726 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			726 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass turns explicit null checks of the form
 | 
						|
//
 | 
						|
//   test %r10, %r10
 | 
						|
//   je throw_npe
 | 
						|
//   movl (%r10), %esi
 | 
						|
//   ...
 | 
						|
//
 | 
						|
// to
 | 
						|
//
 | 
						|
//   faulting_load_op("movl (%r10), %esi", throw_npe)
 | 
						|
//   ...
 | 
						|
//
 | 
						|
// With the help of a runtime that understands the .fault_maps section,
 | 
						|
// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
 | 
						|
// a page fault.
 | 
						|
// Store and LoadStore are also supported.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/CodeGen/FaultMaps.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetOpcodes.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<int> PageSize("imp-null-check-page-size",
 | 
						|
                             cl::desc("The page size of the target in bytes"),
 | 
						|
                             cl::init(4096), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<unsigned> MaxInstsToConsider(
 | 
						|
    "imp-null-max-insts-to-consider",
 | 
						|
    cl::desc("The max number of instructions to consider hoisting loads over "
 | 
						|
             "(the algorithm is quadratic over this number)"),
 | 
						|
    cl::Hidden, cl::init(8));
 | 
						|
 | 
						|
#define DEBUG_TYPE "implicit-null-checks"
 | 
						|
 | 
						|
STATISTIC(NumImplicitNullChecks,
 | 
						|
          "Number of explicit null checks made implicit");
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class ImplicitNullChecks : public MachineFunctionPass {
 | 
						|
  /// Return true if \c computeDependence can process \p MI.
 | 
						|
  static bool canHandle(const MachineInstr *MI);
 | 
						|
 | 
						|
  /// Helper function for \c computeDependence.  Return true if \p A
 | 
						|
  /// and \p B do not have any dependences between them, and can be
 | 
						|
  /// re-ordered without changing program semantics.
 | 
						|
  bool canReorder(const MachineInstr *A, const MachineInstr *B);
 | 
						|
 | 
						|
  /// A data type for representing the result computed by \c
 | 
						|
  /// computeDependence.  States whether it is okay to reorder the
 | 
						|
  /// instruction passed to \c computeDependence with at most one
 | 
						|
  /// dependency.
 | 
						|
  struct DependenceResult {
 | 
						|
    /// Can we actually re-order \p MI with \p Insts (see \c
 | 
						|
    /// computeDependence).
 | 
						|
    bool CanReorder;
 | 
						|
 | 
						|
    /// If non-None, then an instruction in \p Insts that also must be
 | 
						|
    /// hoisted.
 | 
						|
    Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
 | 
						|
 | 
						|
    /*implicit*/ DependenceResult(
 | 
						|
        bool CanReorder,
 | 
						|
        Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
 | 
						|
        : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
 | 
						|
      assert((!PotentialDependence || CanReorder) &&
 | 
						|
             "!CanReorder && PotentialDependence.hasValue() not allowed!");
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Compute a result for the following question: can \p MI be
 | 
						|
  /// re-ordered from after \p Insts to before it.
 | 
						|
  ///
 | 
						|
  /// \c canHandle should return true for all instructions in \p
 | 
						|
  /// Insts.
 | 
						|
  DependenceResult computeDependence(const MachineInstr *MI,
 | 
						|
                                     ArrayRef<MachineInstr *> Block);
 | 
						|
 | 
						|
  /// Represents one null check that can be made implicit.
 | 
						|
  class NullCheck {
 | 
						|
    // The memory operation the null check can be folded into.
 | 
						|
    MachineInstr *MemOperation;
 | 
						|
 | 
						|
    // The instruction actually doing the null check (Ptr != 0).
 | 
						|
    MachineInstr *CheckOperation;
 | 
						|
 | 
						|
    // The block the check resides in.
 | 
						|
    MachineBasicBlock *CheckBlock;
 | 
						|
 | 
						|
    // The block branched to if the pointer is non-null.
 | 
						|
    MachineBasicBlock *NotNullSucc;
 | 
						|
 | 
						|
    // The block branched to if the pointer is null.
 | 
						|
    MachineBasicBlock *NullSucc;
 | 
						|
 | 
						|
    // If this is non-null, then MemOperation has a dependency on this
 | 
						|
    // instruction; and it needs to be hoisted to execute before MemOperation.
 | 
						|
    MachineInstr *OnlyDependency;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
 | 
						|
                       MachineBasicBlock *checkBlock,
 | 
						|
                       MachineBasicBlock *notNullSucc,
 | 
						|
                       MachineBasicBlock *nullSucc,
 | 
						|
                       MachineInstr *onlyDependency)
 | 
						|
        : MemOperation(memOperation), CheckOperation(checkOperation),
 | 
						|
          CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
 | 
						|
          OnlyDependency(onlyDependency) {}
 | 
						|
 | 
						|
    MachineInstr *getMemOperation() const { return MemOperation; }
 | 
						|
 | 
						|
    MachineInstr *getCheckOperation() const { return CheckOperation; }
 | 
						|
 | 
						|
    MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
 | 
						|
 | 
						|
    MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
 | 
						|
 | 
						|
    MachineBasicBlock *getNullSucc() const { return NullSucc; }
 | 
						|
 | 
						|
    MachineInstr *getOnlyDependency() const { return OnlyDependency; }
 | 
						|
  };
 | 
						|
 | 
						|
  const TargetInstrInfo *TII = nullptr;
 | 
						|
  const TargetRegisterInfo *TRI = nullptr;
 | 
						|
  AliasAnalysis *AA = nullptr;
 | 
						|
  MachineFrameInfo *MFI = nullptr;
 | 
						|
 | 
						|
  bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
 | 
						|
                                 SmallVectorImpl<NullCheck> &NullCheckList);
 | 
						|
  MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
 | 
						|
                                    MachineBasicBlock *HandlerMBB);
 | 
						|
  void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
 | 
						|
 | 
						|
  enum AliasResult {
 | 
						|
    AR_NoAlias,
 | 
						|
    AR_MayAlias,
 | 
						|
    AR_WillAliasEverything
 | 
						|
  };
 | 
						|
 | 
						|
  /// Returns AR_NoAlias if \p MI memory operation does not alias with
 | 
						|
  /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
 | 
						|
  /// they may alias and any further memory operation may alias with \p PrevMI.
 | 
						|
  AliasResult areMemoryOpsAliased(const MachineInstr &MI,
 | 
						|
                                  const MachineInstr *PrevMI) const;
 | 
						|
 | 
						|
  enum SuitabilityResult {
 | 
						|
    SR_Suitable,
 | 
						|
    SR_Unsuitable,
 | 
						|
    SR_Impossible
 | 
						|
  };
 | 
						|
 | 
						|
  /// Return SR_Suitable if \p MI a memory operation that can be used to
 | 
						|
  /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
 | 
						|
  /// \p MI cannot be used to null check and SR_Impossible if there is
 | 
						|
  /// no sense to continue lookup due to any other instruction will not be able
 | 
						|
  /// to be used. \p PrevInsts is the set of instruction seen since
 | 
						|
  /// the explicit null check on \p PointerReg.
 | 
						|
  SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
 | 
						|
                                       unsigned PointerReg,
 | 
						|
                                       ArrayRef<MachineInstr *> PrevInsts);
 | 
						|
 | 
						|
  /// Return true if \p FaultingMI can be hoisted from after the
 | 
						|
  /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
 | 
						|
  /// non-null value if we also need to (and legally can) hoist a depedency.
 | 
						|
  bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
 | 
						|
                    ArrayRef<MachineInstr *> InstsSeenSoFar,
 | 
						|
                    MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  ImplicitNullChecks() : MachineFunctionPass(ID) {
 | 
						|
    initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<AAResultsWrapperPass>();
 | 
						|
    MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
    return MachineFunctionProperties().set(
 | 
						|
        MachineFunctionProperties::Property::NoVRegs);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
 | 
						|
  if (MI->isCall() || MI->hasUnmodeledSideEffects())
 | 
						|
    return false;
 | 
						|
  auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
 | 
						|
  (void)IsRegMask;
 | 
						|
 | 
						|
  assert(!llvm::any_of(MI->operands(), IsRegMask) &&
 | 
						|
         "Calls were filtered out above!");
 | 
						|
 | 
						|
  auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
 | 
						|
  return llvm::all_of(MI->memoperands(), IsUnordered);
 | 
						|
}
 | 
						|
 | 
						|
ImplicitNullChecks::DependenceResult
 | 
						|
ImplicitNullChecks::computeDependence(const MachineInstr *MI,
 | 
						|
                                      ArrayRef<MachineInstr *> Block) {
 | 
						|
  assert(llvm::all_of(Block, canHandle) && "Check this first!");
 | 
						|
  assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
 | 
						|
 | 
						|
  Optional<ArrayRef<MachineInstr *>::iterator> Dep;
 | 
						|
 | 
						|
  for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
 | 
						|
    if (canReorder(*I, MI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Dep == None) {
 | 
						|
      // Found one possible dependency, keep track of it.
 | 
						|
      Dep = I;
 | 
						|
    } else {
 | 
						|
      // We found two dependencies, so bail out.
 | 
						|
      return {false, None};
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return {true, Dep};
 | 
						|
}
 | 
						|
 | 
						|
bool ImplicitNullChecks::canReorder(const MachineInstr *A,
 | 
						|
                                    const MachineInstr *B) {
 | 
						|
  assert(canHandle(A) && canHandle(B) && "Precondition!");
 | 
						|
 | 
						|
  // canHandle makes sure that we _can_ correctly analyze the dependencies
 | 
						|
  // between A and B here -- for instance, we should not be dealing with heap
 | 
						|
  // load-store dependencies here.
 | 
						|
 | 
						|
  for (auto MOA : A->operands()) {
 | 
						|
    if (!(MOA.isReg() && MOA.getReg()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned RegA = MOA.getReg();
 | 
						|
    for (auto MOB : B->operands()) {
 | 
						|
      if (!(MOB.isReg() && MOB.getReg()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned RegB = MOB.getReg();
 | 
						|
 | 
						|
      if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  TII = MF.getSubtarget().getInstrInfo();
 | 
						|
  TRI = MF.getRegInfo().getTargetRegisterInfo();
 | 
						|
  MFI = &MF.getFrameInfo();
 | 
						|
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
 | 
						|
  SmallVector<NullCheck, 16> NullCheckList;
 | 
						|
 | 
						|
  for (auto &MBB : MF)
 | 
						|
    analyzeBlockForNullChecks(MBB, NullCheckList);
 | 
						|
 | 
						|
  if (!NullCheckList.empty())
 | 
						|
    rewriteNullChecks(NullCheckList);
 | 
						|
 | 
						|
  return !NullCheckList.empty();
 | 
						|
}
 | 
						|
 | 
						|
// Return true if any register aliasing \p Reg is live-in into \p MBB.
 | 
						|
static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
 | 
						|
                           MachineBasicBlock *MBB, unsigned Reg) {
 | 
						|
  for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
 | 
						|
       ++AR)
 | 
						|
    if (MBB->isLiveIn(*AR))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ImplicitNullChecks::AliasResult
 | 
						|
ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
 | 
						|
                                        const MachineInstr *PrevMI) const {
 | 
						|
  // If it is not memory access, skip the check.
 | 
						|
  if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
 | 
						|
    return AR_NoAlias;
 | 
						|
  // Load-Load may alias
 | 
						|
  if (!(MI.mayStore() || PrevMI->mayStore()))
 | 
						|
    return AR_NoAlias;
 | 
						|
  // We lost info, conservatively alias. If it was store then no sense to
 | 
						|
  // continue because we won't be able to check against it further.
 | 
						|
  if (MI.memoperands_empty())
 | 
						|
    return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
 | 
						|
  if (PrevMI->memoperands_empty())
 | 
						|
    return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
 | 
						|
 | 
						|
  for (MachineMemOperand *MMO1 : MI.memoperands()) {
 | 
						|
    // MMO1 should have a value due it comes from operation we'd like to use
 | 
						|
    // as implicit null check.
 | 
						|
    assert(MMO1->getValue() && "MMO1 should have a Value!");
 | 
						|
    for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
 | 
						|
      if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
 | 
						|
        if (PSV->mayAlias(MFI))
 | 
						|
          return AR_MayAlias;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      llvm::AliasResult AAResult =
 | 
						|
          AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
 | 
						|
                                   MMO1->getAAInfo()),
 | 
						|
                    MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
 | 
						|
                                   MMO2->getAAInfo()));
 | 
						|
      if (AAResult != NoAlias)
 | 
						|
        return AR_MayAlias;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return AR_NoAlias;
 | 
						|
}
 | 
						|
 | 
						|
ImplicitNullChecks::SuitabilityResult
 | 
						|
ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
 | 
						|
                                       unsigned PointerReg,
 | 
						|
                                       ArrayRef<MachineInstr *> PrevInsts) {
 | 
						|
  int64_t Offset;
 | 
						|
  const MachineOperand *BaseOp;
 | 
						|
 | 
						|
  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI) ||
 | 
						|
      !BaseOp->isReg() || BaseOp->getReg() != PointerReg)
 | 
						|
    return SR_Unsuitable;
 | 
						|
 | 
						|
  // We want the mem access to be issued at a sane offset from PointerReg,
 | 
						|
  // so that if PointerReg is null then the access reliably page faults.
 | 
						|
  if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() &&
 | 
						|
        -PageSize < Offset && Offset < PageSize))
 | 
						|
    return SR_Unsuitable;
 | 
						|
 | 
						|
  // Finally, check whether the current memory access aliases with previous one.
 | 
						|
  for (auto *PrevMI : PrevInsts) {
 | 
						|
    AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
 | 
						|
    if (AR == AR_WillAliasEverything)
 | 
						|
      return SR_Impossible;
 | 
						|
    if (AR == AR_MayAlias)
 | 
						|
      return SR_Unsuitable;
 | 
						|
  }
 | 
						|
  return SR_Suitable;
 | 
						|
}
 | 
						|
 | 
						|
bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
 | 
						|
                                      unsigned PointerReg,
 | 
						|
                                      ArrayRef<MachineInstr *> InstsSeenSoFar,
 | 
						|
                                      MachineBasicBlock *NullSucc,
 | 
						|
                                      MachineInstr *&Dependence) {
 | 
						|
  auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
 | 
						|
  if (!DepResult.CanReorder)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!DepResult.PotentialDependence) {
 | 
						|
    Dependence = nullptr;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  auto DependenceItr = *DepResult.PotentialDependence;
 | 
						|
  auto *DependenceMI = *DependenceItr;
 | 
						|
 | 
						|
  // We don't want to reason about speculating loads.  Note -- at this point
 | 
						|
  // we should have already filtered out all of the other non-speculatable
 | 
						|
  // things, like calls and stores.
 | 
						|
  // We also do not want to hoist stores because it might change the memory
 | 
						|
  // while the FaultingMI may result in faulting.
 | 
						|
  assert(canHandle(DependenceMI) && "Should never have reached here!");
 | 
						|
  if (DependenceMI->mayLoadOrStore())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto &DependenceMO : DependenceMI->operands()) {
 | 
						|
    if (!(DependenceMO.isReg() && DependenceMO.getReg()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make sure that we won't clobber any live ins to the sibling block by
 | 
						|
    // hoisting Dependency.  For instance, we can't hoist INST to before the
 | 
						|
    // null check (even if it safe, and does not violate any dependencies in
 | 
						|
    // the non_null_block) if %rdx is live in to _null_block.
 | 
						|
    //
 | 
						|
    //    test %rcx, %rcx
 | 
						|
    //    je _null_block
 | 
						|
    //  _non_null_block:
 | 
						|
    //    %rdx = INST
 | 
						|
    //    ...
 | 
						|
    //
 | 
						|
    // This restriction does not apply to the faulting load inst because in
 | 
						|
    // case the pointer loaded from is in the null page, the load will not
 | 
						|
    // semantically execute, and affect machine state.  That is, if the load
 | 
						|
    // was loading into %rax and it faults, the value of %rax should stay the
 | 
						|
    // same as it would have been had the load not have executed and we'd have
 | 
						|
    // branched to NullSucc directly.
 | 
						|
    if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // The Dependency can't be re-defining the base register -- then we won't
 | 
						|
    // get the memory operation on the address we want.  This is already
 | 
						|
    // checked in \c IsSuitableMemoryOp.
 | 
						|
    assert(!(DependenceMO.isDef() &&
 | 
						|
             TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
 | 
						|
           "Should have been checked before!");
 | 
						|
  }
 | 
						|
 | 
						|
  auto DepDepResult =
 | 
						|
      computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
 | 
						|
 | 
						|
  if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Dependence = DependenceMI;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze MBB to check if its terminating branch can be turned into an
 | 
						|
/// implicit null check.  If yes, append a description of the said null check to
 | 
						|
/// NullCheckList and return true, else return false.
 | 
						|
bool ImplicitNullChecks::analyzeBlockForNullChecks(
 | 
						|
    MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
 | 
						|
  using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
 | 
						|
 | 
						|
  MDNode *BranchMD = nullptr;
 | 
						|
  if (auto *BB = MBB.getBasicBlock())
 | 
						|
    BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
 | 
						|
 | 
						|
  if (!BranchMD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBranchPredicate MBP;
 | 
						|
 | 
						|
  if (TII->analyzeBranchPredicate(MBB, MBP, true))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Is the predicate comparing an integer to zero?
 | 
						|
  if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
 | 
						|
        (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
 | 
						|
         MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we cannot erase the test instruction itself, then making the null check
 | 
						|
  // implicit does not buy us much.
 | 
						|
  if (!MBP.SingleUseCondition)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock *NotNullSucc, *NullSucc;
 | 
						|
 | 
						|
  if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
 | 
						|
    NotNullSucc = MBP.TrueDest;
 | 
						|
    NullSucc = MBP.FalseDest;
 | 
						|
  } else {
 | 
						|
    NotNullSucc = MBP.FalseDest;
 | 
						|
    NullSucc = MBP.TrueDest;
 | 
						|
  }
 | 
						|
 | 
						|
  // We handle the simplest case for now.  We can potentially do better by using
 | 
						|
  // the machine dominator tree.
 | 
						|
  if (NotNullSucc->pred_size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // To prevent the invalid transformation of the following code:
 | 
						|
  //
 | 
						|
  //   mov %rax, %rcx
 | 
						|
  //   test %rax, %rax
 | 
						|
  //   %rax = ...
 | 
						|
  //   je throw_npe
 | 
						|
  //   mov(%rcx), %r9
 | 
						|
  //   mov(%rax), %r10
 | 
						|
  //
 | 
						|
  // into:
 | 
						|
  //
 | 
						|
  //   mov %rax, %rcx
 | 
						|
  //   %rax = ....
 | 
						|
  //   faulting_load_op("movl (%rax), %r10", throw_npe)
 | 
						|
  //   mov(%rcx), %r9
 | 
						|
  //
 | 
						|
  // we must ensure that there are no instructions between the 'test' and
 | 
						|
  // conditional jump that modify %rax.
 | 
						|
  const unsigned PointerReg = MBP.LHS.getReg();
 | 
						|
 | 
						|
  assert(MBP.ConditionDef->getParent() ==  &MBB && "Should be in basic block");
 | 
						|
 | 
						|
  for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
 | 
						|
    if (I->modifiesRegister(PointerReg, TRI))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Starting with a code fragment like:
 | 
						|
  //
 | 
						|
  //   test %rax, %rax
 | 
						|
  //   jne LblNotNull
 | 
						|
  //
 | 
						|
  //  LblNull:
 | 
						|
  //   callq throw_NullPointerException
 | 
						|
  //
 | 
						|
  //  LblNotNull:
 | 
						|
  //   Inst0
 | 
						|
  //   Inst1
 | 
						|
  //   ...
 | 
						|
  //   Def = Load (%rax + <offset>)
 | 
						|
  //   ...
 | 
						|
  //
 | 
						|
  //
 | 
						|
  // we want to end up with
 | 
						|
  //
 | 
						|
  //   Def = FaultingLoad (%rax + <offset>), LblNull
 | 
						|
  //   jmp LblNotNull ;; explicit or fallthrough
 | 
						|
  //
 | 
						|
  //  LblNotNull:
 | 
						|
  //   Inst0
 | 
						|
  //   Inst1
 | 
						|
  //   ...
 | 
						|
  //
 | 
						|
  //  LblNull:
 | 
						|
  //   callq throw_NullPointerException
 | 
						|
  //
 | 
						|
  //
 | 
						|
  // To see why this is legal, consider the two possibilities:
 | 
						|
  //
 | 
						|
  //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
 | 
						|
  //     load instruction dereferences the null page, causing a segmentation
 | 
						|
  //     fault.
 | 
						|
  //
 | 
						|
  //  2. %rax is not null: in this case we know that the load cannot fault, as
 | 
						|
  //     otherwise the load would've faulted in the original program too and the
 | 
						|
  //     original program would've been undefined.
 | 
						|
  //
 | 
						|
  // This reasoning cannot be extended to justify hoisting through arbitrary
 | 
						|
  // control flow.  For instance, in the example below (in pseudo-C)
 | 
						|
  //
 | 
						|
  //    if (ptr == null) { throw_npe(); unreachable; }
 | 
						|
  //    if (some_cond) { return 42; }
 | 
						|
  //    v = ptr->field;  // LD
 | 
						|
  //    ...
 | 
						|
  //
 | 
						|
  // we cannot (without code duplication) use the load marked "LD" to null check
 | 
						|
  // ptr -- clause (2) above does not apply in this case.  In the above program
 | 
						|
  // the safety of ptr->field can be dependent on some_cond; and, for instance,
 | 
						|
  // ptr could be some non-null invalid reference that never gets loaded from
 | 
						|
  // because some_cond is always true.
 | 
						|
 | 
						|
  SmallVector<MachineInstr *, 8> InstsSeenSoFar;
 | 
						|
 | 
						|
  for (auto &MI : *NotNullSucc) {
 | 
						|
    if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
 | 
						|
      return false;
 | 
						|
 | 
						|
    MachineInstr *Dependence;
 | 
						|
    SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
 | 
						|
    if (SR == SR_Impossible)
 | 
						|
      return false;
 | 
						|
    if (SR == SR_Suitable &&
 | 
						|
        canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
 | 
						|
      NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
 | 
						|
                                 NullSucc, Dependence);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If MI re-defines the PointerReg then we cannot move further.
 | 
						|
    if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
 | 
						|
          return MO.isReg() && MO.getReg() && MO.isDef() &&
 | 
						|
                 TRI->regsOverlap(MO.getReg(), PointerReg);
 | 
						|
        }))
 | 
						|
      return false;
 | 
						|
    InstsSeenSoFar.push_back(&MI);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Wrap a machine instruction, MI, into a FAULTING machine instruction.
 | 
						|
/// The FAULTING instruction does the same load/store as MI
 | 
						|
/// (defining the same register), and branches to HandlerMBB if the mem access
 | 
						|
/// faults.  The FAULTING instruction is inserted at the end of MBB.
 | 
						|
MachineInstr *ImplicitNullChecks::insertFaultingInstr(
 | 
						|
    MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
 | 
						|
  const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
 | 
						|
                                 // all targets.
 | 
						|
 | 
						|
  DebugLoc DL;
 | 
						|
  unsigned NumDefs = MI->getDesc().getNumDefs();
 | 
						|
  assert(NumDefs <= 1 && "other cases unhandled!");
 | 
						|
 | 
						|
  unsigned DefReg = NoRegister;
 | 
						|
  if (NumDefs != 0) {
 | 
						|
    DefReg = MI->getOperand(0).getReg();
 | 
						|
    assert(NumDefs == 1 && "expected exactly one def!");
 | 
						|
  }
 | 
						|
 | 
						|
  FaultMaps::FaultKind FK;
 | 
						|
  if (MI->mayLoad())
 | 
						|
    FK =
 | 
						|
        MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
 | 
						|
  else
 | 
						|
    FK = FaultMaps::FaultingStore;
 | 
						|
 | 
						|
  auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
 | 
						|
                 .addImm(FK)
 | 
						|
                 .addMBB(HandlerMBB)
 | 
						|
                 .addImm(MI->getOpcode());
 | 
						|
 | 
						|
  for (auto &MO : MI->uses()) {
 | 
						|
    if (MO.isReg()) {
 | 
						|
      MachineOperand NewMO = MO;
 | 
						|
      if (MO.isUse()) {
 | 
						|
        NewMO.setIsKill(false);
 | 
						|
      } else {
 | 
						|
        assert(MO.isDef() && "Expected def or use");
 | 
						|
        NewMO.setIsDead(false);
 | 
						|
      }
 | 
						|
      MIB.add(NewMO);
 | 
						|
    } else {
 | 
						|
      MIB.add(MO);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MIB.setMemRefs(MI->memoperands());
 | 
						|
 | 
						|
  return MIB;
 | 
						|
}
 | 
						|
 | 
						|
/// Rewrite the null checks in NullCheckList into implicit null checks.
 | 
						|
void ImplicitNullChecks::rewriteNullChecks(
 | 
						|
    ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
 | 
						|
  DebugLoc DL;
 | 
						|
 | 
						|
  for (auto &NC : NullCheckList) {
 | 
						|
    // Remove the conditional branch dependent on the null check.
 | 
						|
    unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
 | 
						|
    (void)BranchesRemoved;
 | 
						|
    assert(BranchesRemoved > 0 && "expected at least one branch!");
 | 
						|
 | 
						|
    if (auto *DepMI = NC.getOnlyDependency()) {
 | 
						|
      DepMI->removeFromParent();
 | 
						|
      NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Insert a faulting instruction where the conditional branch was
 | 
						|
    // originally. We check earlier ensures that this bit of code motion
 | 
						|
    // is legal.  We do not touch the successors list for any basic block
 | 
						|
    // since we haven't changed control flow, we've just made it implicit.
 | 
						|
    MachineInstr *FaultingInstr = insertFaultingInstr(
 | 
						|
        NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
 | 
						|
    // Now the values defined by MemOperation, if any, are live-in of
 | 
						|
    // the block of MemOperation.
 | 
						|
    // The original operation may define implicit-defs alongside
 | 
						|
    // the value.
 | 
						|
    MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
 | 
						|
    for (const MachineOperand &MO : FaultingInstr->operands()) {
 | 
						|
      if (!MO.isReg() || !MO.isDef())
 | 
						|
        continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (!Reg || MBB->isLiveIn(Reg))
 | 
						|
        continue;
 | 
						|
      MBB->addLiveIn(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *DepMI = NC.getOnlyDependency()) {
 | 
						|
      for (auto &MO : DepMI->operands()) {
 | 
						|
        if (!MO.isReg() || !MO.getReg() || !MO.isDef())
 | 
						|
          continue;
 | 
						|
        if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
 | 
						|
          NC.getNotNullSucc()->addLiveIn(MO.getReg());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    NC.getMemOperation()->eraseFromParent();
 | 
						|
    NC.getCheckOperation()->eraseFromParent();
 | 
						|
 | 
						|
    // Insert an *unconditional* branch to not-null successor.
 | 
						|
    TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
 | 
						|
                      /*Cond=*/None, DL);
 | 
						|
 | 
						|
    NumImplicitNullChecks++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
char ImplicitNullChecks::ID = 0;
 | 
						|
 | 
						|
char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
 | 
						|
                      "Implicit null checks", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
 | 
						|
                    "Implicit null checks", false, false)
 |