195 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			LLVM
		
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			LLVM
		
	
	
	
| ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
 | |
| ; RUN: llc < %s -mtriple=x86_64-unknown-unknown | FileCheck %s
 | |
| 
 | |
| ; The fundamental problem: an add separated from other arithmetic by a sign or
 | |
| ; zero extension can't be combined with the later instructions. However, if the
 | |
| ; first add is 'nsw' or 'nuw' respectively, then we can promote the extension
 | |
| ; ahead of that add to allow optimizations.
 | |
| 
 | |
| define i64 @add_nsw_consts(i32 %i) {
 | |
| ; CHECK-LABEL: add_nsw_consts:
 | |
| ; CHECK:       # BB#0:
 | |
| ; CHECK-NEXT:    movslq %edi, %rax
 | |
| ; CHECK-NEXT:    addq $12, %rax
 | |
| ; CHECK-NEXT:    retq
 | |
| 
 | |
|   %add = add nsw i32 %i, 5
 | |
|   %ext = sext i32 %add to i64
 | |
|   %idx = add i64 %ext, 7
 | |
|   ret i64 %idx
 | |
| }
 | |
| 
 | |
| ; An x86 bonus: If we promote the sext ahead of the 'add nsw',
 | |
| ; we allow LEA formation and eliminate an add instruction.
 | |
| 
 | |
| define i64 @add_nsw_sext_add(i32 %i, i64 %x) {
 | |
| ; CHECK-LABEL: add_nsw_sext_add:
 | |
| ; CHECK:       # BB#0:
 | |
| ; CHECK-NEXT:    movslq %edi, %rax
 | |
| ; CHECK-NEXT:    leaq 5(%rsi,%rax), %rax
 | |
| ; CHECK-NEXT:    retq
 | |
| 
 | |
|   %add = add nsw i32 %i, 5
 | |
|   %ext = sext i32 %add to i64
 | |
|   %idx = add i64 %x, %ext
 | |
|   ret i64 %idx
 | |
| }
 | |
| 
 | |
| ; Throw in a scale (left shift) because an LEA can do that too.
 | |
| ; Use a negative constant (LEA displacement) to verify that's handled correctly.
 | |
| 
 | |
| define i64 @add_nsw_sext_lsh_add(i32 %i, i64 %x) {
 | |
| ; CHECK-LABEL: add_nsw_sext_lsh_add:
 | |
| ; CHECK:       # BB#0:
 | |
| ; CHECK-NEXT:    movslq %edi, %rax
 | |
| ; CHECK-NEXT:    leaq -40(%rsi,%rax,8), %rax
 | |
| ; CHECK-NEXT:    retq
 | |
| 
 | |
|   %add = add nsw i32 %i, -5
 | |
|   %ext = sext i32 %add to i64
 | |
|   %shl = shl i64 %ext, 3
 | |
|   %idx = add i64 %x, %shl
 | |
|   ret i64 %idx
 | |
| }
 | |
| 
 | |
| ; Don't promote the sext if it has no users. The wider add instruction needs an
 | |
| ; extra byte to encode.
 | |
| 
 | |
| define i64 @add_nsw_sext(i32 %i, i64 %x) {
 | |
| ; CHECK-LABEL: add_nsw_sext:
 | |
| ; CHECK:       # BB#0:
 | |
| ; CHECK-NEXT:    addl $5, %edi
 | |
| ; CHECK-NEXT:    movslq %edi, %rax
 | |
| ; CHECK-NEXT:    retq
 | |
| 
 | |
|   %add = add nsw i32 %i, 5
 | |
|   %ext = sext i32 %add to i64
 | |
|   ret i64 %ext
 | |
| }
 | |
| 
 | |
| ; The typical use case: a 64-bit system where an 'int' is used as an index into an array.
 | |
| 
 | |
| define i8* @gep8(i32 %i, i8* %x) {
 | |
| ; CHECK-LABEL: gep8:
 | |
| ; CHECK:       # BB#0:
 | |
| ; CHECK-NEXT:    movslq %edi, %rax
 | |
| ; CHECK-NEXT:    leaq 5(%rsi,%rax), %rax
 | |
| ; CHECK-NEXT:    retq
 | |
| 
 | |
|   %add = add nsw i32 %i, 5
 | |
|   %ext = sext i32 %add to i64
 | |
|   %idx = getelementptr i8, i8* %x, i64 %ext
 | |
|   ret i8* %idx
 | |
| }
 | |
| 
 | |
| define i16* @gep16(i32 %i, i16* %x) {
 | |
| ; CHECK-LABEL: gep16:
 | |
| ; CHECK:       # BB#0:
 | |
| ; CHECK-NEXT:    movslq %edi, %rax
 | |
| ; CHECK-NEXT:    leaq -10(%rsi,%rax,2), %rax
 | |
| ; CHECK-NEXT:    retq
 | |
| 
 | |
|   %add = add nsw i32 %i, -5
 | |
|   %ext = sext i32 %add to i64
 | |
|   %idx = getelementptr i16, i16* %x, i64 %ext
 | |
|   ret i16* %idx
 | |
| }
 | |
| 
 | |
| define i32* @gep32(i32 %i, i32* %x) {
 | |
| ; CHECK-LABEL: gep32:
 | |
| ; CHECK:       # BB#0:
 | |
| ; CHECK-NEXT:    movslq %edi, %rax
 | |
| ; CHECK-NEXT:    leaq 20(%rsi,%rax,4), %rax
 | |
| ; CHECK-NEXT:    retq
 | |
| 
 | |
|   %add = add nsw i32 %i, 5
 | |
|   %ext = sext i32 %add to i64
 | |
|   %idx = getelementptr i32, i32* %x, i64 %ext
 | |
|   ret i32* %idx
 | |
| }
 | |
| 
 | |
| define i64* @gep64(i32 %i, i64* %x) {
 | |
| ; CHECK-LABEL: gep64:
 | |
| ; CHECK:       # BB#0:
 | |
| ; CHECK-NEXT:    movslq %edi, %rax
 | |
| ; CHECK-NEXT:    leaq -40(%rsi,%rax,8), %rax
 | |
| ; CHECK-NEXT:    retq
 | |
| 
 | |
|   %add = add nsw i32 %i, -5
 | |
|   %ext = sext i32 %add to i64
 | |
|   %idx = getelementptr i64, i64* %x, i64 %ext
 | |
|   ret i64* %idx
 | |
| }
 | |
| 
 | |
| ; LEA can't scale by 16, but the adds can still be combined into an LEA.
 | |
| 
 | |
| define i128* @gep128(i32 %i, i128* %x) {
 | |
| ; CHECK-LABEL: gep128:
 | |
| ; CHECK:       # BB#0:
 | |
| ; CHECK-NEXT:    movslq %edi, %rax
 | |
| ; CHECK-NEXT:    shlq $4, %rax
 | |
| ; CHECK-NEXT:    leaq 80(%rsi,%rax), %rax
 | |
| ; CHECK-NEXT:    retq
 | |
| 
 | |
|   %add = add nsw i32 %i, 5
 | |
|   %ext = sext i32 %add to i64
 | |
|   %idx = getelementptr i128, i128* %x, i64 %ext
 | |
|   ret i128* %idx
 | |
| }
 | |
| 
 | |
| ; A bigger win can be achieved when there is more than one use of the
 | |
| ; sign extended value. In this case, we can eliminate sign extension
 | |
| ; instructions plus use more efficient addressing modes for memory ops.
 | |
| 
 | |
| define void @PR20134(i32* %a, i32 %i) {
 | |
| ; CHECK-LABEL: PR20134:
 | |
| ; CHECK:       # BB#0:
 | |
| ; CHECK-NEXT:    movslq %esi, %rax
 | |
| ; CHECK-NEXT:    movl 4(%rdi,%rax,4), %ecx
 | |
| ; CHECK-NEXT:    addl 8(%rdi,%rax,4), %ecx
 | |
| ; CHECK-NEXT:    movl %ecx, (%rdi,%rax,4)
 | |
| ; CHECK-NEXT:    retq
 | |
| 
 | |
|   %add1 = add nsw i32 %i, 1
 | |
|   %idx1 = sext i32 %add1 to i64
 | |
|   %gep1 = getelementptr i32, i32* %a, i64 %idx1
 | |
|   %load1 = load i32, i32* %gep1, align 4
 | |
| 
 | |
|   %add2 = add nsw i32 %i, 2
 | |
|   %idx2 = sext i32 %add2 to i64
 | |
|   %gep2 = getelementptr i32, i32* %a, i64 %idx2
 | |
|   %load2 = load i32, i32* %gep2, align 4
 | |
| 
 | |
|   %add3 = add i32 %load1, %load2
 | |
|   %idx3 = sext i32 %i to i64
 | |
|   %gep3 = getelementptr i32, i32* %a, i64 %idx3
 | |
|   store i32 %add3, i32* %gep3, align 4
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; The same as @PR20134 but sign extension is replaced with zero extension
 | |
| define void @PR20134_zext(i32* %a, i32 %i) {
 | |
| ; CHECK: # BB#0:
 | |
| ; CHECK-NEXT: movl %esi, %eax
 | |
| ; CHECK-NEXT: movl 4(%rdi,%rax,4), %ecx
 | |
| ; CHECK-NEXT: addl 8(%rdi,%rax,4), %ecx
 | |
| ; CHECK-NEXT: movl %ecx, (%rdi,%rax,4)
 | |
| ; CHECK-NEXT: retq
 | |
| 
 | |
|   %add1 = add nuw i32 %i, 1
 | |
|   %idx1 = zext i32 %add1 to i64
 | |
|   %gep1 = getelementptr i32, i32* %a, i64 %idx1
 | |
|   %load1 = load i32, i32* %gep1, align 4
 | |
| 
 | |
|   %add2 = add nuw i32 %i, 2
 | |
|   %idx2 = zext i32 %add2 to i64
 | |
|   %gep2 = getelementptr i32, i32* %a, i64 %idx2
 | |
|   %load2 = load i32, i32* %gep2, align 4
 | |
| 
 | |
|   %add3 = add i32 %load1, %load2
 | |
|   %idx3 = zext i32 %i to i64
 | |
|   %gep3 = getelementptr i32, i32* %a, i64 %idx3
 | |
|   store i32 %add3, i32* %gep3, align 4
 | |
|   ret void
 | |
| }
 |