2683 lines
		
	
	
		
			97 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2683 lines
		
	
	
		
			97 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Pass to verify generated machine code. The following is checked:
 | 
						|
//
 | 
						|
// Operand counts: All explicit operands must be present.
 | 
						|
//
 | 
						|
// Register classes: All physical and virtual register operands must be
 | 
						|
// compatible with the register class required by the instruction descriptor.
 | 
						|
//
 | 
						|
// Register live intervals: Registers must be defined only once, and must be
 | 
						|
// defined before use.
 | 
						|
//
 | 
						|
// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
 | 
						|
// command-line option -verify-machineinstrs, or by defining the environment
 | 
						|
// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
 | 
						|
// the verifier errors.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "LiveRangeCalc.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Analysis/EHPersonalities.h"
 | 
						|
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
 | 
						|
#include "llvm/CodeGen/LiveInterval.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervals.h"
 | 
						|
#include "llvm/CodeGen/LiveStacks.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBundle.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/SlotIndexes.h"
 | 
						|
#include "llvm/CodeGen/StackMaps.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetOpcodes.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/MC/LaneBitmask.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/MC/MCTargetOptions.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/LowLevelTypeImpl.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <string>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  struct MachineVerifier {
 | 
						|
    MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
 | 
						|
 | 
						|
    unsigned verify(MachineFunction &MF);
 | 
						|
 | 
						|
    Pass *const PASS;
 | 
						|
    const char *Banner;
 | 
						|
    const MachineFunction *MF;
 | 
						|
    const TargetMachine *TM;
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    const MachineRegisterInfo *MRI;
 | 
						|
 | 
						|
    unsigned foundErrors;
 | 
						|
 | 
						|
    // Avoid querying the MachineFunctionProperties for each operand.
 | 
						|
    bool isFunctionRegBankSelected;
 | 
						|
    bool isFunctionSelected;
 | 
						|
 | 
						|
    using RegVector = SmallVector<unsigned, 16>;
 | 
						|
    using RegMaskVector = SmallVector<const uint32_t *, 4>;
 | 
						|
    using RegSet = DenseSet<unsigned>;
 | 
						|
    using RegMap = DenseMap<unsigned, const MachineInstr *>;
 | 
						|
    using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
 | 
						|
 | 
						|
    const MachineInstr *FirstNonPHI;
 | 
						|
    const MachineInstr *FirstTerminator;
 | 
						|
    BlockSet FunctionBlocks;
 | 
						|
 | 
						|
    BitVector regsReserved;
 | 
						|
    RegSet regsLive;
 | 
						|
    RegVector regsDefined, regsDead, regsKilled;
 | 
						|
    RegMaskVector regMasks;
 | 
						|
 | 
						|
    SlotIndex lastIndex;
 | 
						|
 | 
						|
    // Add Reg and any sub-registers to RV
 | 
						|
    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
 | 
						|
      RV.push_back(Reg);
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | 
						|
        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
 | 
						|
          RV.push_back(*SubRegs);
 | 
						|
    }
 | 
						|
 | 
						|
    struct BBInfo {
 | 
						|
      // Is this MBB reachable from the MF entry point?
 | 
						|
      bool reachable = false;
 | 
						|
 | 
						|
      // Vregs that must be live in because they are used without being
 | 
						|
      // defined. Map value is the user.
 | 
						|
      RegMap vregsLiveIn;
 | 
						|
 | 
						|
      // Regs killed in MBB. They may be defined again, and will then be in both
 | 
						|
      // regsKilled and regsLiveOut.
 | 
						|
      RegSet regsKilled;
 | 
						|
 | 
						|
      // Regs defined in MBB and live out. Note that vregs passing through may
 | 
						|
      // be live out without being mentioned here.
 | 
						|
      RegSet regsLiveOut;
 | 
						|
 | 
						|
      // Vregs that pass through MBB untouched. This set is disjoint from
 | 
						|
      // regsKilled and regsLiveOut.
 | 
						|
      RegSet vregsPassed;
 | 
						|
 | 
						|
      // Vregs that must pass through MBB because they are needed by a successor
 | 
						|
      // block. This set is disjoint from regsLiveOut.
 | 
						|
      RegSet vregsRequired;
 | 
						|
 | 
						|
      // Set versions of block's predecessor and successor lists.
 | 
						|
      BlockSet Preds, Succs;
 | 
						|
 | 
						|
      BBInfo() = default;
 | 
						|
 | 
						|
      // Add register to vregsPassed if it belongs there. Return true if
 | 
						|
      // anything changed.
 | 
						|
      bool addPassed(unsigned Reg) {
 | 
						|
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
          return false;
 | 
						|
        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
 | 
						|
          return false;
 | 
						|
        return vregsPassed.insert(Reg).second;
 | 
						|
      }
 | 
						|
 | 
						|
      // Same for a full set.
 | 
						|
      bool addPassed(const RegSet &RS) {
 | 
						|
        bool changed = false;
 | 
						|
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
 | 
						|
          if (addPassed(*I))
 | 
						|
            changed = true;
 | 
						|
        return changed;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add register to vregsRequired if it belongs there. Return true if
 | 
						|
      // anything changed.
 | 
						|
      bool addRequired(unsigned Reg) {
 | 
						|
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
          return false;
 | 
						|
        if (regsLiveOut.count(Reg))
 | 
						|
          return false;
 | 
						|
        return vregsRequired.insert(Reg).second;
 | 
						|
      }
 | 
						|
 | 
						|
      // Same for a full set.
 | 
						|
      bool addRequired(const RegSet &RS) {
 | 
						|
        bool changed = false;
 | 
						|
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
 | 
						|
          if (addRequired(*I))
 | 
						|
            changed = true;
 | 
						|
        return changed;
 | 
						|
      }
 | 
						|
 | 
						|
      // Same for a full map.
 | 
						|
      bool addRequired(const RegMap &RM) {
 | 
						|
        bool changed = false;
 | 
						|
        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
 | 
						|
          if (addRequired(I->first))
 | 
						|
            changed = true;
 | 
						|
        return changed;
 | 
						|
      }
 | 
						|
 | 
						|
      // Live-out registers are either in regsLiveOut or vregsPassed.
 | 
						|
      bool isLiveOut(unsigned Reg) const {
 | 
						|
        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    // Extra register info per MBB.
 | 
						|
    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
 | 
						|
 | 
						|
    bool isReserved(unsigned Reg) {
 | 
						|
      return Reg < regsReserved.size() && regsReserved.test(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    bool isAllocatable(unsigned Reg) const {
 | 
						|
      return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
 | 
						|
        !regsReserved.test(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    // Analysis information if available
 | 
						|
    LiveVariables *LiveVars;
 | 
						|
    LiveIntervals *LiveInts;
 | 
						|
    LiveStacks *LiveStks;
 | 
						|
    SlotIndexes *Indexes;
 | 
						|
 | 
						|
    void visitMachineFunctionBefore();
 | 
						|
    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
 | 
						|
    void visitMachineBundleBefore(const MachineInstr *MI);
 | 
						|
 | 
						|
    bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
 | 
						|
    void verifyPreISelGenericInstruction(const MachineInstr *MI);
 | 
						|
    void visitMachineInstrBefore(const MachineInstr *MI);
 | 
						|
    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
 | 
						|
    void visitMachineInstrAfter(const MachineInstr *MI);
 | 
						|
    void visitMachineBundleAfter(const MachineInstr *MI);
 | 
						|
    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
 | 
						|
    void visitMachineFunctionAfter();
 | 
						|
 | 
						|
    void report(const char *msg, const MachineFunction *MF);
 | 
						|
    void report(const char *msg, const MachineBasicBlock *MBB);
 | 
						|
    void report(const char *msg, const MachineInstr *MI);
 | 
						|
    void report(const char *msg, const MachineOperand *MO, unsigned MONum,
 | 
						|
                LLT MOVRegType = LLT{});
 | 
						|
 | 
						|
    void report_context(const LiveInterval &LI) const;
 | 
						|
    void report_context(const LiveRange &LR, unsigned VRegUnit,
 | 
						|
                        LaneBitmask LaneMask) const;
 | 
						|
    void report_context(const LiveRange::Segment &S) const;
 | 
						|
    void report_context(const VNInfo &VNI) const;
 | 
						|
    void report_context(SlotIndex Pos) const;
 | 
						|
    void report_context(MCPhysReg PhysReg) const;
 | 
						|
    void report_context_liverange(const LiveRange &LR) const;
 | 
						|
    void report_context_lanemask(LaneBitmask LaneMask) const;
 | 
						|
    void report_context_vreg(unsigned VReg) const;
 | 
						|
    void report_context_vreg_regunit(unsigned VRegOrUnit) const;
 | 
						|
 | 
						|
    void verifyInlineAsm(const MachineInstr *MI);
 | 
						|
 | 
						|
    void checkLiveness(const MachineOperand *MO, unsigned MONum);
 | 
						|
    void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
 | 
						|
                            SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
 | 
						|
                            LaneBitmask LaneMask = LaneBitmask::getNone());
 | 
						|
    void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
 | 
						|
                            SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
 | 
						|
                            bool SubRangeCheck = false,
 | 
						|
                            LaneBitmask LaneMask = LaneBitmask::getNone());
 | 
						|
 | 
						|
    void markReachable(const MachineBasicBlock *MBB);
 | 
						|
    void calcRegsPassed();
 | 
						|
    void checkPHIOps(const MachineBasicBlock &MBB);
 | 
						|
 | 
						|
    void calcRegsRequired();
 | 
						|
    void verifyLiveVariables();
 | 
						|
    void verifyLiveIntervals();
 | 
						|
    void verifyLiveInterval(const LiveInterval&);
 | 
						|
    void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
 | 
						|
                              LaneBitmask);
 | 
						|
    void verifyLiveRangeSegment(const LiveRange&,
 | 
						|
                                const LiveRange::const_iterator I, unsigned,
 | 
						|
                                LaneBitmask);
 | 
						|
    void verifyLiveRange(const LiveRange&, unsigned,
 | 
						|
                         LaneBitmask LaneMask = LaneBitmask::getNone());
 | 
						|
 | 
						|
    void verifyStackFrame();
 | 
						|
 | 
						|
    void verifySlotIndexes() const;
 | 
						|
    void verifyProperties(const MachineFunction &MF);
 | 
						|
  };
 | 
						|
 | 
						|
  struct MachineVerifierPass : public MachineFunctionPass {
 | 
						|
    static char ID; // Pass ID, replacement for typeid
 | 
						|
 | 
						|
    const std::string Banner;
 | 
						|
 | 
						|
    MachineVerifierPass(std::string banner = std::string())
 | 
						|
      : MachineFunctionPass(ID), Banner(std::move(banner)) {
 | 
						|
        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
 | 
						|
      }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.setPreservesAll();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override {
 | 
						|
      unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
 | 
						|
      if (FoundErrors)
 | 
						|
        report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char MachineVerifierPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
 | 
						|
                "Verify generated machine code", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
 | 
						|
  return new MachineVerifierPass(Banner);
 | 
						|
}
 | 
						|
 | 
						|
bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
 | 
						|
    const {
 | 
						|
  MachineFunction &MF = const_cast<MachineFunction&>(*this);
 | 
						|
  unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
 | 
						|
  if (AbortOnErrors && FoundErrors)
 | 
						|
    report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
 | 
						|
  return FoundErrors == 0;
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifySlotIndexes() const {
 | 
						|
  if (Indexes == nullptr)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Ensure the IdxMBB list is sorted by slot indexes.
 | 
						|
  SlotIndex Last;
 | 
						|
  for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
 | 
						|
       E = Indexes->MBBIndexEnd(); I != E; ++I) {
 | 
						|
    assert(!Last.isValid() || I->first > Last);
 | 
						|
    Last = I->first;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyProperties(const MachineFunction &MF) {
 | 
						|
  // If a pass has introduced virtual registers without clearing the
 | 
						|
  // NoVRegs property (or set it without allocating the vregs)
 | 
						|
  // then report an error.
 | 
						|
  if (MF.getProperties().hasProperty(
 | 
						|
          MachineFunctionProperties::Property::NoVRegs) &&
 | 
						|
      MRI->getNumVirtRegs())
 | 
						|
    report("Function has NoVRegs property but there are VReg operands", &MF);
 | 
						|
}
 | 
						|
 | 
						|
unsigned MachineVerifier::verify(MachineFunction &MF) {
 | 
						|
  foundErrors = 0;
 | 
						|
 | 
						|
  this->MF = &MF;
 | 
						|
  TM = &MF.getTarget();
 | 
						|
  TII = MF.getSubtarget().getInstrInfo();
 | 
						|
  TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
 | 
						|
  const bool isFunctionFailedISel = MF.getProperties().hasProperty(
 | 
						|
      MachineFunctionProperties::Property::FailedISel);
 | 
						|
 | 
						|
  // If we're mid-GlobalISel and we already triggered the fallback path then
 | 
						|
  // it's expected that the MIR is somewhat broken but that's ok since we'll
 | 
						|
  // reset it and clear the FailedISel attribute in ResetMachineFunctions.
 | 
						|
  if (isFunctionFailedISel)
 | 
						|
    return foundErrors;
 | 
						|
 | 
						|
  isFunctionRegBankSelected =
 | 
						|
      !isFunctionFailedISel &&
 | 
						|
      MF.getProperties().hasProperty(
 | 
						|
          MachineFunctionProperties::Property::RegBankSelected);
 | 
						|
  isFunctionSelected = !isFunctionFailedISel &&
 | 
						|
                       MF.getProperties().hasProperty(
 | 
						|
                           MachineFunctionProperties::Property::Selected);
 | 
						|
  LiveVars = nullptr;
 | 
						|
  LiveInts = nullptr;
 | 
						|
  LiveStks = nullptr;
 | 
						|
  Indexes = nullptr;
 | 
						|
  if (PASS) {
 | 
						|
    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
 | 
						|
    // We don't want to verify LiveVariables if LiveIntervals is available.
 | 
						|
    if (!LiveInts)
 | 
						|
      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
 | 
						|
    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
 | 
						|
    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
 | 
						|
  }
 | 
						|
 | 
						|
  verifySlotIndexes();
 | 
						|
 | 
						|
  verifyProperties(MF);
 | 
						|
 | 
						|
  visitMachineFunctionBefore();
 | 
						|
  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
 | 
						|
       MFI!=MFE; ++MFI) {
 | 
						|
    visitMachineBasicBlockBefore(&*MFI);
 | 
						|
    // Keep track of the current bundle header.
 | 
						|
    const MachineInstr *CurBundle = nullptr;
 | 
						|
    // Do we expect the next instruction to be part of the same bundle?
 | 
						|
    bool InBundle = false;
 | 
						|
 | 
						|
    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
 | 
						|
           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
 | 
						|
      if (MBBI->getParent() != &*MFI) {
 | 
						|
        report("Bad instruction parent pointer", &*MFI);
 | 
						|
        errs() << "Instruction: " << *MBBI;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check for consistent bundle flags.
 | 
						|
      if (InBundle && !MBBI->isBundledWithPred())
 | 
						|
        report("Missing BundledPred flag, "
 | 
						|
               "BundledSucc was set on predecessor",
 | 
						|
               &*MBBI);
 | 
						|
      if (!InBundle && MBBI->isBundledWithPred())
 | 
						|
        report("BundledPred flag is set, "
 | 
						|
               "but BundledSucc not set on predecessor",
 | 
						|
               &*MBBI);
 | 
						|
 | 
						|
      // Is this a bundle header?
 | 
						|
      if (!MBBI->isInsideBundle()) {
 | 
						|
        if (CurBundle)
 | 
						|
          visitMachineBundleAfter(CurBundle);
 | 
						|
        CurBundle = &*MBBI;
 | 
						|
        visitMachineBundleBefore(CurBundle);
 | 
						|
      } else if (!CurBundle)
 | 
						|
        report("No bundle header", &*MBBI);
 | 
						|
      visitMachineInstrBefore(&*MBBI);
 | 
						|
      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
 | 
						|
        const MachineInstr &MI = *MBBI;
 | 
						|
        const MachineOperand &Op = MI.getOperand(I);
 | 
						|
        if (Op.getParent() != &MI) {
 | 
						|
          // Make sure to use correct addOperand / RemoveOperand / ChangeTo
 | 
						|
          // functions when replacing operands of a MachineInstr.
 | 
						|
          report("Instruction has operand with wrong parent set", &MI);
 | 
						|
        }
 | 
						|
 | 
						|
        visitMachineOperand(&Op, I);
 | 
						|
      }
 | 
						|
 | 
						|
      visitMachineInstrAfter(&*MBBI);
 | 
						|
 | 
						|
      // Was this the last bundled instruction?
 | 
						|
      InBundle = MBBI->isBundledWithSucc();
 | 
						|
    }
 | 
						|
    if (CurBundle)
 | 
						|
      visitMachineBundleAfter(CurBundle);
 | 
						|
    if (InBundle)
 | 
						|
      report("BundledSucc flag set on last instruction in block", &MFI->back());
 | 
						|
    visitMachineBasicBlockAfter(&*MFI);
 | 
						|
  }
 | 
						|
  visitMachineFunctionAfter();
 | 
						|
 | 
						|
  // Clean up.
 | 
						|
  regsLive.clear();
 | 
						|
  regsDefined.clear();
 | 
						|
  regsDead.clear();
 | 
						|
  regsKilled.clear();
 | 
						|
  regMasks.clear();
 | 
						|
  MBBInfoMap.clear();
 | 
						|
 | 
						|
  return foundErrors;
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
 | 
						|
  assert(MF);
 | 
						|
  errs() << '\n';
 | 
						|
  if (!foundErrors++) {
 | 
						|
    if (Banner)
 | 
						|
      errs() << "# " << Banner << '\n';
 | 
						|
    if (LiveInts != nullptr)
 | 
						|
      LiveInts->print(errs());
 | 
						|
    else
 | 
						|
      MF->print(errs(), Indexes);
 | 
						|
  }
 | 
						|
  errs() << "*** Bad machine code: " << msg << " ***\n"
 | 
						|
      << "- function:    " << MF->getName() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
 | 
						|
  assert(MBB);
 | 
						|
  report(msg, MBB->getParent());
 | 
						|
  errs() << "- basic block: " << printMBBReference(*MBB) << ' '
 | 
						|
         << MBB->getName() << " (" << (const void *)MBB << ')';
 | 
						|
  if (Indexes)
 | 
						|
    errs() << " [" << Indexes->getMBBStartIdx(MBB)
 | 
						|
        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
 | 
						|
  errs() << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
 | 
						|
  assert(MI);
 | 
						|
  report(msg, MI->getParent());
 | 
						|
  errs() << "- instruction: ";
 | 
						|
  if (Indexes && Indexes->hasIndex(*MI))
 | 
						|
    errs() << Indexes->getInstructionIndex(*MI) << '\t';
 | 
						|
  MI->print(errs(), /*SkipOpers=*/true);
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineOperand *MO,
 | 
						|
                             unsigned MONum, LLT MOVRegType) {
 | 
						|
  assert(MO);
 | 
						|
  report(msg, MO->getParent());
 | 
						|
  errs() << "- operand " << MONum << ":   ";
 | 
						|
  MO->print(errs(), MOVRegType, TRI);
 | 
						|
  errs() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report_context(SlotIndex Pos) const {
 | 
						|
  errs() << "- at:          " << Pos << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report_context(const LiveInterval &LI) const {
 | 
						|
  errs() << "- interval:    " << LI << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
 | 
						|
                                     LaneBitmask LaneMask) const {
 | 
						|
  report_context_liverange(LR);
 | 
						|
  report_context_vreg_regunit(VRegUnit);
 | 
						|
  if (LaneMask.any())
 | 
						|
    report_context_lanemask(LaneMask);
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report_context(const LiveRange::Segment &S) const {
 | 
						|
  errs() << "- segment:     " << S << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report_context(const VNInfo &VNI) const {
 | 
						|
  errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
 | 
						|
  errs() << "- liverange:   " << LR << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report_context(MCPhysReg PReg) const {
 | 
						|
  errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report_context_vreg(unsigned VReg) const {
 | 
						|
  errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
 | 
						|
    report_context_vreg(VRegOrUnit);
 | 
						|
  } else {
 | 
						|
    errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
 | 
						|
  errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
 | 
						|
  BBInfo &MInfo = MBBInfoMap[MBB];
 | 
						|
  if (!MInfo.reachable) {
 | 
						|
    MInfo.reachable = true;
 | 
						|
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
 | 
						|
           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
 | 
						|
      markReachable(*SuI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineFunctionBefore() {
 | 
						|
  lastIndex = SlotIndex();
 | 
						|
  regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
 | 
						|
                                           : TRI->getReservedRegs(*MF);
 | 
						|
 | 
						|
  if (!MF->empty())
 | 
						|
    markReachable(&MF->front());
 | 
						|
 | 
						|
  // Build a set of the basic blocks in the function.
 | 
						|
  FunctionBlocks.clear();
 | 
						|
  for (const auto &MBB : *MF) {
 | 
						|
    FunctionBlocks.insert(&MBB);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[&MBB];
 | 
						|
 | 
						|
    MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
 | 
						|
    if (MInfo.Preds.size() != MBB.pred_size())
 | 
						|
      report("MBB has duplicate entries in its predecessor list.", &MBB);
 | 
						|
 | 
						|
    MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
 | 
						|
    if (MInfo.Succs.size() != MBB.succ_size())
 | 
						|
      report("MBB has duplicate entries in its successor list.", &MBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the register use lists are sane.
 | 
						|
  MRI->verifyUseLists();
 | 
						|
 | 
						|
  if (!MF->empty())
 | 
						|
    verifyStackFrame();
 | 
						|
}
 | 
						|
 | 
						|
// Does iterator point to a and b as the first two elements?
 | 
						|
static bool matchPair(MachineBasicBlock::const_succ_iterator i,
 | 
						|
                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
 | 
						|
  if (*i == a)
 | 
						|
    return *++i == b;
 | 
						|
  if (*i == b)
 | 
						|
    return *++i == a;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
 | 
						|
  FirstTerminator = nullptr;
 | 
						|
  FirstNonPHI = nullptr;
 | 
						|
 | 
						|
  if (!MF->getProperties().hasProperty(
 | 
						|
      MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
 | 
						|
    // If this block has allocatable physical registers live-in, check that
 | 
						|
    // it is an entry block or landing pad.
 | 
						|
    for (const auto &LI : MBB->liveins()) {
 | 
						|
      if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
 | 
						|
          MBB->getIterator() != MBB->getParent()->begin()) {
 | 
						|
        report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
 | 
						|
        report_context(LI.PhysReg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Count the number of landing pad successors.
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
 | 
						|
  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
 | 
						|
       E = MBB->succ_end(); I != E; ++I) {
 | 
						|
    if ((*I)->isEHPad())
 | 
						|
      LandingPadSuccs.insert(*I);
 | 
						|
    if (!FunctionBlocks.count(*I))
 | 
						|
      report("MBB has successor that isn't part of the function.", MBB);
 | 
						|
    if (!MBBInfoMap[*I].Preds.count(MBB)) {
 | 
						|
      report("Inconsistent CFG", MBB);
 | 
						|
      errs() << "MBB is not in the predecessor list of the successor "
 | 
						|
             << printMBBReference(*(*I)) << ".\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the predecessor list.
 | 
						|
  for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
 | 
						|
       E = MBB->pred_end(); I != E; ++I) {
 | 
						|
    if (!FunctionBlocks.count(*I))
 | 
						|
      report("MBB has predecessor that isn't part of the function.", MBB);
 | 
						|
    if (!MBBInfoMap[*I].Succs.count(MBB)) {
 | 
						|
      report("Inconsistent CFG", MBB);
 | 
						|
      errs() << "MBB is not in the successor list of the predecessor "
 | 
						|
             << printMBBReference(*(*I)) << ".\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
 | 
						|
  const BasicBlock *BB = MBB->getBasicBlock();
 | 
						|
  const Function &F = MF->getFunction();
 | 
						|
  if (LandingPadSuccs.size() > 1 &&
 | 
						|
      !(AsmInfo &&
 | 
						|
        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
 | 
						|
        BB && isa<SwitchInst>(BB->getTerminator())) &&
 | 
						|
      !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
 | 
						|
    report("MBB has more than one landing pad successor", MBB);
 | 
						|
 | 
						|
  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
 | 
						|
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
 | 
						|
  SmallVector<MachineOperand, 4> Cond;
 | 
						|
  if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
 | 
						|
                          Cond)) {
 | 
						|
    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
 | 
						|
    // check whether its answers match up with reality.
 | 
						|
    if (!TBB && !FBB) {
 | 
						|
      // Block falls through to its successor.
 | 
						|
      MachineFunction::const_iterator MBBI = MBB->getIterator();
 | 
						|
      ++MBBI;
 | 
						|
      if (MBBI == MF->end()) {
 | 
						|
        // It's possible that the block legitimately ends with a noreturn
 | 
						|
        // call or an unreachable, in which case it won't actually fall
 | 
						|
        // out the bottom of the function.
 | 
						|
      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
 | 
						|
        // It's possible that the block legitimately ends with a noreturn
 | 
						|
        // call or an unreachable, in which case it won't actually fall
 | 
						|
        // out of the block.
 | 
						|
      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
 | 
						|
        report("MBB exits via unconditional fall-through but doesn't have "
 | 
						|
               "exactly one CFG successor!", MBB);
 | 
						|
      } else if (!MBB->isSuccessor(&*MBBI)) {
 | 
						|
        report("MBB exits via unconditional fall-through but its successor "
 | 
						|
               "differs from its CFG successor!", MBB);
 | 
						|
      }
 | 
						|
      if (!MBB->empty() && MBB->back().isBarrier() &&
 | 
						|
          !TII->isPredicated(MBB->back())) {
 | 
						|
        report("MBB exits via unconditional fall-through but ends with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      }
 | 
						|
      if (!Cond.empty()) {
 | 
						|
        report("MBB exits via unconditional fall-through but has a condition!",
 | 
						|
               MBB);
 | 
						|
      }
 | 
						|
    } else if (TBB && !FBB && Cond.empty()) {
 | 
						|
      // Block unconditionally branches somewhere.
 | 
						|
      // If the block has exactly one successor, that happens to be a
 | 
						|
      // landingpad, accept it as valid control flow.
 | 
						|
      if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
 | 
						|
          (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
 | 
						|
           *MBB->succ_begin() != *LandingPadSuccs.begin())) {
 | 
						|
        report("MBB exits via unconditional branch but doesn't have "
 | 
						|
               "exactly one CFG successor!", MBB);
 | 
						|
      } else if (!MBB->isSuccessor(TBB)) {
 | 
						|
        report("MBB exits via unconditional branch but the CFG "
 | 
						|
               "successor doesn't match the actual successor!", MBB);
 | 
						|
      }
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("MBB exits via unconditional branch but doesn't contain "
 | 
						|
               "any instructions!", MBB);
 | 
						|
      } else if (!MBB->back().isBarrier()) {
 | 
						|
        report("MBB exits via unconditional branch but doesn't end with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      } else if (!MBB->back().isTerminator()) {
 | 
						|
        report("MBB exits via unconditional branch but the branch isn't a "
 | 
						|
               "terminator instruction!", MBB);
 | 
						|
      }
 | 
						|
    } else if (TBB && !FBB && !Cond.empty()) {
 | 
						|
      // Block conditionally branches somewhere, otherwise falls through.
 | 
						|
      MachineFunction::const_iterator MBBI = MBB->getIterator();
 | 
						|
      ++MBBI;
 | 
						|
      if (MBBI == MF->end()) {
 | 
						|
        report("MBB conditionally falls through out of function!", MBB);
 | 
						|
      } else if (MBB->succ_size() == 1) {
 | 
						|
        // A conditional branch with only one successor is weird, but allowed.
 | 
						|
        if (&*MBBI != TBB)
 | 
						|
          report("MBB exits via conditional branch/fall-through but only has "
 | 
						|
                 "one CFG successor!", MBB);
 | 
						|
        else if (TBB != *MBB->succ_begin())
 | 
						|
          report("MBB exits via conditional branch/fall-through but the CFG "
 | 
						|
                 "successor don't match the actual successor!", MBB);
 | 
						|
      } else if (MBB->succ_size() != 2) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but doesn't have "
 | 
						|
               "exactly two CFG successors!", MBB);
 | 
						|
      } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but the CFG "
 | 
						|
               "successors don't match the actual successors!", MBB);
 | 
						|
      }
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but doesn't "
 | 
						|
               "contain any instructions!", MBB);
 | 
						|
      } else if (MBB->back().isBarrier()) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but ends with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      } else if (!MBB->back().isTerminator()) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but the branch "
 | 
						|
               "isn't a terminator instruction!", MBB);
 | 
						|
      }
 | 
						|
    } else if (TBB && FBB) {
 | 
						|
      // Block conditionally branches somewhere, otherwise branches
 | 
						|
      // somewhere else.
 | 
						|
      if (MBB->succ_size() == 1) {
 | 
						|
        // A conditional branch with only one successor is weird, but allowed.
 | 
						|
        if (FBB != TBB)
 | 
						|
          report("MBB exits via conditional branch/branch through but only has "
 | 
						|
                 "one CFG successor!", MBB);
 | 
						|
        else if (TBB != *MBB->succ_begin())
 | 
						|
          report("MBB exits via conditional branch/branch through but the CFG "
 | 
						|
                 "successor don't match the actual successor!", MBB);
 | 
						|
      } else if (MBB->succ_size() != 2) {
 | 
						|
        report("MBB exits via conditional branch/branch but doesn't have "
 | 
						|
               "exactly two CFG successors!", MBB);
 | 
						|
      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
 | 
						|
        report("MBB exits via conditional branch/branch but the CFG "
 | 
						|
               "successors don't match the actual successors!", MBB);
 | 
						|
      }
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("MBB exits via conditional branch/branch but doesn't "
 | 
						|
               "contain any instructions!", MBB);
 | 
						|
      } else if (!MBB->back().isBarrier()) {
 | 
						|
        report("MBB exits via conditional branch/branch but doesn't end with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      } else if (!MBB->back().isTerminator()) {
 | 
						|
        report("MBB exits via conditional branch/branch but the branch "
 | 
						|
               "isn't a terminator instruction!", MBB);
 | 
						|
      }
 | 
						|
      if (Cond.empty()) {
 | 
						|
        report("MBB exits via conditional branch/branch but there's no "
 | 
						|
               "condition!", MBB);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      report("AnalyzeBranch returned invalid data!", MBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  regsLive.clear();
 | 
						|
  if (MRI->tracksLiveness()) {
 | 
						|
    for (const auto &LI : MBB->liveins()) {
 | 
						|
      if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
 | 
						|
        report("MBB live-in list contains non-physical register", MBB);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
 | 
						|
           SubRegs.isValid(); ++SubRegs)
 | 
						|
        regsLive.insert(*SubRegs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineFrameInfo &MFI = MF->getFrameInfo();
 | 
						|
  BitVector PR = MFI.getPristineRegs(*MF);
 | 
						|
  for (unsigned I : PR.set_bits()) {
 | 
						|
    for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
 | 
						|
         SubRegs.isValid(); ++SubRegs)
 | 
						|
      regsLive.insert(*SubRegs);
 | 
						|
  }
 | 
						|
 | 
						|
  regsKilled.clear();
 | 
						|
  regsDefined.clear();
 | 
						|
 | 
						|
  if (Indexes)
 | 
						|
    lastIndex = Indexes->getMBBStartIdx(MBB);
 | 
						|
}
 | 
						|
 | 
						|
// This function gets called for all bundle headers, including normal
 | 
						|
// stand-alone unbundled instructions.
 | 
						|
void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
 | 
						|
  if (Indexes && Indexes->hasIndex(*MI)) {
 | 
						|
    SlotIndex idx = Indexes->getInstructionIndex(*MI);
 | 
						|
    if (!(idx > lastIndex)) {
 | 
						|
      report("Instruction index out of order", MI);
 | 
						|
      errs() << "Last instruction was at " << lastIndex << '\n';
 | 
						|
    }
 | 
						|
    lastIndex = idx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure non-terminators don't follow terminators.
 | 
						|
  // Ignore predicated terminators formed by if conversion.
 | 
						|
  // FIXME: If conversion shouldn't need to violate this rule.
 | 
						|
  if (MI->isTerminator() && !TII->isPredicated(*MI)) {
 | 
						|
    if (!FirstTerminator)
 | 
						|
      FirstTerminator = MI;
 | 
						|
  } else if (FirstTerminator) {
 | 
						|
    report("Non-terminator instruction after the first terminator", MI);
 | 
						|
    errs() << "First terminator was:\t" << *FirstTerminator;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// The operands on an INLINEASM instruction must follow a template.
 | 
						|
// Verify that the flag operands make sense.
 | 
						|
void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
 | 
						|
  // The first two operands on INLINEASM are the asm string and global flags.
 | 
						|
  if (MI->getNumOperands() < 2) {
 | 
						|
    report("Too few operands on inline asm", MI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!MI->getOperand(0).isSymbol())
 | 
						|
    report("Asm string must be an external symbol", MI);
 | 
						|
  if (!MI->getOperand(1).isImm())
 | 
						|
    report("Asm flags must be an immediate", MI);
 | 
						|
  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
 | 
						|
  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
 | 
						|
  // and Extra_IsConvergent = 32.
 | 
						|
  if (!isUInt<6>(MI->getOperand(1).getImm()))
 | 
						|
    report("Unknown asm flags", &MI->getOperand(1), 1);
 | 
						|
 | 
						|
  static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
 | 
						|
 | 
						|
  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
 | 
						|
  unsigned NumOps;
 | 
						|
  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(OpNo);
 | 
						|
    // There may be implicit ops after the fixed operands.
 | 
						|
    if (!MO.isImm())
 | 
						|
      break;
 | 
						|
    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
 | 
						|
  }
 | 
						|
 | 
						|
  if (OpNo > MI->getNumOperands())
 | 
						|
    report("Missing operands in last group", MI);
 | 
						|
 | 
						|
  // An optional MDNode follows the groups.
 | 
						|
  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
 | 
						|
    ++OpNo;
 | 
						|
 | 
						|
  // All trailing operands must be implicit registers.
 | 
						|
  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(OpNo);
 | 
						|
    if (!MO.isReg() || !MO.isImplicit())
 | 
						|
      report("Expected implicit register after groups", &MO, OpNo);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check that types are consistent when two operands need to have the same
 | 
						|
/// number of vector elements.
 | 
						|
/// \return true if the types are valid.
 | 
						|
bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
 | 
						|
                                               const MachineInstr *MI) {
 | 
						|
  if (Ty0.isVector() != Ty1.isVector()) {
 | 
						|
    report("operand types must be all-vector or all-scalar", MI);
 | 
						|
    // Generally we try to report as many issues as possible at once, but in
 | 
						|
    // this case it's not clear what should we be comparing the size of the
 | 
						|
    // scalar with: the size of the whole vector or its lane. Instead of
 | 
						|
    // making an arbitrary choice and emitting not so helpful message, let's
 | 
						|
    // avoid the extra noise and stop here.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
 | 
						|
    report("operand types must preserve number of vector elements", MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
 | 
						|
  if (isFunctionSelected)
 | 
						|
    report("Unexpected generic instruction in a Selected function", MI);
 | 
						|
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  unsigned NumOps = MI->getNumOperands();
 | 
						|
 | 
						|
  // Check types.
 | 
						|
  SmallVector<LLT, 4> Types;
 | 
						|
  for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
 | 
						|
       I != E; ++I) {
 | 
						|
    if (!MCID.OpInfo[I].isGenericType())
 | 
						|
      continue;
 | 
						|
    // Generic instructions specify type equality constraints between some of
 | 
						|
    // their operands. Make sure these are consistent.
 | 
						|
    size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
 | 
						|
    Types.resize(std::max(TypeIdx + 1, Types.size()));
 | 
						|
 | 
						|
    const MachineOperand *MO = &MI->getOperand(I);
 | 
						|
    if (!MO->isReg()) {
 | 
						|
      report("generic instruction must use register operands", MI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    LLT OpTy = MRI->getType(MO->getReg());
 | 
						|
    // Don't report a type mismatch if there is no actual mismatch, only a
 | 
						|
    // type missing, to reduce noise:
 | 
						|
    if (OpTy.isValid()) {
 | 
						|
      // Only the first valid type for a type index will be printed: don't
 | 
						|
      // overwrite it later so it's always clear which type was expected:
 | 
						|
      if (!Types[TypeIdx].isValid())
 | 
						|
        Types[TypeIdx] = OpTy;
 | 
						|
      else if (Types[TypeIdx] != OpTy)
 | 
						|
        report("Type mismatch in generic instruction", MO, I, OpTy);
 | 
						|
    } else {
 | 
						|
      // Generic instructions must have types attached to their operands.
 | 
						|
      report("Generic instruction is missing a virtual register type", MO, I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Generic opcodes must not have physical register operands.
 | 
						|
  for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
 | 
						|
    const MachineOperand *MO = &MI->getOperand(I);
 | 
						|
    if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
 | 
						|
      report("Generic instruction cannot have physical register", MO, I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Avoid out of bounds in checks below. This was already reported earlier.
 | 
						|
  if (MI->getNumOperands() < MCID.getNumOperands())
 | 
						|
    return;
 | 
						|
 | 
						|
  StringRef ErrorInfo;
 | 
						|
  if (!TII->verifyInstruction(*MI, ErrorInfo))
 | 
						|
    report(ErrorInfo.data(), MI);
 | 
						|
 | 
						|
  // Verify properties of various specific instruction types
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  case TargetOpcode::G_CONSTANT:
 | 
						|
  case TargetOpcode::G_FCONSTANT: {
 | 
						|
    if (MI->getNumOperands() < MCID.getNumOperands())
 | 
						|
      break;
 | 
						|
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    if (DstTy.isVector())
 | 
						|
      report("Instruction cannot use a vector result type", MI);
 | 
						|
 | 
						|
    if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
 | 
						|
      if (!MI->getOperand(1).isCImm()) {
 | 
						|
        report("G_CONSTANT operand must be cimm", MI);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      const ConstantInt *CI = MI->getOperand(1).getCImm();
 | 
						|
      if (CI->getBitWidth() != DstTy.getSizeInBits())
 | 
						|
        report("inconsistent constant size", MI);
 | 
						|
    } else {
 | 
						|
      if (!MI->getOperand(1).isFPImm()) {
 | 
						|
        report("G_FCONSTANT operand must be fpimm", MI);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      const ConstantFP *CF = MI->getOperand(1).getFPImm();
 | 
						|
 | 
						|
      if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
 | 
						|
          DstTy.getSizeInBits()) {
 | 
						|
        report("inconsistent constant size", MI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_LOAD:
 | 
						|
  case TargetOpcode::G_STORE:
 | 
						|
  case TargetOpcode::G_ZEXTLOAD:
 | 
						|
  case TargetOpcode::G_SEXTLOAD: {
 | 
						|
    LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
 | 
						|
    if (!PtrTy.isPointer())
 | 
						|
      report("Generic memory instruction must access a pointer", MI);
 | 
						|
 | 
						|
    // Generic loads and stores must have a single MachineMemOperand
 | 
						|
    // describing that access.
 | 
						|
    if (!MI->hasOneMemOperand()) {
 | 
						|
      report("Generic instruction accessing memory must have one mem operand",
 | 
						|
             MI);
 | 
						|
    } else {
 | 
						|
      const MachineMemOperand &MMO = **MI->memoperands_begin();
 | 
						|
      if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
 | 
						|
          MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
 | 
						|
        if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
 | 
						|
          report("Generic extload must have a narrower memory type", MI);
 | 
						|
      } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
 | 
						|
        if (MMO.getSize() > ValTy.getSizeInBytes())
 | 
						|
          report("load memory size cannot exceed result size", MI);
 | 
						|
      } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
 | 
						|
        if (ValTy.getSizeInBytes() < MMO.getSize())
 | 
						|
          report("store memory size cannot exceed value size", MI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_PHI: {
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    if (!DstTy.isValid() ||
 | 
						|
        !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
 | 
						|
                     [this, &DstTy](const MachineOperand &MO) {
 | 
						|
                       if (!MO.isReg())
 | 
						|
                         return true;
 | 
						|
                       LLT Ty = MRI->getType(MO.getReg());
 | 
						|
                       if (!Ty.isValid() || (Ty != DstTy))
 | 
						|
                         return false;
 | 
						|
                       return true;
 | 
						|
                     }))
 | 
						|
      report("Generic Instruction G_PHI has operands with incompatible/missing "
 | 
						|
             "types",
 | 
						|
             MI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_BITCAST: {
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | 
						|
    if (!DstTy.isValid() || !SrcTy.isValid())
 | 
						|
      break;
 | 
						|
 | 
						|
    if (SrcTy.isPointer() != DstTy.isPointer())
 | 
						|
      report("bitcast cannot convert between pointers and other types", MI);
 | 
						|
 | 
						|
    if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
 | 
						|
      report("bitcast sizes must match", MI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_INTTOPTR:
 | 
						|
  case TargetOpcode::G_PTRTOINT:
 | 
						|
  case TargetOpcode::G_ADDRSPACE_CAST: {
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | 
						|
    if (!DstTy.isValid() || !SrcTy.isValid())
 | 
						|
      break;
 | 
						|
 | 
						|
    verifyVectorElementMatch(DstTy, SrcTy, MI);
 | 
						|
 | 
						|
    DstTy = DstTy.getScalarType();
 | 
						|
    SrcTy = SrcTy.getScalarType();
 | 
						|
 | 
						|
    if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
 | 
						|
      if (!DstTy.isPointer())
 | 
						|
        report("inttoptr result type must be a pointer", MI);
 | 
						|
      if (SrcTy.isPointer())
 | 
						|
        report("inttoptr source type must not be a pointer", MI);
 | 
						|
    } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
 | 
						|
      if (!SrcTy.isPointer())
 | 
						|
        report("ptrtoint source type must be a pointer", MI);
 | 
						|
      if (DstTy.isPointer())
 | 
						|
        report("ptrtoint result type must not be a pointer", MI);
 | 
						|
    } else {
 | 
						|
      assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
 | 
						|
      if (!SrcTy.isPointer() || !DstTy.isPointer())
 | 
						|
        report("addrspacecast types must be pointers", MI);
 | 
						|
      else {
 | 
						|
        if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
 | 
						|
          report("addrspacecast must convert different address spaces", MI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_GEP: {
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
 | 
						|
    LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
 | 
						|
    if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
 | 
						|
      break;
 | 
						|
 | 
						|
    if (!PtrTy.getScalarType().isPointer())
 | 
						|
      report("gep first operand must be a pointer", MI);
 | 
						|
 | 
						|
    if (OffsetTy.getScalarType().isPointer())
 | 
						|
      report("gep offset operand must not be a pointer", MI);
 | 
						|
 | 
						|
    // TODO: Is the offset allowed to be a scalar with a vector?
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_SEXT:
 | 
						|
  case TargetOpcode::G_ZEXT:
 | 
						|
  case TargetOpcode::G_ANYEXT:
 | 
						|
  case TargetOpcode::G_TRUNC:
 | 
						|
  case TargetOpcode::G_FPEXT:
 | 
						|
  case TargetOpcode::G_FPTRUNC: {
 | 
						|
    // Number of operands and presense of types is already checked (and
 | 
						|
    // reported in case of any issues), so no need to report them again. As
 | 
						|
    // we're trying to report as many issues as possible at once, however, the
 | 
						|
    // instructions aren't guaranteed to have the right number of operands or
 | 
						|
    // types attached to them at this point
 | 
						|
    assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | 
						|
    if (!DstTy.isValid() || !SrcTy.isValid())
 | 
						|
      break;
 | 
						|
 | 
						|
    LLT DstElTy = DstTy.getScalarType();
 | 
						|
    LLT SrcElTy = SrcTy.getScalarType();
 | 
						|
    if (DstElTy.isPointer() || SrcElTy.isPointer())
 | 
						|
      report("Generic extend/truncate can not operate on pointers", MI);
 | 
						|
 | 
						|
    verifyVectorElementMatch(DstTy, SrcTy, MI);
 | 
						|
 | 
						|
    unsigned DstSize = DstElTy.getSizeInBits();
 | 
						|
    unsigned SrcSize = SrcElTy.getSizeInBits();
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    default:
 | 
						|
      if (DstSize <= SrcSize)
 | 
						|
        report("Generic extend has destination type no larger than source", MI);
 | 
						|
      break;
 | 
						|
    case TargetOpcode::G_TRUNC:
 | 
						|
    case TargetOpcode::G_FPTRUNC:
 | 
						|
      if (DstSize >= SrcSize)
 | 
						|
        report("Generic truncate has destination type no smaller than source",
 | 
						|
               MI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_SELECT: {
 | 
						|
    LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
 | 
						|
    if (!SelTy.isValid() || !CondTy.isValid())
 | 
						|
      break;
 | 
						|
 | 
						|
    // Scalar condition select on a vector is valid.
 | 
						|
    if (CondTy.isVector())
 | 
						|
      verifyVectorElementMatch(SelTy, CondTy, MI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_MERGE_VALUES: {
 | 
						|
    // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
 | 
						|
    // e.g. s2N = MERGE sN, sN
 | 
						|
    // Merging multiple scalars into a vector is not allowed, should use
 | 
						|
    // G_BUILD_VECTOR for that.
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | 
						|
    if (DstTy.isVector() || SrcTy.isVector())
 | 
						|
      report("G_MERGE_VALUES cannot operate on vectors", MI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_UNMERGE_VALUES: {
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
 | 
						|
    // For now G_UNMERGE can split vectors.
 | 
						|
    for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
 | 
						|
      if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
 | 
						|
        report("G_UNMERGE_VALUES destination types do not match", MI);
 | 
						|
    }
 | 
						|
    if (SrcTy.getSizeInBits() !=
 | 
						|
        (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
 | 
						|
      report("G_UNMERGE_VALUES source operand does not cover dest operands",
 | 
						|
             MI);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_BUILD_VECTOR: {
 | 
						|
    // Source types must be scalars, dest type a vector. Total size of scalars
 | 
						|
    // must match the dest vector size.
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
 | 
						|
    if (!DstTy.isVector() || SrcEltTy.isVector()) {
 | 
						|
      report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (DstTy.getElementType() != SrcEltTy)
 | 
						|
      report("G_BUILD_VECTOR result element type must match source type", MI);
 | 
						|
 | 
						|
    if (DstTy.getNumElements() != MI->getNumOperands() - 1)
 | 
						|
      report("G_BUILD_VECTOR must have an operand for each elemement", MI);
 | 
						|
 | 
						|
    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
 | 
						|
      if (MRI->getType(MI->getOperand(1).getReg()) !=
 | 
						|
          MRI->getType(MI->getOperand(i).getReg()))
 | 
						|
        report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
 | 
						|
    // Source types must be scalars, dest type a vector. Scalar types must be
 | 
						|
    // larger than the dest vector elt type, as this is a truncating operation.
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
 | 
						|
    if (!DstTy.isVector() || SrcEltTy.isVector())
 | 
						|
      report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
 | 
						|
             MI);
 | 
						|
    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
 | 
						|
      if (MRI->getType(MI->getOperand(1).getReg()) !=
 | 
						|
          MRI->getType(MI->getOperand(i).getReg()))
 | 
						|
        report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
 | 
						|
               MI);
 | 
						|
    }
 | 
						|
    if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
 | 
						|
      report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
 | 
						|
             "dest elt type",
 | 
						|
             MI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_CONCAT_VECTORS: {
 | 
						|
    // Source types should be vectors, and total size should match the dest
 | 
						|
    // vector size.
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | 
						|
    if (!DstTy.isVector() || !SrcTy.isVector())
 | 
						|
      report("G_CONCAT_VECTOR requires vector source and destination operands",
 | 
						|
             MI);
 | 
						|
    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
 | 
						|
      if (MRI->getType(MI->getOperand(1).getReg()) !=
 | 
						|
          MRI->getType(MI->getOperand(i).getReg()))
 | 
						|
        report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
 | 
						|
    }
 | 
						|
    if (DstTy.getNumElements() !=
 | 
						|
        SrcTy.getNumElements() * (MI->getNumOperands() - 1))
 | 
						|
      report("G_CONCAT_VECTOR num dest and source elements should match", MI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_ICMP:
 | 
						|
  case TargetOpcode::G_FCMP: {
 | 
						|
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | 
						|
    LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
 | 
						|
 | 
						|
    if ((DstTy.isVector() != SrcTy.isVector()) ||
 | 
						|
        (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
 | 
						|
      report("Generic vector icmp/fcmp must preserve number of lanes", MI);
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_EXTRACT: {
 | 
						|
    const MachineOperand &SrcOp = MI->getOperand(1);
 | 
						|
    if (!SrcOp.isReg()) {
 | 
						|
      report("extract source must be a register", MI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    const MachineOperand &OffsetOp = MI->getOperand(2);
 | 
						|
    if (!OffsetOp.isImm()) {
 | 
						|
      report("extract offset must be a constant", MI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
 | 
						|
    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
 | 
						|
    if (SrcSize == DstSize)
 | 
						|
      report("extract source must be larger than result", MI);
 | 
						|
 | 
						|
    if (DstSize + OffsetOp.getImm() > SrcSize)
 | 
						|
      report("extract reads past end of register", MI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::G_INSERT: {
 | 
						|
    const MachineOperand &SrcOp = MI->getOperand(2);
 | 
						|
    if (!SrcOp.isReg()) {
 | 
						|
      report("insert source must be a register", MI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    const MachineOperand &OffsetOp = MI->getOperand(3);
 | 
						|
    if (!OffsetOp.isImm()) {
 | 
						|
      report("insert offset must be a constant", MI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
 | 
						|
    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
 | 
						|
 | 
						|
    if (DstSize <= SrcSize)
 | 
						|
      report("inserted size must be smaller than total register", MI);
 | 
						|
 | 
						|
    if (SrcSize + OffsetOp.getImm() > DstSize)
 | 
						|
      report("insert writes past end of register", MI);
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  if (MI->getNumOperands() < MCID.getNumOperands()) {
 | 
						|
    report("Too few operands", MI);
 | 
						|
    errs() << MCID.getNumOperands() << " operands expected, but "
 | 
						|
           << MI->getNumOperands() << " given.\n";
 | 
						|
  }
 | 
						|
 | 
						|
  if (MI->isPHI()) {
 | 
						|
    if (MF->getProperties().hasProperty(
 | 
						|
            MachineFunctionProperties::Property::NoPHIs))
 | 
						|
      report("Found PHI instruction with NoPHIs property set", MI);
 | 
						|
 | 
						|
    if (FirstNonPHI)
 | 
						|
      report("Found PHI instruction after non-PHI", MI);
 | 
						|
  } else if (FirstNonPHI == nullptr)
 | 
						|
    FirstNonPHI = MI;
 | 
						|
 | 
						|
  // Check the tied operands.
 | 
						|
  if (MI->isInlineAsm())
 | 
						|
    verifyInlineAsm(MI);
 | 
						|
 | 
						|
  // Check the MachineMemOperands for basic consistency.
 | 
						|
  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
 | 
						|
                                  E = MI->memoperands_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if ((*I)->isLoad() && !MI->mayLoad())
 | 
						|
      report("Missing mayLoad flag", MI);
 | 
						|
    if ((*I)->isStore() && !MI->mayStore())
 | 
						|
      report("Missing mayStore flag", MI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Debug values must not have a slot index.
 | 
						|
  // Other instructions must have one, unless they are inside a bundle.
 | 
						|
  if (LiveInts) {
 | 
						|
    bool mapped = !LiveInts->isNotInMIMap(*MI);
 | 
						|
    if (MI->isDebugInstr()) {
 | 
						|
      if (mapped)
 | 
						|
        report("Debug instruction has a slot index", MI);
 | 
						|
    } else if (MI->isInsideBundle()) {
 | 
						|
      if (mapped)
 | 
						|
        report("Instruction inside bundle has a slot index", MI);
 | 
						|
    } else {
 | 
						|
      if (!mapped)
 | 
						|
        report("Missing slot index", MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isPreISelGenericOpcode(MCID.getOpcode())) {
 | 
						|
    verifyPreISelGenericInstruction(MI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef ErrorInfo;
 | 
						|
  if (!TII->verifyInstruction(*MI, ErrorInfo))
 | 
						|
    report(ErrorInfo.data(), MI);
 | 
						|
 | 
						|
  // Verify properties of various specific instruction types
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  case TargetOpcode::COPY: {
 | 
						|
    if (foundErrors)
 | 
						|
      break;
 | 
						|
    const MachineOperand &DstOp = MI->getOperand(0);
 | 
						|
    const MachineOperand &SrcOp = MI->getOperand(1);
 | 
						|
    LLT DstTy = MRI->getType(DstOp.getReg());
 | 
						|
    LLT SrcTy = MRI->getType(SrcOp.getReg());
 | 
						|
    if (SrcTy.isValid() && DstTy.isValid()) {
 | 
						|
      // If both types are valid, check that the types are the same.
 | 
						|
      if (SrcTy != DstTy) {
 | 
						|
        report("Copy Instruction is illegal with mismatching types", MI);
 | 
						|
        errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (SrcTy.isValid() || DstTy.isValid()) {
 | 
						|
      // If one of them have valid types, let's just check they have the same
 | 
						|
      // size.
 | 
						|
      unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
 | 
						|
      unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
 | 
						|
      assert(SrcSize && "Expecting size here");
 | 
						|
      assert(DstSize && "Expecting size here");
 | 
						|
      if (SrcSize != DstSize)
 | 
						|
        if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
 | 
						|
          report("Copy Instruction is illegal with mismatching sizes", MI);
 | 
						|
          errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
 | 
						|
                 << "\n";
 | 
						|
        }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case TargetOpcode::STATEPOINT:
 | 
						|
    if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
 | 
						|
        !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
 | 
						|
        !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
 | 
						|
      report("meta operands to STATEPOINT not constant!", MI);
 | 
						|
    break;
 | 
						|
 | 
						|
    auto VerifyStackMapConstant = [&](unsigned Offset) {
 | 
						|
      if (!MI->getOperand(Offset).isImm() ||
 | 
						|
          MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
 | 
						|
          !MI->getOperand(Offset + 1).isImm())
 | 
						|
        report("stack map constant to STATEPOINT not well formed!", MI);
 | 
						|
    };
 | 
						|
    const unsigned VarStart = StatepointOpers(MI).getVarIdx();
 | 
						|
    VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
 | 
						|
    VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
 | 
						|
    VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
 | 
						|
 | 
						|
    // TODO: verify we have properly encoded deopt arguments
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
 | 
						|
  const MachineInstr *MI = MO->getParent();
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  unsigned NumDefs = MCID.getNumDefs();
 | 
						|
  if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
 | 
						|
    NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
 | 
						|
 | 
						|
  // The first MCID.NumDefs operands must be explicit register defines
 | 
						|
  if (MONum < NumDefs) {
 | 
						|
    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
 | 
						|
    if (!MO->isReg())
 | 
						|
      report("Explicit definition must be a register", MO, MONum);
 | 
						|
    else if (!MO->isDef() && !MCOI.isOptionalDef())
 | 
						|
      report("Explicit definition marked as use", MO, MONum);
 | 
						|
    else if (MO->isImplicit())
 | 
						|
      report("Explicit definition marked as implicit", MO, MONum);
 | 
						|
  } else if (MONum < MCID.getNumOperands()) {
 | 
						|
    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
 | 
						|
    // Don't check if it's the last operand in a variadic instruction. See,
 | 
						|
    // e.g., LDM_RET in the arm back end.
 | 
						|
    if (MO->isReg() &&
 | 
						|
        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
 | 
						|
      if (MO->isDef() && !MCOI.isOptionalDef())
 | 
						|
        report("Explicit operand marked as def", MO, MONum);
 | 
						|
      if (MO->isImplicit())
 | 
						|
        report("Explicit operand marked as implicit", MO, MONum);
 | 
						|
    }
 | 
						|
 | 
						|
    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
 | 
						|
    if (TiedTo != -1) {
 | 
						|
      if (!MO->isReg())
 | 
						|
        report("Tied use must be a register", MO, MONum);
 | 
						|
      else if (!MO->isTied())
 | 
						|
        report("Operand should be tied", MO, MONum);
 | 
						|
      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
 | 
						|
        report("Tied def doesn't match MCInstrDesc", MO, MONum);
 | 
						|
      else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
 | 
						|
        const MachineOperand &MOTied = MI->getOperand(TiedTo);
 | 
						|
        if (!MOTied.isReg())
 | 
						|
          report("Tied counterpart must be a register", &MOTied, TiedTo);
 | 
						|
        else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
 | 
						|
                 MO->getReg() != MOTied.getReg())
 | 
						|
          report("Tied physical registers must match.", &MOTied, TiedTo);
 | 
						|
      }
 | 
						|
    } else if (MO->isReg() && MO->isTied())
 | 
						|
      report("Explicit operand should not be tied", MO, MONum);
 | 
						|
  } else {
 | 
						|
    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
 | 
						|
    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
 | 
						|
      report("Extra explicit operand on non-variadic instruction", MO, MONum);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (MO->getType()) {
 | 
						|
  case MachineOperand::MO_Register: {
 | 
						|
    const unsigned Reg = MO->getReg();
 | 
						|
    if (!Reg)
 | 
						|
      return;
 | 
						|
    if (MRI->tracksLiveness() && !MI->isDebugValue())
 | 
						|
      checkLiveness(MO, MONum);
 | 
						|
 | 
						|
    // Verify the consistency of tied operands.
 | 
						|
    if (MO->isTied()) {
 | 
						|
      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
 | 
						|
      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
 | 
						|
      if (!OtherMO.isReg())
 | 
						|
        report("Must be tied to a register", MO, MONum);
 | 
						|
      if (!OtherMO.isTied())
 | 
						|
        report("Missing tie flags on tied operand", MO, MONum);
 | 
						|
      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
 | 
						|
        report("Inconsistent tie links", MO, MONum);
 | 
						|
      if (MONum < MCID.getNumDefs()) {
 | 
						|
        if (OtherIdx < MCID.getNumOperands()) {
 | 
						|
          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
 | 
						|
            report("Explicit def tied to explicit use without tie constraint",
 | 
						|
                   MO, MONum);
 | 
						|
        } else {
 | 
						|
          if (!OtherMO.isImplicit())
 | 
						|
            report("Explicit def should be tied to implicit use", MO, MONum);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Verify two-address constraints after leaving SSA form.
 | 
						|
    unsigned DefIdx;
 | 
						|
    if (!MRI->isSSA() && MO->isUse() &&
 | 
						|
        MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
 | 
						|
        Reg != MI->getOperand(DefIdx).getReg())
 | 
						|
      report("Two-address instruction operands must be identical", MO, MONum);
 | 
						|
 | 
						|
    // Check register classes.
 | 
						|
    unsigned SubIdx = MO->getSubReg();
 | 
						|
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
      if (SubIdx) {
 | 
						|
        report("Illegal subregister index for physical register", MO, MONum);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      if (MONum < MCID.getNumOperands()) {
 | 
						|
        if (const TargetRegisterClass *DRC =
 | 
						|
              TII->getRegClass(MCID, MONum, TRI, *MF)) {
 | 
						|
          if (!DRC->contains(Reg)) {
 | 
						|
            report("Illegal physical register for instruction", MO, MONum);
 | 
						|
            errs() << printReg(Reg, TRI) << " is not a "
 | 
						|
                   << TRI->getRegClassName(DRC) << " register.\n";
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (MO->isRenamable()) {
 | 
						|
        if (MRI->isReserved(Reg)) {
 | 
						|
          report("isRenamable set on reserved register", MO, MONum);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
 | 
						|
        report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Virtual register.
 | 
						|
      const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
 | 
						|
      if (!RC) {
 | 
						|
        // This is a generic virtual register.
 | 
						|
 | 
						|
        // If we're post-Select, we can't have gvregs anymore.
 | 
						|
        if (isFunctionSelected) {
 | 
						|
          report("Generic virtual register invalid in a Selected function",
 | 
						|
                 MO, MONum);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        // The gvreg must have a type and it must not have a SubIdx.
 | 
						|
        LLT Ty = MRI->getType(Reg);
 | 
						|
        if (!Ty.isValid()) {
 | 
						|
          report("Generic virtual register must have a valid type", MO,
 | 
						|
                 MONum);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
 | 
						|
 | 
						|
        // If we're post-RegBankSelect, the gvreg must have a bank.
 | 
						|
        if (!RegBank && isFunctionRegBankSelected) {
 | 
						|
          report("Generic virtual register must have a bank in a "
 | 
						|
                 "RegBankSelected function",
 | 
						|
                 MO, MONum);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        // Make sure the register fits into its register bank if any.
 | 
						|
        if (RegBank && Ty.isValid() &&
 | 
						|
            RegBank->getSize() < Ty.getSizeInBits()) {
 | 
						|
          report("Register bank is too small for virtual register", MO,
 | 
						|
                 MONum);
 | 
						|
          errs() << "Register bank " << RegBank->getName() << " too small("
 | 
						|
                 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
 | 
						|
                 << "-bits\n";
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        if (SubIdx)  {
 | 
						|
          report("Generic virtual register does not allow subregister index", MO,
 | 
						|
                 MONum);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        // If this is a target specific instruction and this operand
 | 
						|
        // has register class constraint, the virtual register must
 | 
						|
        // comply to it.
 | 
						|
        if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
 | 
						|
            MONum < MCID.getNumOperands() &&
 | 
						|
            TII->getRegClass(MCID, MONum, TRI, *MF)) {
 | 
						|
          report("Virtual register does not match instruction constraint", MO,
 | 
						|
                 MONum);
 | 
						|
          errs() << "Expect register class "
 | 
						|
                 << TRI->getRegClassName(
 | 
						|
                        TII->getRegClass(MCID, MONum, TRI, *MF))
 | 
						|
                 << " but got nothing\n";
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (SubIdx) {
 | 
						|
        const TargetRegisterClass *SRC =
 | 
						|
          TRI->getSubClassWithSubReg(RC, SubIdx);
 | 
						|
        if (!SRC) {
 | 
						|
          report("Invalid subregister index for virtual register", MO, MONum);
 | 
						|
          errs() << "Register class " << TRI->getRegClassName(RC)
 | 
						|
              << " does not support subreg index " << SubIdx << "\n";
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        if (RC != SRC) {
 | 
						|
          report("Invalid register class for subregister index", MO, MONum);
 | 
						|
          errs() << "Register class " << TRI->getRegClassName(RC)
 | 
						|
              << " does not fully support subreg index " << SubIdx << "\n";
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (MONum < MCID.getNumOperands()) {
 | 
						|
        if (const TargetRegisterClass *DRC =
 | 
						|
              TII->getRegClass(MCID, MONum, TRI, *MF)) {
 | 
						|
          if (SubIdx) {
 | 
						|
            const TargetRegisterClass *SuperRC =
 | 
						|
                TRI->getLargestLegalSuperClass(RC, *MF);
 | 
						|
            if (!SuperRC) {
 | 
						|
              report("No largest legal super class exists.", MO, MONum);
 | 
						|
              return;
 | 
						|
            }
 | 
						|
            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
 | 
						|
            if (!DRC) {
 | 
						|
              report("No matching super-reg register class.", MO, MONum);
 | 
						|
              return;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (!RC->hasSuperClassEq(DRC)) {
 | 
						|
            report("Illegal virtual register for instruction", MO, MONum);
 | 
						|
            errs() << "Expected a " << TRI->getRegClassName(DRC)
 | 
						|
                << " register, but got a " << TRI->getRegClassName(RC)
 | 
						|
                << " register\n";
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case MachineOperand::MO_RegisterMask:
 | 
						|
    regMasks.push_back(MO->getRegMask());
 | 
						|
    break;
 | 
						|
 | 
						|
  case MachineOperand::MO_MachineBasicBlock:
 | 
						|
    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
 | 
						|
      report("PHI operand is not in the CFG", MO, MONum);
 | 
						|
    break;
 | 
						|
 | 
						|
  case MachineOperand::MO_FrameIndex:
 | 
						|
    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
 | 
						|
        LiveInts && !LiveInts->isNotInMIMap(*MI)) {
 | 
						|
      int FI = MO->getIndex();
 | 
						|
      LiveInterval &LI = LiveStks->getInterval(FI);
 | 
						|
      SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
 | 
						|
 | 
						|
      bool stores = MI->mayStore();
 | 
						|
      bool loads = MI->mayLoad();
 | 
						|
      // For a memory-to-memory move, we need to check if the frame
 | 
						|
      // index is used for storing or loading, by inspecting the
 | 
						|
      // memory operands.
 | 
						|
      if (stores && loads) {
 | 
						|
        for (auto *MMO : MI->memoperands()) {
 | 
						|
          const PseudoSourceValue *PSV = MMO->getPseudoValue();
 | 
						|
          if (PSV == nullptr) continue;
 | 
						|
          const FixedStackPseudoSourceValue *Value =
 | 
						|
            dyn_cast<FixedStackPseudoSourceValue>(PSV);
 | 
						|
          if (Value == nullptr) continue;
 | 
						|
          if (Value->getFrameIndex() != FI) continue;
 | 
						|
 | 
						|
          if (MMO->isStore())
 | 
						|
            loads = false;
 | 
						|
          else
 | 
						|
            stores = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (loads == stores)
 | 
						|
          report("Missing fixed stack memoperand.", MI);
 | 
						|
      }
 | 
						|
      if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
 | 
						|
        report("Instruction loads from dead spill slot", MO, MONum);
 | 
						|
        errs() << "Live stack: " << LI << '\n';
 | 
						|
      }
 | 
						|
      if (stores && !LI.liveAt(Idx.getRegSlot())) {
 | 
						|
        report("Instruction stores to dead spill slot", MO, MONum);
 | 
						|
        errs() << "Live stack: " << LI << '\n';
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
 | 
						|
    unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
 | 
						|
    LaneBitmask LaneMask) {
 | 
						|
  LiveQueryResult LRQ = LR.Query(UseIdx);
 | 
						|
  // Check if we have a segment at the use, note however that we only need one
 | 
						|
  // live subregister range, the others may be dead.
 | 
						|
  if (!LRQ.valueIn() && LaneMask.none()) {
 | 
						|
    report("No live segment at use", MO, MONum);
 | 
						|
    report_context_liverange(LR);
 | 
						|
    report_context_vreg_regunit(VRegOrUnit);
 | 
						|
    report_context(UseIdx);
 | 
						|
  }
 | 
						|
  if (MO->isKill() && !LRQ.isKill()) {
 | 
						|
    report("Live range continues after kill flag", MO, MONum);
 | 
						|
    report_context_liverange(LR);
 | 
						|
    report_context_vreg_regunit(VRegOrUnit);
 | 
						|
    if (LaneMask.any())
 | 
						|
      report_context_lanemask(LaneMask);
 | 
						|
    report_context(UseIdx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
 | 
						|
    unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
 | 
						|
    bool SubRangeCheck, LaneBitmask LaneMask) {
 | 
						|
  if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
 | 
						|
    assert(VNI && "NULL valno is not allowed");
 | 
						|
    if (VNI->def != DefIdx) {
 | 
						|
      report("Inconsistent valno->def", MO, MONum);
 | 
						|
      report_context_liverange(LR);
 | 
						|
      report_context_vreg_regunit(VRegOrUnit);
 | 
						|
      if (LaneMask.any())
 | 
						|
        report_context_lanemask(LaneMask);
 | 
						|
      report_context(*VNI);
 | 
						|
      report_context(DefIdx);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    report("No live segment at def", MO, MONum);
 | 
						|
    report_context_liverange(LR);
 | 
						|
    report_context_vreg_regunit(VRegOrUnit);
 | 
						|
    if (LaneMask.any())
 | 
						|
      report_context_lanemask(LaneMask);
 | 
						|
    report_context(DefIdx);
 | 
						|
  }
 | 
						|
  // Check that, if the dead def flag is present, LiveInts agree.
 | 
						|
  if (MO->isDead()) {
 | 
						|
    LiveQueryResult LRQ = LR.Query(DefIdx);
 | 
						|
    if (!LRQ.isDeadDef()) {
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
 | 
						|
             "Expecting a virtual register.");
 | 
						|
      // A dead subreg def only tells us that the specific subreg is dead. There
 | 
						|
      // could be other non-dead defs of other subregs, or we could have other
 | 
						|
      // parts of the register being live through the instruction. So unless we
 | 
						|
      // are checking liveness for a subrange it is ok for the live range to
 | 
						|
      // continue, given that we have a dead def of a subregister.
 | 
						|
      if (SubRangeCheck || MO->getSubReg() == 0) {
 | 
						|
        report("Live range continues after dead def flag", MO, MONum);
 | 
						|
        report_context_liverange(LR);
 | 
						|
        report_context_vreg_regunit(VRegOrUnit);
 | 
						|
        if (LaneMask.any())
 | 
						|
          report_context_lanemask(LaneMask);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
 | 
						|
  const MachineInstr *MI = MO->getParent();
 | 
						|
  const unsigned Reg = MO->getReg();
 | 
						|
 | 
						|
  // Both use and def operands can read a register.
 | 
						|
  if (MO->readsReg()) {
 | 
						|
    if (MO->isKill())
 | 
						|
      addRegWithSubRegs(regsKilled, Reg);
 | 
						|
 | 
						|
    // Check that LiveVars knows this kill.
 | 
						|
    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
        MO->isKill()) {
 | 
						|
      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
 | 
						|
      if (!is_contained(VI.Kills, MI))
 | 
						|
        report("Kill missing from LiveVariables", MO, MONum);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check LiveInts liveness and kill.
 | 
						|
    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
 | 
						|
      SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
 | 
						|
      // Check the cached regunit intervals.
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
 | 
						|
        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
 | 
						|
          if (MRI->isReservedRegUnit(*Units))
 | 
						|
            continue;
 | 
						|
          if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
 | 
						|
            checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
        if (LiveInts->hasInterval(Reg)) {
 | 
						|
          // This is a virtual register interval.
 | 
						|
          const LiveInterval &LI = LiveInts->getInterval(Reg);
 | 
						|
          checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
 | 
						|
 | 
						|
          if (LI.hasSubRanges() && !MO->isDef()) {
 | 
						|
            unsigned SubRegIdx = MO->getSubReg();
 | 
						|
            LaneBitmask MOMask = SubRegIdx != 0
 | 
						|
                               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
 | 
						|
                               : MRI->getMaxLaneMaskForVReg(Reg);
 | 
						|
            LaneBitmask LiveInMask;
 | 
						|
            for (const LiveInterval::SubRange &SR : LI.subranges()) {
 | 
						|
              if ((MOMask & SR.LaneMask).none())
 | 
						|
                continue;
 | 
						|
              checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
 | 
						|
              LiveQueryResult LRQ = SR.Query(UseIdx);
 | 
						|
              if (LRQ.valueIn())
 | 
						|
                LiveInMask |= SR.LaneMask;
 | 
						|
            }
 | 
						|
            // At least parts of the register has to be live at the use.
 | 
						|
            if ((LiveInMask & MOMask).none()) {
 | 
						|
              report("No live subrange at use", MO, MONum);
 | 
						|
              report_context(LI);
 | 
						|
              report_context(UseIdx);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          report("Virtual register has no live interval", MO, MONum);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Use of a dead register.
 | 
						|
    if (!regsLive.count(Reg)) {
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
        // Reserved registers may be used even when 'dead'.
 | 
						|
        bool Bad = !isReserved(Reg);
 | 
						|
        // We are fine if just any subregister has a defined value.
 | 
						|
        if (Bad) {
 | 
						|
          for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
 | 
						|
               ++SubRegs) {
 | 
						|
            if (regsLive.count(*SubRegs)) {
 | 
						|
              Bad = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // If there is an additional implicit-use of a super register we stop
 | 
						|
        // here. By definition we are fine if the super register is not
 | 
						|
        // (completely) dead, if the complete super register is dead we will
 | 
						|
        // get a report for its operand.
 | 
						|
        if (Bad) {
 | 
						|
          for (const MachineOperand &MOP : MI->uses()) {
 | 
						|
            if (!MOP.isReg() || !MOP.isImplicit())
 | 
						|
              continue;
 | 
						|
 | 
						|
            if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
 | 
						|
              continue;
 | 
						|
 | 
						|
            for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
 | 
						|
                 ++SubRegs) {
 | 
						|
              if (*SubRegs == Reg) {
 | 
						|
                Bad = false;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (Bad)
 | 
						|
          report("Using an undefined physical register", MO, MONum);
 | 
						|
      } else if (MRI->def_empty(Reg)) {
 | 
						|
        report("Reading virtual register without a def", MO, MONum);
 | 
						|
      } else {
 | 
						|
        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
 | 
						|
        // We don't know which virtual registers are live in, so only complain
 | 
						|
        // if vreg was killed in this MBB. Otherwise keep track of vregs that
 | 
						|
        // must be live in. PHI instructions are handled separately.
 | 
						|
        if (MInfo.regsKilled.count(Reg))
 | 
						|
          report("Using a killed virtual register", MO, MONum);
 | 
						|
        else if (!MI->isPHI())
 | 
						|
          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MO->isDef()) {
 | 
						|
    // Register defined.
 | 
						|
    // TODO: verify that earlyclobber ops are not used.
 | 
						|
    if (MO->isDead())
 | 
						|
      addRegWithSubRegs(regsDead, Reg);
 | 
						|
    else
 | 
						|
      addRegWithSubRegs(regsDefined, Reg);
 | 
						|
 | 
						|
    // Verify SSA form.
 | 
						|
    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
        std::next(MRI->def_begin(Reg)) != MRI->def_end())
 | 
						|
      report("Multiple virtual register defs in SSA form", MO, MONum);
 | 
						|
 | 
						|
    // Check LiveInts for a live segment, but only for virtual registers.
 | 
						|
    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
 | 
						|
      SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
 | 
						|
      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
 | 
						|
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
        if (LiveInts->hasInterval(Reg)) {
 | 
						|
          const LiveInterval &LI = LiveInts->getInterval(Reg);
 | 
						|
          checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
 | 
						|
 | 
						|
          if (LI.hasSubRanges()) {
 | 
						|
            unsigned SubRegIdx = MO->getSubReg();
 | 
						|
            LaneBitmask MOMask = SubRegIdx != 0
 | 
						|
              ? TRI->getSubRegIndexLaneMask(SubRegIdx)
 | 
						|
              : MRI->getMaxLaneMaskForVReg(Reg);
 | 
						|
            for (const LiveInterval::SubRange &SR : LI.subranges()) {
 | 
						|
              if ((SR.LaneMask & MOMask).none())
 | 
						|
                continue;
 | 
						|
              checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          report("Virtual register has no Live interval", MO, MONum);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
 | 
						|
 | 
						|
// This function gets called after visiting all instructions in a bundle. The
 | 
						|
// argument points to the bundle header.
 | 
						|
// Normal stand-alone instructions are also considered 'bundles', and this
 | 
						|
// function is called for all of them.
 | 
						|
void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
 | 
						|
  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
 | 
						|
  set_union(MInfo.regsKilled, regsKilled);
 | 
						|
  set_subtract(regsLive, regsKilled); regsKilled.clear();
 | 
						|
  // Kill any masked registers.
 | 
						|
  while (!regMasks.empty()) {
 | 
						|
    const uint32_t *Mask = regMasks.pop_back_val();
 | 
						|
    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
 | 
						|
          MachineOperand::clobbersPhysReg(Mask, *I))
 | 
						|
        regsDead.push_back(*I);
 | 
						|
  }
 | 
						|
  set_subtract(regsLive, regsDead);   regsDead.clear();
 | 
						|
  set_union(regsLive, regsDefined);   regsDefined.clear();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
 | 
						|
  MBBInfoMap[MBB].regsLiveOut = regsLive;
 | 
						|
  regsLive.clear();
 | 
						|
 | 
						|
  if (Indexes) {
 | 
						|
    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
 | 
						|
    if (!(stop > lastIndex)) {
 | 
						|
      report("Block ends before last instruction index", MBB);
 | 
						|
      errs() << "Block ends at " << stop
 | 
						|
          << " last instruction was at " << lastIndex << '\n';
 | 
						|
    }
 | 
						|
    lastIndex = stop;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the largest possible vregsPassed sets. These are the registers that
 | 
						|
// can pass through an MBB live, but may not be live every time. It is assumed
 | 
						|
// that all vregsPassed sets are empty before the call.
 | 
						|
void MachineVerifier::calcRegsPassed() {
 | 
						|
  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
 | 
						|
  // have any vregsPassed.
 | 
						|
  SmallPtrSet<const MachineBasicBlock*, 8> todo;
 | 
						|
  for (const auto &MBB : *MF) {
 | 
						|
    BBInfo &MInfo = MBBInfoMap[&MBB];
 | 
						|
    if (!MInfo.reachable)
 | 
						|
      continue;
 | 
						|
    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
 | 
						|
           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
 | 
						|
      BBInfo &SInfo = MBBInfoMap[*SuI];
 | 
						|
      if (SInfo.addPassed(MInfo.regsLiveOut))
 | 
						|
        todo.insert(*SuI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Iteratively push vregsPassed to successors. This will converge to the same
 | 
						|
  // final state regardless of DenseSet iteration order.
 | 
						|
  while (!todo.empty()) {
 | 
						|
    const MachineBasicBlock *MBB = *todo.begin();
 | 
						|
    todo.erase(MBB);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[MBB];
 | 
						|
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
 | 
						|
           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
 | 
						|
      if (*SuI == MBB)
 | 
						|
        continue;
 | 
						|
      BBInfo &SInfo = MBBInfoMap[*SuI];
 | 
						|
      if (SInfo.addPassed(MInfo.vregsPassed))
 | 
						|
        todo.insert(*SuI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the set of virtual registers that must be passed through each basic
 | 
						|
// block in order to satisfy the requirements of successor blocks. This is very
 | 
						|
// similar to calcRegsPassed, only backwards.
 | 
						|
void MachineVerifier::calcRegsRequired() {
 | 
						|
  // First push live-in regs to predecessors' vregsRequired.
 | 
						|
  SmallPtrSet<const MachineBasicBlock*, 8> todo;
 | 
						|
  for (const auto &MBB : *MF) {
 | 
						|
    BBInfo &MInfo = MBBInfoMap[&MBB];
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
 | 
						|
           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
 | 
						|
      BBInfo &PInfo = MBBInfoMap[*PrI];
 | 
						|
      if (PInfo.addRequired(MInfo.vregsLiveIn))
 | 
						|
        todo.insert(*PrI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Iteratively push vregsRequired to predecessors. This will converge to the
 | 
						|
  // same final state regardless of DenseSet iteration order.
 | 
						|
  while (!todo.empty()) {
 | 
						|
    const MachineBasicBlock *MBB = *todo.begin();
 | 
						|
    todo.erase(MBB);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[MBB];
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
 | 
						|
           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
 | 
						|
      if (*PrI == MBB)
 | 
						|
        continue;
 | 
						|
      BBInfo &SInfo = MBBInfoMap[*PrI];
 | 
						|
      if (SInfo.addRequired(MInfo.vregsRequired))
 | 
						|
        todo.insert(*PrI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Check PHI instructions at the beginning of MBB. It is assumed that
 | 
						|
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
 | 
						|
void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
 | 
						|
  BBInfo &MInfo = MBBInfoMap[&MBB];
 | 
						|
 | 
						|
  SmallPtrSet<const MachineBasicBlock*, 8> seen;
 | 
						|
  for (const MachineInstr &Phi : MBB) {
 | 
						|
    if (!Phi.isPHI())
 | 
						|
      break;
 | 
						|
    seen.clear();
 | 
						|
 | 
						|
    const MachineOperand &MODef = Phi.getOperand(0);
 | 
						|
    if (!MODef.isReg() || !MODef.isDef()) {
 | 
						|
      report("Expected first PHI operand to be a register def", &MODef, 0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
 | 
						|
        MODef.isEarlyClobber() || MODef.isDebug())
 | 
						|
      report("Unexpected flag on PHI operand", &MODef, 0);
 | 
						|
    unsigned DefReg = MODef.getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(DefReg))
 | 
						|
      report("Expected first PHI operand to be a virtual register", &MODef, 0);
 | 
						|
 | 
						|
    for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
 | 
						|
      const MachineOperand &MO0 = Phi.getOperand(I);
 | 
						|
      if (!MO0.isReg()) {
 | 
						|
        report("Expected PHI operand to be a register", &MO0, I);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
 | 
						|
          MO0.isDebug() || MO0.isTied())
 | 
						|
        report("Unexpected flag on PHI operand", &MO0, I);
 | 
						|
 | 
						|
      const MachineOperand &MO1 = Phi.getOperand(I + 1);
 | 
						|
      if (!MO1.isMBB()) {
 | 
						|
        report("Expected PHI operand to be a basic block", &MO1, I + 1);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      const MachineBasicBlock &Pre = *MO1.getMBB();
 | 
						|
      if (!Pre.isSuccessor(&MBB)) {
 | 
						|
        report("PHI input is not a predecessor block", &MO1, I + 1);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (MInfo.reachable) {
 | 
						|
        seen.insert(&Pre);
 | 
						|
        BBInfo &PrInfo = MBBInfoMap[&Pre];
 | 
						|
        if (!MO0.isUndef() && PrInfo.reachable &&
 | 
						|
            !PrInfo.isLiveOut(MO0.getReg()))
 | 
						|
          report("PHI operand is not live-out from predecessor", &MO0, I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Did we see all predecessors?
 | 
						|
    if (MInfo.reachable) {
 | 
						|
      for (MachineBasicBlock *Pred : MBB.predecessors()) {
 | 
						|
        if (!seen.count(Pred)) {
 | 
						|
          report("Missing PHI operand", &Phi);
 | 
						|
          errs() << printMBBReference(*Pred)
 | 
						|
                 << " is a predecessor according to the CFG.\n";
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineFunctionAfter() {
 | 
						|
  calcRegsPassed();
 | 
						|
 | 
						|
  for (const MachineBasicBlock &MBB : *MF)
 | 
						|
    checkPHIOps(MBB);
 | 
						|
 | 
						|
  // Now check liveness info if available
 | 
						|
  calcRegsRequired();
 | 
						|
 | 
						|
  // Check for killed virtual registers that should be live out.
 | 
						|
  for (const auto &MBB : *MF) {
 | 
						|
    BBInfo &MInfo = MBBInfoMap[&MBB];
 | 
						|
    for (RegSet::iterator
 | 
						|
         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
 | 
						|
         ++I)
 | 
						|
      if (MInfo.regsKilled.count(*I)) {
 | 
						|
        report("Virtual register killed in block, but needed live out.", &MBB);
 | 
						|
        errs() << "Virtual register " << printReg(*I)
 | 
						|
               << " is used after the block.\n";
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MF->empty()) {
 | 
						|
    BBInfo &MInfo = MBBInfoMap[&MF->front()];
 | 
						|
    for (RegSet::iterator
 | 
						|
         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
 | 
						|
         ++I) {
 | 
						|
      report("Virtual register defs don't dominate all uses.", MF);
 | 
						|
      report_context_vreg(*I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (LiveVars)
 | 
						|
    verifyLiveVariables();
 | 
						|
  if (LiveInts)
 | 
						|
    verifyLiveIntervals();
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyLiveVariables() {
 | 
						|
  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
 | 
						|
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | 
						|
    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
 | 
						|
    for (const auto &MBB : *MF) {
 | 
						|
      BBInfo &MInfo = MBBInfoMap[&MBB];
 | 
						|
 | 
						|
      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
 | 
						|
      if (MInfo.vregsRequired.count(Reg)) {
 | 
						|
        if (!VI.AliveBlocks.test(MBB.getNumber())) {
 | 
						|
          report("LiveVariables: Block missing from AliveBlocks", &MBB);
 | 
						|
          errs() << "Virtual register " << printReg(Reg)
 | 
						|
                 << " must be live through the block.\n";
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        if (VI.AliveBlocks.test(MBB.getNumber())) {
 | 
						|
          report("LiveVariables: Block should not be in AliveBlocks", &MBB);
 | 
						|
          errs() << "Virtual register " << printReg(Reg)
 | 
						|
                 << " is not needed live through the block.\n";
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyLiveIntervals() {
 | 
						|
  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
 | 
						|
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | 
						|
 | 
						|
    // Spilling and splitting may leave unused registers around. Skip them.
 | 
						|
    if (MRI->reg_nodbg_empty(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!LiveInts->hasInterval(Reg)) {
 | 
						|
      report("Missing live interval for virtual register", MF);
 | 
						|
      errs() << printReg(Reg, TRI) << " still has defs or uses\n";
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const LiveInterval &LI = LiveInts->getInterval(Reg);
 | 
						|
    assert(Reg == LI.reg && "Invalid reg to interval mapping");
 | 
						|
    verifyLiveInterval(LI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify all the cached regunit intervals.
 | 
						|
  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
 | 
						|
    if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
 | 
						|
      verifyLiveRange(*LR, i);
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
 | 
						|
                                           const VNInfo *VNI, unsigned Reg,
 | 
						|
                                           LaneBitmask LaneMask) {
 | 
						|
  if (VNI->isUnused())
 | 
						|
    return;
 | 
						|
 | 
						|
  const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
 | 
						|
 | 
						|
  if (!DefVNI) {
 | 
						|
    report("Value not live at VNInfo def and not marked unused", MF);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(*VNI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DefVNI != VNI) {
 | 
						|
    report("Live segment at def has different VNInfo", MF);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(*VNI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
 | 
						|
  if (!MBB) {
 | 
						|
    report("Invalid VNInfo definition index", MF);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(*VNI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VNI->isPHIDef()) {
 | 
						|
    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
 | 
						|
      report("PHIDef VNInfo is not defined at MBB start", MBB);
 | 
						|
      report_context(LR, Reg, LaneMask);
 | 
						|
      report_context(*VNI);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Non-PHI def.
 | 
						|
  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
 | 
						|
  if (!MI) {
 | 
						|
    report("No instruction at VNInfo def index", MBB);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(*VNI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Reg != 0) {
 | 
						|
    bool hasDef = false;
 | 
						|
    bool isEarlyClobber = false;
 | 
						|
    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
 | 
						|
      if (!MOI->isReg() || !MOI->isDef())
 | 
						|
        continue;
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
        if (MOI->getReg() != Reg)
 | 
						|
          continue;
 | 
						|
      } else {
 | 
						|
        if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
 | 
						|
            !TRI->hasRegUnit(MOI->getReg(), Reg))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
      if (LaneMask.any() &&
 | 
						|
          (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
 | 
						|
        continue;
 | 
						|
      hasDef = true;
 | 
						|
      if (MOI->isEarlyClobber())
 | 
						|
        isEarlyClobber = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!hasDef) {
 | 
						|
      report("Defining instruction does not modify register", MI);
 | 
						|
      report_context(LR, Reg, LaneMask);
 | 
						|
      report_context(*VNI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Early clobber defs begin at USE slots, but other defs must begin at
 | 
						|
    // DEF slots.
 | 
						|
    if (isEarlyClobber) {
 | 
						|
      if (!VNI->def.isEarlyClobber()) {
 | 
						|
        report("Early clobber def must be at an early-clobber slot", MBB);
 | 
						|
        report_context(LR, Reg, LaneMask);
 | 
						|
        report_context(*VNI);
 | 
						|
      }
 | 
						|
    } else if (!VNI->def.isRegister()) {
 | 
						|
      report("Non-PHI, non-early clobber def must be at a register slot", MBB);
 | 
						|
      report_context(LR, Reg, LaneMask);
 | 
						|
      report_context(*VNI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
 | 
						|
                                             const LiveRange::const_iterator I,
 | 
						|
                                             unsigned Reg, LaneBitmask LaneMask)
 | 
						|
{
 | 
						|
  const LiveRange::Segment &S = *I;
 | 
						|
  const VNInfo *VNI = S.valno;
 | 
						|
  assert(VNI && "Live segment has no valno");
 | 
						|
 | 
						|
  if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
 | 
						|
    report("Foreign valno in live segment", MF);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(S);
 | 
						|
    report_context(*VNI);
 | 
						|
  }
 | 
						|
 | 
						|
  if (VNI->isUnused()) {
 | 
						|
    report("Live segment valno is marked unused", MF);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(S);
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
 | 
						|
  if (!MBB) {
 | 
						|
    report("Bad start of live segment, no basic block", MF);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(S);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
 | 
						|
  if (S.start != MBBStartIdx && S.start != VNI->def) {
 | 
						|
    report("Live segment must begin at MBB entry or valno def", MBB);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(S);
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineBasicBlock *EndMBB =
 | 
						|
    LiveInts->getMBBFromIndex(S.end.getPrevSlot());
 | 
						|
  if (!EndMBB) {
 | 
						|
    report("Bad end of live segment, no basic block", MF);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(S);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // No more checks for live-out segments.
 | 
						|
  if (S.end == LiveInts->getMBBEndIdx(EndMBB))
 | 
						|
    return;
 | 
						|
 | 
						|
  // RegUnit intervals are allowed dead phis.
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
 | 
						|
      S.start == VNI->def && S.end == VNI->def.getDeadSlot())
 | 
						|
    return;
 | 
						|
 | 
						|
  // The live segment is ending inside EndMBB
 | 
						|
  const MachineInstr *MI =
 | 
						|
    LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
 | 
						|
  if (!MI) {
 | 
						|
    report("Live segment doesn't end at a valid instruction", EndMBB);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(S);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The block slot must refer to a basic block boundary.
 | 
						|
  if (S.end.isBlock()) {
 | 
						|
    report("Live segment ends at B slot of an instruction", EndMBB);
 | 
						|
    report_context(LR, Reg, LaneMask);
 | 
						|
    report_context(S);
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.end.isDead()) {
 | 
						|
    // Segment ends on the dead slot.
 | 
						|
    // That means there must be a dead def.
 | 
						|
    if (!SlotIndex::isSameInstr(S.start, S.end)) {
 | 
						|
      report("Live segment ending at dead slot spans instructions", EndMBB);
 | 
						|
      report_context(LR, Reg, LaneMask);
 | 
						|
      report_context(S);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // A live segment can only end at an early-clobber slot if it is being
 | 
						|
  // redefined by an early-clobber def.
 | 
						|
  if (S.end.isEarlyClobber()) {
 | 
						|
    if (I+1 == LR.end() || (I+1)->start != S.end) {
 | 
						|
      report("Live segment ending at early clobber slot must be "
 | 
						|
             "redefined by an EC def in the same instruction", EndMBB);
 | 
						|
      report_context(LR, Reg, LaneMask);
 | 
						|
      report_context(S);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The following checks only apply to virtual registers. Physreg liveness
 | 
						|
  // is too weird to check.
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
    // A live segment can end with either a redefinition, a kill flag on a
 | 
						|
    // use, or a dead flag on a def.
 | 
						|
    bool hasRead = false;
 | 
						|
    bool hasSubRegDef = false;
 | 
						|
    bool hasDeadDef = false;
 | 
						|
    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
 | 
						|
      if (!MOI->isReg() || MOI->getReg() != Reg)
 | 
						|
        continue;
 | 
						|
      unsigned Sub = MOI->getSubReg();
 | 
						|
      LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
 | 
						|
                                 : LaneBitmask::getAll();
 | 
						|
      if (MOI->isDef()) {
 | 
						|
        if (Sub != 0) {
 | 
						|
          hasSubRegDef = true;
 | 
						|
          // An operand %0:sub0 reads %0:sub1..n. Invert the lane
 | 
						|
          // mask for subregister defs. Read-undef defs will be handled by
 | 
						|
          // readsReg below.
 | 
						|
          SLM = ~SLM;
 | 
						|
        }
 | 
						|
        if (MOI->isDead())
 | 
						|
          hasDeadDef = true;
 | 
						|
      }
 | 
						|
      if (LaneMask.any() && (LaneMask & SLM).none())
 | 
						|
        continue;
 | 
						|
      if (MOI->readsReg())
 | 
						|
        hasRead = true;
 | 
						|
    }
 | 
						|
    if (S.end.isDead()) {
 | 
						|
      // Make sure that the corresponding machine operand for a "dead" live
 | 
						|
      // range has the dead flag. We cannot perform this check for subregister
 | 
						|
      // liveranges as partially dead values are allowed.
 | 
						|
      if (LaneMask.none() && !hasDeadDef) {
 | 
						|
        report("Instruction ending live segment on dead slot has no dead flag",
 | 
						|
               MI);
 | 
						|
        report_context(LR, Reg, LaneMask);
 | 
						|
        report_context(S);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (!hasRead) {
 | 
						|
        // When tracking subregister liveness, the main range must start new
 | 
						|
        // values on partial register writes, even if there is no read.
 | 
						|
        if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
 | 
						|
            !hasSubRegDef) {
 | 
						|
          report("Instruction ending live segment doesn't read the register",
 | 
						|
                 MI);
 | 
						|
          report_context(LR, Reg, LaneMask);
 | 
						|
          report_context(S);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now check all the basic blocks in this live segment.
 | 
						|
  MachineFunction::const_iterator MFI = MBB->getIterator();
 | 
						|
  // Is this live segment the beginning of a non-PHIDef VN?
 | 
						|
  if (S.start == VNI->def && !VNI->isPHIDef()) {
 | 
						|
    // Not live-in to any blocks.
 | 
						|
    if (MBB == EndMBB)
 | 
						|
      return;
 | 
						|
    // Skip this block.
 | 
						|
    ++MFI;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<SlotIndex, 4> Undefs;
 | 
						|
  if (LaneMask.any()) {
 | 
						|
    LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
 | 
						|
    OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
 | 
						|
  }
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    assert(LiveInts->isLiveInToMBB(LR, &*MFI));
 | 
						|
    // We don't know how to track physregs into a landing pad.
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
        MFI->isEHPad()) {
 | 
						|
      if (&*MFI == EndMBB)
 | 
						|
        break;
 | 
						|
      ++MFI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Is VNI a PHI-def in the current block?
 | 
						|
    bool IsPHI = VNI->isPHIDef() &&
 | 
						|
      VNI->def == LiveInts->getMBBStartIdx(&*MFI);
 | 
						|
 | 
						|
    // Check that VNI is live-out of all predecessors.
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
 | 
						|
         PE = MFI->pred_end(); PI != PE; ++PI) {
 | 
						|
      SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
 | 
						|
      const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
 | 
						|
 | 
						|
      // All predecessors must have a live-out value. However for a phi
 | 
						|
      // instruction with subregister intervals
 | 
						|
      // only one of the subregisters (not necessarily the current one) needs to
 | 
						|
      // be defined.
 | 
						|
      if (!PVNI && (LaneMask.none() || !IsPHI)) {
 | 
						|
        if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
 | 
						|
          continue;
 | 
						|
        report("Register not marked live out of predecessor", *PI);
 | 
						|
        report_context(LR, Reg, LaneMask);
 | 
						|
        report_context(*VNI);
 | 
						|
        errs() << " live into " << printMBBReference(*MFI) << '@'
 | 
						|
               << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
 | 
						|
               << PEnd << '\n';
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Only PHI-defs can take different predecessor values.
 | 
						|
      if (!IsPHI && PVNI != VNI) {
 | 
						|
        report("Different value live out of predecessor", *PI);
 | 
						|
        report_context(LR, Reg, LaneMask);
 | 
						|
        errs() << "Valno #" << PVNI->id << " live out of "
 | 
						|
               << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
 | 
						|
               << VNI->id << " live into " << printMBBReference(*MFI) << '@'
 | 
						|
               << LiveInts->getMBBStartIdx(&*MFI) << '\n';
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (&*MFI == EndMBB)
 | 
						|
      break;
 | 
						|
    ++MFI;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
 | 
						|
                                      LaneBitmask LaneMask) {
 | 
						|
  for (const VNInfo *VNI : LR.valnos)
 | 
						|
    verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
 | 
						|
 | 
						|
  for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
 | 
						|
    verifyLiveRangeSegment(LR, I, Reg, LaneMask);
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
 | 
						|
  unsigned Reg = LI.reg;
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(Reg));
 | 
						|
  verifyLiveRange(LI, Reg);
 | 
						|
 | 
						|
  LaneBitmask Mask;
 | 
						|
  LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
 | 
						|
  for (const LiveInterval::SubRange &SR : LI.subranges()) {
 | 
						|
    if ((Mask & SR.LaneMask).any()) {
 | 
						|
      report("Lane masks of sub ranges overlap in live interval", MF);
 | 
						|
      report_context(LI);
 | 
						|
    }
 | 
						|
    if ((SR.LaneMask & ~MaxMask).any()) {
 | 
						|
      report("Subrange lanemask is invalid", MF);
 | 
						|
      report_context(LI);
 | 
						|
    }
 | 
						|
    if (SR.empty()) {
 | 
						|
      report("Subrange must not be empty", MF);
 | 
						|
      report_context(SR, LI.reg, SR.LaneMask);
 | 
						|
    }
 | 
						|
    Mask |= SR.LaneMask;
 | 
						|
    verifyLiveRange(SR, LI.reg, SR.LaneMask);
 | 
						|
    if (!LI.covers(SR)) {
 | 
						|
      report("A Subrange is not covered by the main range", MF);
 | 
						|
      report_context(LI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the LI only has one connected component.
 | 
						|
  ConnectedVNInfoEqClasses ConEQ(*LiveInts);
 | 
						|
  unsigned NumComp = ConEQ.Classify(LI);
 | 
						|
  if (NumComp > 1) {
 | 
						|
    report("Multiple connected components in live interval", MF);
 | 
						|
    report_context(LI);
 | 
						|
    for (unsigned comp = 0; comp != NumComp; ++comp) {
 | 
						|
      errs() << comp << ": valnos";
 | 
						|
      for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
 | 
						|
           E = LI.vni_end(); I!=E; ++I)
 | 
						|
        if (comp == ConEQ.getEqClass(*I))
 | 
						|
          errs() << ' ' << (*I)->id;
 | 
						|
      errs() << '\n';
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  // FrameSetup and FrameDestroy can have zero adjustment, so using a single
 | 
						|
  // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
 | 
						|
  // value is zero.
 | 
						|
  // We use a bool plus an integer to capture the stack state.
 | 
						|
  struct StackStateOfBB {
 | 
						|
    StackStateOfBB() = default;
 | 
						|
    StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
 | 
						|
      EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
 | 
						|
      ExitIsSetup(ExitSetup) {}
 | 
						|
 | 
						|
    // Can be negative, which means we are setting up a frame.
 | 
						|
    int EntryValue = 0;
 | 
						|
    int ExitValue = 0;
 | 
						|
    bool EntryIsSetup = false;
 | 
						|
    bool ExitIsSetup = false;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
 | 
						|
/// by a FrameDestroy <n>, stack adjustments are identical on all
 | 
						|
/// CFG edges to a merge point, and frame is destroyed at end of a return block.
 | 
						|
void MachineVerifier::verifyStackFrame() {
 | 
						|
  unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
 | 
						|
  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
 | 
						|
  if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<StackStateOfBB, 8> SPState;
 | 
						|
  SPState.resize(MF->getNumBlockIDs());
 | 
						|
  df_iterator_default_set<const MachineBasicBlock*> Reachable;
 | 
						|
 | 
						|
  // Visit the MBBs in DFS order.
 | 
						|
  for (df_ext_iterator<const MachineFunction *,
 | 
						|
                       df_iterator_default_set<const MachineBasicBlock *>>
 | 
						|
       DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
 | 
						|
       DFI != DFE; ++DFI) {
 | 
						|
    const MachineBasicBlock *MBB = *DFI;
 | 
						|
 | 
						|
    StackStateOfBB BBState;
 | 
						|
    // Check the exit state of the DFS stack predecessor.
 | 
						|
    if (DFI.getPathLength() >= 2) {
 | 
						|
      const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
 | 
						|
      assert(Reachable.count(StackPred) &&
 | 
						|
             "DFS stack predecessor is already visited.\n");
 | 
						|
      BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
 | 
						|
      BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
 | 
						|
      BBState.ExitValue = BBState.EntryValue;
 | 
						|
      BBState.ExitIsSetup = BBState.EntryIsSetup;
 | 
						|
    }
 | 
						|
 | 
						|
    // Update stack state by checking contents of MBB.
 | 
						|
    for (const auto &I : *MBB) {
 | 
						|
      if (I.getOpcode() == FrameSetupOpcode) {
 | 
						|
        if (BBState.ExitIsSetup)
 | 
						|
          report("FrameSetup is after another FrameSetup", &I);
 | 
						|
        BBState.ExitValue -= TII->getFrameTotalSize(I);
 | 
						|
        BBState.ExitIsSetup = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (I.getOpcode() == FrameDestroyOpcode) {
 | 
						|
        int Size = TII->getFrameTotalSize(I);
 | 
						|
        if (!BBState.ExitIsSetup)
 | 
						|
          report("FrameDestroy is not after a FrameSetup", &I);
 | 
						|
        int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
 | 
						|
                                               BBState.ExitValue;
 | 
						|
        if (BBState.ExitIsSetup && AbsSPAdj != Size) {
 | 
						|
          report("FrameDestroy <n> is after FrameSetup <m>", &I);
 | 
						|
          errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
 | 
						|
              << AbsSPAdj << ">.\n";
 | 
						|
        }
 | 
						|
        BBState.ExitValue += Size;
 | 
						|
        BBState.ExitIsSetup = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    SPState[MBB->getNumber()] = BBState;
 | 
						|
 | 
						|
    // Make sure the exit state of any predecessor is consistent with the entry
 | 
						|
    // state.
 | 
						|
    for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
 | 
						|
         E = MBB->pred_end(); I != E; ++I) {
 | 
						|
      if (Reachable.count(*I) &&
 | 
						|
          (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
 | 
						|
           SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
 | 
						|
        report("The exit stack state of a predecessor is inconsistent.", MBB);
 | 
						|
        errs() << "Predecessor " << printMBBReference(*(*I))
 | 
						|
               << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
 | 
						|
               << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
 | 
						|
               << printMBBReference(*MBB) << " has entry state ("
 | 
						|
               << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure the entry state of any successor is consistent with the exit
 | 
						|
    // state.
 | 
						|
    for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
 | 
						|
         E = MBB->succ_end(); I != E; ++I) {
 | 
						|
      if (Reachable.count(*I) &&
 | 
						|
          (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
 | 
						|
           SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
 | 
						|
        report("The entry stack state of a successor is inconsistent.", MBB);
 | 
						|
        errs() << "Successor " << printMBBReference(*(*I))
 | 
						|
               << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
 | 
						|
               << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
 | 
						|
               << printMBBReference(*MBB) << " has exit state ("
 | 
						|
               << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure a basic block with return ends with zero stack adjustment.
 | 
						|
    if (!MBB->empty() && MBB->back().isReturn()) {
 | 
						|
      if (BBState.ExitIsSetup)
 | 
						|
        report("A return block ends with a FrameSetup.", MBB);
 | 
						|
      if (BBState.ExitValue)
 | 
						|
        report("A return block ends with a nonzero stack adjustment.", MBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |