2357 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2357 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This is a utility pass used for testing the InstructionSimplify analysis.
 | 
						|
// The analysis is applied to every instruction, and if it simplifies then the
 | 
						|
// instruction is replaced by the simplification.  If you are looking for a pass
 | 
						|
// that performs serious instruction folding, use the instcombine pass instead.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
 | 
						|
                   cl::desc("Treat error-reporting calls as cold"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
 | 
						|
                         cl::init(false),
 | 
						|
                         cl::desc("Enable unsafe double to float "
 | 
						|
                                  "shrinking for math lib calls"));
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool ignoreCallingConv(LibFunc::Func Func) {
 | 
						|
  return Func == LibFunc::abs || Func == LibFunc::labs ||
 | 
						|
         Func == LibFunc::llabs || Func == LibFunc::strlen;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if it only matters that the value is equal or not-equal to zero.
 | 
						|
static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
 | 
						|
  for (User *U : V->users()) {
 | 
						|
    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
 | 
						|
      if (IC->isEquality())
 | 
						|
        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
 | 
						|
          if (C->isNullValue())
 | 
						|
            continue;
 | 
						|
    // Unknown instruction.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if it is only used in equality comparisons with With.
 | 
						|
static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
 | 
						|
  for (User *U : V->users()) {
 | 
						|
    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
 | 
						|
      if (IC->isEquality() && IC->getOperand(1) == With)
 | 
						|
        continue;
 | 
						|
    // Unknown instruction.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool callHasFloatingPointArgument(const CallInst *CI) {
 | 
						|
  return any_of(CI->operands(), [](const Use &OI) {
 | 
						|
    return OI->getType()->isFloatingPointTy();
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether the overloaded unary floating point function
 | 
						|
/// corresponding to \a Ty is available.
 | 
						|
static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
 | 
						|
                            LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
 | 
						|
                            LibFunc::Func LongDoubleFn) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::FloatTyID:
 | 
						|
    return TLI->has(FloatFn);
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    return TLI->has(DoubleFn);
 | 
						|
  default:
 | 
						|
    return TLI->has(LongDoubleFn);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// String and Memory Library Call Optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // Extract some information from the instruction
 | 
						|
  Value *Dst = CI->getArgOperand(0);
 | 
						|
  Value *Src = CI->getArgOperand(1);
 | 
						|
 | 
						|
  // See if we can get the length of the input string.
 | 
						|
  uint64_t Len = GetStringLength(Src);
 | 
						|
  if (Len == 0)
 | 
						|
    return nullptr;
 | 
						|
  --Len; // Unbias length.
 | 
						|
 | 
						|
  // Handle the simple, do-nothing case: strcat(x, "") -> x
 | 
						|
  if (Len == 0)
 | 
						|
    return Dst;
 | 
						|
 | 
						|
  return emitStrLenMemCpy(Src, Dst, Len, B);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
 | 
						|
                                           IRBuilder<> &B) {
 | 
						|
  // We need to find the end of the destination string.  That's where the
 | 
						|
  // memory is to be moved to. We just generate a call to strlen.
 | 
						|
  Value *DstLen = emitStrLen(Dst, B, DL, TLI);
 | 
						|
  if (!DstLen)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Now that we have the destination's length, we must index into the
 | 
						|
  // destination's pointer to get the actual memcpy destination (end of
 | 
						|
  // the string .. we're concatenating).
 | 
						|
  Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
 | 
						|
 | 
						|
  // We have enough information to now generate the memcpy call to do the
 | 
						|
  // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
 | 
						|
  B.CreateMemCpy(CpyDst, Src,
 | 
						|
                 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
 | 
						|
                 1);
 | 
						|
  return Dst;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // Extract some information from the instruction.
 | 
						|
  Value *Dst = CI->getArgOperand(0);
 | 
						|
  Value *Src = CI->getArgOperand(1);
 | 
						|
  uint64_t Len;
 | 
						|
 | 
						|
  // We don't do anything if length is not constant.
 | 
						|
  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
 | 
						|
    Len = LengthArg->getZExtValue();
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // See if we can get the length of the input string.
 | 
						|
  uint64_t SrcLen = GetStringLength(Src);
 | 
						|
  if (SrcLen == 0)
 | 
						|
    return nullptr;
 | 
						|
  --SrcLen; // Unbias length.
 | 
						|
 | 
						|
  // Handle the simple, do-nothing cases:
 | 
						|
  // strncat(x, "", c) -> x
 | 
						|
  // strncat(x,  c, 0) -> x
 | 
						|
  if (SrcLen == 0 || Len == 0)
 | 
						|
    return Dst;
 | 
						|
 | 
						|
  // We don't optimize this case.
 | 
						|
  if (Len < SrcLen)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // strncat(x, s, c) -> strcat(x, s)
 | 
						|
  // s is constant so the strcat can be optimized further.
 | 
						|
  return emitStrLenMemCpy(Src, Dst, SrcLen, B);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  FunctionType *FT = Callee->getFunctionType();
 | 
						|
  Value *SrcStr = CI->getArgOperand(0);
 | 
						|
 | 
						|
  // If the second operand is non-constant, see if we can compute the length
 | 
						|
  // of the input string and turn this into memchr.
 | 
						|
  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | 
						|
  if (!CharC) {
 | 
						|
    uint64_t Len = GetStringLength(SrcStr);
 | 
						|
    if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
 | 
						|
                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
 | 
						|
                      B, DL, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, the character is a constant, see if the first argument is
 | 
						|
  // a string literal.  If so, we can constant fold.
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(SrcStr, Str)) {
 | 
						|
    if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
 | 
						|
      return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
 | 
						|
                         "strchr");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the offset, make sure to handle the case when we're searching for
 | 
						|
  // zero (a weird way to spell strlen).
 | 
						|
  size_t I = (0xFF & CharC->getSExtValue()) == 0
 | 
						|
                 ? Str.size()
 | 
						|
                 : Str.find(CharC->getSExtValue());
 | 
						|
  if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // strchr(s+n,c)  -> gep(s+n+i,c)
 | 
						|
  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Value *SrcStr = CI->getArgOperand(0);
 | 
						|
  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | 
						|
 | 
						|
  // Cannot fold anything if we're not looking for a constant.
 | 
						|
  if (!CharC)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(SrcStr, Str)) {
 | 
						|
    // strrchr(s, 0) -> strchr(s, 0)
 | 
						|
    if (CharC->isZero())
 | 
						|
      return emitStrChr(SrcStr, '\0', B, TLI);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the offset.
 | 
						|
  size_t I = (0xFF & CharC->getSExtValue()) == 0
 | 
						|
                 ? Str.size()
 | 
						|
                 : Str.rfind(CharC->getSExtValue());
 | 
						|
  if (I == StringRef::npos) // Didn't find the char. Return null.
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // strrchr(s+n,c) -> gep(s+n+i,c)
 | 
						|
  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
 | 
						|
  if (Str1P == Str2P) // strcmp(x,x)  -> 0
 | 
						|
    return ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
  StringRef Str1, Str2;
 | 
						|
  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
 | 
						|
  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
 | 
						|
 | 
						|
  // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
 | 
						|
  if (HasStr1 && HasStr2)
 | 
						|
    return ConstantInt::get(CI->getType(), Str1.compare(Str2));
 | 
						|
 | 
						|
  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
 | 
						|
    return B.CreateNeg(
 | 
						|
        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
 | 
						|
 | 
						|
  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
 | 
						|
    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
 | 
						|
 | 
						|
  // strcmp(P, "x") -> memcmp(P, "x", 2)
 | 
						|
  uint64_t Len1 = GetStringLength(Str1P);
 | 
						|
  uint64_t Len2 = GetStringLength(Str2P);
 | 
						|
  if (Len1 && Len2) {
 | 
						|
    return emitMemCmp(Str1P, Str2P,
 | 
						|
                      ConstantInt::get(DL.getIntPtrType(CI->getContext()),
 | 
						|
                                       std::min(Len1, Len2)),
 | 
						|
                      B, DL, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
 | 
						|
  if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
 | 
						|
    return ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
  // Get the length argument if it is constant.
 | 
						|
  uint64_t Length;
 | 
						|
  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
 | 
						|
    Length = LengthArg->getZExtValue();
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Length == 0) // strncmp(x,y,0)   -> 0
 | 
						|
    return ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
  if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
 | 
						|
    return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
 | 
						|
 | 
						|
  StringRef Str1, Str2;
 | 
						|
  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
 | 
						|
  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
 | 
						|
 | 
						|
  // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
 | 
						|
  if (HasStr1 && HasStr2) {
 | 
						|
    StringRef SubStr1 = Str1.substr(0, Length);
 | 
						|
    StringRef SubStr2 = Str2.substr(0, Length);
 | 
						|
    return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
 | 
						|
  }
 | 
						|
 | 
						|
  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
 | 
						|
    return B.CreateNeg(
 | 
						|
        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
 | 
						|
 | 
						|
  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
 | 
						|
    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
 | 
						|
  if (Dst == Src) // strcpy(x,x)  -> x
 | 
						|
    return Src;
 | 
						|
 | 
						|
  // See if we can get the length of the input string.
 | 
						|
  uint64_t Len = GetStringLength(Src);
 | 
						|
  if (Len == 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We have enough information to now generate the memcpy call to do the
 | 
						|
  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
 | 
						|
  B.CreateMemCpy(Dst, Src,
 | 
						|
                 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
 | 
						|
  return Dst;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
 | 
						|
  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
 | 
						|
    Value *StrLen = emitStrLen(Src, B, DL, TLI);
 | 
						|
    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we can get the length of the input string.
 | 
						|
  uint64_t Len = GetStringLength(Src);
 | 
						|
  if (Len == 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *PT = Callee->getFunctionType()->getParamType(0);
 | 
						|
  Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
 | 
						|
  Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
 | 
						|
                              ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
 | 
						|
 | 
						|
  // We have enough information to now generate the memcpy call to do the
 | 
						|
  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
 | 
						|
  B.CreateMemCpy(Dst, Src, LenV, 1);
 | 
						|
  return DstEnd;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Dst = CI->getArgOperand(0);
 | 
						|
  Value *Src = CI->getArgOperand(1);
 | 
						|
  Value *LenOp = CI->getArgOperand(2);
 | 
						|
 | 
						|
  // See if we can get the length of the input string.
 | 
						|
  uint64_t SrcLen = GetStringLength(Src);
 | 
						|
  if (SrcLen == 0)
 | 
						|
    return nullptr;
 | 
						|
  --SrcLen;
 | 
						|
 | 
						|
  if (SrcLen == 0) {
 | 
						|
    // strncpy(x, "", y) -> memset(x, '\0', y, 1)
 | 
						|
    B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
 | 
						|
    return Dst;
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t Len;
 | 
						|
  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
 | 
						|
    Len = LengthArg->getZExtValue();
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Len == 0)
 | 
						|
    return Dst; // strncpy(x, y, 0) -> x
 | 
						|
 | 
						|
  // Let strncpy handle the zero padding
 | 
						|
  if (Len > SrcLen + 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *PT = Callee->getFunctionType()->getParamType(0);
 | 
						|
  // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
 | 
						|
  B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
 | 
						|
 | 
						|
  return Dst;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Value *Src = CI->getArgOperand(0);
 | 
						|
 | 
						|
  // Constant folding: strlen("xyz") -> 3
 | 
						|
  if (uint64_t Len = GetStringLength(Src))
 | 
						|
    return ConstantInt::get(CI->getType(), Len - 1);
 | 
						|
 | 
						|
  // If s is a constant pointer pointing to a string literal, we can fold
 | 
						|
  // strlen(s + x) to strlen(s) - x, when x is known to be in the range 
 | 
						|
  // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
 | 
						|
  // We only try to simplify strlen when the pointer s points to an array 
 | 
						|
  // of i8. Otherwise, we would need to scale the offset x before doing the
 | 
						|
  // subtraction. This will make the optimization more complex, and it's not 
 | 
						|
  // very useful because calling strlen for a pointer of other types is 
 | 
						|
  // very uncommon.
 | 
						|
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
 | 
						|
    if (!isGEPBasedOnPointerToString(GEP))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    StringRef Str;
 | 
						|
    if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) {
 | 
						|
      size_t NullTermIdx = Str.find('\0');
 | 
						|
      
 | 
						|
      // If the string does not have '\0', leave it to strlen to compute
 | 
						|
      // its length.
 | 
						|
      if (NullTermIdx == StringRef::npos)
 | 
						|
        return nullptr;
 | 
						|
     
 | 
						|
      Value *Offset = GEP->getOperand(2);
 | 
						|
      unsigned BitWidth = Offset->getType()->getIntegerBitWidth();
 | 
						|
      APInt KnownZero(BitWidth, 0);
 | 
						|
      APInt KnownOne(BitWidth, 0);
 | 
						|
      computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI, 
 | 
						|
                       nullptr);
 | 
						|
      KnownZero.flipAllBits();
 | 
						|
      size_t ArrSize = 
 | 
						|
             cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
 | 
						|
 | 
						|
      // KnownZero's bits are flipped, so zeros in KnownZero now represent 
 | 
						|
      // bits known to be zeros in Offset, and ones in KnowZero represent 
 | 
						|
      // bits unknown in Offset. Therefore, Offset is known to be in range
 | 
						|
      // [0, NullTermIdx] when the flipped KnownZero is non-negative and 
 | 
						|
      // unsigned-less-than NullTermIdx.
 | 
						|
      //
 | 
						|
      // If Offset is not provably in the range [0, NullTermIdx], we can still 
 | 
						|
      // optimize if we can prove that the program has undefined behavior when 
 | 
						|
      // Offset is outside that range. That is the case when GEP->getOperand(0) 
 | 
						|
      // is a pointer to an object whose memory extent is NullTermIdx+1.
 | 
						|
      if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) || 
 | 
						|
          (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
 | 
						|
           NullTermIdx == ArrSize - 1))
 | 
						|
        return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 
 | 
						|
                           Offset);
 | 
						|
    }
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // strlen(x?"foo":"bars") --> x ? 3 : 4
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
 | 
						|
    uint64_t LenTrue = GetStringLength(SI->getTrueValue());
 | 
						|
    uint64_t LenFalse = GetStringLength(SI->getFalseValue());
 | 
						|
    if (LenTrue && LenFalse) {
 | 
						|
      Function *Caller = CI->getParent()->getParent();
 | 
						|
      emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
 | 
						|
                             SI->getDebugLoc(),
 | 
						|
                             "folded strlen(select) to select of constants");
 | 
						|
      return B.CreateSelect(SI->getCondition(),
 | 
						|
                            ConstantInt::get(CI->getType(), LenTrue - 1),
 | 
						|
                            ConstantInt::get(CI->getType(), LenFalse - 1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // strlen(x) != 0 --> *x != 0
 | 
						|
  // strlen(x) == 0 --> *x == 0
 | 
						|
  if (isOnlyUsedInZeroEqualityComparison(CI))
 | 
						|
    return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  StringRef S1, S2;
 | 
						|
  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | 
						|
  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | 
						|
 | 
						|
  // strpbrk(s, "") -> nullptr
 | 
						|
  // strpbrk("", s) -> nullptr
 | 
						|
  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // Constant folding.
 | 
						|
  if (HasS1 && HasS2) {
 | 
						|
    size_t I = S1.find_first_of(S2);
 | 
						|
    if (I == StringRef::npos) // No match.
 | 
						|
      return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
    return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
 | 
						|
                       "strpbrk");
 | 
						|
  }
 | 
						|
 | 
						|
  // strpbrk(s, "a") -> strchr(s, 'a')
 | 
						|
  if (HasS2 && S2.size() == 1)
 | 
						|
    return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Value *EndPtr = CI->getArgOperand(1);
 | 
						|
  if (isa<ConstantPointerNull>(EndPtr)) {
 | 
						|
    // With a null EndPtr, this function won't capture the main argument.
 | 
						|
    // It would be readonly too, except that it still may write to errno.
 | 
						|
    CI->addAttribute(1, Attribute::NoCapture);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  StringRef S1, S2;
 | 
						|
  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | 
						|
  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | 
						|
 | 
						|
  // strspn(s, "") -> 0
 | 
						|
  // strspn("", s) -> 0
 | 
						|
  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // Constant folding.
 | 
						|
  if (HasS1 && HasS2) {
 | 
						|
    size_t Pos = S1.find_first_not_of(S2);
 | 
						|
    if (Pos == StringRef::npos)
 | 
						|
      Pos = S1.size();
 | 
						|
    return ConstantInt::get(CI->getType(), Pos);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  StringRef S1, S2;
 | 
						|
  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | 
						|
  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | 
						|
 | 
						|
  // strcspn("", s) -> 0
 | 
						|
  if (HasS1 && S1.empty())
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // Constant folding.
 | 
						|
  if (HasS1 && HasS2) {
 | 
						|
    size_t Pos = S1.find_first_of(S2);
 | 
						|
    if (Pos == StringRef::npos)
 | 
						|
      Pos = S1.size();
 | 
						|
    return ConstantInt::get(CI->getType(), Pos);
 | 
						|
  }
 | 
						|
 | 
						|
  // strcspn(s, "") -> strlen(s)
 | 
						|
  if (HasS2 && S2.empty())
 | 
						|
    return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // fold strstr(x, x) -> x.
 | 
						|
  if (CI->getArgOperand(0) == CI->getArgOperand(1))
 | 
						|
    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
 | 
						|
 | 
						|
  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
 | 
						|
  if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
 | 
						|
    Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
 | 
						|
    if (!StrLen)
 | 
						|
      return nullptr;
 | 
						|
    Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                                 StrLen, B, DL, TLI);
 | 
						|
    if (!StrNCmp)
 | 
						|
      return nullptr;
 | 
						|
    for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
 | 
						|
      ICmpInst *Old = cast<ICmpInst>(*UI++);
 | 
						|
      Value *Cmp =
 | 
						|
          B.CreateICmp(Old->getPredicate(), StrNCmp,
 | 
						|
                       ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
 | 
						|
      replaceAllUsesWith(Old, Cmp);
 | 
						|
    }
 | 
						|
    return CI;
 | 
						|
  }
 | 
						|
 | 
						|
  // See if either input string is a constant string.
 | 
						|
  StringRef SearchStr, ToFindStr;
 | 
						|
  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
 | 
						|
  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
 | 
						|
 | 
						|
  // fold strstr(x, "") -> x.
 | 
						|
  if (HasStr2 && ToFindStr.empty())
 | 
						|
    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
 | 
						|
 | 
						|
  // If both strings are known, constant fold it.
 | 
						|
  if (HasStr1 && HasStr2) {
 | 
						|
    size_t Offset = SearchStr.find(ToFindStr);
 | 
						|
 | 
						|
    if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
 | 
						|
      return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
    // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
 | 
						|
    Value *Result = castToCStr(CI->getArgOperand(0), B);
 | 
						|
    Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
 | 
						|
    return B.CreateBitCast(Result, CI->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // fold strstr(x, "y") -> strchr(x, 'y').
 | 
						|
  if (HasStr2 && ToFindStr.size() == 1) {
 | 
						|
    Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
 | 
						|
    return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Value *SrcStr = CI->getArgOperand(0);
 | 
						|
  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | 
						|
  ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | 
						|
 | 
						|
  // memchr(x, y, 0) -> null
 | 
						|
  if (LenC && LenC->isNullValue())
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // From now on we need at least constant length and string.
 | 
						|
  StringRef Str;
 | 
						|
  if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Truncate the string to LenC. If Str is smaller than LenC we will still only
 | 
						|
  // scan the string, as reading past the end of it is undefined and we can just
 | 
						|
  // return null if we don't find the char.
 | 
						|
  Str = Str.substr(0, LenC->getZExtValue());
 | 
						|
 | 
						|
  // If the char is variable but the input str and length are not we can turn
 | 
						|
  // this memchr call into a simple bit field test. Of course this only works
 | 
						|
  // when the return value is only checked against null.
 | 
						|
  //
 | 
						|
  // It would be really nice to reuse switch lowering here but we can't change
 | 
						|
  // the CFG at this point.
 | 
						|
  //
 | 
						|
  // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
 | 
						|
  //   after bounds check.
 | 
						|
  if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
 | 
						|
    unsigned char Max =
 | 
						|
        *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
 | 
						|
                          reinterpret_cast<const unsigned char *>(Str.end()));
 | 
						|
 | 
						|
    // Make sure the bit field we're about to create fits in a register on the
 | 
						|
    // target.
 | 
						|
    // FIXME: On a 64 bit architecture this prevents us from using the
 | 
						|
    // interesting range of alpha ascii chars. We could do better by emitting
 | 
						|
    // two bitfields or shifting the range by 64 if no lower chars are used.
 | 
						|
    if (!DL.fitsInLegalInteger(Max + 1))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // For the bit field use a power-of-2 type with at least 8 bits to avoid
 | 
						|
    // creating unnecessary illegal types.
 | 
						|
    unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
 | 
						|
 | 
						|
    // Now build the bit field.
 | 
						|
    APInt Bitfield(Width, 0);
 | 
						|
    for (char C : Str)
 | 
						|
      Bitfield.setBit((unsigned char)C);
 | 
						|
    Value *BitfieldC = B.getInt(Bitfield);
 | 
						|
 | 
						|
    // First check that the bit field access is within bounds.
 | 
						|
    Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
 | 
						|
    Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
 | 
						|
                                 "memchr.bounds");
 | 
						|
 | 
						|
    // Create code that checks if the given bit is set in the field.
 | 
						|
    Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
 | 
						|
    Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
 | 
						|
 | 
						|
    // Finally merge both checks and cast to pointer type. The inttoptr
 | 
						|
    // implicitly zexts the i1 to intptr type.
 | 
						|
    return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if all arguments are constants.  If so, we can constant fold.
 | 
						|
  if (!CharC)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Compute the offset.
 | 
						|
  size_t I = Str.find(CharC->getSExtValue() & 0xFF);
 | 
						|
  if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // memchr(s+n,c,l) -> gep(s+n+i,c)
 | 
						|
  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
 | 
						|
 | 
						|
  if (LHS == RHS) // memcmp(s,s,x) -> 0
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // Make sure we have a constant length.
 | 
						|
  ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | 
						|
  if (!LenC)
 | 
						|
    return nullptr;
 | 
						|
  uint64_t Len = LenC->getZExtValue();
 | 
						|
 | 
						|
  if (Len == 0) // memcmp(s1,s2,0) -> 0
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
 | 
						|
  if (Len == 1) {
 | 
						|
    Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
 | 
						|
                               CI->getType(), "lhsv");
 | 
						|
    Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
 | 
						|
                               CI->getType(), "rhsv");
 | 
						|
    return B.CreateSub(LHSV, RHSV, "chardiff");
 | 
						|
  }
 | 
						|
 | 
						|
  // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
 | 
						|
  if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
 | 
						|
 | 
						|
    IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
 | 
						|
    unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
 | 
						|
 | 
						|
    if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
 | 
						|
        getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
 | 
						|
 | 
						|
      Type *LHSPtrTy =
 | 
						|
          IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
 | 
						|
      Type *RHSPtrTy =
 | 
						|
          IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
 | 
						|
 | 
						|
      Value *LHSV =
 | 
						|
          B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
 | 
						|
      Value *RHSV =
 | 
						|
          B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
 | 
						|
 | 
						|
      return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
 | 
						|
  StringRef LHSStr, RHSStr;
 | 
						|
  if (getConstantStringInfo(LHS, LHSStr) &&
 | 
						|
      getConstantStringInfo(RHS, RHSStr)) {
 | 
						|
    // Make sure we're not reading out-of-bounds memory.
 | 
						|
    if (Len > LHSStr.size() || Len > RHSStr.size())
 | 
						|
      return nullptr;
 | 
						|
    // Fold the memcmp and normalize the result.  This way we get consistent
 | 
						|
    // results across multiple platforms.
 | 
						|
    uint64_t Ret = 0;
 | 
						|
    int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
 | 
						|
    if (Cmp < 0)
 | 
						|
      Ret = -1;
 | 
						|
    else if (Cmp > 0)
 | 
						|
      Ret = 1;
 | 
						|
    return ConstantInt::get(CI->getType(), Ret);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
 | 
						|
  B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                 CI->getArgOperand(2), 1);
 | 
						|
  return CI->getArgOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
 | 
						|
  B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                  CI->getArgOperand(2), 1);
 | 
						|
  return CI->getArgOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
// TODO: Does this belong in BuildLibCalls or should all of those similar
 | 
						|
// functions be moved here?
 | 
						|
static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs,
 | 
						|
                         IRBuilder<> &B, const TargetLibraryInfo &TLI) {
 | 
						|
  LibFunc::Func Func;
 | 
						|
  if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Module *M = B.GetInsertBlock()->getModule();
 | 
						|
  const DataLayout &DL = M->getDataLayout();
 | 
						|
  IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
 | 
						|
  Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
 | 
						|
                                         PtrType, PtrType, nullptr);
 | 
						|
  CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
 | 
						|
 | 
						|
  if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
 | 
						|
    CI->setCallingConv(F->getCallingConv());
 | 
						|
 | 
						|
  return CI;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
 | 
						|
static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
 | 
						|
                               const TargetLibraryInfo &TLI) {
 | 
						|
  // This has to be a memset of zeros (bzero).
 | 
						|
  auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
 | 
						|
  if (!FillValue || FillValue->getZExtValue() != 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // TODO: We should handle the case where the malloc has more than one use.
 | 
						|
  // This is necessary to optimize common patterns such as when the result of
 | 
						|
  // the malloc is checked against null or when a memset intrinsic is used in
 | 
						|
  // place of a memset library call.
 | 
						|
  auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
 | 
						|
  if (!Malloc || !Malloc->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Is the inner call really malloc()?
 | 
						|
  Function *InnerCallee = Malloc->getCalledFunction();
 | 
						|
  LibFunc::Func Func;
 | 
						|
  if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
 | 
						|
      Func != LibFunc::malloc)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The memset must cover the same number of bytes that are malloc'd.
 | 
						|
  if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Replace the malloc with a calloc. We need the data layout to know what the
 | 
						|
  // actual size of a 'size_t' parameter is. 
 | 
						|
  B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
 | 
						|
  const DataLayout &DL = Malloc->getModule()->getDataLayout();
 | 
						|
  IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
 | 
						|
  Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
 | 
						|
                             Malloc->getArgOperand(0), Malloc->getAttributes(),
 | 
						|
                             B, TLI);
 | 
						|
  if (!Calloc)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Malloc->replaceAllUsesWith(Calloc);
 | 
						|
  Malloc->eraseFromParent();
 | 
						|
 | 
						|
  return Calloc;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
 | 
						|
    return Calloc;
 | 
						|
 | 
						|
  // memset(p, v, n) -> llvm.memset(p, v, n, 1)
 | 
						|
  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
 | 
						|
  B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
 | 
						|
  return CI->getArgOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Math Library Optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Return a variant of Val with float type.
 | 
						|
/// Currently this works in two cases: If Val is an FPExtension of a float
 | 
						|
/// value to something bigger, simply return the operand.
 | 
						|
/// If Val is a ConstantFP but can be converted to a float ConstantFP without
 | 
						|
/// loss of precision do so.
 | 
						|
static Value *valueHasFloatPrecision(Value *Val) {
 | 
						|
  if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
 | 
						|
    Value *Op = Cast->getOperand(0);
 | 
						|
    if (Op->getType()->isFloatTy())
 | 
						|
      return Op;
 | 
						|
  }
 | 
						|
  if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
 | 
						|
    APFloat F = Const->getValueAPF();
 | 
						|
    bool losesInfo;
 | 
						|
    (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
 | 
						|
                    &losesInfo);
 | 
						|
    if (!losesInfo)
 | 
						|
      return ConstantFP::get(Const->getContext(), F);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Shrink double -> float for unary functions like 'floor'.
 | 
						|
static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
 | 
						|
                                    bool CheckRetType) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  // We know this libcall has a valid prototype, but we don't know which.
 | 
						|
  if (!CI->getType()->isDoubleTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (CheckRetType) {
 | 
						|
    // Check if all the uses for function like 'sin' are converted to float.
 | 
						|
    for (User *U : CI->users()) {
 | 
						|
      FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
 | 
						|
      if (!Cast || !Cast->getType()->isFloatTy())
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is something like 'floor((double)floatval)', convert to floorf.
 | 
						|
  Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
 | 
						|
  if (V == nullptr)
 | 
						|
    return nullptr;
 | 
						|
  
 | 
						|
  // Propagate fast-math flags from the existing call to the new call.
 | 
						|
  IRBuilder<>::FastMathFlagGuard Guard(B);
 | 
						|
  B.setFastMathFlags(CI->getFastMathFlags());
 | 
						|
 | 
						|
  // floor((double)floatval) -> (double)floorf(floatval)
 | 
						|
  if (Callee->isIntrinsic()) {
 | 
						|
    Module *M = CI->getModule();
 | 
						|
    Intrinsic::ID IID = Callee->getIntrinsicID();
 | 
						|
    Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
 | 
						|
    V = B.CreateCall(F, V);
 | 
						|
  } else {
 | 
						|
    // The call is a library call rather than an intrinsic.
 | 
						|
    V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
 | 
						|
  }
 | 
						|
 | 
						|
  return B.CreateFPExt(V, B.getDoubleTy());
 | 
						|
}
 | 
						|
 | 
						|
/// Shrink double -> float for binary functions like 'fmin/fmax'.
 | 
						|
static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  // We know this libcall has a valid prototype, but we don't know which.
 | 
						|
  if (!CI->getType()->isDoubleTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If this is something like 'fmin((double)floatval1, (double)floatval2)',
 | 
						|
  // or fmin(1.0, (double)floatval), then we convert it to fminf.
 | 
						|
  Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
 | 
						|
  if (V1 == nullptr)
 | 
						|
    return nullptr;
 | 
						|
  Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
 | 
						|
  if (V2 == nullptr)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Propagate fast-math flags from the existing call to the new call.
 | 
						|
  IRBuilder<>::FastMathFlagGuard Guard(B);
 | 
						|
  B.setFastMathFlags(CI->getFastMathFlags());
 | 
						|
 | 
						|
  // fmin((double)floatval1, (double)floatval2)
 | 
						|
  //                      -> (double)fminf(floatval1, floatval2)
 | 
						|
  // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
 | 
						|
  Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
 | 
						|
                                   Callee->getAttributes());
 | 
						|
  return B.CreateFPExt(V, B.getDoubleTy());
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
 | 
						|
    Ret = optimizeUnaryDoubleFP(CI, B, true);
 | 
						|
 | 
						|
  // cos(-x) -> cos(x)
 | 
						|
  Value *Op1 = CI->getArgOperand(0);
 | 
						|
  if (BinaryOperator::isFNeg(Op1)) {
 | 
						|
    BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
 | 
						|
    return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
 | 
						|
  }
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
 | 
						|
  // Multiplications calculated using Addition Chains.
 | 
						|
  // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
 | 
						|
 | 
						|
  assert(Exp != 0 && "Incorrect exponent 0 not handled");
 | 
						|
 | 
						|
  if (InnerChain[Exp])
 | 
						|
    return InnerChain[Exp];
 | 
						|
 | 
						|
  static const unsigned AddChain[33][2] = {
 | 
						|
      {0, 0}, // Unused.
 | 
						|
      {0, 0}, // Unused (base case = pow1).
 | 
						|
      {1, 1}, // Unused (pre-computed).
 | 
						|
      {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
 | 
						|
      {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
 | 
						|
      {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
 | 
						|
      {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
 | 
						|
      {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
 | 
						|
  };
 | 
						|
 | 
						|
  InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
 | 
						|
                                 getPow(InnerChain, AddChain[Exp][1], B));
 | 
						|
  return InnerChain[Exp];
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
 | 
						|
    Ret = optimizeUnaryDoubleFP(CI, B, true);
 | 
						|
 | 
						|
  Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
 | 
						|
 | 
						|
  // pow(1.0, x) -> 1.0
 | 
						|
  if (match(Op1, m_SpecificFP(1.0)))
 | 
						|
    return Op1;
 | 
						|
  // pow(2.0, x) -> llvm.exp2(x)
 | 
						|
  if (match(Op1, m_SpecificFP(2.0))) {
 | 
						|
    Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
 | 
						|
                                            CI->getType());
 | 
						|
    return B.CreateCall(Exp2, Op2, "exp2");
 | 
						|
  }
 | 
						|
 | 
						|
  // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
 | 
						|
  // be one.
 | 
						|
  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
 | 
						|
    // pow(10.0, x) -> exp10(x)
 | 
						|
    if (Op1C->isExactlyValue(10.0) &&
 | 
						|
        hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
 | 
						|
                        LibFunc::exp10l))
 | 
						|
      return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
 | 
						|
                                  Callee->getAttributes());
 | 
						|
  }
 | 
						|
 | 
						|
  // pow(exp(x), y) -> exp(x * y)
 | 
						|
  // pow(exp2(x), y) -> exp2(x * y)
 | 
						|
  // We enable these only with fast-math. Besides rounding differences, the
 | 
						|
  // transformation changes overflow and underflow behavior quite dramatically.
 | 
						|
  // Example: x = 1000, y = 0.001.
 | 
						|
  // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
 | 
						|
  auto *OpC = dyn_cast<CallInst>(Op1);
 | 
						|
  if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
 | 
						|
    LibFunc::Func Func;
 | 
						|
    Function *OpCCallee = OpC->getCalledFunction();
 | 
						|
    if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
 | 
						|
        TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) {
 | 
						|
      IRBuilder<>::FastMathFlagGuard Guard(B);
 | 
						|
      B.setFastMathFlags(CI->getFastMathFlags());
 | 
						|
      Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
 | 
						|
      return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
 | 
						|
                                  OpCCallee->getAttributes());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
 | 
						|
  if (!Op2C)
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
 | 
						|
    return ConstantFP::get(CI->getType(), 1.0);
 | 
						|
 | 
						|
  if (Op2C->isExactlyValue(0.5) &&
 | 
						|
      hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
 | 
						|
                      LibFunc::sqrtl) &&
 | 
						|
      hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
 | 
						|
                      LibFunc::fabsl)) {
 | 
						|
 | 
						|
    // In -ffast-math, pow(x, 0.5) -> sqrt(x).
 | 
						|
    if (CI->hasUnsafeAlgebra()) {
 | 
						|
      IRBuilder<>::FastMathFlagGuard Guard(B);
 | 
						|
      B.setFastMathFlags(CI->getFastMathFlags());
 | 
						|
 | 
						|
      // Unlike other math intrinsics, sqrt has differerent semantics
 | 
						|
      // from the libc function. See LangRef for details.
 | 
						|
      return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
 | 
						|
                                  Callee->getAttributes());
 | 
						|
    }
 | 
						|
 | 
						|
    // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
 | 
						|
    // This is faster than calling pow, and still handles negative zero
 | 
						|
    // and negative infinity correctly.
 | 
						|
    // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
 | 
						|
    Value *Inf = ConstantFP::getInfinity(CI->getType());
 | 
						|
    Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
 | 
						|
    Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
 | 
						|
    Value *FAbs =
 | 
						|
        emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
 | 
						|
    Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
 | 
						|
    Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
 | 
						|
    return Sel;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
 | 
						|
    return Op1;
 | 
						|
  if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
 | 
						|
    return B.CreateFMul(Op1, Op1, "pow2");
 | 
						|
  if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
 | 
						|
    return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
 | 
						|
 | 
						|
  // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
 | 
						|
  if (CI->hasUnsafeAlgebra()) {
 | 
						|
    APFloat V = abs(Op2C->getValueAPF());
 | 
						|
    // We limit to a max of 7 fmul(s). Thus max exponent is 32.
 | 
						|
    // This transformation applies to integer exponents only.
 | 
						|
    if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
 | 
						|
        !V.isInteger())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // We will memoize intermediate products of the Addition Chain.
 | 
						|
    Value *InnerChain[33] = {nullptr};
 | 
						|
    InnerChain[1] = Op1;
 | 
						|
    InnerChain[2] = B.CreateFMul(Op1, Op1);
 | 
						|
 | 
						|
    // We cannot readily convert a non-double type (like float) to a double.
 | 
						|
    // So we first convert V to something which could be converted to double.
 | 
						|
    bool ignored;
 | 
						|
    V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
 | 
						|
    
 | 
						|
    // TODO: Should the new instructions propagate the 'fast' flag of the pow()?
 | 
						|
    Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
 | 
						|
    // For negative exponents simply compute the reciprocal.
 | 
						|
    if (Op2C->isNegative())
 | 
						|
      FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
 | 
						|
    return FMul;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
 | 
						|
    Ret = optimizeUnaryDoubleFP(CI, B, true);
 | 
						|
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
 | 
						|
  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
 | 
						|
  LibFunc::Func LdExp = LibFunc::ldexpl;
 | 
						|
  if (Op->getType()->isFloatTy())
 | 
						|
    LdExp = LibFunc::ldexpf;
 | 
						|
  else if (Op->getType()->isDoubleTy())
 | 
						|
    LdExp = LibFunc::ldexp;
 | 
						|
 | 
						|
  if (TLI->has(LdExp)) {
 | 
						|
    Value *LdExpArg = nullptr;
 | 
						|
    if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
 | 
						|
      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
 | 
						|
        LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
 | 
						|
    } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
 | 
						|
      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
 | 
						|
        LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
 | 
						|
    }
 | 
						|
 | 
						|
    if (LdExpArg) {
 | 
						|
      Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
 | 
						|
      if (!Op->getType()->isFloatTy())
 | 
						|
        One = ConstantExpr::getFPExtend(One, Op->getType());
 | 
						|
 | 
						|
      Module *M = CI->getModule();
 | 
						|
      Value *NewCallee =
 | 
						|
          M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
 | 
						|
                                 Op->getType(), B.getInt32Ty(), nullptr);
 | 
						|
      CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
 | 
						|
      if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
 | 
						|
        CI->setCallingConv(F->getCallingConv());
 | 
						|
 | 
						|
      return CI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  if (Name == "fabs" && hasFloatVersion(Name))
 | 
						|
    Ret = optimizeUnaryDoubleFP(CI, B, false);
 | 
						|
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(Op)) {
 | 
						|
    // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
 | 
						|
    if (I->getOpcode() == Instruction::FMul)
 | 
						|
      if (I->getOperand(0) == I->getOperand(1))
 | 
						|
        return Op;
 | 
						|
  }
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  // If we can shrink the call to a float function rather than a double
 | 
						|
  // function, do that first.
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
 | 
						|
    if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
 | 
						|
      return Ret;
 | 
						|
 | 
						|
  IRBuilder<>::FastMathFlagGuard Guard(B);
 | 
						|
  FastMathFlags FMF;
 | 
						|
  if (CI->hasUnsafeAlgebra()) {
 | 
						|
    // Unsafe algebra sets all fast-math-flags to true.
 | 
						|
    FMF.setUnsafeAlgebra();
 | 
						|
  } else {
 | 
						|
    // At a minimum, no-nans-fp-math must be true.
 | 
						|
    if (!CI->hasNoNaNs())
 | 
						|
      return nullptr;
 | 
						|
    // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
 | 
						|
    // "Ideally, fmax would be sensitive to the sign of zero, for example
 | 
						|
    // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
 | 
						|
    // might be impractical."
 | 
						|
    FMF.setNoSignedZeros();
 | 
						|
    FMF.setNoNaNs();
 | 
						|
  }
 | 
						|
  B.setFastMathFlags(FMF);
 | 
						|
 | 
						|
  // We have a relaxed floating-point environment. We can ignore NaN-handling
 | 
						|
  // and transform to a compare and select. We do not have to consider errno or
 | 
						|
  // exceptions, because fmin/fmax do not have those.
 | 
						|
  Value *Op0 = CI->getArgOperand(0);
 | 
						|
  Value *Op1 = CI->getArgOperand(1);
 | 
						|
  Value *Cmp = Callee->getName().startswith("fmin") ?
 | 
						|
    B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
 | 
						|
  return B.CreateSelect(Cmp, Op0, Op1);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  if (UnsafeFPShrink && hasFloatVersion(Name))
 | 
						|
    Ret = optimizeUnaryDoubleFP(CI, B, true);
 | 
						|
 | 
						|
  if (!CI->hasUnsafeAlgebra())
 | 
						|
    return Ret;
 | 
						|
  Value *Op1 = CI->getArgOperand(0);
 | 
						|
  auto *OpC = dyn_cast<CallInst>(Op1);
 | 
						|
 | 
						|
  // The earlier call must also be unsafe in order to do these transforms.
 | 
						|
  if (!OpC || !OpC->hasUnsafeAlgebra())
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // log(pow(x,y)) -> y*log(x)
 | 
						|
  // This is only applicable to log, log2, log10.
 | 
						|
  if (Name != "log" && Name != "log2" && Name != "log10")
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  IRBuilder<>::FastMathFlagGuard Guard(B);
 | 
						|
  FastMathFlags FMF;
 | 
						|
  FMF.setUnsafeAlgebra();
 | 
						|
  B.setFastMathFlags(FMF);
 | 
						|
 | 
						|
  LibFunc::Func Func;
 | 
						|
  Function *F = OpC->getCalledFunction();
 | 
						|
  if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
 | 
						|
      Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow))
 | 
						|
    return B.CreateFMul(OpC->getArgOperand(1),
 | 
						|
      emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
 | 
						|
                           Callee->getAttributes()), "mul");
 | 
						|
 | 
						|
  // log(exp2(y)) -> y*log(2)
 | 
						|
  if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
 | 
						|
      TLI->has(Func) && Func == LibFunc::exp2)
 | 
						|
    return B.CreateFMul(
 | 
						|
        OpC->getArgOperand(0),
 | 
						|
        emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
 | 
						|
                             Callee->getName(), B, Callee->getAttributes()),
 | 
						|
        "logmul");
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
  if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
 | 
						|
                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
 | 
						|
    Ret = optimizeUnaryDoubleFP(CI, B, true);
 | 
						|
 | 
						|
  if (!CI->hasUnsafeAlgebra())
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
 | 
						|
  if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // We're looking for a repeated factor in a multiplication tree,
 | 
						|
  // so we can do this fold: sqrt(x * x) -> fabs(x);
 | 
						|
  // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
 | 
						|
  Value *Op0 = I->getOperand(0);
 | 
						|
  Value *Op1 = I->getOperand(1);
 | 
						|
  Value *RepeatOp = nullptr;
 | 
						|
  Value *OtherOp = nullptr;
 | 
						|
  if (Op0 == Op1) {
 | 
						|
    // Simple match: the operands of the multiply are identical.
 | 
						|
    RepeatOp = Op0;
 | 
						|
  } else {
 | 
						|
    // Look for a more complicated pattern: one of the operands is itself
 | 
						|
    // a multiply, so search for a common factor in that multiply.
 | 
						|
    // Note: We don't bother looking any deeper than this first level or for
 | 
						|
    // variations of this pattern because instcombine's visitFMUL and/or the
 | 
						|
    // reassociation pass should give us this form.
 | 
						|
    Value *OtherMul0, *OtherMul1;
 | 
						|
    if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
 | 
						|
      // Pattern: sqrt((x * y) * z)
 | 
						|
      if (OtherMul0 == OtherMul1 &&
 | 
						|
          cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
 | 
						|
        // Matched: sqrt((x * x) * z)
 | 
						|
        RepeatOp = OtherMul0;
 | 
						|
        OtherOp = Op1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!RepeatOp)
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // Fast math flags for any created instructions should match the sqrt
 | 
						|
  // and multiply.
 | 
						|
  IRBuilder<>::FastMathFlagGuard Guard(B);
 | 
						|
  B.setFastMathFlags(I->getFastMathFlags());
 | 
						|
 | 
						|
  // If we found a repeated factor, hoist it out of the square root and
 | 
						|
  // replace it with the fabs of that factor.
 | 
						|
  Module *M = Callee->getParent();
 | 
						|
  Type *ArgType = I->getType();
 | 
						|
  Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
 | 
						|
  Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
 | 
						|
  if (OtherOp) {
 | 
						|
    // If we found a non-repeated factor, we still need to get its square
 | 
						|
    // root. We then multiply that by the value that was simplified out
 | 
						|
    // of the square root calculation.
 | 
						|
    Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
 | 
						|
    Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
 | 
						|
    return B.CreateFMul(FabsCall, SqrtCall);
 | 
						|
  }
 | 
						|
  return FabsCall;
 | 
						|
}
 | 
						|
 | 
						|
// TODO: Generalize to handle any trig function and its inverse.
 | 
						|
Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
 | 
						|
    Ret = optimizeUnaryDoubleFP(CI, B, true);
 | 
						|
 | 
						|
  Value *Op1 = CI->getArgOperand(0);
 | 
						|
  auto *OpC = dyn_cast<CallInst>(Op1);
 | 
						|
  if (!OpC)
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // Both calls must allow unsafe optimizations in order to remove them.
 | 
						|
  if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // tan(atan(x)) -> x
 | 
						|
  // tanf(atanf(x)) -> x
 | 
						|
  // tanl(atanl(x)) -> x
 | 
						|
  LibFunc::Func Func;
 | 
						|
  Function *F = OpC->getCalledFunction();
 | 
						|
  if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
 | 
						|
      ((Func == LibFunc::atan && Callee->getName() == "tan") ||
 | 
						|
       (Func == LibFunc::atanf && Callee->getName() == "tanf") ||
 | 
						|
       (Func == LibFunc::atanl && Callee->getName() == "tanl")))
 | 
						|
    Ret = OpC->getArgOperand(0);
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool isTrigLibCall(CallInst *CI) {
 | 
						|
  // We can only hope to do anything useful if we can ignore things like errno
 | 
						|
  // and floating-point exceptions.
 | 
						|
  // We already checked the prototype.
 | 
						|
  return CI->hasFnAttr(Attribute::NoUnwind) &&
 | 
						|
         CI->hasFnAttr(Attribute::ReadNone);
 | 
						|
}
 | 
						|
 | 
						|
static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
 | 
						|
                             bool UseFloat, Value *&Sin, Value *&Cos,
 | 
						|
                             Value *&SinCos) {
 | 
						|
  Type *ArgTy = Arg->getType();
 | 
						|
  Type *ResTy;
 | 
						|
  StringRef Name;
 | 
						|
 | 
						|
  Triple T(OrigCallee->getParent()->getTargetTriple());
 | 
						|
  if (UseFloat) {
 | 
						|
    Name = "__sincospif_stret";
 | 
						|
 | 
						|
    assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
 | 
						|
    // x86_64 can't use {float, float} since that would be returned in both
 | 
						|
    // xmm0 and xmm1, which isn't what a real struct would do.
 | 
						|
    ResTy = T.getArch() == Triple::x86_64
 | 
						|
    ? static_cast<Type *>(VectorType::get(ArgTy, 2))
 | 
						|
    : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
 | 
						|
  } else {
 | 
						|
    Name = "__sincospi_stret";
 | 
						|
    ResTy = StructType::get(ArgTy, ArgTy, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  Module *M = OrigCallee->getParent();
 | 
						|
  Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
 | 
						|
                                         ResTy, ArgTy, nullptr);
 | 
						|
 | 
						|
  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
 | 
						|
    // If the argument is an instruction, it must dominate all uses so put our
 | 
						|
    // sincos call there.
 | 
						|
    B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
 | 
						|
  } else {
 | 
						|
    // Otherwise (e.g. for a constant) the beginning of the function is as
 | 
						|
    // good a place as any.
 | 
						|
    BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
 | 
						|
    B.SetInsertPoint(&EntryBB, EntryBB.begin());
 | 
						|
  }
 | 
						|
 | 
						|
  SinCos = B.CreateCall(Callee, Arg, "sincospi");
 | 
						|
 | 
						|
  if (SinCos->getType()->isStructTy()) {
 | 
						|
    Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
 | 
						|
    Cos = B.CreateExtractValue(SinCos, 1, "cospi");
 | 
						|
  } else {
 | 
						|
    Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
 | 
						|
                                 "sinpi");
 | 
						|
    Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
 | 
						|
                                 "cospi");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // Make sure the prototype is as expected, otherwise the rest of the
 | 
						|
  // function is probably invalid and likely to abort.
 | 
						|
  if (!isTrigLibCall(CI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Arg = CI->getArgOperand(0);
 | 
						|
  SmallVector<CallInst *, 1> SinCalls;
 | 
						|
  SmallVector<CallInst *, 1> CosCalls;
 | 
						|
  SmallVector<CallInst *, 1> SinCosCalls;
 | 
						|
 | 
						|
  bool IsFloat = Arg->getType()->isFloatTy();
 | 
						|
 | 
						|
  // Look for all compatible sinpi, cospi and sincospi calls with the same
 | 
						|
  // argument. If there are enough (in some sense) we can make the
 | 
						|
  // substitution.
 | 
						|
  Function *F = CI->getFunction();
 | 
						|
  for (User *U : Arg->users())
 | 
						|
    classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
 | 
						|
 | 
						|
  // It's only worthwhile if both sinpi and cospi are actually used.
 | 
						|
  if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Sin, *Cos, *SinCos;
 | 
						|
  insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
 | 
						|
 | 
						|
  replaceTrigInsts(SinCalls, Sin);
 | 
						|
  replaceTrigInsts(CosCalls, Cos);
 | 
						|
  replaceTrigInsts(SinCosCalls, SinCos);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void LibCallSimplifier::classifyArgUse(
 | 
						|
    Value *Val, Function *F, bool IsFloat,
 | 
						|
    SmallVectorImpl<CallInst *> &SinCalls,
 | 
						|
    SmallVectorImpl<CallInst *> &CosCalls,
 | 
						|
    SmallVectorImpl<CallInst *> &SinCosCalls) {
 | 
						|
  CallInst *CI = dyn_cast<CallInst>(Val);
 | 
						|
 | 
						|
  if (!CI)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't consider calls in other functions.
 | 
						|
  if (CI->getFunction() != F)
 | 
						|
    return;
 | 
						|
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  LibFunc::Func Func;
 | 
						|
  if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
 | 
						|
      !isTrigLibCall(CI))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (IsFloat) {
 | 
						|
    if (Func == LibFunc::sinpif)
 | 
						|
      SinCalls.push_back(CI);
 | 
						|
    else if (Func == LibFunc::cospif)
 | 
						|
      CosCalls.push_back(CI);
 | 
						|
    else if (Func == LibFunc::sincospif_stret)
 | 
						|
      SinCosCalls.push_back(CI);
 | 
						|
  } else {
 | 
						|
    if (Func == LibFunc::sinpi)
 | 
						|
      SinCalls.push_back(CI);
 | 
						|
    else if (Func == LibFunc::cospi)
 | 
						|
      CosCalls.push_back(CI);
 | 
						|
    else if (Func == LibFunc::sincospi_stret)
 | 
						|
      SinCosCalls.push_back(CI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
 | 
						|
                                         Value *Res) {
 | 
						|
  for (CallInst *C : Calls)
 | 
						|
    replaceAllUsesWith(C, Res);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Integer Library Call Optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
 | 
						|
  // Constant fold.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | 
						|
    if (CI->isZero()) // ffs(0) -> 0.
 | 
						|
      return B.getInt32(0);
 | 
						|
    // ffs(c) -> cttz(c)+1
 | 
						|
    return B.getInt32(CI->getValue().countTrailingZeros() + 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
 | 
						|
  Type *ArgType = Op->getType();
 | 
						|
  Value *F =
 | 
						|
      Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
 | 
						|
  Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
 | 
						|
  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
 | 
						|
  V = B.CreateIntCast(V, B.getInt32Ty(), false);
 | 
						|
 | 
						|
  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
 | 
						|
  return B.CreateSelect(Cond, V, B.getInt32(0));
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // abs(x) -> x >s -1 ? x : -x
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
  Value *Pos =
 | 
						|
      B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
 | 
						|
  Value *Neg = B.CreateNeg(Op, "neg");
 | 
						|
  return B.CreateSelect(Pos, Op, Neg);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // isdigit(c) -> (c-'0') <u 10
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
  Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
 | 
						|
  Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
 | 
						|
  return B.CreateZExt(Op, CI->getType());
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // isascii(c) -> c <u 128
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
  Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
 | 
						|
  return B.CreateZExt(Op, CI->getType());
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // toascii(c) -> c & 0x7f
 | 
						|
  return B.CreateAnd(CI->getArgOperand(0),
 | 
						|
                     ConstantInt::get(CI->getType(), 0x7F));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Formatting and IO Library Call Optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
 | 
						|
                                                 int StreamArg) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  // Error reporting calls should be cold, mark them as such.
 | 
						|
  // This applies even to non-builtin calls: it is only a hint and applies to
 | 
						|
  // functions that the frontend might not understand as builtins.
 | 
						|
 | 
						|
  // This heuristic was suggested in:
 | 
						|
  // Improving Static Branch Prediction in a Compiler
 | 
						|
  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
 | 
						|
  // Proceedings of PACT'98, Oct. 1998, IEEE
 | 
						|
  if (!CI->hasFnAttr(Attribute::Cold) &&
 | 
						|
      isReportingError(Callee, CI, StreamArg)) {
 | 
						|
    CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
 | 
						|
  if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (StreamArg < 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // These functions might be considered cold, but only if their stream
 | 
						|
  // argument is stderr.
 | 
						|
 | 
						|
  if (StreamArg >= (int)CI->getNumArgOperands())
 | 
						|
    return false;
 | 
						|
  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
 | 
						|
  if (!LI)
 | 
						|
    return false;
 | 
						|
  GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
 | 
						|
  if (!GV || !GV->isDeclaration())
 | 
						|
    return false;
 | 
						|
  return GV->getName() == "stderr";
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // Check for a fixed format string.
 | 
						|
  StringRef FormatStr;
 | 
						|
  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Empty format string -> noop.
 | 
						|
  if (FormatStr.empty()) // Tolerate printf's declared void.
 | 
						|
    return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
  // Do not do any of the following transformations if the printf return value
 | 
						|
  // is used, in general the printf return value is not compatible with either
 | 
						|
  // putchar() or puts().
 | 
						|
  if (!CI->use_empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // printf("x") -> putchar('x'), even for "%" and "%%".
 | 
						|
  if (FormatStr.size() == 1 || FormatStr == "%%")
 | 
						|
    return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
 | 
						|
 | 
						|
  // printf("%s", "a") --> putchar('a')
 | 
						|
  if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
 | 
						|
    StringRef ChrStr;
 | 
						|
    if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
 | 
						|
      return nullptr;
 | 
						|
    if (ChrStr.size() != 1)
 | 
						|
      return nullptr;
 | 
						|
    return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  // printf("foo\n") --> puts("foo")
 | 
						|
  if (FormatStr[FormatStr.size() - 1] == '\n' &&
 | 
						|
      FormatStr.find('%') == StringRef::npos) { // No format characters.
 | 
						|
    // Create a string literal with no \n on it.  We expect the constant merge
 | 
						|
    // pass to be run after this pass, to merge duplicate strings.
 | 
						|
    FormatStr = FormatStr.drop_back();
 | 
						|
    Value *GV = B.CreateGlobalString(FormatStr, "str");
 | 
						|
    return emitPutS(GV, B, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Optimize specific format strings.
 | 
						|
  // printf("%c", chr) --> putchar(chr)
 | 
						|
  if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
 | 
						|
      CI->getArgOperand(1)->getType()->isIntegerTy())
 | 
						|
    return emitPutChar(CI->getArgOperand(1), B, TLI);
 | 
						|
 | 
						|
  // printf("%s\n", str) --> puts(str)
 | 
						|
  if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
 | 
						|
      CI->getArgOperand(1)->getType()->isPointerTy())
 | 
						|
    return emitPutS(CI->getArgOperand(1), B, TLI);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
 | 
						|
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  FunctionType *FT = Callee->getFunctionType();
 | 
						|
  if (Value *V = optimizePrintFString(CI, B)) {
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // printf(format, ...) -> iprintf(format, ...) if no floating point
 | 
						|
  // arguments.
 | 
						|
  if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
 | 
						|
    Module *M = B.GetInsertBlock()->getParent()->getParent();
 | 
						|
    Constant *IPrintFFn =
 | 
						|
        M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
 | 
						|
    CallInst *New = cast<CallInst>(CI->clone());
 | 
						|
    New->setCalledFunction(IPrintFFn);
 | 
						|
    B.Insert(New);
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // Check for a fixed format string.
 | 
						|
  StringRef FormatStr;
 | 
						|
  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we just have a format string (nothing else crazy) transform it.
 | 
						|
  if (CI->getNumArgOperands() == 2) {
 | 
						|
    // Make sure there's no % in the constant array.  We could try to handle
 | 
						|
    // %% -> % in the future if we cared.
 | 
						|
    for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
 | 
						|
      if (FormatStr[i] == '%')
 | 
						|
        return nullptr; // we found a format specifier, bail out.
 | 
						|
 | 
						|
    // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
 | 
						|
    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                   ConstantInt::get(DL.getIntPtrType(CI->getContext()),
 | 
						|
                                    FormatStr.size() + 1),
 | 
						|
                   1); // Copy the null byte.
 | 
						|
    return ConstantInt::get(CI->getType(), FormatStr.size());
 | 
						|
  }
 | 
						|
 | 
						|
  // The remaining optimizations require the format string to be "%s" or "%c"
 | 
						|
  // and have an extra operand.
 | 
						|
  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
 | 
						|
      CI->getNumArgOperands() < 3)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Decode the second character of the format string.
 | 
						|
  if (FormatStr[1] == 'c') {
 | 
						|
    // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
 | 
						|
    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
 | 
						|
      return nullptr;
 | 
						|
    Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
 | 
						|
    Value *Ptr = castToCStr(CI->getArgOperand(0), B);
 | 
						|
    B.CreateStore(V, Ptr);
 | 
						|
    Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
 | 
						|
    B.CreateStore(B.getInt8(0), Ptr);
 | 
						|
 | 
						|
    return ConstantInt::get(CI->getType(), 1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (FormatStr[1] == 's') {
 | 
						|
    // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
 | 
						|
    if (!CI->getArgOperand(2)->getType()->isPointerTy())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
 | 
						|
    if (!Len)
 | 
						|
      return nullptr;
 | 
						|
    Value *IncLen =
 | 
						|
        B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
 | 
						|
    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
 | 
						|
 | 
						|
    // The sprintf result is the unincremented number of bytes in the string.
 | 
						|
    return B.CreateIntCast(Len, CI->getType(), false);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  FunctionType *FT = Callee->getFunctionType();
 | 
						|
  if (Value *V = optimizeSPrintFString(CI, B)) {
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
 | 
						|
  // point arguments.
 | 
						|
  if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
 | 
						|
    Module *M = B.GetInsertBlock()->getParent()->getParent();
 | 
						|
    Constant *SIPrintFFn =
 | 
						|
        M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
 | 
						|
    CallInst *New = cast<CallInst>(CI->clone());
 | 
						|
    New->setCalledFunction(SIPrintFFn);
 | 
						|
    B.Insert(New);
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  optimizeErrorReporting(CI, B, 0);
 | 
						|
 | 
						|
  // All the optimizations depend on the format string.
 | 
						|
  StringRef FormatStr;
 | 
						|
  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Do not do any of the following transformations if the fprintf return
 | 
						|
  // value is used, in general the fprintf return value is not compatible
 | 
						|
  // with fwrite(), fputc() or fputs().
 | 
						|
  if (!CI->use_empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
 | 
						|
  if (CI->getNumArgOperands() == 2) {
 | 
						|
    for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
 | 
						|
      if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
 | 
						|
        return nullptr;        // We found a format specifier.
 | 
						|
 | 
						|
    return emitFWrite(
 | 
						|
        CI->getArgOperand(1),
 | 
						|
        ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
 | 
						|
        CI->getArgOperand(0), B, DL, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  // The remaining optimizations require the format string to be "%s" or "%c"
 | 
						|
  // and have an extra operand.
 | 
						|
  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
 | 
						|
      CI->getNumArgOperands() < 3)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Decode the second character of the format string.
 | 
						|
  if (FormatStr[1] == 'c') {
 | 
						|
    // fprintf(F, "%c", chr) --> fputc(chr, F)
 | 
						|
    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
 | 
						|
      return nullptr;
 | 
						|
    return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  if (FormatStr[1] == 's') {
 | 
						|
    // fprintf(F, "%s", str) --> fputs(str, F)
 | 
						|
    if (!CI->getArgOperand(2)->getType()->isPointerTy())
 | 
						|
      return nullptr;
 | 
						|
    return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  FunctionType *FT = Callee->getFunctionType();
 | 
						|
  if (Value *V = optimizeFPrintFString(CI, B)) {
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
 | 
						|
  // floating point arguments.
 | 
						|
  if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
 | 
						|
    Module *M = B.GetInsertBlock()->getParent()->getParent();
 | 
						|
    Constant *FIPrintFFn =
 | 
						|
        M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
 | 
						|
    CallInst *New = cast<CallInst>(CI->clone());
 | 
						|
    New->setCalledFunction(FIPrintFFn);
 | 
						|
    B.Insert(New);
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  optimizeErrorReporting(CI, B, 3);
 | 
						|
 | 
						|
  // Get the element size and count.
 | 
						|
  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | 
						|
  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | 
						|
  if (!SizeC || !CountC)
 | 
						|
    return nullptr;
 | 
						|
  uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
 | 
						|
 | 
						|
  // If this is writing zero records, remove the call (it's a noop).
 | 
						|
  if (Bytes == 0)
 | 
						|
    return ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
  // If this is writing one byte, turn it into fputc.
 | 
						|
  // This optimisation is only valid, if the return value is unused.
 | 
						|
  if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
 | 
						|
    Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
 | 
						|
    Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
 | 
						|
    return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  optimizeErrorReporting(CI, B, 1);
 | 
						|
 | 
						|
  // Don't rewrite fputs to fwrite when optimising for size because fwrite
 | 
						|
  // requires more arguments and thus extra MOVs are required.
 | 
						|
  if (CI->getParent()->getParent()->optForSize())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We can't optimize if return value is used.
 | 
						|
  if (!CI->use_empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // fputs(s,F) --> fwrite(s,1,strlen(s),F)
 | 
						|
  uint64_t Len = GetStringLength(CI->getArgOperand(0));
 | 
						|
  if (!Len)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Known to have no uses (see above).
 | 
						|
  return emitFWrite(
 | 
						|
      CI->getArgOperand(0),
 | 
						|
      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
 | 
						|
      CI->getArgOperand(1), B, DL, TLI);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
 | 
						|
  // Check for a constant string.
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Str.empty() && CI->use_empty()) {
 | 
						|
    // puts("") -> putchar('\n')
 | 
						|
    Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
 | 
						|
    if (CI->use_empty() || !Res)
 | 
						|
      return Res;
 | 
						|
    return B.CreateIntCast(Res, CI->getType(), true);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
 | 
						|
  LibFunc::Func Func;
 | 
						|
  SmallString<20> FloatFuncName = FuncName;
 | 
						|
  FloatFuncName += 'f';
 | 
						|
  if (TLI->getLibFunc(FloatFuncName, Func))
 | 
						|
    return TLI->has(Func);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
 | 
						|
                                                      IRBuilder<> &Builder) {
 | 
						|
  LibFunc::Func Func;
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  // Check for string/memory library functions.
 | 
						|
  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
 | 
						|
    // Make sure we never change the calling convention.
 | 
						|
    assert((ignoreCallingConv(Func) ||
 | 
						|
            CI->getCallingConv() == llvm::CallingConv::C) &&
 | 
						|
      "Optimizing string/memory libcall would change the calling convention");
 | 
						|
    switch (Func) {
 | 
						|
    case LibFunc::strcat:
 | 
						|
      return optimizeStrCat(CI, Builder);
 | 
						|
    case LibFunc::strncat:
 | 
						|
      return optimizeStrNCat(CI, Builder);
 | 
						|
    case LibFunc::strchr:
 | 
						|
      return optimizeStrChr(CI, Builder);
 | 
						|
    case LibFunc::strrchr:
 | 
						|
      return optimizeStrRChr(CI, Builder);
 | 
						|
    case LibFunc::strcmp:
 | 
						|
      return optimizeStrCmp(CI, Builder);
 | 
						|
    case LibFunc::strncmp:
 | 
						|
      return optimizeStrNCmp(CI, Builder);
 | 
						|
    case LibFunc::strcpy:
 | 
						|
      return optimizeStrCpy(CI, Builder);
 | 
						|
    case LibFunc::stpcpy:
 | 
						|
      return optimizeStpCpy(CI, Builder);
 | 
						|
    case LibFunc::strncpy:
 | 
						|
      return optimizeStrNCpy(CI, Builder);
 | 
						|
    case LibFunc::strlen:
 | 
						|
      return optimizeStrLen(CI, Builder);
 | 
						|
    case LibFunc::strpbrk:
 | 
						|
      return optimizeStrPBrk(CI, Builder);
 | 
						|
    case LibFunc::strtol:
 | 
						|
    case LibFunc::strtod:
 | 
						|
    case LibFunc::strtof:
 | 
						|
    case LibFunc::strtoul:
 | 
						|
    case LibFunc::strtoll:
 | 
						|
    case LibFunc::strtold:
 | 
						|
    case LibFunc::strtoull:
 | 
						|
      return optimizeStrTo(CI, Builder);
 | 
						|
    case LibFunc::strspn:
 | 
						|
      return optimizeStrSpn(CI, Builder);
 | 
						|
    case LibFunc::strcspn:
 | 
						|
      return optimizeStrCSpn(CI, Builder);
 | 
						|
    case LibFunc::strstr:
 | 
						|
      return optimizeStrStr(CI, Builder);
 | 
						|
    case LibFunc::memchr:
 | 
						|
      return optimizeMemChr(CI, Builder);
 | 
						|
    case LibFunc::memcmp:
 | 
						|
      return optimizeMemCmp(CI, Builder);
 | 
						|
    case LibFunc::memcpy:
 | 
						|
      return optimizeMemCpy(CI, Builder);
 | 
						|
    case LibFunc::memmove:
 | 
						|
      return optimizeMemMove(CI, Builder);
 | 
						|
    case LibFunc::memset:
 | 
						|
      return optimizeMemSet(CI, Builder);
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
 | 
						|
  if (CI->isNoBuiltin())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  LibFunc::Func Func;
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  StringRef FuncName = Callee->getName();
 | 
						|
 | 
						|
  SmallVector<OperandBundleDef, 2> OpBundles;
 | 
						|
  CI->getOperandBundlesAsDefs(OpBundles);
 | 
						|
  IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
 | 
						|
  bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
 | 
						|
 | 
						|
  // Command-line parameter overrides instruction attribute.
 | 
						|
  if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
 | 
						|
    UnsafeFPShrink = EnableUnsafeFPShrink;
 | 
						|
  else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
 | 
						|
    UnsafeFPShrink = true;
 | 
						|
 | 
						|
  // First, check for intrinsics.
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
 | 
						|
    if (!isCallingConvC)
 | 
						|
      return nullptr;
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    case Intrinsic::pow:
 | 
						|
      return optimizePow(CI, Builder);
 | 
						|
    case Intrinsic::exp2:
 | 
						|
      return optimizeExp2(CI, Builder);
 | 
						|
    case Intrinsic::fabs:
 | 
						|
      return optimizeFabs(CI, Builder);
 | 
						|
    case Intrinsic::log:
 | 
						|
      return optimizeLog(CI, Builder);
 | 
						|
    case Intrinsic::sqrt:
 | 
						|
      return optimizeSqrt(CI, Builder);
 | 
						|
    // TODO: Use foldMallocMemset() with memset intrinsic.
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Also try to simplify calls to fortified library functions.
 | 
						|
  if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
 | 
						|
    // Try to further simplify the result.
 | 
						|
    CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
 | 
						|
    if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
 | 
						|
      // Use an IR Builder from SimplifiedCI if available instead of CI
 | 
						|
      // to guarantee we reach all uses we might replace later on.
 | 
						|
      IRBuilder<> TmpBuilder(SimplifiedCI);
 | 
						|
      if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
 | 
						|
        // If we were able to further simplify, remove the now redundant call.
 | 
						|
        SimplifiedCI->replaceAllUsesWith(V);
 | 
						|
        SimplifiedCI->eraseFromParent();
 | 
						|
        return V;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return SimplifiedFortifiedCI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Then check for known library functions.
 | 
						|
  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
 | 
						|
    // We never change the calling convention.
 | 
						|
    if (!ignoreCallingConv(Func) && !isCallingConvC)
 | 
						|
      return nullptr;
 | 
						|
    if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
 | 
						|
      return V;
 | 
						|
    switch (Func) {
 | 
						|
    case LibFunc::cosf:
 | 
						|
    case LibFunc::cos:
 | 
						|
    case LibFunc::cosl:
 | 
						|
      return optimizeCos(CI, Builder);
 | 
						|
    case LibFunc::sinpif:
 | 
						|
    case LibFunc::sinpi:
 | 
						|
    case LibFunc::cospif:
 | 
						|
    case LibFunc::cospi:
 | 
						|
      return optimizeSinCosPi(CI, Builder);
 | 
						|
    case LibFunc::powf:
 | 
						|
    case LibFunc::pow:
 | 
						|
    case LibFunc::powl:
 | 
						|
      return optimizePow(CI, Builder);
 | 
						|
    case LibFunc::exp2l:
 | 
						|
    case LibFunc::exp2:
 | 
						|
    case LibFunc::exp2f:
 | 
						|
      return optimizeExp2(CI, Builder);
 | 
						|
    case LibFunc::fabsf:
 | 
						|
    case LibFunc::fabs:
 | 
						|
    case LibFunc::fabsl:
 | 
						|
      return optimizeFabs(CI, Builder);
 | 
						|
    case LibFunc::sqrtf:
 | 
						|
    case LibFunc::sqrt:
 | 
						|
    case LibFunc::sqrtl:
 | 
						|
      return optimizeSqrt(CI, Builder);
 | 
						|
    case LibFunc::ffs:
 | 
						|
    case LibFunc::ffsl:
 | 
						|
    case LibFunc::ffsll:
 | 
						|
      return optimizeFFS(CI, Builder);
 | 
						|
    case LibFunc::abs:
 | 
						|
    case LibFunc::labs:
 | 
						|
    case LibFunc::llabs:
 | 
						|
      return optimizeAbs(CI, Builder);
 | 
						|
    case LibFunc::isdigit:
 | 
						|
      return optimizeIsDigit(CI, Builder);
 | 
						|
    case LibFunc::isascii:
 | 
						|
      return optimizeIsAscii(CI, Builder);
 | 
						|
    case LibFunc::toascii:
 | 
						|
      return optimizeToAscii(CI, Builder);
 | 
						|
    case LibFunc::printf:
 | 
						|
      return optimizePrintF(CI, Builder);
 | 
						|
    case LibFunc::sprintf:
 | 
						|
      return optimizeSPrintF(CI, Builder);
 | 
						|
    case LibFunc::fprintf:
 | 
						|
      return optimizeFPrintF(CI, Builder);
 | 
						|
    case LibFunc::fwrite:
 | 
						|
      return optimizeFWrite(CI, Builder);
 | 
						|
    case LibFunc::fputs:
 | 
						|
      return optimizeFPuts(CI, Builder);
 | 
						|
    case LibFunc::log:
 | 
						|
    case LibFunc::log10:
 | 
						|
    case LibFunc::log1p:
 | 
						|
    case LibFunc::log2:
 | 
						|
    case LibFunc::logb:
 | 
						|
      return optimizeLog(CI, Builder);
 | 
						|
    case LibFunc::puts:
 | 
						|
      return optimizePuts(CI, Builder);
 | 
						|
    case LibFunc::tan:
 | 
						|
    case LibFunc::tanf:
 | 
						|
    case LibFunc::tanl:
 | 
						|
      return optimizeTan(CI, Builder);
 | 
						|
    case LibFunc::perror:
 | 
						|
      return optimizeErrorReporting(CI, Builder);
 | 
						|
    case LibFunc::vfprintf:
 | 
						|
    case LibFunc::fiprintf:
 | 
						|
      return optimizeErrorReporting(CI, Builder, 0);
 | 
						|
    case LibFunc::fputc:
 | 
						|
      return optimizeErrorReporting(CI, Builder, 1);
 | 
						|
    case LibFunc::ceil:
 | 
						|
    case LibFunc::floor:
 | 
						|
    case LibFunc::rint:
 | 
						|
    case LibFunc::round:
 | 
						|
    case LibFunc::nearbyint:
 | 
						|
    case LibFunc::trunc:
 | 
						|
      if (hasFloatVersion(FuncName))
 | 
						|
        return optimizeUnaryDoubleFP(CI, Builder, false);
 | 
						|
      return nullptr;
 | 
						|
    case LibFunc::acos:
 | 
						|
    case LibFunc::acosh:
 | 
						|
    case LibFunc::asin:
 | 
						|
    case LibFunc::asinh:
 | 
						|
    case LibFunc::atan:
 | 
						|
    case LibFunc::atanh:
 | 
						|
    case LibFunc::cbrt:
 | 
						|
    case LibFunc::cosh:
 | 
						|
    case LibFunc::exp:
 | 
						|
    case LibFunc::exp10:
 | 
						|
    case LibFunc::expm1:
 | 
						|
    case LibFunc::sin:
 | 
						|
    case LibFunc::sinh:
 | 
						|
    case LibFunc::tanh:
 | 
						|
      if (UnsafeFPShrink && hasFloatVersion(FuncName))
 | 
						|
        return optimizeUnaryDoubleFP(CI, Builder, true);
 | 
						|
      return nullptr;
 | 
						|
    case LibFunc::copysign:
 | 
						|
      if (hasFloatVersion(FuncName))
 | 
						|
        return optimizeBinaryDoubleFP(CI, Builder);
 | 
						|
      return nullptr;
 | 
						|
    case LibFunc::fminf:
 | 
						|
    case LibFunc::fmin:
 | 
						|
    case LibFunc::fminl:
 | 
						|
    case LibFunc::fmaxf:
 | 
						|
    case LibFunc::fmax:
 | 
						|
    case LibFunc::fmaxl:
 | 
						|
      return optimizeFMinFMax(CI, Builder);
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
LibCallSimplifier::LibCallSimplifier(
 | 
						|
    const DataLayout &DL, const TargetLibraryInfo *TLI,
 | 
						|
    function_ref<void(Instruction *, Value *)> Replacer)
 | 
						|
    : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
 | 
						|
      Replacer(Replacer) {}
 | 
						|
 | 
						|
void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
 | 
						|
  // Indirect through the replacer used in this instance.
 | 
						|
  Replacer(I, With);
 | 
						|
}
 | 
						|
 | 
						|
// TODO:
 | 
						|
//   Additional cases that we need to add to this file:
 | 
						|
//
 | 
						|
// cbrt:
 | 
						|
//   * cbrt(expN(X))  -> expN(x/3)
 | 
						|
//   * cbrt(sqrt(x))  -> pow(x,1/6)
 | 
						|
//   * cbrt(cbrt(x))  -> pow(x,1/9)
 | 
						|
//
 | 
						|
// exp, expf, expl:
 | 
						|
//   * exp(log(x))  -> x
 | 
						|
//
 | 
						|
// log, logf, logl:
 | 
						|
//   * log(exp(x))   -> x
 | 
						|
//   * log(exp(y))   -> y*log(e)
 | 
						|
//   * log(exp10(y)) -> y*log(10)
 | 
						|
//   * log(sqrt(x))  -> 0.5*log(x)
 | 
						|
//
 | 
						|
// lround, lroundf, lroundl:
 | 
						|
//   * lround(cnst) -> cnst'
 | 
						|
//
 | 
						|
// pow, powf, powl:
 | 
						|
//   * pow(sqrt(x),y) -> pow(x,y*0.5)
 | 
						|
//   * pow(pow(x,y),z)-> pow(x,y*z)
 | 
						|
//
 | 
						|
// round, roundf, roundl:
 | 
						|
//   * round(cnst) -> cnst'
 | 
						|
//
 | 
						|
// signbit:
 | 
						|
//   * signbit(cnst) -> cnst'
 | 
						|
//   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
 | 
						|
//
 | 
						|
// sqrt, sqrtf, sqrtl:
 | 
						|
//   * sqrt(expN(x))  -> expN(x*0.5)
 | 
						|
//   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
 | 
						|
//   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
 | 
						|
//
 | 
						|
// trunc, truncf, truncl:
 | 
						|
//   * trunc(cnst) -> cnst'
 | 
						|
//
 | 
						|
//
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Fortified Library Call Optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
 | 
						|
                                                         unsigned ObjSizeOp,
 | 
						|
                                                         unsigned SizeOp,
 | 
						|
                                                         bool isString) {
 | 
						|
  if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
 | 
						|
    return true;
 | 
						|
  if (ConstantInt *ObjSizeCI =
 | 
						|
          dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
 | 
						|
    if (ObjSizeCI->isAllOnesValue())
 | 
						|
      return true;
 | 
						|
    // If the object size wasn't -1 (unknown), bail out if we were asked to.
 | 
						|
    if (OnlyLowerUnknownSize)
 | 
						|
      return false;
 | 
						|
    if (isString) {
 | 
						|
      uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
 | 
						|
      // If the length is 0 we don't know how long it is and so we can't
 | 
						|
      // remove the check.
 | 
						|
      if (Len == 0)
 | 
						|
        return false;
 | 
						|
      return ObjSizeCI->getZExtValue() >= Len;
 | 
						|
    }
 | 
						|
    if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
 | 
						|
      return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
 | 
						|
                                                     IRBuilder<> &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
 | 
						|
    B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                   CI->getArgOperand(2), 1);
 | 
						|
    return CI->getArgOperand(0);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
 | 
						|
                                                      IRBuilder<> &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
 | 
						|
    B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                    CI->getArgOperand(2), 1);
 | 
						|
    return CI->getArgOperand(0);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
 | 
						|
                                                     IRBuilder<> &B) {
 | 
						|
  // TODO: Try foldMallocMemset() here.
 | 
						|
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
 | 
						|
    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
 | 
						|
    B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
 | 
						|
    return CI->getArgOperand(0);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
 | 
						|
                                                      IRBuilder<> &B,
 | 
						|
                                                      LibFunc::Func Func) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  const DataLayout &DL = CI->getModule()->getDataLayout();
 | 
						|
  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
 | 
						|
        *ObjSize = CI->getArgOperand(2);
 | 
						|
 | 
						|
  // __stpcpy_chk(x,x,...)  -> x+strlen(x)
 | 
						|
  if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
 | 
						|
    Value *StrLen = emitStrLen(Src, B, DL, TLI);
 | 
						|
    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If a) we don't have any length information, or b) we know this will
 | 
						|
  // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
 | 
						|
  // st[rp]cpy_chk call which may fail at runtime if the size is too long.
 | 
						|
  // TODO: It might be nice to get a maximum length out of the possible
 | 
						|
  // string lengths for varying.
 | 
						|
  if (isFortifiedCallFoldable(CI, 2, 1, true))
 | 
						|
    return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
 | 
						|
 | 
						|
  if (OnlyLowerUnknownSize)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
 | 
						|
  uint64_t Len = GetStringLength(Src);
 | 
						|
  if (Len == 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *SizeTTy = DL.getIntPtrType(CI->getContext());
 | 
						|
  Value *LenV = ConstantInt::get(SizeTTy, Len);
 | 
						|
  Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
 | 
						|
  // If the function was an __stpcpy_chk, and we were able to fold it into
 | 
						|
  // a __memcpy_chk, we still need to return the correct end pointer.
 | 
						|
  if (Ret && Func == LibFunc::stpcpy_chk)
 | 
						|
    return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
 | 
						|
                                                       IRBuilder<> &B,
 | 
						|
                                                       LibFunc::Func Func) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
 | 
						|
    Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                             CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
 | 
						|
    return Ret;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
 | 
						|
  // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
 | 
						|
  // Some clang users checked for _chk libcall availability using:
 | 
						|
  //   __has_builtin(__builtin___memcpy_chk)
 | 
						|
  // When compiling with -fno-builtin, this is always true.
 | 
						|
  // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
 | 
						|
  // end up with fortified libcalls, which isn't acceptable in a freestanding
 | 
						|
  // environment which only provides their non-fortified counterparts.
 | 
						|
  //
 | 
						|
  // Until we change clang and/or teach external users to check for availability
 | 
						|
  // differently, disregard the "nobuiltin" attribute and TLI::has.
 | 
						|
  //
 | 
						|
  // PR23093.
 | 
						|
 | 
						|
  LibFunc::Func Func;
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
 | 
						|
  SmallVector<OperandBundleDef, 2> OpBundles;
 | 
						|
  CI->getOperandBundlesAsDefs(OpBundles);
 | 
						|
  IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
 | 
						|
  bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
 | 
						|
 | 
						|
  // First, check that this is a known library functions and that the prototype
 | 
						|
  // is correct.
 | 
						|
  if (!TLI->getLibFunc(*Callee, Func))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We never change the calling convention.
 | 
						|
  if (!ignoreCallingConv(Func) && !isCallingConvC)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  switch (Func) {
 | 
						|
  case LibFunc::memcpy_chk:
 | 
						|
    return optimizeMemCpyChk(CI, Builder);
 | 
						|
  case LibFunc::memmove_chk:
 | 
						|
    return optimizeMemMoveChk(CI, Builder);
 | 
						|
  case LibFunc::memset_chk:
 | 
						|
    return optimizeMemSetChk(CI, Builder);
 | 
						|
  case LibFunc::stpcpy_chk:
 | 
						|
  case LibFunc::strcpy_chk:
 | 
						|
    return optimizeStrpCpyChk(CI, Builder, Func);
 | 
						|
  case LibFunc::stpncpy_chk:
 | 
						|
  case LibFunc::strncpy_chk:
 | 
						|
    return optimizeStrpNCpyChk(CI, Builder, Func);
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
 | 
						|
    const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
 | 
						|
    : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
 |