1306 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1306 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LazyCallGraphTest.cpp - Unit tests for the lazy CG analysis --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LazyCallGraph.h"
 | |
| #include "llvm/AsmParser/Parser.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/SourceMgr.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include <memory>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| std::unique_ptr<Module> parseAssembly(LLVMContext &Context,
 | |
|                                       const char *Assembly) {
 | |
|   SMDiagnostic Error;
 | |
|   std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
 | |
| 
 | |
|   std::string ErrMsg;
 | |
|   raw_string_ostream OS(ErrMsg);
 | |
|   Error.print("", OS);
 | |
| 
 | |
|   // A failure here means that the test itself is buggy.
 | |
|   if (!M)
 | |
|     report_fatal_error(OS.str().c_str());
 | |
| 
 | |
|   return M;
 | |
| }
 | |
| 
 | |
| /*
 | |
|    IR forming a call graph with a diamond of triangle-shaped SCCs:
 | |
| 
 | |
|            d1
 | |
|           /  \
 | |
|          d3--d2
 | |
|         /     \
 | |
|        b1     c1
 | |
|      /  \    /  \
 | |
|     b3--b2  c3--c2
 | |
|          \  /
 | |
|           a1
 | |
|          /  \
 | |
|         a3--a2
 | |
| 
 | |
|    All call edges go up between SCCs, and clockwise around the SCC.
 | |
|  */
 | |
| static const char DiamondOfTriangles[] =
 | |
|      "define void @a1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @a2()\n"
 | |
|      "  call void @b2()\n"
 | |
|      "  call void @c3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @a2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @a3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @a3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @a1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @b2()\n"
 | |
|      "  call void @d3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @b3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @b1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @c2()\n"
 | |
|      "  call void @d2()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @c3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @c1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @d2()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @d3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @d1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n";
 | |
| 
 | |
| TEST(LazyCallGraphTest, BasicGraphFormation) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // The order of the entry nodes should be stable w.r.t. the source order of
 | |
|   // the IR, and everything in our module is an entry node, so just directly
 | |
|   // build variables for each node.
 | |
|   auto I = CG.begin();
 | |
|   LazyCallGraph::Node &A1 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("a1", A1.getFunction().getName());
 | |
|   LazyCallGraph::Node &A2 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("a2", A2.getFunction().getName());
 | |
|   LazyCallGraph::Node &A3 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("a3", A3.getFunction().getName());
 | |
|   LazyCallGraph::Node &B1 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("b1", B1.getFunction().getName());
 | |
|   LazyCallGraph::Node &B2 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("b2", B2.getFunction().getName());
 | |
|   LazyCallGraph::Node &B3 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("b3", B3.getFunction().getName());
 | |
|   LazyCallGraph::Node &C1 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("c1", C1.getFunction().getName());
 | |
|   LazyCallGraph::Node &C2 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("c2", C2.getFunction().getName());
 | |
|   LazyCallGraph::Node &C3 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("c3", C3.getFunction().getName());
 | |
|   LazyCallGraph::Node &D1 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("d1", D1.getFunction().getName());
 | |
|   LazyCallGraph::Node &D2 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("d2", D2.getFunction().getName());
 | |
|   LazyCallGraph::Node &D3 = (I++)->getNode(CG);
 | |
|   EXPECT_EQ("d3", D3.getFunction().getName());
 | |
|   EXPECT_EQ(CG.end(), I);
 | |
| 
 | |
|   // Build vectors and sort them for the rest of the assertions to make them
 | |
|   // independent of order.
 | |
|   std::vector<std::string> Nodes;
 | |
| 
 | |
|   for (LazyCallGraph::Edge &E : A1)
 | |
|     Nodes.push_back(E.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ("a2", Nodes[0]);
 | |
|   EXPECT_EQ("b2", Nodes[1]);
 | |
|   EXPECT_EQ("c3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   EXPECT_EQ(A2.end(), std::next(A2.begin()));
 | |
|   EXPECT_EQ("a3", A2.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(A3.end(), std::next(A3.begin()));
 | |
|   EXPECT_EQ("a1", A3.begin()->getFunction().getName());
 | |
| 
 | |
|   for (LazyCallGraph::Edge &E : B1)
 | |
|     Nodes.push_back(E.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ("b2", Nodes[0]);
 | |
|   EXPECT_EQ("d3", Nodes[1]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   EXPECT_EQ(B2.end(), std::next(B2.begin()));
 | |
|   EXPECT_EQ("b3", B2.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(B3.end(), std::next(B3.begin()));
 | |
|   EXPECT_EQ("b1", B3.begin()->getFunction().getName());
 | |
| 
 | |
|   for (LazyCallGraph::Edge &E : C1)
 | |
|     Nodes.push_back(E.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ("c2", Nodes[0]);
 | |
|   EXPECT_EQ("d2", Nodes[1]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   EXPECT_EQ(C2.end(), std::next(C2.begin()));
 | |
|   EXPECT_EQ("c3", C2.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(C3.end(), std::next(C3.begin()));
 | |
|   EXPECT_EQ("c1", C3.begin()->getFunction().getName());
 | |
| 
 | |
|   EXPECT_EQ(D1.end(), std::next(D1.begin()));
 | |
|   EXPECT_EQ("d2", D1.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(D2.end(), std::next(D2.begin()));
 | |
|   EXPECT_EQ("d3", D2.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(D3.end(), std::next(D3.begin()));
 | |
|   EXPECT_EQ("d1", D3.begin()->getFunction().getName());
 | |
| 
 | |
|   // Now lets look at the RefSCCs and SCCs.
 | |
|   auto J = CG.postorder_ref_scc_begin();
 | |
| 
 | |
|   LazyCallGraph::RefSCC &D = *J++;
 | |
|   ASSERT_EQ(1, D.size());
 | |
|   for (LazyCallGraph::Node &N : *D.begin())
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("d1", Nodes[0]);
 | |
|   EXPECT_EQ("d2", Nodes[1]);
 | |
|   EXPECT_EQ("d3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_FALSE(D.isParentOf(D));
 | |
|   EXPECT_FALSE(D.isChildOf(D));
 | |
|   EXPECT_FALSE(D.isAncestorOf(D));
 | |
|   EXPECT_FALSE(D.isDescendantOf(D));
 | |
| 
 | |
|   LazyCallGraph::RefSCC &C = *J++;
 | |
|   ASSERT_EQ(1, C.size());
 | |
|   for (LazyCallGraph::Node &N : *C.begin())
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("c1", Nodes[0]);
 | |
|   EXPECT_EQ("c2", Nodes[1]);
 | |
|   EXPECT_EQ("c3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_TRUE(C.isParentOf(D));
 | |
|   EXPECT_FALSE(C.isChildOf(D));
 | |
|   EXPECT_TRUE(C.isAncestorOf(D));
 | |
|   EXPECT_FALSE(C.isDescendantOf(D));
 | |
| 
 | |
|   LazyCallGraph::RefSCC &B = *J++;
 | |
|   ASSERT_EQ(1, B.size());
 | |
|   for (LazyCallGraph::Node &N : *B.begin())
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("b1", Nodes[0]);
 | |
|   EXPECT_EQ("b2", Nodes[1]);
 | |
|   EXPECT_EQ("b3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_TRUE(B.isParentOf(D));
 | |
|   EXPECT_FALSE(B.isChildOf(D));
 | |
|   EXPECT_TRUE(B.isAncestorOf(D));
 | |
|   EXPECT_FALSE(B.isDescendantOf(D));
 | |
|   EXPECT_FALSE(B.isAncestorOf(C));
 | |
|   EXPECT_FALSE(C.isAncestorOf(B));
 | |
| 
 | |
|   LazyCallGraph::RefSCC &A = *J++;
 | |
|   ASSERT_EQ(1, A.size());
 | |
|   for (LazyCallGraph::Node &N : *A.begin())
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("a1", Nodes[0]);
 | |
|   EXPECT_EQ("a2", Nodes[1]);
 | |
|   EXPECT_EQ("a3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_TRUE(A.isParentOf(B));
 | |
|   EXPECT_TRUE(A.isParentOf(C));
 | |
|   EXPECT_FALSE(A.isParentOf(D));
 | |
|   EXPECT_TRUE(A.isAncestorOf(B));
 | |
|   EXPECT_TRUE(A.isAncestorOf(C));
 | |
|   EXPECT_TRUE(A.isAncestorOf(D));
 | |
| 
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), J);
 | |
| }
 | |
| 
 | |
| static Function &lookupFunction(Module &M, StringRef Name) {
 | |
|   for (Function &F : M)
 | |
|     if (F.getName() == Name)
 | |
|       return F;
 | |
|   report_fatal_error("Couldn't find function!");
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, BasicGraphMutation) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @b() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @c() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   LazyCallGraph::Node &A = CG.get(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = CG.get(lookupFunction(*M, "b"));
 | |
|   EXPECT_EQ(2, std::distance(A.begin(), A.end()));
 | |
|   EXPECT_EQ(0, std::distance(B.begin(), B.end()));
 | |
| 
 | |
|   CG.insertEdge(B, lookupFunction(*M, "c"), LazyCallGraph::Edge::Call);
 | |
|   EXPECT_EQ(1, std::distance(B.begin(), B.end()));
 | |
|   LazyCallGraph::Node &C = B.begin()->getNode(CG);
 | |
|   EXPECT_EQ(0, std::distance(C.begin(), C.end()));
 | |
| 
 | |
|   CG.insertEdge(C, B.getFunction(), LazyCallGraph::Edge::Call);
 | |
|   EXPECT_EQ(1, std::distance(C.begin(), C.end()));
 | |
|   EXPECT_EQ(&B, C.begin()->getNode());
 | |
| 
 | |
|   CG.insertEdge(C, C.getFunction(), LazyCallGraph::Edge::Call);
 | |
|   EXPECT_EQ(2, std::distance(C.begin(), C.end()));
 | |
|   EXPECT_EQ(&B, C.begin()->getNode());
 | |
|   EXPECT_EQ(&C, std::next(C.begin())->getNode());
 | |
| 
 | |
|   CG.removeEdge(C, B.getFunction());
 | |
|   EXPECT_EQ(1, std::distance(C.begin(), C.end()));
 | |
|   EXPECT_EQ(&C, C.begin()->getNode());
 | |
| 
 | |
|   CG.removeEdge(C, C.getFunction());
 | |
|   EXPECT_EQ(0, std::distance(C.begin(), C.end()));
 | |
| 
 | |
|   CG.removeEdge(B, C.getFunction());
 | |
|   EXPECT_EQ(0, std::distance(B.begin(), B.end()));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InnerSCCFormation) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Now mutate the graph to connect every node into a single RefSCC to ensure
 | |
|   // that our inner SCC formation handles the rest.
 | |
|   CG.insertEdge(lookupFunction(*M, "d1"), lookupFunction(*M, "a1"),
 | |
|                 LazyCallGraph::Edge::Ref);
 | |
| 
 | |
|   // Build vectors and sort them for the rest of the assertions to make them
 | |
|   // independent of order.
 | |
|   std::vector<std::string> Nodes;
 | |
| 
 | |
|   // We should build a single RefSCC for the entire graph.
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   // Now walk the four SCCs which should be in post-order.
 | |
|   auto J = RC.begin();
 | |
|   LazyCallGraph::SCC &D = *J++;
 | |
|   for (LazyCallGraph::Node &N : D)
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("d1", Nodes[0]);
 | |
|   EXPECT_EQ("d2", Nodes[1]);
 | |
|   EXPECT_EQ("d3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   LazyCallGraph::SCC &B = *J++;
 | |
|   for (LazyCallGraph::Node &N : B)
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("b1", Nodes[0]);
 | |
|   EXPECT_EQ("b2", Nodes[1]);
 | |
|   EXPECT_EQ("b3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   LazyCallGraph::SCC &C = *J++;
 | |
|   for (LazyCallGraph::Node &N : C)
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("c1", Nodes[0]);
 | |
|   EXPECT_EQ("c2", Nodes[1]);
 | |
|   EXPECT_EQ("c3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   LazyCallGraph::SCC &A = *J++;
 | |
|   for (LazyCallGraph::Node &N : A)
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("a1", Nodes[0]);
 | |
|   EXPECT_EQ("a2", Nodes[1]);
 | |
|   EXPECT_EQ("a3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   EXPECT_EQ(RC.end(), J);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, MultiArmSCC) {
 | |
|   LLVMContext Context;
 | |
|   // Two interlocking cycles. The really useful thing about this SCC is that it
 | |
|   // will require Tarjan's DFS to backtrack and finish processing all of the
 | |
|   // children of each node in the SCC. Since this involves call edges, both
 | |
|   // Tarjan implementations will have to successfully navigate the structure.
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @f1() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f2()\n"
 | |
|                                                      "  call void @f4()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @f2() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f3()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @f3() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f1()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @f4() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f5()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @f5() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @f1()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &N1 = *CG.lookup(lookupFunction(*M, "f1"));
 | |
|   LazyCallGraph::Node &N2 = *CG.lookup(lookupFunction(*M, "f2"));
 | |
|   LazyCallGraph::Node &N3 = *CG.lookup(lookupFunction(*M, "f3"));
 | |
|   LazyCallGraph::Node &N4 = *CG.lookup(lookupFunction(*M, "f4"));
 | |
|   LazyCallGraph::Node &N5 = *CG.lookup(lookupFunction(*M, "f4"));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(N1));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(N2));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(N3));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(N4));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(N5));
 | |
| 
 | |
|   ASSERT_EQ(1, RC.size());
 | |
| 
 | |
|   LazyCallGraph::SCC &C = *RC.begin();
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(N1));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(N2));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(N3));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(N4));
 | |
|   EXPECT_EQ(&C, CG.lookupSCC(N5));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, OutgoingEdgeMutation) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @b() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @d()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @c() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @d()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @d() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
 | |
|     (void)RC;
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
 | |
|   LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A);
 | |
|   LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B);
 | |
|   LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C);
 | |
|   LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D);
 | |
|   EXPECT_TRUE(ARC.isParentOf(BRC));
 | |
|   EXPECT_TRUE(ARC.isParentOf(CRC));
 | |
|   EXPECT_FALSE(ARC.isParentOf(DRC));
 | |
|   EXPECT_TRUE(ARC.isAncestorOf(DRC));
 | |
|   EXPECT_FALSE(DRC.isChildOf(ARC));
 | |
|   EXPECT_TRUE(DRC.isDescendantOf(ARC));
 | |
|   EXPECT_TRUE(DRC.isChildOf(BRC));
 | |
|   EXPECT_TRUE(DRC.isChildOf(CRC));
 | |
| 
 | |
|   EXPECT_EQ(2, std::distance(A.begin(), A.end()));
 | |
|   ARC.insertOutgoingEdge(A, D, LazyCallGraph::Edge::Call);
 | |
|   EXPECT_EQ(3, std::distance(A.begin(), A.end()));
 | |
|   const LazyCallGraph::Edge &NewE = A[D];
 | |
|   EXPECT_TRUE(NewE);
 | |
|   EXPECT_TRUE(NewE.isCall());
 | |
|   EXPECT_EQ(&D, NewE.getNode());
 | |
| 
 | |
|   // Only the parent and child tests sholud have changed. The rest of the graph
 | |
|   // remains the same.
 | |
|   EXPECT_TRUE(ARC.isParentOf(DRC));
 | |
|   EXPECT_TRUE(ARC.isAncestorOf(DRC));
 | |
|   EXPECT_TRUE(DRC.isChildOf(ARC));
 | |
|   EXPECT_TRUE(DRC.isDescendantOf(ARC));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(&DC, CG.lookupSCC(D));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
 | |
| 
 | |
|   ARC.switchOutgoingEdgeToRef(A, D);
 | |
|   EXPECT_FALSE(NewE.isCall());
 | |
| 
 | |
|   // Verify the graph remains the same.
 | |
|   EXPECT_TRUE(ARC.isParentOf(DRC));
 | |
|   EXPECT_TRUE(ARC.isAncestorOf(DRC));
 | |
|   EXPECT_TRUE(DRC.isChildOf(ARC));
 | |
|   EXPECT_TRUE(DRC.isDescendantOf(ARC));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(&DC, CG.lookupSCC(D));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
 | |
| 
 | |
|   ARC.switchOutgoingEdgeToCall(A, D);
 | |
|   EXPECT_TRUE(NewE.isCall());
 | |
| 
 | |
|   // Verify the graph remains the same.
 | |
|   EXPECT_TRUE(ARC.isParentOf(DRC));
 | |
|   EXPECT_TRUE(ARC.isAncestorOf(DRC));
 | |
|   EXPECT_TRUE(DRC.isChildOf(ARC));
 | |
|   EXPECT_TRUE(DRC.isDescendantOf(ARC));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(&DC, CG.lookupSCC(D));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
 | |
| 
 | |
|   ARC.removeOutgoingEdge(A, D);
 | |
|   EXPECT_EQ(2, std::distance(A.begin(), A.end()));
 | |
| 
 | |
|   // Now the parent and child tests fail again but the rest remains the same.
 | |
|   EXPECT_FALSE(ARC.isParentOf(DRC));
 | |
|   EXPECT_TRUE(ARC.isAncestorOf(DRC));
 | |
|   EXPECT_FALSE(DRC.isChildOf(ARC));
 | |
|   EXPECT_TRUE(DRC.isDescendantOf(ARC));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(&DC, CG.lookupSCC(D));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, IncomingEdgeInsertion) {
 | |
|   LLVMContext Context;
 | |
|   // We want to ensure we can add edges even across complex diamond graphs, so
 | |
|   // we use the diamond of triangles graph defined above. The ascii diagram is
 | |
|   // repeated here for easy reference.
 | |
|   //
 | |
|   //         d1       |
 | |
|   //        /  \      |
 | |
|   //       d3--d2     |
 | |
|   //      /     \     |
 | |
|   //     b1     c1    |
 | |
|   //   /  \    /  \   |
 | |
|   //  b3--b2  c3--c2  |
 | |
|   //       \  /       |
 | |
|   //        a1        |
 | |
|   //       /  \       |
 | |
|   //      a3--a2      |
 | |
|   //
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
 | |
|     (void)RC;
 | |
| 
 | |
|   LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1"));
 | |
|   LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2"));
 | |
|   LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3"));
 | |
|   LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
 | |
|   LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
 | |
|   LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
 | |
|   LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
 | |
|   LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
 | |
|   LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
 | |
|   LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
 | |
|   LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
 | |
|   LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
 | |
|   LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1);
 | |
|   LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1);
 | |
|   LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1);
 | |
|   LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1);
 | |
|   ASSERT_EQ(&ARC, CG.lookupRefSCC(A2));
 | |
|   ASSERT_EQ(&ARC, CG.lookupRefSCC(A3));
 | |
|   ASSERT_EQ(&BRC, CG.lookupRefSCC(B2));
 | |
|   ASSERT_EQ(&BRC, CG.lookupRefSCC(B3));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
 | |
|   ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
 | |
| 
 | |
|   // Add an edge to make the graph:
 | |
|   //
 | |
|   //         d1         |
 | |
|   //        /  \        |
 | |
|   //       d3--d2---.   |
 | |
|   //      /     \    |  |
 | |
|   //     b1     c1   |  |
 | |
|   //   /  \    /  \ /   |
 | |
|   //  b3--b2  c3--c2    |
 | |
|   //       \  /         |
 | |
|   //        a1          |
 | |
|   //       /  \         |
 | |
|   //      a3--a2        |
 | |
|   auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2);
 | |
|   // Make sure we connected the nodes.
 | |
|   for (LazyCallGraph::Edge E : D2) {
 | |
|     if (E.getNode() == &D3)
 | |
|       continue;
 | |
|     EXPECT_EQ(&C2, E.getNode());
 | |
|   }
 | |
|   // And marked the D ref-SCC as no longer valid.
 | |
|   EXPECT_EQ(1u, MergedRCs.size());
 | |
|   EXPECT_EQ(&DRC, MergedRCs[0]);
 | |
| 
 | |
|   // Make sure we have the correct nodes in the SCC sets.
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A1));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A2));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(A3));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B1));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B2));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(B3));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D1));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D2));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D3));
 | |
| 
 | |
|   // And that ancestry tests have been updated.
 | |
|   EXPECT_TRUE(ARC.isParentOf(CRC));
 | |
|   EXPECT_TRUE(BRC.isParentOf(CRC));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, IncomingEdgeInsertionMidTraversal) {
 | |
|   LLVMContext Context;
 | |
|   // This is the same fundamental test as the previous, but we perform it
 | |
|   // having only partially walked the RefSCCs of the graph.
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Walk the RefSCCs until we find the one containing 'c1'.
 | |
|   auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
 | |
|   ASSERT_NE(I, E);
 | |
|   LazyCallGraph::RefSCC &DRC = *I;
 | |
|   ASSERT_NE(&DRC, nullptr);
 | |
|   ++I;
 | |
|   ASSERT_NE(I, E);
 | |
|   LazyCallGraph::RefSCC &CRC = *I;
 | |
|   ASSERT_NE(&CRC, nullptr);
 | |
| 
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a1")));
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a2")));
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a3")));
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b1")));
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b2")));
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b3")));
 | |
|   LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
 | |
|   LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
 | |
|   LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
 | |
|   LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
 | |
|   LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
 | |
|   LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C1));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
 | |
|   ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D1));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
 | |
|   ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
 | |
|   ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
 | |
| 
 | |
|   auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2);
 | |
|   // Make sure we connected the nodes.
 | |
|   for (LazyCallGraph::Edge E : D2) {
 | |
|     if (E.getNode() == &D3)
 | |
|       continue;
 | |
|     EXPECT_EQ(&C2, E.getNode());
 | |
|   }
 | |
|   // And marked the D ref-SCC as no longer valid.
 | |
|   EXPECT_EQ(1u, MergedRCs.size());
 | |
|   EXPECT_EQ(&DRC, MergedRCs[0]);
 | |
| 
 | |
|   // Make sure we have the correct nodes in the RefSCCs.
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D1));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D2));
 | |
|   EXPECT_EQ(&CRC, CG.lookupRefSCC(D3));
 | |
| 
 | |
|   // Check that we can form the last two RefSCCs now in a coherent way.
 | |
|   ++I;
 | |
|   EXPECT_NE(I, E);
 | |
|   LazyCallGraph::RefSCC &BRC = *I;
 | |
|   EXPECT_NE(&BRC, nullptr);
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b1"))));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b2"))));
 | |
|   EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b3"))));
 | |
|   EXPECT_TRUE(BRC.isParentOf(CRC));
 | |
|   ++I;
 | |
|   EXPECT_NE(I, E);
 | |
|   LazyCallGraph::RefSCC &ARC = *I;
 | |
|   EXPECT_NE(&ARC, nullptr);
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a1"))));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a2"))));
 | |
|   EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a3"))));
 | |
|   EXPECT_TRUE(ARC.isParentOf(CRC));
 | |
|   ++I;
 | |
|   EXPECT_EQ(E, I);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalEdgeMutation) {
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @b() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @c() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @a()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(1, RC.size());
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C));
 | |
| 
 | |
|   // Insert an edge from 'a' to 'c'. Nothing changes about the graph.
 | |
|   RC.insertInternalRefEdge(A, C);
 | |
|   EXPECT_EQ(2, std::distance(A.begin(), A.end()));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(1, RC.size());
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C));
 | |
| 
 | |
|   // Switch the call edge from 'b' to 'c' to a ref edge. This will break the
 | |
|   // call cycle and cause us to form more SCCs. The RefSCC will remain the same
 | |
|   // though.
 | |
|   RC.switchInternalEdgeToRef(B, C);
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
|   auto J = RC.begin();
 | |
|   // The SCCs must be in *post-order* which means successors before
 | |
|   // predecessors. At this point we have call edges from C to A and from A to
 | |
|   // B. The only valid postorder is B, A, C.
 | |
|   EXPECT_EQ(&*J++, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&*J++, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&*J++, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(RC.end(), J);
 | |
| 
 | |
|   // Test turning the ref edge from A to C into a call edge. This will form an
 | |
|   // SCC out of A and C. Since we previously had a call edge from C to A, the
 | |
|   // C SCC should be preserved and have A merged into it while the A SCC should
 | |
|   // be invalidated.
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
 | |
|   auto InvalidatedSCCs = RC.switchInternalEdgeToCall(A, C);
 | |
|   ASSERT_EQ(1u, InvalidatedSCCs.size());
 | |
|   EXPECT_EQ(&AC, InvalidatedSCCs[0]);
 | |
|   EXPECT_EQ(2, CC.size());
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   J = RC.begin();
 | |
|   EXPECT_EQ(&*J++, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&*J++, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(RC.end(), J);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalEdgeRemoval) {
 | |
|   LLVMContext Context;
 | |
|   // A nice fully connected (including self-edges) RefSCC.
 | |
|   std::unique_ptr<Module> M = parseAssembly(
 | |
|       Context, "define void @a(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n"
 | |
|                "define void @b(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n"
 | |
|                "define void @c(i8** %ptr) {\n"
 | |
|                "entry:\n"
 | |
|                "  store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
 | |
|                "  store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
 | |
|                "  ret void\n"
 | |
|                "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
| 
 | |
|   // Remove the edge from b -> a, which should leave the 3 functions still in
 | |
|   // a single connected component because of a -> b -> c -> a.
 | |
|   SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs =
 | |
|       RC.removeInternalRefEdge(B, A);
 | |
|   EXPECT_EQ(0u, NewRCs.size());
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(B));
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(C));
 | |
| 
 | |
|   // Remove the edge from c -> a, which should leave 'a' in the original RefSCC
 | |
|   // and form a new RefSCC for 'b' and 'c'.
 | |
|   NewRCs = RC.removeInternalRefEdge(C, A);
 | |
|   EXPECT_EQ(1u, NewRCs.size());
 | |
|   EXPECT_EQ(&RC, CG.lookupRefSCC(A));
 | |
|   EXPECT_EQ(1, std::distance(RC.begin(), RC.end()));
 | |
|   LazyCallGraph::RefSCC *RC2 = CG.lookupRefSCC(B);
 | |
|   EXPECT_EQ(RC2, CG.lookupRefSCC(C));
 | |
|   EXPECT_EQ(RC2, NewRCs[0]);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalCallEdgeToRef) {
 | |
|   LLVMContext Context;
 | |
|   // A nice fully connected (including self-edges) SCC (and RefSCC)
 | |
|   std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @a()\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @b() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @a()\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n"
 | |
|                                                      "define void @c() {\n"
 | |
|                                                      "entry:\n"
 | |
|                                                      "  call void @a()\n"
 | |
|                                                      "  call void @b()\n"
 | |
|                                                      "  call void @c()\n"
 | |
|                                                      "  ret void\n"
 | |
|                                                      "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   EXPECT_EQ(1, RC.size());
 | |
|   LazyCallGraph::SCC &CallC = *RC.begin();
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   EXPECT_EQ(&CallC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&CallC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CallC, CG.lookupSCC(C));
 | |
| 
 | |
|   // Remove the call edge from b -> a to a ref edge, which should leave the
 | |
|   // 3 functions still in a single connected component because of a -> b ->
 | |
|   // c -> a.
 | |
|   RC.switchInternalEdgeToRef(B, A);
 | |
|   EXPECT_EQ(1, RC.size());
 | |
|   EXPECT_EQ(&CallC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&CallC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CallC, CG.lookupSCC(C));
 | |
| 
 | |
|   // Remove the edge from c -> a, which should leave 'a' in the original SCC
 | |
|   // and form a new SCC for 'b' and 'c'.
 | |
|   RC.switchInternalEdgeToRef(C, A);
 | |
|   EXPECT_EQ(2, RC.size());
 | |
|   EXPECT_EQ(&CallC, CG.lookupSCC(A));
 | |
|   LazyCallGraph::SCC &BCallC = *CG.lookupSCC(B);
 | |
|   EXPECT_NE(&BCallC, &CallC);
 | |
|   EXPECT_EQ(&BCallC, CG.lookupSCC(C));
 | |
|   auto J = RC.find(CallC);
 | |
|   EXPECT_EQ(&CallC, &*J);
 | |
|   --J;
 | |
|   EXPECT_EQ(&BCallC, &*J);
 | |
|   EXPECT_EQ(RC.begin(), J);
 | |
| 
 | |
|   // Remove the edge from c -> b, which should leave 'b' in the original SCC
 | |
|   // and form a new SCC for 'c'. It shouldn't change 'a's SCC.
 | |
|   RC.switchInternalEdgeToRef(C, B);
 | |
|   EXPECT_EQ(3, RC.size());
 | |
|   EXPECT_EQ(&CallC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&BCallC, CG.lookupSCC(B));
 | |
|   LazyCallGraph::SCC &CCallC = *CG.lookupSCC(C);
 | |
|   EXPECT_NE(&CCallC, &CallC);
 | |
|   EXPECT_NE(&CCallC, &BCallC);
 | |
|   J = RC.find(CallC);
 | |
|   EXPECT_EQ(&CallC, &*J);
 | |
|   --J;
 | |
|   EXPECT_EQ(&BCallC, &*J);
 | |
|   --J;
 | |
|   EXPECT_EQ(&CCallC, &*J);
 | |
|   EXPECT_EQ(RC.begin(), J);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalRefEdgeToCall) {
 | |
|   LLVMContext Context;
 | |
|   // Basic tests for making a ref edge a call. This hits the basics of the
 | |
|   // process only.
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context, "define void @a() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @b()\n"
 | |
|                              "  call void @c()\n"
 | |
|                              "  store void()* @d, void()** undef\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @c, void()** undef\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @b, void()** undef\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @d() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @a, void()** undef\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
 | |
| 
 | |
|   // Check the initial post-order. Note that B and C could be flipped here (and
 | |
|   // in our mutation) without changing the nature of this test.
 | |
|   ASSERT_EQ(4, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&BC, &RC[1]);
 | |
|   EXPECT_EQ(&CC, &RC[2]);
 | |
|   EXPECT_EQ(&AC, &RC[3]);
 | |
| 
 | |
|   // Switch the ref edge from A -> D to a call edge. This should have no
 | |
|   // effect as it is already in postorder and no new cycles are formed.
 | |
|   auto MergedCs = RC.switchInternalEdgeToCall(A, D);
 | |
|   EXPECT_EQ(0u, MergedCs.size());
 | |
|   ASSERT_EQ(4, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&BC, &RC[1]);
 | |
|   EXPECT_EQ(&CC, &RC[2]);
 | |
|   EXPECT_EQ(&AC, &RC[3]);
 | |
| 
 | |
|   // Switch B -> C to a call edge. This doesn't form any new cycles but does
 | |
|   // require reordering the SCCs.
 | |
|   MergedCs = RC.switchInternalEdgeToCall(B, C);
 | |
|   EXPECT_EQ(0u, MergedCs.size());
 | |
|   ASSERT_EQ(4, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&CC, &RC[1]);
 | |
|   EXPECT_EQ(&BC, &RC[2]);
 | |
|   EXPECT_EQ(&AC, &RC[3]);
 | |
| 
 | |
|   // Switch C -> B to a call edge. This forms a cycle and forces merging SCCs.
 | |
|   MergedCs = RC.switchInternalEdgeToCall(C, B);
 | |
|   ASSERT_EQ(1u, MergedCs.size());
 | |
|   EXPECT_EQ(&CC, MergedCs[0]);
 | |
|   ASSERT_EQ(3, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&BC, &RC[1]);
 | |
|   EXPECT_EQ(&AC, &RC[2]);
 | |
|   EXPECT_EQ(2, BC.size());
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(C));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalRefEdgeToCallNoCycleInterleaved) {
 | |
|   LLVMContext Context;
 | |
|   // Test for having a post-order prior to changing a ref edge to a call edge
 | |
|   // with SCCs connecting to the source and connecting to the target, but not
 | |
|   // connecting to both, interleaved between the source and target. This
 | |
|   // ensures we correctly partition the range rather than simply moving one or
 | |
|   // the other.
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context, "define void @a() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @b1()\n"
 | |
|                              "  call void @c1()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b1() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @c1()\n"
 | |
|                              "  call void @b2()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c1() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @b2()\n"
 | |
|                              "  call void @c2()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b2() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @c2()\n"
 | |
|                              "  call void @b3()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c2() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @b3()\n"
 | |
|                              "  call void @c3()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b3() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @c3()\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c3() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @b1, void()** undef\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @d() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @a, void()** undef\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
 | |
|   LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
 | |
|   LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
 | |
|   LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
 | |
|   LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
 | |
|   LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &B1C = *CG.lookupSCC(B1);
 | |
|   LazyCallGraph::SCC &B2C = *CG.lookupSCC(B2);
 | |
|   LazyCallGraph::SCC &B3C = *CG.lookupSCC(B3);
 | |
|   LazyCallGraph::SCC &C1C = *CG.lookupSCC(C1);
 | |
|   LazyCallGraph::SCC &C2C = *CG.lookupSCC(C2);
 | |
|   LazyCallGraph::SCC &C3C = *CG.lookupSCC(C3);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
 | |
| 
 | |
|   // Several call edges are initially present to force a particual post-order.
 | |
|   // Remove them now, leaving an interleaved post-order pattern.
 | |
|   RC.switchInternalEdgeToRef(B3, C3);
 | |
|   RC.switchInternalEdgeToRef(C2, B3);
 | |
|   RC.switchInternalEdgeToRef(B2, C2);
 | |
|   RC.switchInternalEdgeToRef(C1, B2);
 | |
|   RC.switchInternalEdgeToRef(B1, C1);
 | |
| 
 | |
|   // Check the initial post-order. We ensure this order with the extra edges
 | |
|   // that are nuked above.
 | |
|   ASSERT_EQ(8, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&C3C, &RC[1]);
 | |
|   EXPECT_EQ(&B3C, &RC[2]);
 | |
|   EXPECT_EQ(&C2C, &RC[3]);
 | |
|   EXPECT_EQ(&B2C, &RC[4]);
 | |
|   EXPECT_EQ(&C1C, &RC[5]);
 | |
|   EXPECT_EQ(&B1C, &RC[6]);
 | |
|   EXPECT_EQ(&AC, &RC[7]);
 | |
| 
 | |
|   // Switch C3 -> B1 to a call edge. This doesn't form any new cycles but does
 | |
|   // require reordering the SCCs in the face of tricky internal node
 | |
|   // structures.
 | |
|   auto MergedCs = RC.switchInternalEdgeToCall(C3, B1);
 | |
|   EXPECT_EQ(0u, MergedCs.size());
 | |
|   ASSERT_EQ(8, RC.size());
 | |
|   EXPECT_EQ(&DC, &RC[0]);
 | |
|   EXPECT_EQ(&B3C, &RC[1]);
 | |
|   EXPECT_EQ(&B2C, &RC[2]);
 | |
|   EXPECT_EQ(&B1C, &RC[3]);
 | |
|   EXPECT_EQ(&C3C, &RC[4]);
 | |
|   EXPECT_EQ(&C2C, &RC[5]);
 | |
|   EXPECT_EQ(&C1C, &RC[6]);
 | |
|   EXPECT_EQ(&AC, &RC[7]);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InternalRefEdgeToCallBothPartitionAndMerge) {
 | |
|   LLVMContext Context;
 | |
|   // Test for having a postorder where between the source and target are all
 | |
|   // three kinds of other SCCs:
 | |
|   // 1) One connected to the target only that have to be shifted below the
 | |
|   //    source.
 | |
|   // 2) One connected to the source only that have to be shifted below the
 | |
|   //    target.
 | |
|   // 3) One connected to both source and target that has to remain and get
 | |
|   //    merged away.
 | |
|   //
 | |
|   // To achieve this we construct a heavily connected graph to force
 | |
|   // a particular post-order. Then we remove the forcing edges and connect
 | |
|   // a cycle.
 | |
|   //
 | |
|   // Diagram for the graph we want on the left and the graph we use to force
 | |
|   // the ordering on the right. Edges ponit down or right.
 | |
|   //
 | |
|   //   A    |    A    |
 | |
|   //  / \   |   / \   |
 | |
|   // B   E  |  B   \  |
 | |
|   // |\  |  |  |\  |  |
 | |
|   // | D |  |  C-D-E  |
 | |
|   // |  \|  |  |  \|  |
 | |
|   // C   F  |  \   F  |
 | |
|   //  \ /   |   \ /   |
 | |
|   //   G    |    G    |
 | |
|   //
 | |
|   // And we form a cycle by connecting F to B.
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssembly(Context, "define void @a() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @b()\n"
 | |
|                              "  call void @e()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @b() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @c()\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @c() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @d()\n"
 | |
|                              "  call void @g()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @d() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @e()\n"
 | |
|                              "  call void @f()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @e() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  call void @f()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @f() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @b, void()** undef\n"
 | |
|                              "  call void @g()\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n"
 | |
|                              "define void @g() {\n"
 | |
|                              "entry:\n"
 | |
|                              "  store void()* @a, void()** undef\n"
 | |
|                              "  ret void\n"
 | |
|                              "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   auto I = CG.postorder_ref_scc_begin();
 | |
|   LazyCallGraph::RefSCC &RC = *I++;
 | |
|   EXPECT_EQ(CG.postorder_ref_scc_end(), I);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e"));
 | |
|   LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f"));
 | |
|   LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
 | |
|   LazyCallGraph::SCC &EC = *CG.lookupSCC(E);
 | |
|   LazyCallGraph::SCC &FC = *CG.lookupSCC(F);
 | |
|   LazyCallGraph::SCC &GC = *CG.lookupSCC(G);
 | |
| 
 | |
|   // Remove the extra edges that were used to force a particular post-order.
 | |
|   RC.switchInternalEdgeToRef(C, D);
 | |
|   RC.switchInternalEdgeToRef(D, E);
 | |
| 
 | |
|   // Check the initial post-order. We ensure this order with the extra edges
 | |
|   // that are nuked above.
 | |
|   ASSERT_EQ(7, RC.size());
 | |
|   EXPECT_EQ(&GC, &RC[0]);
 | |
|   EXPECT_EQ(&FC, &RC[1]);
 | |
|   EXPECT_EQ(&EC, &RC[2]);
 | |
|   EXPECT_EQ(&DC, &RC[3]);
 | |
|   EXPECT_EQ(&CC, &RC[4]);
 | |
|   EXPECT_EQ(&BC, &RC[5]);
 | |
|   EXPECT_EQ(&AC, &RC[6]);
 | |
| 
 | |
|   // Switch F -> B to a call edge. This merges B, D, and F into a single SCC,
 | |
|   // and has to place the C and E SCCs on either side of it:
 | |
|   //   A          A    |
 | |
|   //  / \        / \   |
 | |
|   // B   E      |   E  |
 | |
|   // |\  |       \ /   |
 | |
|   // | D |  ->    B    |
 | |
|   // |  \|       / \   |
 | |
|   // C   F      C   |  |
 | |
|   //  \ /        \ /   |
 | |
|   //   G          G    |
 | |
|   auto MergedCs = RC.switchInternalEdgeToCall(F, B);
 | |
|   ASSERT_EQ(2u, MergedCs.size());
 | |
|   EXPECT_EQ(&FC, MergedCs[0]);
 | |
|   EXPECT_EQ(&DC, MergedCs[1]);
 | |
|   EXPECT_EQ(3, BC.size());
 | |
| 
 | |
|   // And make sure the postorder was updated.
 | |
|   ASSERT_EQ(5, RC.size());
 | |
|   EXPECT_EQ(&GC, &RC[0]);
 | |
|   EXPECT_EQ(&CC, &RC[1]);
 | |
|   EXPECT_EQ(&BC, &RC[2]);
 | |
|   EXPECT_EQ(&EC, &RC[3]);
 | |
|   EXPECT_EQ(&AC, &RC[4]);
 | |
| }
 | |
| 
 | |
| }
 |