610 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			610 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass looks for safe point where the prologue and epilogue can be
 | 
						|
// inserted.
 | 
						|
// The safe point for the prologue (resp. epilogue) is called Save
 | 
						|
// (resp. Restore).
 | 
						|
// A point is safe for prologue (resp. epilogue) if and only if
 | 
						|
// it 1) dominates (resp. post-dominates) all the frame related operations and
 | 
						|
// between 2) two executions of the Save (resp. Restore) point there is an
 | 
						|
// execution of the Restore (resp. Save) point.
 | 
						|
//
 | 
						|
// For instance, the following points are safe:
 | 
						|
// for (int i = 0; i < 10; ++i) {
 | 
						|
//   Save
 | 
						|
//   ...
 | 
						|
//   Restore
 | 
						|
// }
 | 
						|
// Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
 | 
						|
// And the following points are not:
 | 
						|
// for (int i = 0; i < 10; ++i) {
 | 
						|
//   Save
 | 
						|
//   ...
 | 
						|
// }
 | 
						|
// for (int i = 0; i < 10; ++i) {
 | 
						|
//   ...
 | 
						|
//   Restore
 | 
						|
// }
 | 
						|
// Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
 | 
						|
//
 | 
						|
// This pass also ensures that the safe points are 3) cheaper than the regular
 | 
						|
// entry and exits blocks.
 | 
						|
//
 | 
						|
// Property #1 is ensured via the use of MachineDominatorTree and
 | 
						|
// MachinePostDominatorTree.
 | 
						|
// Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
 | 
						|
// points must be in the same loop.
 | 
						|
// Property #3 is ensured via the MachineBlockFrequencyInfo.
 | 
						|
//
 | 
						|
// If this pass found points matching all these properties, then
 | 
						|
// MachineFrameInfo is updated with this information.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/CodeGen/MachinePostDominators.h"
 | 
						|
#include "llvm/CodeGen/RegisterClassInfo.h"
 | 
						|
#include "llvm/CodeGen/RegisterScavenging.h"
 | 
						|
#include "llvm/CodeGen/TargetFrameLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <memory>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "shrink-wrap"
 | 
						|
 | 
						|
STATISTIC(NumFunc, "Number of functions");
 | 
						|
STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
 | 
						|
STATISTIC(NumCandidatesDropped,
 | 
						|
          "Number of shrink-wrapping candidates dropped because of frequency");
 | 
						|
 | 
						|
static cl::opt<cl::boolOrDefault>
 | 
						|
EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
 | 
						|
                    cl::desc("enable the shrink-wrapping pass"));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Class to determine where the safe point to insert the
 | 
						|
/// prologue and epilogue are.
 | 
						|
/// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
 | 
						|
/// shrink-wrapping term for prologue/epilogue placement, this pass
 | 
						|
/// does not rely on expensive data-flow analysis. Instead we use the
 | 
						|
/// dominance properties and loop information to decide which point
 | 
						|
/// are safe for such insertion.
 | 
						|
class ShrinkWrap : public MachineFunctionPass {
 | 
						|
  /// Hold callee-saved information.
 | 
						|
  RegisterClassInfo RCI;
 | 
						|
  MachineDominatorTree *MDT;
 | 
						|
  MachinePostDominatorTree *MPDT;
 | 
						|
 | 
						|
  /// Current safe point found for the prologue.
 | 
						|
  /// The prologue will be inserted before the first instruction
 | 
						|
  /// in this basic block.
 | 
						|
  MachineBasicBlock *Save;
 | 
						|
 | 
						|
  /// Current safe point found for the epilogue.
 | 
						|
  /// The epilogue will be inserted before the first terminator instruction
 | 
						|
  /// in this basic block.
 | 
						|
  MachineBasicBlock *Restore;
 | 
						|
 | 
						|
  /// Hold the information of the basic block frequency.
 | 
						|
  /// Use to check the profitability of the new points.
 | 
						|
  MachineBlockFrequencyInfo *MBFI;
 | 
						|
 | 
						|
  /// Hold the loop information. Used to determine if Save and Restore
 | 
						|
  /// are in the same loop.
 | 
						|
  MachineLoopInfo *MLI;
 | 
						|
 | 
						|
  // Emit remarks.
 | 
						|
  MachineOptimizationRemarkEmitter *ORE = nullptr;
 | 
						|
 | 
						|
  /// Frequency of the Entry block.
 | 
						|
  uint64_t EntryFreq;
 | 
						|
 | 
						|
  /// Current opcode for frame setup.
 | 
						|
  unsigned FrameSetupOpcode;
 | 
						|
 | 
						|
  /// Current opcode for frame destroy.
 | 
						|
  unsigned FrameDestroyOpcode;
 | 
						|
 | 
						|
  /// Stack pointer register, used by llvm.{savestack,restorestack}
 | 
						|
  unsigned SP;
 | 
						|
 | 
						|
  /// Entry block.
 | 
						|
  const MachineBasicBlock *Entry;
 | 
						|
 | 
						|
  using SetOfRegs = SmallSetVector<unsigned, 16>;
 | 
						|
 | 
						|
  /// Registers that need to be saved for the current function.
 | 
						|
  mutable SetOfRegs CurrentCSRs;
 | 
						|
 | 
						|
  /// Current MachineFunction.
 | 
						|
  MachineFunction *MachineFunc;
 | 
						|
 | 
						|
  /// Check if \p MI uses or defines a callee-saved register or
 | 
						|
  /// a frame index. If this is the case, this means \p MI must happen
 | 
						|
  /// after Save and before Restore.
 | 
						|
  bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
 | 
						|
 | 
						|
  const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
 | 
						|
    if (CurrentCSRs.empty()) {
 | 
						|
      BitVector SavedRegs;
 | 
						|
      const TargetFrameLowering *TFI =
 | 
						|
          MachineFunc->getSubtarget().getFrameLowering();
 | 
						|
 | 
						|
      TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
 | 
						|
 | 
						|
      for (int Reg = SavedRegs.find_first(); Reg != -1;
 | 
						|
           Reg = SavedRegs.find_next(Reg))
 | 
						|
        CurrentCSRs.insert((unsigned)Reg);
 | 
						|
    }
 | 
						|
    return CurrentCSRs;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Update the Save and Restore points such that \p MBB is in
 | 
						|
  /// the region that is dominated by Save and post-dominated by Restore
 | 
						|
  /// and Save and Restore still match the safe point definition.
 | 
						|
  /// Such point may not exist and Save and/or Restore may be null after
 | 
						|
  /// this call.
 | 
						|
  void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
 | 
						|
 | 
						|
  /// Initialize the pass for \p MF.
 | 
						|
  void init(MachineFunction &MF) {
 | 
						|
    RCI.runOnMachineFunction(MF);
 | 
						|
    MDT = &getAnalysis<MachineDominatorTree>();
 | 
						|
    MPDT = &getAnalysis<MachinePostDominatorTree>();
 | 
						|
    Save = nullptr;
 | 
						|
    Restore = nullptr;
 | 
						|
    MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
 | 
						|
    MLI = &getAnalysis<MachineLoopInfo>();
 | 
						|
    ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
 | 
						|
    EntryFreq = MBFI->getEntryFreq();
 | 
						|
    const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
 | 
						|
    const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
 | 
						|
    FrameSetupOpcode = TII.getCallFrameSetupOpcode();
 | 
						|
    FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
 | 
						|
    SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
 | 
						|
    Entry = &MF.front();
 | 
						|
    CurrentCSRs.clear();
 | 
						|
    MachineFunc = &MF;
 | 
						|
 | 
						|
    ++NumFunc;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Check whether or not Save and Restore points are still interesting for
 | 
						|
  /// shrink-wrapping.
 | 
						|
  bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
 | 
						|
 | 
						|
  /// Check if shrink wrapping is enabled for this target and function.
 | 
						|
  static bool isShrinkWrapEnabled(const MachineFunction &MF);
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  ShrinkWrap() : MachineFunctionPass(ID) {
 | 
						|
    initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesAll();
 | 
						|
    AU.addRequired<MachineBlockFrequencyInfo>();
 | 
						|
    AU.addRequired<MachineDominatorTree>();
 | 
						|
    AU.addRequired<MachinePostDominatorTree>();
 | 
						|
    AU.addRequired<MachineLoopInfo>();
 | 
						|
    AU.addRequired<MachineOptimizationRemarkEmitterPass>();
 | 
						|
    MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
    return MachineFunctionProperties().set(
 | 
						|
      MachineFunctionProperties::Property::NoVRegs);
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
 | 
						|
 | 
						|
  /// Perform the shrink-wrapping analysis and update
 | 
						|
  /// the MachineFrameInfo attached to \p MF with the results.
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char ShrinkWrap::ID = 0;
 | 
						|
 | 
						|
char &llvm::ShrinkWrapID = ShrinkWrap::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
 | 
						|
INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
 | 
						|
 | 
						|
bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
 | 
						|
                                 RegScavenger *RS) const {
 | 
						|
  if (MI.getOpcode() == FrameSetupOpcode ||
 | 
						|
      MI.getOpcode() == FrameDestroyOpcode) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    bool UseOrDefCSR = false;
 | 
						|
    if (MO.isReg()) {
 | 
						|
      // Ignore instructions like DBG_VALUE which don't read/def the register.
 | 
						|
      if (!MO.isDef() && !MO.readsReg())
 | 
						|
        continue;
 | 
						|
      unsigned PhysReg = MO.getReg();
 | 
						|
      if (!PhysReg)
 | 
						|
        continue;
 | 
						|
      assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
 | 
						|
             "Unallocated register?!");
 | 
						|
      // The stack pointer is not normally described as a callee-saved register
 | 
						|
      // in calling convention definitions, so we need to watch for it
 | 
						|
      // separately. An SP mentioned by a call instruction, we can ignore,
 | 
						|
      // though, as it's harmless and we do not want to effectively disable tail
 | 
						|
      // calls by forcing the restore point to post-dominate them.
 | 
						|
      UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
 | 
						|
                    RCI.getLastCalleeSavedAlias(PhysReg);
 | 
						|
    } else if (MO.isRegMask()) {
 | 
						|
      // Check if this regmask clobbers any of the CSRs.
 | 
						|
      for (unsigned Reg : getCurrentCSRs(RS)) {
 | 
						|
        if (MO.clobbersPhysReg(Reg)) {
 | 
						|
          UseOrDefCSR = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Skip FrameIndex operands in DBG_VALUE instructions.
 | 
						|
    if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
 | 
						|
                        << MO.isFI() << "): " << MI << '\n');
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function to find the immediate (post) dominator.
 | 
						|
template <typename ListOfBBs, typename DominanceAnalysis>
 | 
						|
static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
 | 
						|
                                   DominanceAnalysis &Dom) {
 | 
						|
  MachineBasicBlock *IDom = &Block;
 | 
						|
  for (MachineBasicBlock *BB : BBs) {
 | 
						|
    IDom = Dom.findNearestCommonDominator(IDom, BB);
 | 
						|
    if (!IDom)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  if (IDom == &Block)
 | 
						|
    return nullptr;
 | 
						|
  return IDom;
 | 
						|
}
 | 
						|
 | 
						|
void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
 | 
						|
                                         RegScavenger *RS) {
 | 
						|
  // Get rid of the easy cases first.
 | 
						|
  if (!Save)
 | 
						|
    Save = &MBB;
 | 
						|
  else
 | 
						|
    Save = MDT->findNearestCommonDominator(Save, &MBB);
 | 
						|
 | 
						|
  if (!Save) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Restore)
 | 
						|
    Restore = &MBB;
 | 
						|
  else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
 | 
						|
                                // means the block never returns. If that's the
 | 
						|
                                // case, we don't want to call
 | 
						|
                                // `findNearestCommonDominator`, which will
 | 
						|
                                // return `Restore`.
 | 
						|
    Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
 | 
						|
  else
 | 
						|
    Restore = nullptr; // Abort, we can't find a restore point in this case.
 | 
						|
 | 
						|
  // Make sure we would be able to insert the restore code before the
 | 
						|
  // terminator.
 | 
						|
  if (Restore == &MBB) {
 | 
						|
    for (const MachineInstr &Terminator : MBB.terminators()) {
 | 
						|
      if (!useOrDefCSROrFI(Terminator, RS))
 | 
						|
        continue;
 | 
						|
      // One of the terminator needs to happen before the restore point.
 | 
						|
      if (MBB.succ_empty()) {
 | 
						|
        Restore = nullptr; // Abort, we can't find a restore point in this case.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Look for a restore point that post-dominates all the successors.
 | 
						|
      // The immediate post-dominator is what we are looking for.
 | 
						|
      Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Restore) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "Restore point needs to be spanned on several blocks\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure Save and Restore are suitable for shrink-wrapping:
 | 
						|
  // 1. all path from Save needs to lead to Restore before exiting.
 | 
						|
  // 2. all path to Restore needs to go through Save from Entry.
 | 
						|
  // We achieve that by making sure that:
 | 
						|
  // A. Save dominates Restore.
 | 
						|
  // B. Restore post-dominates Save.
 | 
						|
  // C. Save and Restore are in the same loop.
 | 
						|
  bool SaveDominatesRestore = false;
 | 
						|
  bool RestorePostDominatesSave = false;
 | 
						|
  while (Save && Restore &&
 | 
						|
         (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
 | 
						|
          !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
 | 
						|
          // Post-dominance is not enough in loops to ensure that all uses/defs
 | 
						|
          // are after the prologue and before the epilogue at runtime.
 | 
						|
          // E.g.,
 | 
						|
          // while(1) {
 | 
						|
          //  Save
 | 
						|
          //  Restore
 | 
						|
          //   if (...)
 | 
						|
          //     break;
 | 
						|
          //  use/def CSRs
 | 
						|
          // }
 | 
						|
          // All the uses/defs of CSRs are dominated by Save and post-dominated
 | 
						|
          // by Restore. However, the CSRs uses are still reachable after
 | 
						|
          // Restore and before Save are executed.
 | 
						|
          //
 | 
						|
          // For now, just push the restore/save points outside of loops.
 | 
						|
          // FIXME: Refine the criteria to still find interesting cases
 | 
						|
          // for loops.
 | 
						|
          MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
 | 
						|
    // Fix (A).
 | 
						|
    if (!SaveDominatesRestore) {
 | 
						|
      Save = MDT->findNearestCommonDominator(Save, Restore);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Fix (B).
 | 
						|
    if (!RestorePostDominatesSave)
 | 
						|
      Restore = MPDT->findNearestCommonDominator(Restore, Save);
 | 
						|
 | 
						|
    // Fix (C).
 | 
						|
    if (Save && Restore &&
 | 
						|
        (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
 | 
						|
      if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
 | 
						|
        // Push Save outside of this loop if immediate dominator is different
 | 
						|
        // from save block. If immediate dominator is not different, bail out.
 | 
						|
        Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
 | 
						|
        if (!Save)
 | 
						|
          break;
 | 
						|
      } else {
 | 
						|
        // If the loop does not exit, there is no point in looking
 | 
						|
        // for a post-dominator outside the loop.
 | 
						|
        SmallVector<MachineBasicBlock*, 4> ExitBlocks;
 | 
						|
        MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
 | 
						|
        // Push Restore outside of this loop.
 | 
						|
        // Look for the immediate post-dominator of the loop exits.
 | 
						|
        MachineBasicBlock *IPdom = Restore;
 | 
						|
        for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
 | 
						|
          IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
 | 
						|
          if (!IPdom)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        // If the immediate post-dominator is not in a less nested loop,
 | 
						|
        // then we are stuck in a program with an infinite loop.
 | 
						|
        // In that case, we will not find a safe point, hence, bail out.
 | 
						|
        if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
 | 
						|
          Restore = IPdom;
 | 
						|
        else {
 | 
						|
          Restore = nullptr;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
 | 
						|
                              StringRef RemarkName, StringRef RemarkMessage,
 | 
						|
                              const DiagnosticLocation &Loc,
 | 
						|
                              const MachineBasicBlock *MBB) {
 | 
						|
  ORE->emit([&]() {
 | 
						|
    return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
 | 
						|
           << RemarkMessage;
 | 
						|
  });
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
 | 
						|
 | 
						|
  init(MF);
 | 
						|
 | 
						|
  ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
 | 
						|
  if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
 | 
						|
    // If MF is irreducible, a block may be in a loop without
 | 
						|
    // MachineLoopInfo reporting it. I.e., we may use the
 | 
						|
    // post-dominance property in loops, which lead to incorrect
 | 
						|
    // results. Moreover, we may miss that the prologue and
 | 
						|
    // epilogue are not in the same loop, leading to unbalanced
 | 
						|
    // construction/deconstruction of the stack frame.
 | 
						|
    return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
 | 
						|
                             "Irreducible CFGs are not supported yet.",
 | 
						|
                             MF.getFunction().getSubprogram(), &MF.front());
 | 
						|
  }
 | 
						|
 | 
						|
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  std::unique_ptr<RegScavenger> RS(
 | 
						|
      TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
 | 
						|
 | 
						|
  for (MachineBasicBlock &MBB : MF) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
 | 
						|
                      << MBB.getName() << '\n');
 | 
						|
 | 
						|
    if (MBB.isEHFuncletEntry())
 | 
						|
      return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
 | 
						|
                               "EH Funclets are not supported yet.",
 | 
						|
                               MBB.front().getDebugLoc(), &MBB);
 | 
						|
 | 
						|
    if (MBB.isEHPad()) {
 | 
						|
      // Push the prologue and epilogue outside of
 | 
						|
      // the region that may throw by making sure
 | 
						|
      // that all the landing pads are at least at the
 | 
						|
      // boundary of the save and restore points.
 | 
						|
      // The problem with exceptions is that the throw
 | 
						|
      // is not properly modeled and in particular, a
 | 
						|
      // basic block can jump out from the middle.
 | 
						|
      updateSaveRestorePoints(MBB, RS.get());
 | 
						|
      if (!ArePointsInteresting()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (const MachineInstr &MI : MBB) {
 | 
						|
      if (!useOrDefCSROrFI(MI, RS.get()))
 | 
						|
        continue;
 | 
						|
      // Save (resp. restore) point must dominate (resp. post dominate)
 | 
						|
      // MI. Look for the proper basic block for those.
 | 
						|
      updateSaveRestorePoints(MBB, RS.get());
 | 
						|
      // If we are at a point where we cannot improve the placement of
 | 
						|
      // save/restore instructions, just give up.
 | 
						|
      if (!ArePointsInteresting()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // No need to look for other instructions, this basic block
 | 
						|
      // will already be part of the handled region.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!ArePointsInteresting()) {
 | 
						|
    // If the points are not interesting at this point, then they must be null
 | 
						|
    // because it means we did not encounter any frame/CSR related code.
 | 
						|
    // Otherwise, we would have returned from the previous loop.
 | 
						|
    assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
 | 
						|
    LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
 | 
						|
                    << '\n');
 | 
						|
 | 
						|
  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
 | 
						|
  do {
 | 
						|
    LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
 | 
						|
                      << Save->getNumber() << ' ' << Save->getName() << ' '
 | 
						|
                      << MBFI->getBlockFreq(Save).getFrequency()
 | 
						|
                      << "\nRestore: " << Restore->getNumber() << ' '
 | 
						|
                      << Restore->getName() << ' '
 | 
						|
                      << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
 | 
						|
 | 
						|
    bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
 | 
						|
    if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
 | 
						|
         EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
 | 
						|
        ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
 | 
						|
         TFI->canUseAsEpilogue(*Restore)))
 | 
						|
      break;
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "New points are too expensive or invalid for the target\n");
 | 
						|
    MachineBasicBlock *NewBB;
 | 
						|
    if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
 | 
						|
      Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
 | 
						|
      if (!Save)
 | 
						|
        break;
 | 
						|
      NewBB = Save;
 | 
						|
    } else {
 | 
						|
      // Restore is expensive.
 | 
						|
      Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
 | 
						|
      if (!Restore)
 | 
						|
        break;
 | 
						|
      NewBB = Restore;
 | 
						|
    }
 | 
						|
    updateSaveRestorePoints(*NewBB, RS.get());
 | 
						|
  } while (Save && Restore);
 | 
						|
 | 
						|
  if (!ArePointsInteresting()) {
 | 
						|
    ++NumCandidatesDropped;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
 | 
						|
                    << Save->getNumber() << ' ' << Save->getName()
 | 
						|
                    << "\nRestore: " << Restore->getNumber() << ' '
 | 
						|
                    << Restore->getName() << '\n');
 | 
						|
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  MFI.setSavePoint(Save);
 | 
						|
  MFI.setRestorePoint(Restore);
 | 
						|
  ++NumCandidates;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
 | 
						|
  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
 | 
						|
 | 
						|
  switch (EnableShrinkWrapOpt) {
 | 
						|
  case cl::BOU_UNSET:
 | 
						|
    return TFI->enableShrinkWrapping(MF) &&
 | 
						|
           // Windows with CFI has some limitations that make it impossible
 | 
						|
           // to use shrink-wrapping.
 | 
						|
           !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
 | 
						|
           // Sanitizers look at the value of the stack at the location
 | 
						|
           // of the crash. Since a crash can happen anywhere, the
 | 
						|
           // frame must be lowered before anything else happen for the
 | 
						|
           // sanitizers to be able to get a correct stack frame.
 | 
						|
           !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
 | 
						|
             MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
 | 
						|
             MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
 | 
						|
             MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
 | 
						|
  // If EnableShrinkWrap is set, it takes precedence on whatever the
 | 
						|
  // target sets. The rational is that we assume we want to test
 | 
						|
  // something related to shrink-wrapping.
 | 
						|
  case cl::BOU_TRUE:
 | 
						|
    return true;
 | 
						|
  case cl::BOU_FALSE:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid shrink-wrapping state");
 | 
						|
}
 |