't directly get them from this header.
 | 
						|
  extern char &LoopSimplifyID;
 | 
						|
  extern char &LCSSAID;
 | 
						|
  AU.addRequiredID(LoopSimplifyID);
 | 
						|
  AU.addPreservedID(LoopSimplifyID);
 | 
						|
  AU.addRequiredID(LCSSAID);
 | 
						|
  AU.addPreservedID(LCSSAID);
 | 
						|
 | 
						|
  // Loop passes are designed to run inside of a loop pass manager which means
 | 
						|
  // that any function analyses they require must be required by the first loop
 | 
						|
  // pass in the manager (so that it is computed before the loop pass manager
 | 
						|
  // runs) and preserved by all loop pasess in the manager. To make this
 | 
						|
  // reasonably robust, the set needed for most loop passes is maintained here.
 | 
						|
  // If your loop pass requires an analysis not listed here, you will need to
 | 
						|
  // carefully audit the loop pass manager nesting structure that results.
 | 
						|
  AU.addRequired<AAResultsWrapperPass>();
 | 
						|
  AU.addPreserved<AAResultsWrapperPass>();
 | 
						|
  AU.addPreserved<BasicAAWrapperPass>();
 | 
						|
  AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
  AU.addPreserved<SCEVAAWrapperPass>();
 | 
						|
  AU.addRequired<ScalarEvolutionWrapperPass>();
 | 
						|
  AU.addPreserved<ScalarEvolutionWrapperPass>();
 | 
						|
}
 | 
						|
 | 
						|
/// Manually defined generic "LoopPass" dependency initialization. This is used
 | 
						|
/// to initialize the exact set of passes from above in \c
 | 
						|
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
 | 
						|
/// with:
 | 
						|
///
 | 
						|
///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
///
 | 
						|
/// As-if "LoopPass" were a pass.
 | 
						|
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
 | 
						|
  INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Find string metadata for loop
 | 
						|
///
 | 
						|
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
 | 
						|
/// operand or null otherwise.  If the string metadata is not found return
 | 
						|
/// Optional's not-a-value.
 | 
						|
Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
 | 
						|
                                                            StringRef Name) {
 | 
						|
  MDNode *LoopID = TheLoop->getLoopID();
 | 
						|
  // Return none if LoopID is false.
 | 
						|
  if (!LoopID)
 | 
						|
    return None;
 | 
						|
 | 
						|
  // First operand should refer to the loop id itself.
 | 
						|
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
 | 
						|
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
 | 
						|
 | 
						|
  // Iterate over LoopID operands and look for MDString Metadata
 | 
						|
  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
 | 
						|
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | 
						|
    if (!MD)
 | 
						|
      continue;
 | 
						|
    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | 
						|
    if (!S)
 | 
						|
      continue;
 | 
						|
    // Return true if MDString holds expected MetaData.
 | 
						|
    if (Name.equals(S->getString()))
 | 
						|
      switch (MD->getNumOperands()) {
 | 
						|
      case 1:
 | 
						|
        return nullptr;
 | 
						|
      case 2:
 | 
						|
        return &MD->getOperand(1);
 | 
						|
      default:
 | 
						|
        llvm_unreachable("loop metadata has 0 or 1 operand");
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the instruction in a loop is guaranteed to execute at least
 | 
						|
/// once.
 | 
						|
bool llvm::isGuaranteedToExecute(const Instruction &Inst,
 | 
						|
                                 const DominatorTree *DT, const Loop *CurLoop,
 | 
						|
                                 const LoopSafetyInfo *SafetyInfo) {
 | 
						|
  // We have to check to make sure that the instruction dominates all
 | 
						|
  // of the exit blocks.  If it doesn't, then there is a path out of the loop
 | 
						|
  // which does not execute this instruction, so we can't hoist it.
 | 
						|
 | 
						|
  // If the instruction is in the header block for the loop (which is very
 | 
						|
  // common), it is always guaranteed to dominate the exit blocks.  Since this
 | 
						|
  // is a common case, and can save some work, check it now.
 | 
						|
  if (Inst.getParent() == CurLoop->getHeader())
 | 
						|
    // If there's a throw in the header block, we can't guarantee we'll reach
 | 
						|
    // Inst.
 | 
						|
    return !SafetyInfo->HeaderMayThrow;
 | 
						|
 | 
						|
  // Somewhere in this loop there is an instruction which may throw and make us
 | 
						|
  // exit the loop.
 | 
						|
  if (SafetyInfo->MayThrow)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the exit blocks for the current loop.
 | 
						|
  SmallVector<BasicBlock *, 8> ExitBlocks;
 | 
						|
  CurLoop->getExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  // Verify that the block dominates each of the exit blocks of the loop.
 | 
						|
  for (BasicBlock *ExitBlock : ExitBlocks)
 | 
						|
    if (!DT->dominates(Inst.getParent(), ExitBlock))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // As a degenerate case, if the loop is statically infinite then we haven't
 | 
						|
  // proven anything since there are no exit blocks.
 | 
						|
  if (ExitBlocks.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: In general, we have to prove that the loop isn't an infinite loop.
 | 
						|
  // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
 | 
						|
  // just a special case of this.)
 | 
						|
  return true;
 | 
						|
}
 |