4526 lines
		
	
	
		
			143 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4526 lines
		
	
	
		
			143 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a class to represent arbitrary precision floating
 | 
						|
// point values and provide a variety of arithmetic operations on them.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/APSInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cstring>
 | 
						|
#include <limits.h>
 | 
						|
 | 
						|
#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
 | 
						|
  do {                                                                         \
 | 
						|
    if (usesLayout<IEEEFloat>(getSemantics()))                                 \
 | 
						|
      return U.IEEE.METHOD_CALL;                                               \
 | 
						|
    if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
 | 
						|
      return U.Double.METHOD_CALL;                                             \
 | 
						|
    llvm_unreachable("Unexpected semantics");                                  \
 | 
						|
  } while (false)
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// A macro used to combine two fcCategory enums into one key which can be used
 | 
						|
/// in a switch statement to classify how the interaction of two APFloat's
 | 
						|
/// categories affects an operation.
 | 
						|
///
 | 
						|
/// TODO: If clang source code is ever allowed to use constexpr in its own
 | 
						|
/// codebase, change this into a static inline function.
 | 
						|
#define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
 | 
						|
 | 
						|
/* Assumed in hexadecimal significand parsing, and conversion to
 | 
						|
   hexadecimal strings.  */
 | 
						|
static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!");
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  /* Represents floating point arithmetic semantics.  */
 | 
						|
  struct fltSemantics {
 | 
						|
    /* The largest E such that 2^E is representable; this matches the
 | 
						|
       definition of IEEE 754.  */
 | 
						|
    APFloatBase::ExponentType maxExponent;
 | 
						|
 | 
						|
    /* The smallest E such that 2^E is a normalized number; this
 | 
						|
       matches the definition of IEEE 754.  */
 | 
						|
    APFloatBase::ExponentType minExponent;
 | 
						|
 | 
						|
    /* Number of bits in the significand.  This includes the integer
 | 
						|
       bit.  */
 | 
						|
    unsigned int precision;
 | 
						|
 | 
						|
    /* Number of bits actually used in the semantics. */
 | 
						|
    unsigned int sizeInBits;
 | 
						|
  };
 | 
						|
 | 
						|
  static const fltSemantics semIEEEhalf = {15, -14, 11, 16};
 | 
						|
  static const fltSemantics semIEEEsingle = {127, -126, 24, 32};
 | 
						|
  static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64};
 | 
						|
  static const fltSemantics semIEEEquad = {16383, -16382, 113, 128};
 | 
						|
  static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80};
 | 
						|
  static const fltSemantics semBogus = {0, 0, 0, 0};
 | 
						|
 | 
						|
  /* The IBM double-double semantics. Such a number consists of a pair of IEEE
 | 
						|
     64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal,
 | 
						|
     (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo.
 | 
						|
     Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent
 | 
						|
     to each other, and two 11-bit exponents.
 | 
						|
 | 
						|
     Note: we need to make the value different from semBogus as otherwise
 | 
						|
     an unsafe optimization may collapse both values to a single address,
 | 
						|
     and we heavily rely on them having distinct addresses.             */
 | 
						|
  static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 0};
 | 
						|
 | 
						|
  /* These are legacy semantics for the fallback, inaccrurate implementation of
 | 
						|
     IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the
 | 
						|
     operation. It's equivalent to having an IEEE number with consecutive 106
 | 
						|
     bits of mantissa and 11 bits of exponent.
 | 
						|
 | 
						|
     It's not equivalent to IBM double-double. For example, a legit IBM
 | 
						|
     double-double, 1 + epsilon:
 | 
						|
 | 
						|
       1 + epsilon = 1 + (1 >> 1076)
 | 
						|
 | 
						|
     is not representable by a consecutive 106 bits of mantissa.
 | 
						|
 | 
						|
     Currently, these semantics are used in the following way:
 | 
						|
 | 
						|
       semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) ->
 | 
						|
       (64-bit APInt, 64-bit APInt) -> (128-bit APInt) ->
 | 
						|
       semPPCDoubleDoubleLegacy -> IEEE operations
 | 
						|
 | 
						|
     We use bitcastToAPInt() to get the bit representation (in APInt) of the
 | 
						|
     underlying IEEEdouble, then use the APInt constructor to construct the
 | 
						|
     legacy IEEE float.
 | 
						|
 | 
						|
     TODO: Implement all operations in semPPCDoubleDouble, and delete these
 | 
						|
     semantics.  */
 | 
						|
  static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53,
 | 
						|
                                                        53 + 53, 128};
 | 
						|
 | 
						|
  const fltSemantics &APFloatBase::IEEEhalf() {
 | 
						|
    return semIEEEhalf;
 | 
						|
  }
 | 
						|
  const fltSemantics &APFloatBase::IEEEsingle() {
 | 
						|
    return semIEEEsingle;
 | 
						|
  }
 | 
						|
  const fltSemantics &APFloatBase::IEEEdouble() {
 | 
						|
    return semIEEEdouble;
 | 
						|
  }
 | 
						|
  const fltSemantics &APFloatBase::IEEEquad() {
 | 
						|
    return semIEEEquad;
 | 
						|
  }
 | 
						|
  const fltSemantics &APFloatBase::x87DoubleExtended() {
 | 
						|
    return semX87DoubleExtended;
 | 
						|
  }
 | 
						|
  const fltSemantics &APFloatBase::Bogus() {
 | 
						|
    return semBogus;
 | 
						|
  }
 | 
						|
  const fltSemantics &APFloatBase::PPCDoubleDouble() {
 | 
						|
    return semPPCDoubleDouble;
 | 
						|
  }
 | 
						|
 | 
						|
  /* A tight upper bound on number of parts required to hold the value
 | 
						|
     pow(5, power) is
 | 
						|
 | 
						|
       power * 815 / (351 * integerPartWidth) + 1
 | 
						|
 | 
						|
     However, whilst the result may require only this many parts,
 | 
						|
     because we are multiplying two values to get it, the
 | 
						|
     multiplication may require an extra part with the excess part
 | 
						|
     being zero (consider the trivial case of 1 * 1, tcFullMultiply
 | 
						|
     requires two parts to hold the single-part result).  So we add an
 | 
						|
     extra one to guarantee enough space whilst multiplying.  */
 | 
						|
  const unsigned int maxExponent = 16383;
 | 
						|
  const unsigned int maxPrecision = 113;
 | 
						|
  const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
 | 
						|
  const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth));
 | 
						|
 | 
						|
  unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) {
 | 
						|
    return semantics.precision;
 | 
						|
  }
 | 
						|
  APFloatBase::ExponentType
 | 
						|
  APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) {
 | 
						|
    return semantics.maxExponent;
 | 
						|
  }
 | 
						|
  APFloatBase::ExponentType
 | 
						|
  APFloatBase::semanticsMinExponent(const fltSemantics &semantics) {
 | 
						|
    return semantics.minExponent;
 | 
						|
  }
 | 
						|
  unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) {
 | 
						|
    return semantics.sizeInBits;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) {
 | 
						|
    return Sem.sizeInBits;
 | 
						|
}
 | 
						|
 | 
						|
/* A bunch of private, handy routines.  */
 | 
						|
 | 
						|
static inline unsigned int
 | 
						|
partCountForBits(unsigned int bits)
 | 
						|
{
 | 
						|
  return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns 0U-9U.  Return values >= 10U are not digits.  */
 | 
						|
static inline unsigned int
 | 
						|
decDigitValue(unsigned int c)
 | 
						|
{
 | 
						|
  return c - '0';
 | 
						|
}
 | 
						|
 | 
						|
/* Return the value of a decimal exponent of the form
 | 
						|
   [+-]ddddddd.
 | 
						|
 | 
						|
   If the exponent overflows, returns a large exponent with the
 | 
						|
   appropriate sign.  */
 | 
						|
static int
 | 
						|
readExponent(StringRef::iterator begin, StringRef::iterator end)
 | 
						|
{
 | 
						|
  bool isNegative;
 | 
						|
  unsigned int absExponent;
 | 
						|
  const unsigned int overlargeExponent = 24000;  /* FIXME.  */
 | 
						|
  StringRef::iterator p = begin;
 | 
						|
 | 
						|
  // Treat no exponent as 0 to match binutils
 | 
						|
  if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  isNegative = (*p == '-');
 | 
						|
  if (*p == '-' || *p == '+') {
 | 
						|
    p++;
 | 
						|
    assert(p != end && "Exponent has no digits");
 | 
						|
  }
 | 
						|
 | 
						|
  absExponent = decDigitValue(*p++);
 | 
						|
  assert(absExponent < 10U && "Invalid character in exponent");
 | 
						|
 | 
						|
  for (; p != end; ++p) {
 | 
						|
    unsigned int value;
 | 
						|
 | 
						|
    value = decDigitValue(*p);
 | 
						|
    assert(value < 10U && "Invalid character in exponent");
 | 
						|
 | 
						|
    value += absExponent * 10;
 | 
						|
    if (absExponent >= overlargeExponent) {
 | 
						|
      absExponent = overlargeExponent;
 | 
						|
      p = end;  /* outwit assert below */
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    absExponent = value;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(p == end && "Invalid exponent in exponent");
 | 
						|
 | 
						|
  if (isNegative)
 | 
						|
    return -(int) absExponent;
 | 
						|
  else
 | 
						|
    return (int) absExponent;
 | 
						|
}
 | 
						|
 | 
						|
/* This is ugly and needs cleaning up, but I don't immediately see
 | 
						|
   how whilst remaining safe.  */
 | 
						|
static int
 | 
						|
totalExponent(StringRef::iterator p, StringRef::iterator end,
 | 
						|
              int exponentAdjustment)
 | 
						|
{
 | 
						|
  int unsignedExponent;
 | 
						|
  bool negative, overflow;
 | 
						|
  int exponent = 0;
 | 
						|
 | 
						|
  assert(p != end && "Exponent has no digits");
 | 
						|
 | 
						|
  negative = *p == '-';
 | 
						|
  if (*p == '-' || *p == '+') {
 | 
						|
    p++;
 | 
						|
    assert(p != end && "Exponent has no digits");
 | 
						|
  }
 | 
						|
 | 
						|
  unsignedExponent = 0;
 | 
						|
  overflow = false;
 | 
						|
  for (; p != end; ++p) {
 | 
						|
    unsigned int value;
 | 
						|
 | 
						|
    value = decDigitValue(*p);
 | 
						|
    assert(value < 10U && "Invalid character in exponent");
 | 
						|
 | 
						|
    unsignedExponent = unsignedExponent * 10 + value;
 | 
						|
    if (unsignedExponent > 32767) {
 | 
						|
      overflow = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
 | 
						|
    overflow = true;
 | 
						|
 | 
						|
  if (!overflow) {
 | 
						|
    exponent = unsignedExponent;
 | 
						|
    if (negative)
 | 
						|
      exponent = -exponent;
 | 
						|
    exponent += exponentAdjustment;
 | 
						|
    if (exponent > 32767 || exponent < -32768)
 | 
						|
      overflow = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (overflow)
 | 
						|
    exponent = negative ? -32768: 32767;
 | 
						|
 | 
						|
  return exponent;
 | 
						|
}
 | 
						|
 | 
						|
static StringRef::iterator
 | 
						|
skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
 | 
						|
                           StringRef::iterator *dot)
 | 
						|
{
 | 
						|
  StringRef::iterator p = begin;
 | 
						|
  *dot = end;
 | 
						|
  while (p != end && *p == '0')
 | 
						|
    p++;
 | 
						|
 | 
						|
  if (p != end && *p == '.') {
 | 
						|
    *dot = p++;
 | 
						|
 | 
						|
    assert(end - begin != 1 && "Significand has no digits");
 | 
						|
 | 
						|
    while (p != end && *p == '0')
 | 
						|
      p++;
 | 
						|
  }
 | 
						|
 | 
						|
  return p;
 | 
						|
}
 | 
						|
 | 
						|
/* Given a normal decimal floating point number of the form
 | 
						|
 | 
						|
     dddd.dddd[eE][+-]ddd
 | 
						|
 | 
						|
   where the decimal point and exponent are optional, fill out the
 | 
						|
   structure D.  Exponent is appropriate if the significand is
 | 
						|
   treated as an integer, and normalizedExponent if the significand
 | 
						|
   is taken to have the decimal point after a single leading
 | 
						|
   non-zero digit.
 | 
						|
 | 
						|
   If the value is zero, V->firstSigDigit points to a non-digit, and
 | 
						|
   the return exponent is zero.
 | 
						|
*/
 | 
						|
struct decimalInfo {
 | 
						|
  const char *firstSigDigit;
 | 
						|
  const char *lastSigDigit;
 | 
						|
  int exponent;
 | 
						|
  int normalizedExponent;
 | 
						|
};
 | 
						|
 | 
						|
static void
 | 
						|
interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
 | 
						|
                 decimalInfo *D)
 | 
						|
{
 | 
						|
  StringRef::iterator dot = end;
 | 
						|
  StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
 | 
						|
 | 
						|
  D->firstSigDigit = p;
 | 
						|
  D->exponent = 0;
 | 
						|
  D->normalizedExponent = 0;
 | 
						|
 | 
						|
  for (; p != end; ++p) {
 | 
						|
    if (*p == '.') {
 | 
						|
      assert(dot == end && "String contains multiple dots");
 | 
						|
      dot = p++;
 | 
						|
      if (p == end)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (decDigitValue(*p) >= 10U)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (p != end) {
 | 
						|
    assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
 | 
						|
    assert(p != begin && "Significand has no digits");
 | 
						|
    assert((dot == end || p - begin != 1) && "Significand has no digits");
 | 
						|
 | 
						|
    /* p points to the first non-digit in the string */
 | 
						|
    D->exponent = readExponent(p + 1, end);
 | 
						|
 | 
						|
    /* Implied decimal point?  */
 | 
						|
    if (dot == end)
 | 
						|
      dot = p;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If number is all zeroes accept any exponent.  */
 | 
						|
  if (p != D->firstSigDigit) {
 | 
						|
    /* Drop insignificant trailing zeroes.  */
 | 
						|
    if (p != begin) {
 | 
						|
      do
 | 
						|
        do
 | 
						|
          p--;
 | 
						|
        while (p != begin && *p == '0');
 | 
						|
      while (p != begin && *p == '.');
 | 
						|
    }
 | 
						|
 | 
						|
    /* Adjust the exponents for any decimal point.  */
 | 
						|
    D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
 | 
						|
    D->normalizedExponent = (D->exponent +
 | 
						|
              static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
 | 
						|
                                      - (dot > D->firstSigDigit && dot < p)));
 | 
						|
  }
 | 
						|
 | 
						|
  D->lastSigDigit = p;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the trailing fraction of a hexadecimal number.
 | 
						|
   DIGITVALUE is the first hex digit of the fraction, P points to
 | 
						|
   the next digit.  */
 | 
						|
static lostFraction
 | 
						|
trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
 | 
						|
                            unsigned int digitValue)
 | 
						|
{
 | 
						|
  unsigned int hexDigit;
 | 
						|
 | 
						|
  /* If the first trailing digit isn't 0 or 8 we can work out the
 | 
						|
     fraction immediately.  */
 | 
						|
  if (digitValue > 8)
 | 
						|
    return lfMoreThanHalf;
 | 
						|
  else if (digitValue < 8 && digitValue > 0)
 | 
						|
    return lfLessThanHalf;
 | 
						|
 | 
						|
  // Otherwise we need to find the first non-zero digit.
 | 
						|
  while (p != end && (*p == '0' || *p == '.'))
 | 
						|
    p++;
 | 
						|
 | 
						|
  assert(p != end && "Invalid trailing hexadecimal fraction!");
 | 
						|
 | 
						|
  hexDigit = hexDigitValue(*p);
 | 
						|
 | 
						|
  /* If we ran off the end it is exactly zero or one-half, otherwise
 | 
						|
     a little more.  */
 | 
						|
  if (hexDigit == -1U)
 | 
						|
    return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
 | 
						|
  else
 | 
						|
    return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the fraction lost were a bignum truncated losing the least
 | 
						|
   significant BITS bits.  */
 | 
						|
static lostFraction
 | 
						|
lostFractionThroughTruncation(const APFloatBase::integerPart *parts,
 | 
						|
                              unsigned int partCount,
 | 
						|
                              unsigned int bits)
 | 
						|
{
 | 
						|
  unsigned int lsb;
 | 
						|
 | 
						|
  lsb = APInt::tcLSB(parts, partCount);
 | 
						|
 | 
						|
  /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
 | 
						|
  if (bits <= lsb)
 | 
						|
    return lfExactlyZero;
 | 
						|
  if (bits == lsb + 1)
 | 
						|
    return lfExactlyHalf;
 | 
						|
  if (bits <= partCount * APFloatBase::integerPartWidth &&
 | 
						|
      APInt::tcExtractBit(parts, bits - 1))
 | 
						|
    return lfMoreThanHalf;
 | 
						|
 | 
						|
  return lfLessThanHalf;
 | 
						|
}
 | 
						|
 | 
						|
/* Shift DST right BITS bits noting lost fraction.  */
 | 
						|
static lostFraction
 | 
						|
shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits)
 | 
						|
{
 | 
						|
  lostFraction lost_fraction;
 | 
						|
 | 
						|
  lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
 | 
						|
 | 
						|
  APInt::tcShiftRight(dst, parts, bits);
 | 
						|
 | 
						|
  return lost_fraction;
 | 
						|
}
 | 
						|
 | 
						|
/* Combine the effect of two lost fractions.  */
 | 
						|
static lostFraction
 | 
						|
combineLostFractions(lostFraction moreSignificant,
 | 
						|
                     lostFraction lessSignificant)
 | 
						|
{
 | 
						|
  if (lessSignificant != lfExactlyZero) {
 | 
						|
    if (moreSignificant == lfExactlyZero)
 | 
						|
      moreSignificant = lfLessThanHalf;
 | 
						|
    else if (moreSignificant == lfExactlyHalf)
 | 
						|
      moreSignificant = lfMoreThanHalf;
 | 
						|
  }
 | 
						|
 | 
						|
  return moreSignificant;
 | 
						|
}
 | 
						|
 | 
						|
/* The error from the true value, in half-ulps, on multiplying two
 | 
						|
   floating point numbers, which differ from the value they
 | 
						|
   approximate by at most HUE1 and HUE2 half-ulps, is strictly less
 | 
						|
   than the returned value.
 | 
						|
 | 
						|
   See "How to Read Floating Point Numbers Accurately" by William D
 | 
						|
   Clinger.  */
 | 
						|
static unsigned int
 | 
						|
HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
 | 
						|
{
 | 
						|
  assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
 | 
						|
 | 
						|
  if (HUerr1 + HUerr2 == 0)
 | 
						|
    return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
 | 
						|
  else
 | 
						|
    return inexactMultiply + 2 * (HUerr1 + HUerr2);
 | 
						|
}
 | 
						|
 | 
						|
/* The number of ulps from the boundary (zero, or half if ISNEAREST)
 | 
						|
   when the least significant BITS are truncated.  BITS cannot be
 | 
						|
   zero.  */
 | 
						|
static APFloatBase::integerPart
 | 
						|
ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits,
 | 
						|
                 bool isNearest) {
 | 
						|
  unsigned int count, partBits;
 | 
						|
  APFloatBase::integerPart part, boundary;
 | 
						|
 | 
						|
  assert(bits != 0);
 | 
						|
 | 
						|
  bits--;
 | 
						|
  count = bits / APFloatBase::integerPartWidth;
 | 
						|
  partBits = bits % APFloatBase::integerPartWidth + 1;
 | 
						|
 | 
						|
  part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits));
 | 
						|
 | 
						|
  if (isNearest)
 | 
						|
    boundary = (APFloatBase::integerPart) 1 << (partBits - 1);
 | 
						|
  else
 | 
						|
    boundary = 0;
 | 
						|
 | 
						|
  if (count == 0) {
 | 
						|
    if (part - boundary <= boundary - part)
 | 
						|
      return part - boundary;
 | 
						|
    else
 | 
						|
      return boundary - part;
 | 
						|
  }
 | 
						|
 | 
						|
  if (part == boundary) {
 | 
						|
    while (--count)
 | 
						|
      if (parts[count])
 | 
						|
        return ~(APFloatBase::integerPart) 0; /* A lot.  */
 | 
						|
 | 
						|
    return parts[0];
 | 
						|
  } else if (part == boundary - 1) {
 | 
						|
    while (--count)
 | 
						|
      if (~parts[count])
 | 
						|
        return ~(APFloatBase::integerPart) 0; /* A lot.  */
 | 
						|
 | 
						|
    return -parts[0];
 | 
						|
  }
 | 
						|
 | 
						|
  return ~(APFloatBase::integerPart) 0; /* A lot.  */
 | 
						|
}
 | 
						|
 | 
						|
/* Place pow(5, power) in DST, and return the number of parts used.
 | 
						|
   DST must be at least one part larger than size of the answer.  */
 | 
						|
static unsigned int
 | 
						|
powerOf5(APFloatBase::integerPart *dst, unsigned int power) {
 | 
						|
  static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 };
 | 
						|
  APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
 | 
						|
  pow5s[0] = 78125 * 5;
 | 
						|
 | 
						|
  unsigned int partsCount[16] = { 1 };
 | 
						|
  APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
 | 
						|
  unsigned int result;
 | 
						|
  assert(power <= maxExponent);
 | 
						|
 | 
						|
  p1 = dst;
 | 
						|
  p2 = scratch;
 | 
						|
 | 
						|
  *p1 = firstEightPowers[power & 7];
 | 
						|
  power >>= 3;
 | 
						|
 | 
						|
  result = 1;
 | 
						|
  pow5 = pow5s;
 | 
						|
 | 
						|
  for (unsigned int n = 0; power; power >>= 1, n++) {
 | 
						|
    unsigned int pc;
 | 
						|
 | 
						|
    pc = partsCount[n];
 | 
						|
 | 
						|
    /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
 | 
						|
    if (pc == 0) {
 | 
						|
      pc = partsCount[n - 1];
 | 
						|
      APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
 | 
						|
      pc *= 2;
 | 
						|
      if (pow5[pc - 1] == 0)
 | 
						|
        pc--;
 | 
						|
      partsCount[n] = pc;
 | 
						|
    }
 | 
						|
 | 
						|
    if (power & 1) {
 | 
						|
      APFloatBase::integerPart *tmp;
 | 
						|
 | 
						|
      APInt::tcFullMultiply(p2, p1, pow5, result, pc);
 | 
						|
      result += pc;
 | 
						|
      if (p2[result - 1] == 0)
 | 
						|
        result--;
 | 
						|
 | 
						|
      /* Now result is in p1 with partsCount parts and p2 is scratch
 | 
						|
         space.  */
 | 
						|
      tmp = p1;
 | 
						|
      p1 = p2;
 | 
						|
      p2 = tmp;
 | 
						|
    }
 | 
						|
 | 
						|
    pow5 += pc;
 | 
						|
  }
 | 
						|
 | 
						|
  if (p1 != dst)
 | 
						|
    APInt::tcAssign(dst, p1, result);
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Zero at the end to avoid modular arithmetic when adding one; used
 | 
						|
   when rounding up during hexadecimal output.  */
 | 
						|
static const char hexDigitsLower[] = "0123456789abcdef0";
 | 
						|
static const char hexDigitsUpper[] = "0123456789ABCDEF0";
 | 
						|
static const char infinityL[] = "infinity";
 | 
						|
static const char infinityU[] = "INFINITY";
 | 
						|
static const char NaNL[] = "nan";
 | 
						|
static const char NaNU[] = "NAN";
 | 
						|
 | 
						|
/* Write out an integerPart in hexadecimal, starting with the most
 | 
						|
   significant nibble.  Write out exactly COUNT hexdigits, return
 | 
						|
   COUNT.  */
 | 
						|
static unsigned int
 | 
						|
partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count,
 | 
						|
           const char *hexDigitChars)
 | 
						|
{
 | 
						|
  unsigned int result = count;
 | 
						|
 | 
						|
  assert(count != 0 && count <= APFloatBase::integerPartWidth / 4);
 | 
						|
 | 
						|
  part >>= (APFloatBase::integerPartWidth - 4 * count);
 | 
						|
  while (count--) {
 | 
						|
    dst[count] = hexDigitChars[part & 0xf];
 | 
						|
    part >>= 4;
 | 
						|
  }
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Write out an unsigned decimal integer.  */
 | 
						|
static char *
 | 
						|
writeUnsignedDecimal (char *dst, unsigned int n)
 | 
						|
{
 | 
						|
  char buff[40], *p;
 | 
						|
 | 
						|
  p = buff;
 | 
						|
  do
 | 
						|
    *p++ = '0' + n % 10;
 | 
						|
  while (n /= 10);
 | 
						|
 | 
						|
  do
 | 
						|
    *dst++ = *--p;
 | 
						|
  while (p != buff);
 | 
						|
 | 
						|
  return dst;
 | 
						|
}
 | 
						|
 | 
						|
/* Write out a signed decimal integer.  */
 | 
						|
static char *
 | 
						|
writeSignedDecimal (char *dst, int value)
 | 
						|
{
 | 
						|
  if (value < 0) {
 | 
						|
    *dst++ = '-';
 | 
						|
    dst = writeUnsignedDecimal(dst, -(unsigned) value);
 | 
						|
  } else
 | 
						|
    dst = writeUnsignedDecimal(dst, value);
 | 
						|
 | 
						|
  return dst;
 | 
						|
}
 | 
						|
 | 
						|
namespace detail {
 | 
						|
/* Constructors.  */
 | 
						|
void IEEEFloat::initialize(const fltSemantics *ourSemantics) {
 | 
						|
  unsigned int count;
 | 
						|
 | 
						|
  semantics = ourSemantics;
 | 
						|
  count = partCount();
 | 
						|
  if (count > 1)
 | 
						|
    significand.parts = new integerPart[count];
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::freeSignificand() {
 | 
						|
  if (needsCleanup())
 | 
						|
    delete [] significand.parts;
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::assign(const IEEEFloat &rhs) {
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
 | 
						|
  sign = rhs.sign;
 | 
						|
  category = rhs.category;
 | 
						|
  exponent = rhs.exponent;
 | 
						|
  if (isFiniteNonZero() || category == fcNaN)
 | 
						|
    copySignificand(rhs);
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::copySignificand(const IEEEFloat &rhs) {
 | 
						|
  assert(isFiniteNonZero() || category == fcNaN);
 | 
						|
  assert(rhs.partCount() >= partCount());
 | 
						|
 | 
						|
  APInt::tcAssign(significandParts(), rhs.significandParts(),
 | 
						|
                  partCount());
 | 
						|
}
 | 
						|
 | 
						|
/* Make this number a NaN, with an arbitrary but deterministic value
 | 
						|
   for the significand.  If double or longer, this is a signalling NaN,
 | 
						|
   which may not be ideal.  If float, this is QNaN(0).  */
 | 
						|
void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) {
 | 
						|
  category = fcNaN;
 | 
						|
  sign = Negative;
 | 
						|
 | 
						|
  integerPart *significand = significandParts();
 | 
						|
  unsigned numParts = partCount();
 | 
						|
 | 
						|
  // Set the significand bits to the fill.
 | 
						|
  if (!fill || fill->getNumWords() < numParts)
 | 
						|
    APInt::tcSet(significand, 0, numParts);
 | 
						|
  if (fill) {
 | 
						|
    APInt::tcAssign(significand, fill->getRawData(),
 | 
						|
                    std::min(fill->getNumWords(), numParts));
 | 
						|
 | 
						|
    // Zero out the excess bits of the significand.
 | 
						|
    unsigned bitsToPreserve = semantics->precision - 1;
 | 
						|
    unsigned part = bitsToPreserve / 64;
 | 
						|
    bitsToPreserve %= 64;
 | 
						|
    significand[part] &= ((1ULL << bitsToPreserve) - 1);
 | 
						|
    for (part++; part != numParts; ++part)
 | 
						|
      significand[part] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned QNaNBit = semantics->precision - 2;
 | 
						|
 | 
						|
  if (SNaN) {
 | 
						|
    // We always have to clear the QNaN bit to make it an SNaN.
 | 
						|
    APInt::tcClearBit(significand, QNaNBit);
 | 
						|
 | 
						|
    // If there are no bits set in the payload, we have to set
 | 
						|
    // *something* to make it a NaN instead of an infinity;
 | 
						|
    // conventionally, this is the next bit down from the QNaN bit.
 | 
						|
    if (APInt::tcIsZero(significand, numParts))
 | 
						|
      APInt::tcSetBit(significand, QNaNBit - 1);
 | 
						|
  } else {
 | 
						|
    // We always have to set the QNaN bit to make it a QNaN.
 | 
						|
    APInt::tcSetBit(significand, QNaNBit);
 | 
						|
  }
 | 
						|
 | 
						|
  // For x87 extended precision, we want to make a NaN, not a
 | 
						|
  // pseudo-NaN.  Maybe we should expose the ability to make
 | 
						|
  // pseudo-NaNs?
 | 
						|
  if (semantics == &semX87DoubleExtended)
 | 
						|
    APInt::tcSetBit(significand, QNaNBit + 1);
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) {
 | 
						|
  if (this != &rhs) {
 | 
						|
    if (semantics != rhs.semantics) {
 | 
						|
      freeSignificand();
 | 
						|
      initialize(rhs.semantics);
 | 
						|
    }
 | 
						|
    assign(rhs);
 | 
						|
  }
 | 
						|
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) {
 | 
						|
  freeSignificand();
 | 
						|
 | 
						|
  semantics = rhs.semantics;
 | 
						|
  significand = rhs.significand;
 | 
						|
  exponent = rhs.exponent;
 | 
						|
  category = rhs.category;
 | 
						|
  sign = rhs.sign;
 | 
						|
 | 
						|
  rhs.semantics = &semBogus;
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
bool IEEEFloat::isDenormal() const {
 | 
						|
  return isFiniteNonZero() && (exponent == semantics->minExponent) &&
 | 
						|
         (APInt::tcExtractBit(significandParts(),
 | 
						|
                              semantics->precision - 1) == 0);
 | 
						|
}
 | 
						|
 | 
						|
bool IEEEFloat::isSmallest() const {
 | 
						|
  // The smallest number by magnitude in our format will be the smallest
 | 
						|
  // denormal, i.e. the floating point number with exponent being minimum
 | 
						|
  // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
 | 
						|
  return isFiniteNonZero() && exponent == semantics->minExponent &&
 | 
						|
    significandMSB() == 0;
 | 
						|
}
 | 
						|
 | 
						|
bool IEEEFloat::isSignificandAllOnes() const {
 | 
						|
  // Test if the significand excluding the integral bit is all ones. This allows
 | 
						|
  // us to test for binade boundaries.
 | 
						|
  const integerPart *Parts = significandParts();
 | 
						|
  const unsigned PartCount = partCount();
 | 
						|
  for (unsigned i = 0; i < PartCount - 1; i++)
 | 
						|
    if (~Parts[i])
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Set the unused high bits to all ones when we compare.
 | 
						|
  const unsigned NumHighBits =
 | 
						|
    PartCount*integerPartWidth - semantics->precision + 1;
 | 
						|
  assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
 | 
						|
         "fill than integerPartWidth");
 | 
						|
  const integerPart HighBitFill =
 | 
						|
    ~integerPart(0) << (integerPartWidth - NumHighBits);
 | 
						|
  if (~(Parts[PartCount - 1] | HighBitFill))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool IEEEFloat::isSignificandAllZeros() const {
 | 
						|
  // Test if the significand excluding the integral bit is all zeros. This
 | 
						|
  // allows us to test for binade boundaries.
 | 
						|
  const integerPart *Parts = significandParts();
 | 
						|
  const unsigned PartCount = partCount();
 | 
						|
 | 
						|
  for (unsigned i = 0; i < PartCount - 1; i++)
 | 
						|
    if (Parts[i])
 | 
						|
      return false;
 | 
						|
 | 
						|
  const unsigned NumHighBits =
 | 
						|
    PartCount*integerPartWidth - semantics->precision + 1;
 | 
						|
  assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
 | 
						|
         "clear than integerPartWidth");
 | 
						|
  const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
 | 
						|
 | 
						|
  if (Parts[PartCount - 1] & HighBitMask)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool IEEEFloat::isLargest() const {
 | 
						|
  // The largest number by magnitude in our format will be the floating point
 | 
						|
  // number with maximum exponent and with significand that is all ones.
 | 
						|
  return isFiniteNonZero() && exponent == semantics->maxExponent
 | 
						|
    && isSignificandAllOnes();
 | 
						|
}
 | 
						|
 | 
						|
bool IEEEFloat::isInteger() const {
 | 
						|
  // This could be made more efficient; I'm going for obviously correct.
 | 
						|
  if (!isFinite()) return false;
 | 
						|
  IEEEFloat truncated = *this;
 | 
						|
  truncated.roundToIntegral(rmTowardZero);
 | 
						|
  return compare(truncated) == cmpEqual;
 | 
						|
}
 | 
						|
 | 
						|
bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const {
 | 
						|
  if (this == &rhs)
 | 
						|
    return true;
 | 
						|
  if (semantics != rhs.semantics ||
 | 
						|
      category != rhs.category ||
 | 
						|
      sign != rhs.sign)
 | 
						|
    return false;
 | 
						|
  if (category==fcZero || category==fcInfinity)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (isFiniteNonZero() && exponent != rhs.exponent)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return std::equal(significandParts(), significandParts() + partCount(),
 | 
						|
                    rhs.significandParts());
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) {
 | 
						|
  initialize(&ourSemantics);
 | 
						|
  sign = 0;
 | 
						|
  category = fcNormal;
 | 
						|
  zeroSignificand();
 | 
						|
  exponent = ourSemantics.precision - 1;
 | 
						|
  significandParts()[0] = value;
 | 
						|
  normalize(rmNearestTiesToEven, lfExactlyZero);
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) {
 | 
						|
  initialize(&ourSemantics);
 | 
						|
  category = fcZero;
 | 
						|
  sign = false;
 | 
						|
}
 | 
						|
 | 
						|
// Delegate to the previous constructor, because later copy constructor may
 | 
						|
// actually inspects category, which can't be garbage.
 | 
						|
IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag)
 | 
						|
    : IEEEFloat(ourSemantics) {}
 | 
						|
 | 
						|
IEEEFloat::IEEEFloat(const IEEEFloat &rhs) {
 | 
						|
  initialize(rhs.semantics);
 | 
						|
  assign(rhs);
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) {
 | 
						|
  *this = std::move(rhs);
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::~IEEEFloat() { freeSignificand(); }
 | 
						|
 | 
						|
unsigned int IEEEFloat::partCount() const {
 | 
						|
  return partCountForBits(semantics->precision + 1);
 | 
						|
}
 | 
						|
 | 
						|
const IEEEFloat::integerPart *IEEEFloat::significandParts() const {
 | 
						|
  return const_cast<IEEEFloat *>(this)->significandParts();
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::integerPart *IEEEFloat::significandParts() {
 | 
						|
  if (partCount() > 1)
 | 
						|
    return significand.parts;
 | 
						|
  else
 | 
						|
    return &significand.part;
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::zeroSignificand() {
 | 
						|
  APInt::tcSet(significandParts(), 0, partCount());
 | 
						|
}
 | 
						|
 | 
						|
/* Increment an fcNormal floating point number's significand.  */
 | 
						|
void IEEEFloat::incrementSignificand() {
 | 
						|
  integerPart carry;
 | 
						|
 | 
						|
  carry = APInt::tcIncrement(significandParts(), partCount());
 | 
						|
 | 
						|
  /* Our callers should never cause us to overflow.  */
 | 
						|
  assert(carry == 0);
 | 
						|
  (void)carry;
 | 
						|
}
 | 
						|
 | 
						|
/* Add the significand of the RHS.  Returns the carry flag.  */
 | 
						|
IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) {
 | 
						|
  integerPart *parts;
 | 
						|
 | 
						|
  parts = significandParts();
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
  assert(exponent == rhs.exponent);
 | 
						|
 | 
						|
  return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
 | 
						|
}
 | 
						|
 | 
						|
/* Subtract the significand of the RHS with a borrow flag.  Returns
 | 
						|
   the borrow flag.  */
 | 
						|
IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs,
 | 
						|
                                                      integerPart borrow) {
 | 
						|
  integerPart *parts;
 | 
						|
 | 
						|
  parts = significandParts();
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
  assert(exponent == rhs.exponent);
 | 
						|
 | 
						|
  return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
 | 
						|
                           partCount());
 | 
						|
}
 | 
						|
 | 
						|
/* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
 | 
						|
   on to the full-precision result of the multiplication.  Returns the
 | 
						|
   lost fraction.  */
 | 
						|
lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs,
 | 
						|
                                            const IEEEFloat *addend) {
 | 
						|
  unsigned int omsb;        // One, not zero, based MSB.
 | 
						|
  unsigned int partsCount, newPartsCount, precision;
 | 
						|
  integerPart *lhsSignificand;
 | 
						|
  integerPart scratch[4];
 | 
						|
  integerPart *fullSignificand;
 | 
						|
  lostFraction lost_fraction;
 | 
						|
  bool ignored;
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
 | 
						|
  precision = semantics->precision;
 | 
						|
 | 
						|
  // Allocate space for twice as many bits as the original significand, plus one
 | 
						|
  // extra bit for the addition to overflow into.
 | 
						|
  newPartsCount = partCountForBits(precision * 2 + 1);
 | 
						|
 | 
						|
  if (newPartsCount > 4)
 | 
						|
    fullSignificand = new integerPart[newPartsCount];
 | 
						|
  else
 | 
						|
    fullSignificand = scratch;
 | 
						|
 | 
						|
  lhsSignificand = significandParts();
 | 
						|
  partsCount = partCount();
 | 
						|
 | 
						|
  APInt::tcFullMultiply(fullSignificand, lhsSignificand,
 | 
						|
                        rhs.significandParts(), partsCount, partsCount);
 | 
						|
 | 
						|
  lost_fraction = lfExactlyZero;
 | 
						|
  omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
 | 
						|
  exponent += rhs.exponent;
 | 
						|
 | 
						|
  // Assume the operands involved in the multiplication are single-precision
 | 
						|
  // FP, and the two multiplicants are:
 | 
						|
  //   *this = a23 . a22 ... a0 * 2^e1
 | 
						|
  //     rhs = b23 . b22 ... b0 * 2^e2
 | 
						|
  // the result of multiplication is:
 | 
						|
  //   *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
 | 
						|
  // Note that there are three significant bits at the left-hand side of the
 | 
						|
  // radix point: two for the multiplication, and an overflow bit for the
 | 
						|
  // addition (that will always be zero at this point). Move the radix point
 | 
						|
  // toward left by two bits, and adjust exponent accordingly.
 | 
						|
  exponent += 2;
 | 
						|
 | 
						|
  if (addend && addend->isNonZero()) {
 | 
						|
    // The intermediate result of the multiplication has "2 * precision"
 | 
						|
    // signicant bit; adjust the addend to be consistent with mul result.
 | 
						|
    //
 | 
						|
    Significand savedSignificand = significand;
 | 
						|
    const fltSemantics *savedSemantics = semantics;
 | 
						|
    fltSemantics extendedSemantics;
 | 
						|
    opStatus status;
 | 
						|
    unsigned int extendedPrecision;
 | 
						|
 | 
						|
    // Normalize our MSB to one below the top bit to allow for overflow.
 | 
						|
    extendedPrecision = 2 * precision + 1;
 | 
						|
    if (omsb != extendedPrecision - 1) {
 | 
						|
      assert(extendedPrecision > omsb);
 | 
						|
      APInt::tcShiftLeft(fullSignificand, newPartsCount,
 | 
						|
                         (extendedPrecision - 1) - omsb);
 | 
						|
      exponent -= (extendedPrecision - 1) - omsb;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Create new semantics.  */
 | 
						|
    extendedSemantics = *semantics;
 | 
						|
    extendedSemantics.precision = extendedPrecision;
 | 
						|
 | 
						|
    if (newPartsCount == 1)
 | 
						|
      significand.part = fullSignificand[0];
 | 
						|
    else
 | 
						|
      significand.parts = fullSignificand;
 | 
						|
    semantics = &extendedSemantics;
 | 
						|
 | 
						|
    IEEEFloat extendedAddend(*addend);
 | 
						|
    status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
 | 
						|
    assert(status == opOK);
 | 
						|
    (void)status;
 | 
						|
 | 
						|
    // Shift the significand of the addend right by one bit. This guarantees
 | 
						|
    // that the high bit of the significand is zero (same as fullSignificand),
 | 
						|
    // so the addition will overflow (if it does overflow at all) into the top bit.
 | 
						|
    lost_fraction = extendedAddend.shiftSignificandRight(1);
 | 
						|
    assert(lost_fraction == lfExactlyZero &&
 | 
						|
           "Lost precision while shifting addend for fused-multiply-add.");
 | 
						|
 | 
						|
    lost_fraction = addOrSubtractSignificand(extendedAddend, false);
 | 
						|
 | 
						|
    /* Restore our state.  */
 | 
						|
    if (newPartsCount == 1)
 | 
						|
      fullSignificand[0] = significand.part;
 | 
						|
    significand = savedSignificand;
 | 
						|
    semantics = savedSemantics;
 | 
						|
 | 
						|
    omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the result having "2 * precision" significant-bits back to the one
 | 
						|
  // having "precision" significant-bits. First, move the radix point from
 | 
						|
  // poision "2*precision - 1" to "precision - 1". The exponent need to be
 | 
						|
  // adjusted by "2*precision - 1" - "precision - 1" = "precision".
 | 
						|
  exponent -= precision + 1;
 | 
						|
 | 
						|
  // In case MSB resides at the left-hand side of radix point, shift the
 | 
						|
  // mantissa right by some amount to make sure the MSB reside right before
 | 
						|
  // the radix point (i.e. "MSB . rest-significant-bits").
 | 
						|
  //
 | 
						|
  // Note that the result is not normalized when "omsb < precision". So, the
 | 
						|
  // caller needs to call IEEEFloat::normalize() if normalized value is
 | 
						|
  // expected.
 | 
						|
  if (omsb > precision) {
 | 
						|
    unsigned int bits, significantParts;
 | 
						|
    lostFraction lf;
 | 
						|
 | 
						|
    bits = omsb - precision;
 | 
						|
    significantParts = partCountForBits(omsb);
 | 
						|
    lf = shiftRight(fullSignificand, significantParts, bits);
 | 
						|
    lost_fraction = combineLostFractions(lf, lost_fraction);
 | 
						|
    exponent += bits;
 | 
						|
  }
 | 
						|
 | 
						|
  APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
 | 
						|
 | 
						|
  if (newPartsCount > 4)
 | 
						|
    delete [] fullSignificand;
 | 
						|
 | 
						|
  return lost_fraction;
 | 
						|
}
 | 
						|
 | 
						|
/* Multiply the significands of LHS and RHS to DST.  */
 | 
						|
lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) {
 | 
						|
  unsigned int bit, i, partsCount;
 | 
						|
  const integerPart *rhsSignificand;
 | 
						|
  integerPart *lhsSignificand, *dividend, *divisor;
 | 
						|
  integerPart scratch[4];
 | 
						|
  lostFraction lost_fraction;
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
 | 
						|
  lhsSignificand = significandParts();
 | 
						|
  rhsSignificand = rhs.significandParts();
 | 
						|
  partsCount = partCount();
 | 
						|
 | 
						|
  if (partsCount > 2)
 | 
						|
    dividend = new integerPart[partsCount * 2];
 | 
						|
  else
 | 
						|
    dividend = scratch;
 | 
						|
 | 
						|
  divisor = dividend + partsCount;
 | 
						|
 | 
						|
  /* Copy the dividend and divisor as they will be modified in-place.  */
 | 
						|
  for (i = 0; i < partsCount; i++) {
 | 
						|
    dividend[i] = lhsSignificand[i];
 | 
						|
    divisor[i] = rhsSignificand[i];
 | 
						|
    lhsSignificand[i] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  exponent -= rhs.exponent;
 | 
						|
 | 
						|
  unsigned int precision = semantics->precision;
 | 
						|
 | 
						|
  /* Normalize the divisor.  */
 | 
						|
  bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
 | 
						|
  if (bit) {
 | 
						|
    exponent += bit;
 | 
						|
    APInt::tcShiftLeft(divisor, partsCount, bit);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Normalize the dividend.  */
 | 
						|
  bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
 | 
						|
  if (bit) {
 | 
						|
    exponent -= bit;
 | 
						|
    APInt::tcShiftLeft(dividend, partsCount, bit);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Ensure the dividend >= divisor initially for the loop below.
 | 
						|
     Incidentally, this means that the division loop below is
 | 
						|
     guaranteed to set the integer bit to one.  */
 | 
						|
  if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
 | 
						|
    exponent--;
 | 
						|
    APInt::tcShiftLeft(dividend, partsCount, 1);
 | 
						|
    assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Long division.  */
 | 
						|
  for (bit = precision; bit; bit -= 1) {
 | 
						|
    if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
 | 
						|
      APInt::tcSubtract(dividend, divisor, 0, partsCount);
 | 
						|
      APInt::tcSetBit(lhsSignificand, bit - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    APInt::tcShiftLeft(dividend, partsCount, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Figure out the lost fraction.  */
 | 
						|
  int cmp = APInt::tcCompare(dividend, divisor, partsCount);
 | 
						|
 | 
						|
  if (cmp > 0)
 | 
						|
    lost_fraction = lfMoreThanHalf;
 | 
						|
  else if (cmp == 0)
 | 
						|
    lost_fraction = lfExactlyHalf;
 | 
						|
  else if (APInt::tcIsZero(dividend, partsCount))
 | 
						|
    lost_fraction = lfExactlyZero;
 | 
						|
  else
 | 
						|
    lost_fraction = lfLessThanHalf;
 | 
						|
 | 
						|
  if (partsCount > 2)
 | 
						|
    delete [] dividend;
 | 
						|
 | 
						|
  return lost_fraction;
 | 
						|
}
 | 
						|
 | 
						|
unsigned int IEEEFloat::significandMSB() const {
 | 
						|
  return APInt::tcMSB(significandParts(), partCount());
 | 
						|
}
 | 
						|
 | 
						|
unsigned int IEEEFloat::significandLSB() const {
 | 
						|
  return APInt::tcLSB(significandParts(), partCount());
 | 
						|
}
 | 
						|
 | 
						|
/* Note that a zero result is NOT normalized to fcZero.  */
 | 
						|
lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) {
 | 
						|
  /* Our exponent should not overflow.  */
 | 
						|
  assert((ExponentType) (exponent + bits) >= exponent);
 | 
						|
 | 
						|
  exponent += bits;
 | 
						|
 | 
						|
  return shiftRight(significandParts(), partCount(), bits);
 | 
						|
}
 | 
						|
 | 
						|
/* Shift the significand left BITS bits, subtract BITS from its exponent.  */
 | 
						|
void IEEEFloat::shiftSignificandLeft(unsigned int bits) {
 | 
						|
  assert(bits < semantics->precision);
 | 
						|
 | 
						|
  if (bits) {
 | 
						|
    unsigned int partsCount = partCount();
 | 
						|
 | 
						|
    APInt::tcShiftLeft(significandParts(), partsCount, bits);
 | 
						|
    exponent -= bits;
 | 
						|
 | 
						|
    assert(!APInt::tcIsZero(significandParts(), partsCount));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::cmpResult
 | 
						|
IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const {
 | 
						|
  int compare;
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
  assert(isFiniteNonZero());
 | 
						|
  assert(rhs.isFiniteNonZero());
 | 
						|
 | 
						|
  compare = exponent - rhs.exponent;
 | 
						|
 | 
						|
  /* If exponents are equal, do an unsigned bignum comparison of the
 | 
						|
     significands.  */
 | 
						|
  if (compare == 0)
 | 
						|
    compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
 | 
						|
                               partCount());
 | 
						|
 | 
						|
  if (compare > 0)
 | 
						|
    return cmpGreaterThan;
 | 
						|
  else if (compare < 0)
 | 
						|
    return cmpLessThan;
 | 
						|
  else
 | 
						|
    return cmpEqual;
 | 
						|
}
 | 
						|
 | 
						|
/* Handle overflow.  Sign is preserved.  We either become infinity or
 | 
						|
   the largest finite number.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) {
 | 
						|
  /* Infinity?  */
 | 
						|
  if (rounding_mode == rmNearestTiesToEven ||
 | 
						|
      rounding_mode == rmNearestTiesToAway ||
 | 
						|
      (rounding_mode == rmTowardPositive && !sign) ||
 | 
						|
      (rounding_mode == rmTowardNegative && sign)) {
 | 
						|
    category = fcInfinity;
 | 
						|
    return (opStatus) (opOverflow | opInexact);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Otherwise we become the largest finite number.  */
 | 
						|
  category = fcNormal;
 | 
						|
  exponent = semantics->maxExponent;
 | 
						|
  APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
 | 
						|
                                   semantics->precision);
 | 
						|
 | 
						|
  return opInexact;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns TRUE if, when truncating the current number, with BIT the
 | 
						|
   new LSB, with the given lost fraction and rounding mode, the result
 | 
						|
   would need to be rounded away from zero (i.e., by increasing the
 | 
						|
   signficand).  This routine must work for fcZero of both signs, and
 | 
						|
   fcNormal numbers.  */
 | 
						|
bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode,
 | 
						|
                                  lostFraction lost_fraction,
 | 
						|
                                  unsigned int bit) const {
 | 
						|
  /* NaNs and infinities should not have lost fractions.  */
 | 
						|
  assert(isFiniteNonZero() || category == fcZero);
 | 
						|
 | 
						|
  /* Current callers never pass this so we don't handle it.  */
 | 
						|
  assert(lost_fraction != lfExactlyZero);
 | 
						|
 | 
						|
  switch (rounding_mode) {
 | 
						|
  case rmNearestTiesToAway:
 | 
						|
    return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
 | 
						|
 | 
						|
  case rmNearestTiesToEven:
 | 
						|
    if (lost_fraction == lfMoreThanHalf)
 | 
						|
      return true;
 | 
						|
 | 
						|
    /* Our zeroes don't have a significand to test.  */
 | 
						|
    if (lost_fraction == lfExactlyHalf && category != fcZero)
 | 
						|
      return APInt::tcExtractBit(significandParts(), bit);
 | 
						|
 | 
						|
    return false;
 | 
						|
 | 
						|
  case rmTowardZero:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case rmTowardPositive:
 | 
						|
    return !sign;
 | 
						|
 | 
						|
  case rmTowardNegative:
 | 
						|
    return sign;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid rounding mode found");
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode,
 | 
						|
                                         lostFraction lost_fraction) {
 | 
						|
  unsigned int omsb;                /* One, not zero, based MSB.  */
 | 
						|
  int exponentChange;
 | 
						|
 | 
						|
  if (!isFiniteNonZero())
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  /* Before rounding normalize the exponent of fcNormal numbers.  */
 | 
						|
  omsb = significandMSB() + 1;
 | 
						|
 | 
						|
  if (omsb) {
 | 
						|
    /* OMSB is numbered from 1.  We want to place it in the integer
 | 
						|
       bit numbered PRECISION if possible, with a compensating change in
 | 
						|
       the exponent.  */
 | 
						|
    exponentChange = omsb - semantics->precision;
 | 
						|
 | 
						|
    /* If the resulting exponent is too high, overflow according to
 | 
						|
       the rounding mode.  */
 | 
						|
    if (exponent + exponentChange > semantics->maxExponent)
 | 
						|
      return handleOverflow(rounding_mode);
 | 
						|
 | 
						|
    /* Subnormal numbers have exponent minExponent, and their MSB
 | 
						|
       is forced based on that.  */
 | 
						|
    if (exponent + exponentChange < semantics->minExponent)
 | 
						|
      exponentChange = semantics->minExponent - exponent;
 | 
						|
 | 
						|
    /* Shifting left is easy as we don't lose precision.  */
 | 
						|
    if (exponentChange < 0) {
 | 
						|
      assert(lost_fraction == lfExactlyZero);
 | 
						|
 | 
						|
      shiftSignificandLeft(-exponentChange);
 | 
						|
 | 
						|
      return opOK;
 | 
						|
    }
 | 
						|
 | 
						|
    if (exponentChange > 0) {
 | 
						|
      lostFraction lf;
 | 
						|
 | 
						|
      /* Shift right and capture any new lost fraction.  */
 | 
						|
      lf = shiftSignificandRight(exponentChange);
 | 
						|
 | 
						|
      lost_fraction = combineLostFractions(lf, lost_fraction);
 | 
						|
 | 
						|
      /* Keep OMSB up-to-date.  */
 | 
						|
      if (omsb > (unsigned) exponentChange)
 | 
						|
        omsb -= exponentChange;
 | 
						|
      else
 | 
						|
        omsb = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Now round the number according to rounding_mode given the lost
 | 
						|
     fraction.  */
 | 
						|
 | 
						|
  /* As specified in IEEE 754, since we do not trap we do not report
 | 
						|
     underflow for exact results.  */
 | 
						|
  if (lost_fraction == lfExactlyZero) {
 | 
						|
    /* Canonicalize zeroes.  */
 | 
						|
    if (omsb == 0)
 | 
						|
      category = fcZero;
 | 
						|
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Increment the significand if we're rounding away from zero.  */
 | 
						|
  if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
 | 
						|
    if (omsb == 0)
 | 
						|
      exponent = semantics->minExponent;
 | 
						|
 | 
						|
    incrementSignificand();
 | 
						|
    omsb = significandMSB() + 1;
 | 
						|
 | 
						|
    /* Did the significand increment overflow?  */
 | 
						|
    if (omsb == (unsigned) semantics->precision + 1) {
 | 
						|
      /* Renormalize by incrementing the exponent and shifting our
 | 
						|
         significand right one.  However if we already have the
 | 
						|
         maximum exponent we overflow to infinity.  */
 | 
						|
      if (exponent == semantics->maxExponent) {
 | 
						|
        category = fcInfinity;
 | 
						|
 | 
						|
        return (opStatus) (opOverflow | opInexact);
 | 
						|
      }
 | 
						|
 | 
						|
      shiftSignificandRight(1);
 | 
						|
 | 
						|
      return opInexact;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* The normal case - we were and are not denormal, and any
 | 
						|
     significand increment above didn't overflow.  */
 | 
						|
  if (omsb == semantics->precision)
 | 
						|
    return opInexact;
 | 
						|
 | 
						|
  /* We have a non-zero denormal.  */
 | 
						|
  assert(omsb < semantics->precision);
 | 
						|
 | 
						|
  /* Canonicalize zeroes.  */
 | 
						|
  if (omsb == 0)
 | 
						|
    category = fcZero;
 | 
						|
 | 
						|
  /* The fcZero case is a denormal that underflowed to zero.  */
 | 
						|
  return (opStatus) (opUnderflow | opInexact);
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs,
 | 
						|
                                                     bool subtract) {
 | 
						|
  switch (PackCategoriesIntoKey(category, rhs.category)) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcZero):
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
 | 
						|
    // We need to be sure to flip the sign here for subtraction because we
 | 
						|
    // don't have a separate negate operation so -NaN becomes 0 - NaN here.
 | 
						|
    sign = rhs.sign ^ subtract;
 | 
						|
    category = fcNaN;
 | 
						|
    copySignificand(rhs);
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcInfinity):
 | 
						|
    category = fcInfinity;
 | 
						|
    sign = rhs.sign ^ subtract;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcNormal):
 | 
						|
    assign(rhs);
 | 
						|
    sign = rhs.sign ^ subtract;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcZero):
 | 
						|
    /* Sign depends on rounding mode; handled by caller.  */
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
 | 
						|
    /* Differently signed infinities can only be validly
 | 
						|
       subtracted.  */
 | 
						|
    if (((sign ^ rhs.sign)!=0) != subtract) {
 | 
						|
      makeNaN();
 | 
						|
      return opInvalidOp;
 | 
						|
    }
 | 
						|
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcNormal):
 | 
						|
    return opDivByZero;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Add or subtract two normal numbers.  */
 | 
						|
lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs,
 | 
						|
                                                 bool subtract) {
 | 
						|
  integerPart carry;
 | 
						|
  lostFraction lost_fraction;
 | 
						|
  int bits;
 | 
						|
 | 
						|
  /* Determine if the operation on the absolute values is effectively
 | 
						|
     an addition or subtraction.  */
 | 
						|
  subtract ^= static_cast<bool>(sign ^ rhs.sign);
 | 
						|
 | 
						|
  /* Are we bigger exponent-wise than the RHS?  */
 | 
						|
  bits = exponent - rhs.exponent;
 | 
						|
 | 
						|
  /* Subtraction is more subtle than one might naively expect.  */
 | 
						|
  if (subtract) {
 | 
						|
    IEEEFloat temp_rhs(rhs);
 | 
						|
    bool reverse;
 | 
						|
 | 
						|
    if (bits == 0) {
 | 
						|
      reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
 | 
						|
      lost_fraction = lfExactlyZero;
 | 
						|
    } else if (bits > 0) {
 | 
						|
      lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
 | 
						|
      shiftSignificandLeft(1);
 | 
						|
      reverse = false;
 | 
						|
    } else {
 | 
						|
      lost_fraction = shiftSignificandRight(-bits - 1);
 | 
						|
      temp_rhs.shiftSignificandLeft(1);
 | 
						|
      reverse = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (reverse) {
 | 
						|
      carry = temp_rhs.subtractSignificand
 | 
						|
        (*this, lost_fraction != lfExactlyZero);
 | 
						|
      copySignificand(temp_rhs);
 | 
						|
      sign = !sign;
 | 
						|
    } else {
 | 
						|
      carry = subtractSignificand
 | 
						|
        (temp_rhs, lost_fraction != lfExactlyZero);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Invert the lost fraction - it was on the RHS and
 | 
						|
       subtracted.  */
 | 
						|
    if (lost_fraction == lfLessThanHalf)
 | 
						|
      lost_fraction = lfMoreThanHalf;
 | 
						|
    else if (lost_fraction == lfMoreThanHalf)
 | 
						|
      lost_fraction = lfLessThanHalf;
 | 
						|
 | 
						|
    /* The code above is intended to ensure that no borrow is
 | 
						|
       necessary.  */
 | 
						|
    assert(!carry);
 | 
						|
    (void)carry;
 | 
						|
  } else {
 | 
						|
    if (bits > 0) {
 | 
						|
      IEEEFloat temp_rhs(rhs);
 | 
						|
 | 
						|
      lost_fraction = temp_rhs.shiftSignificandRight(bits);
 | 
						|
      carry = addSignificand(temp_rhs);
 | 
						|
    } else {
 | 
						|
      lost_fraction = shiftSignificandRight(-bits);
 | 
						|
      carry = addSignificand(rhs);
 | 
						|
    }
 | 
						|
 | 
						|
    /* We have a guard bit; generating a carry cannot happen.  */
 | 
						|
    assert(!carry);
 | 
						|
    (void)carry;
 | 
						|
  }
 | 
						|
 | 
						|
  return lost_fraction;
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) {
 | 
						|
  switch (PackCategoriesIntoKey(category, rhs.category)) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcNaN):
 | 
						|
    sign = false;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
 | 
						|
    sign = false;
 | 
						|
    category = fcNaN;
 | 
						|
    copySignificand(rhs);
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
 | 
						|
    category = fcInfinity;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcZero):
 | 
						|
    category = fcZero;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcZero):
 | 
						|
    makeNaN();
 | 
						|
    return opInvalidOp;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcNormal):
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) {
 | 
						|
  switch (PackCategoriesIntoKey(category, rhs.category)) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
 | 
						|
    category = fcNaN;
 | 
						|
    copySignificand(rhs);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcNaN):
 | 
						|
    sign = false;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcNormal):
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcInfinity):
 | 
						|
    category = fcZero;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcZero):
 | 
						|
    category = fcInfinity;
 | 
						|
    return opDivByZero;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcZero):
 | 
						|
    makeNaN();
 | 
						|
    return opInvalidOp;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcNormal):
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) {
 | 
						|
  switch (PackCategoriesIntoKey(category, rhs.category)) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcInfinity):
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
 | 
						|
    sign = false;
 | 
						|
    category = fcNaN;
 | 
						|
    copySignificand(rhs);
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcZero):
 | 
						|
    makeNaN();
 | 
						|
    return opInvalidOp;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcNormal):
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Change sign.  */
 | 
						|
void IEEEFloat::changeSign() {
 | 
						|
  /* Look mummy, this one's easy.  */
 | 
						|
  sign = !sign;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized addition or subtraction.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs,
 | 
						|
                                             roundingMode rounding_mode,
 | 
						|
                                             bool subtract) {
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  fs = addOrSubtractSpecials(rhs, subtract);
 | 
						|
 | 
						|
  /* This return code means it was not a simple case.  */
 | 
						|
  if (fs == opDivByZero) {
 | 
						|
    lostFraction lost_fraction;
 | 
						|
 | 
						|
    lost_fraction = addOrSubtractSignificand(rhs, subtract);
 | 
						|
    fs = normalize(rounding_mode, lost_fraction);
 | 
						|
 | 
						|
    /* Can only be zero if we lost no fraction.  */
 | 
						|
    assert(category != fcZero || lost_fraction == lfExactlyZero);
 | 
						|
  }
 | 
						|
 | 
						|
  /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
 | 
						|
     positive zero unless rounding to minus infinity, except that
 | 
						|
     adding two like-signed zeroes gives that zero.  */
 | 
						|
  if (category == fcZero) {
 | 
						|
    if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
 | 
						|
      sign = (rounding_mode == rmTowardNegative);
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized addition.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs,
 | 
						|
                                   roundingMode rounding_mode) {
 | 
						|
  return addOrSubtract(rhs, rounding_mode, false);
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized subtraction.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs,
 | 
						|
                                        roundingMode rounding_mode) {
 | 
						|
  return addOrSubtract(rhs, rounding_mode, true);
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized multiply.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs,
 | 
						|
                                        roundingMode rounding_mode) {
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  sign ^= rhs.sign;
 | 
						|
  fs = multiplySpecials(rhs);
 | 
						|
 | 
						|
  if (isFiniteNonZero()) {
 | 
						|
    lostFraction lost_fraction = multiplySignificand(rhs, nullptr);
 | 
						|
    fs = normalize(rounding_mode, lost_fraction);
 | 
						|
    if (lost_fraction != lfExactlyZero)
 | 
						|
      fs = (opStatus) (fs | opInexact);
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized divide.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs,
 | 
						|
                                      roundingMode rounding_mode) {
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  sign ^= rhs.sign;
 | 
						|
  fs = divideSpecials(rhs);
 | 
						|
 | 
						|
  if (isFiniteNonZero()) {
 | 
						|
    lostFraction lost_fraction = divideSignificand(rhs);
 | 
						|
    fs = normalize(rounding_mode, lost_fraction);
 | 
						|
    if (lost_fraction != lfExactlyZero)
 | 
						|
      fs = (opStatus) (fs | opInexact);
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized remainder.  This is not currently correct in all cases.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) {
 | 
						|
  opStatus fs;
 | 
						|
  IEEEFloat V = *this;
 | 
						|
  unsigned int origSign = sign;
 | 
						|
 | 
						|
  fs = V.divide(rhs, rmNearestTiesToEven);
 | 
						|
  if (fs == opDivByZero)
 | 
						|
    return fs;
 | 
						|
 | 
						|
  int parts = partCount();
 | 
						|
  integerPart *x = new integerPart[parts];
 | 
						|
  bool ignored;
 | 
						|
  fs = V.convertToInteger(makeMutableArrayRef(x, parts),
 | 
						|
                          parts * integerPartWidth, true, rmNearestTiesToEven,
 | 
						|
                          &ignored);
 | 
						|
  if (fs == opInvalidOp) {
 | 
						|
    delete[] x;
 | 
						|
    return fs;
 | 
						|
  }
 | 
						|
 | 
						|
  fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
 | 
						|
                                        rmNearestTiesToEven);
 | 
						|
  assert(fs==opOK);   // should always work
 | 
						|
 | 
						|
  fs = V.multiply(rhs, rmNearestTiesToEven);
 | 
						|
  assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
 | 
						|
 | 
						|
  fs = subtract(V, rmNearestTiesToEven);
 | 
						|
  assert(fs==opOK || fs==opInexact);   // likewise
 | 
						|
 | 
						|
  if (isZero())
 | 
						|
    sign = origSign;    // IEEE754 requires this
 | 
						|
  delete[] x;
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized llvm frem (C fmod). */
 | 
						|
IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) {
 | 
						|
  opStatus fs;
 | 
						|
  fs = modSpecials(rhs);
 | 
						|
  unsigned int origSign = sign;
 | 
						|
 | 
						|
  while (isFiniteNonZero() && rhs.isFiniteNonZero() &&
 | 
						|
         compareAbsoluteValue(rhs) != cmpLessThan) {
 | 
						|
    IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven);
 | 
						|
    if (compareAbsoluteValue(V) == cmpLessThan)
 | 
						|
      V = scalbn(V, -1, rmNearestTiesToEven);
 | 
						|
    V.sign = sign;
 | 
						|
 | 
						|
    fs = subtract(V, rmNearestTiesToEven);
 | 
						|
    assert(fs==opOK);
 | 
						|
  }
 | 
						|
  if (isZero())
 | 
						|
    sign = origSign; // fmod requires this
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized fused-multiply-add.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand,
 | 
						|
                                                const IEEEFloat &addend,
 | 
						|
                                                roundingMode rounding_mode) {
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  /* Post-multiplication sign, before addition.  */
 | 
						|
  sign ^= multiplicand.sign;
 | 
						|
 | 
						|
  /* If and only if all arguments are normal do we need to do an
 | 
						|
     extended-precision calculation.  */
 | 
						|
  if (isFiniteNonZero() &&
 | 
						|
      multiplicand.isFiniteNonZero() &&
 | 
						|
      addend.isFinite()) {
 | 
						|
    lostFraction lost_fraction;
 | 
						|
 | 
						|
    lost_fraction = multiplySignificand(multiplicand, &addend);
 | 
						|
    fs = normalize(rounding_mode, lost_fraction);
 | 
						|
    if (lost_fraction != lfExactlyZero)
 | 
						|
      fs = (opStatus) (fs | opInexact);
 | 
						|
 | 
						|
    /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
 | 
						|
       positive zero unless rounding to minus infinity, except that
 | 
						|
       adding two like-signed zeroes gives that zero.  */
 | 
						|
    if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign)
 | 
						|
      sign = (rounding_mode == rmTowardNegative);
 | 
						|
  } else {
 | 
						|
    fs = multiplySpecials(multiplicand);
 | 
						|
 | 
						|
    /* FS can only be opOK or opInvalidOp.  There is no more work
 | 
						|
       to do in the latter case.  The IEEE-754R standard says it is
 | 
						|
       implementation-defined in this case whether, if ADDEND is a
 | 
						|
       quiet NaN, we raise invalid op; this implementation does so.
 | 
						|
 | 
						|
       If we need to do the addition we can do so with normal
 | 
						|
       precision.  */
 | 
						|
    if (fs == opOK)
 | 
						|
      fs = addOrSubtract(addend, rounding_mode, false);
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Rounding-mode corrrect round to integral value.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) {
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  // If the exponent is large enough, we know that this value is already
 | 
						|
  // integral, and the arithmetic below would potentially cause it to saturate
 | 
						|
  // to +/-Inf.  Bail out early instead.
 | 
						|
  if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics))
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  // The algorithm here is quite simple: we add 2^(p-1), where p is the
 | 
						|
  // precision of our format, and then subtract it back off again.  The choice
 | 
						|
  // of rounding modes for the addition/subtraction determines the rounding mode
 | 
						|
  // for our integral rounding as well.
 | 
						|
  // NOTE: When the input value is negative, we do subtraction followed by
 | 
						|
  // addition instead.
 | 
						|
  APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
 | 
						|
  IntegerConstant <<= semanticsPrecision(*semantics)-1;
 | 
						|
  IEEEFloat MagicConstant(*semantics);
 | 
						|
  fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
 | 
						|
                                      rmNearestTiesToEven);
 | 
						|
  MagicConstant.sign = sign;
 | 
						|
 | 
						|
  if (fs != opOK)
 | 
						|
    return fs;
 | 
						|
 | 
						|
  // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly.
 | 
						|
  bool inputSign = isNegative();
 | 
						|
 | 
						|
  fs = add(MagicConstant, rounding_mode);
 | 
						|
  if (fs != opOK && fs != opInexact)
 | 
						|
    return fs;
 | 
						|
 | 
						|
  fs = subtract(MagicConstant, rounding_mode);
 | 
						|
 | 
						|
  // Restore the input sign.
 | 
						|
  if (inputSign != isNegative())
 | 
						|
    changeSign();
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Comparison requires normalized numbers.  */
 | 
						|
IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const {
 | 
						|
  cmpResult result;
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
 | 
						|
  switch (PackCategoriesIntoKey(category, rhs.category)) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcNaN, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcNaN):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
 | 
						|
    return cmpUnordered;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcNormal):
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcZero):
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcZero):
 | 
						|
    if (sign)
 | 
						|
      return cmpLessThan;
 | 
						|
    else
 | 
						|
      return cmpGreaterThan;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcInfinity):
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcNormal):
 | 
						|
    if (rhs.sign)
 | 
						|
      return cmpGreaterThan;
 | 
						|
    else
 | 
						|
      return cmpLessThan;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
 | 
						|
    if (sign == rhs.sign)
 | 
						|
      return cmpEqual;
 | 
						|
    else if (sign)
 | 
						|
      return cmpLessThan;
 | 
						|
    else
 | 
						|
      return cmpGreaterThan;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcZero, fcZero):
 | 
						|
    return cmpEqual;
 | 
						|
 | 
						|
  case PackCategoriesIntoKey(fcNormal, fcNormal):
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Two normal numbers.  Do they have the same sign?  */
 | 
						|
  if (sign != rhs.sign) {
 | 
						|
    if (sign)
 | 
						|
      result = cmpLessThan;
 | 
						|
    else
 | 
						|
      result = cmpGreaterThan;
 | 
						|
  } else {
 | 
						|
    /* Compare absolute values; invert result if negative.  */
 | 
						|
    result = compareAbsoluteValue(rhs);
 | 
						|
 | 
						|
    if (sign) {
 | 
						|
      if (result == cmpLessThan)
 | 
						|
        result = cmpGreaterThan;
 | 
						|
      else if (result == cmpGreaterThan)
 | 
						|
        result = cmpLessThan;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/// IEEEFloat::convert - convert a value of one floating point type to another.
 | 
						|
/// The return value corresponds to the IEEE754 exceptions.  *losesInfo
 | 
						|
/// records whether the transformation lost information, i.e. whether
 | 
						|
/// converting the result back to the original type will produce the
 | 
						|
/// original value (this is almost the same as return value==fsOK, but there
 | 
						|
/// are edge cases where this is not so).
 | 
						|
 | 
						|
IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics,
 | 
						|
                                       roundingMode rounding_mode,
 | 
						|
                                       bool *losesInfo) {
 | 
						|
  lostFraction lostFraction;
 | 
						|
  unsigned int newPartCount, oldPartCount;
 | 
						|
  opStatus fs;
 | 
						|
  int shift;
 | 
						|
  const fltSemantics &fromSemantics = *semantics;
 | 
						|
 | 
						|
  lostFraction = lfExactlyZero;
 | 
						|
  newPartCount = partCountForBits(toSemantics.precision + 1);
 | 
						|
  oldPartCount = partCount();
 | 
						|
  shift = toSemantics.precision - fromSemantics.precision;
 | 
						|
 | 
						|
  bool X86SpecialNan = false;
 | 
						|
  if (&fromSemantics == &semX87DoubleExtended &&
 | 
						|
      &toSemantics != &semX87DoubleExtended && category == fcNaN &&
 | 
						|
      (!(*significandParts() & 0x8000000000000000ULL) ||
 | 
						|
       !(*significandParts() & 0x4000000000000000ULL))) {
 | 
						|
    // x86 has some unusual NaNs which cannot be represented in any other
 | 
						|
    // format; note them here.
 | 
						|
    X86SpecialNan = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a truncation of a denormal number, and the target semantics
 | 
						|
  // has larger exponent range than the source semantics (this can happen
 | 
						|
  // when truncating from PowerPC double-double to double format), the
 | 
						|
  // right shift could lose result mantissa bits.  Adjust exponent instead
 | 
						|
  // of performing excessive shift.
 | 
						|
  if (shift < 0 && isFiniteNonZero()) {
 | 
						|
    int exponentChange = significandMSB() + 1 - fromSemantics.precision;
 | 
						|
    if (exponent + exponentChange < toSemantics.minExponent)
 | 
						|
      exponentChange = toSemantics.minExponent - exponent;
 | 
						|
    if (exponentChange < shift)
 | 
						|
      exponentChange = shift;
 | 
						|
    if (exponentChange < 0) {
 | 
						|
      shift -= exponentChange;
 | 
						|
      exponent += exponentChange;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a truncation, perform the shift before we narrow the storage.
 | 
						|
  if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
 | 
						|
    lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
 | 
						|
 | 
						|
  // Fix the storage so it can hold to new value.
 | 
						|
  if (newPartCount > oldPartCount) {
 | 
						|
    // The new type requires more storage; make it available.
 | 
						|
    integerPart *newParts;
 | 
						|
    newParts = new integerPart[newPartCount];
 | 
						|
    APInt::tcSet(newParts, 0, newPartCount);
 | 
						|
    if (isFiniteNonZero() || category==fcNaN)
 | 
						|
      APInt::tcAssign(newParts, significandParts(), oldPartCount);
 | 
						|
    freeSignificand();
 | 
						|
    significand.parts = newParts;
 | 
						|
  } else if (newPartCount == 1 && oldPartCount != 1) {
 | 
						|
    // Switch to built-in storage for a single part.
 | 
						|
    integerPart newPart = 0;
 | 
						|
    if (isFiniteNonZero() || category==fcNaN)
 | 
						|
      newPart = significandParts()[0];
 | 
						|
    freeSignificand();
 | 
						|
    significand.part = newPart;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have the right storage, switch the semantics.
 | 
						|
  semantics = &toSemantics;
 | 
						|
 | 
						|
  // If this is an extension, perform the shift now that the storage is
 | 
						|
  // available.
 | 
						|
  if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
 | 
						|
    APInt::tcShiftLeft(significandParts(), newPartCount, shift);
 | 
						|
 | 
						|
  if (isFiniteNonZero()) {
 | 
						|
    fs = normalize(rounding_mode, lostFraction);
 | 
						|
    *losesInfo = (fs != opOK);
 | 
						|
  } else if (category == fcNaN) {
 | 
						|
    *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
 | 
						|
 | 
						|
    // For x87 extended precision, we want to make a NaN, not a special NaN if
 | 
						|
    // the input wasn't special either.
 | 
						|
    if (!X86SpecialNan && semantics == &semX87DoubleExtended)
 | 
						|
      APInt::tcSetBit(significandParts(), semantics->precision - 1);
 | 
						|
 | 
						|
    // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
 | 
						|
    // does not give you back the same bits.  This is dubious, and we
 | 
						|
    // don't currently do it.  You're really supposed to get
 | 
						|
    // an invalid operation signal at runtime, but nobody does that.
 | 
						|
    fs = opOK;
 | 
						|
  } else {
 | 
						|
    *losesInfo = false;
 | 
						|
    fs = opOK;
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a floating point number to an integer according to the
 | 
						|
   rounding mode.  If the rounded integer value is out of range this
 | 
						|
   returns an invalid operation exception and the contents of the
 | 
						|
   destination parts are unspecified.  If the rounded value is in
 | 
						|
   range but the floating point number is not the exact integer, the C
 | 
						|
   standard doesn't require an inexact exception to be raised.  IEEE
 | 
						|
   854 does require it so we do that.
 | 
						|
 | 
						|
   Note that for conversions to integer type the C standard requires
 | 
						|
   round-to-zero to always be used.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger(
 | 
						|
    MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned,
 | 
						|
    roundingMode rounding_mode, bool *isExact) const {
 | 
						|
  lostFraction lost_fraction;
 | 
						|
  const integerPart *src;
 | 
						|
  unsigned int dstPartsCount, truncatedBits;
 | 
						|
 | 
						|
  *isExact = false;
 | 
						|
 | 
						|
  /* Handle the three special cases first.  */
 | 
						|
  if (category == fcInfinity || category == fcNaN)
 | 
						|
    return opInvalidOp;
 | 
						|
 | 
						|
  dstPartsCount = partCountForBits(width);
 | 
						|
  assert(dstPartsCount <= parts.size() && "Integer too big");
 | 
						|
 | 
						|
  if (category == fcZero) {
 | 
						|
    APInt::tcSet(parts.data(), 0, dstPartsCount);
 | 
						|
    // Negative zero can't be represented as an int.
 | 
						|
    *isExact = !sign;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
 | 
						|
  src = significandParts();
 | 
						|
 | 
						|
  /* Step 1: place our absolute value, with any fraction truncated, in
 | 
						|
     the destination.  */
 | 
						|
  if (exponent < 0) {
 | 
						|
    /* Our absolute value is less than one; truncate everything.  */
 | 
						|
    APInt::tcSet(parts.data(), 0, dstPartsCount);
 | 
						|
    /* For exponent -1 the integer bit represents .5, look at that.
 | 
						|
       For smaller exponents leftmost truncated bit is 0. */
 | 
						|
    truncatedBits = semantics->precision -1U - exponent;
 | 
						|
  } else {
 | 
						|
    /* We want the most significant (exponent + 1) bits; the rest are
 | 
						|
       truncated.  */
 | 
						|
    unsigned int bits = exponent + 1U;
 | 
						|
 | 
						|
    /* Hopelessly large in magnitude?  */
 | 
						|
    if (bits > width)
 | 
						|
      return opInvalidOp;
 | 
						|
 | 
						|
    if (bits < semantics->precision) {
 | 
						|
      /* We truncate (semantics->precision - bits) bits.  */
 | 
						|
      truncatedBits = semantics->precision - bits;
 | 
						|
      APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits);
 | 
						|
    } else {
 | 
						|
      /* We want at least as many bits as are available.  */
 | 
						|
      APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision,
 | 
						|
                       0);
 | 
						|
      APInt::tcShiftLeft(parts.data(), dstPartsCount,
 | 
						|
                         bits - semantics->precision);
 | 
						|
      truncatedBits = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Step 2: work out any lost fraction, and increment the absolute
 | 
						|
     value if we would round away from zero.  */
 | 
						|
  if (truncatedBits) {
 | 
						|
    lost_fraction = lostFractionThroughTruncation(src, partCount(),
 | 
						|
                                                  truncatedBits);
 | 
						|
    if (lost_fraction != lfExactlyZero &&
 | 
						|
        roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
 | 
						|
      if (APInt::tcIncrement(parts.data(), dstPartsCount))
 | 
						|
        return opInvalidOp;     /* Overflow.  */
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    lost_fraction = lfExactlyZero;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Step 3: check if we fit in the destination.  */
 | 
						|
  unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1;
 | 
						|
 | 
						|
  if (sign) {
 | 
						|
    if (!isSigned) {
 | 
						|
      /* Negative numbers cannot be represented as unsigned.  */
 | 
						|
      if (omsb != 0)
 | 
						|
        return opInvalidOp;
 | 
						|
    } else {
 | 
						|
      /* It takes omsb bits to represent the unsigned integer value.
 | 
						|
         We lose a bit for the sign, but care is needed as the
 | 
						|
         maximally negative integer is a special case.  */
 | 
						|
      if (omsb == width &&
 | 
						|
          APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb)
 | 
						|
        return opInvalidOp;
 | 
						|
 | 
						|
      /* This case can happen because of rounding.  */
 | 
						|
      if (omsb > width)
 | 
						|
        return opInvalidOp;
 | 
						|
    }
 | 
						|
 | 
						|
    APInt::tcNegate (parts.data(), dstPartsCount);
 | 
						|
  } else {
 | 
						|
    if (omsb >= width + !isSigned)
 | 
						|
      return opInvalidOp;
 | 
						|
  }
 | 
						|
 | 
						|
  if (lost_fraction == lfExactlyZero) {
 | 
						|
    *isExact = true;
 | 
						|
    return opOK;
 | 
						|
  } else
 | 
						|
    return opInexact;
 | 
						|
}
 | 
						|
 | 
						|
/* Same as convertToSignExtendedInteger, except we provide
 | 
						|
   deterministic values in case of an invalid operation exception,
 | 
						|
   namely zero for NaNs and the minimal or maximal value respectively
 | 
						|
   for underflow or overflow.
 | 
						|
   The *isExact output tells whether the result is exact, in the sense
 | 
						|
   that converting it back to the original floating point type produces
 | 
						|
   the original value.  This is almost equivalent to result==opOK,
 | 
						|
   except for negative zeroes.
 | 
						|
*/
 | 
						|
IEEEFloat::opStatus
 | 
						|
IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts,
 | 
						|
                            unsigned int width, bool isSigned,
 | 
						|
                            roundingMode rounding_mode, bool *isExact) const {
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
 | 
						|
                                    isExact);
 | 
						|
 | 
						|
  if (fs == opInvalidOp) {
 | 
						|
    unsigned int bits, dstPartsCount;
 | 
						|
 | 
						|
    dstPartsCount = partCountForBits(width);
 | 
						|
    assert(dstPartsCount <= parts.size() && "Integer too big");
 | 
						|
 | 
						|
    if (category == fcNaN)
 | 
						|
      bits = 0;
 | 
						|
    else if (sign)
 | 
						|
      bits = isSigned;
 | 
						|
    else
 | 
						|
      bits = width - isSigned;
 | 
						|
 | 
						|
    APInt::tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits);
 | 
						|
    if (sign && isSigned)
 | 
						|
      APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert an unsigned integer SRC to a floating point number,
 | 
						|
   rounding according to ROUNDING_MODE.  The sign of the floating
 | 
						|
   point number is not modified.  */
 | 
						|
IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts(
 | 
						|
    const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) {
 | 
						|
  unsigned int omsb, precision, dstCount;
 | 
						|
  integerPart *dst;
 | 
						|
  lostFraction lost_fraction;
 | 
						|
 | 
						|
  category = fcNormal;
 | 
						|
  omsb = APInt::tcMSB(src, srcCount) + 1;
 | 
						|
  dst = significandParts();
 | 
						|
  dstCount = partCount();
 | 
						|
  precision = semantics->precision;
 | 
						|
 | 
						|
  /* We want the most significant PRECISION bits of SRC.  There may not
 | 
						|
     be that many; extract what we can.  */
 | 
						|
  if (precision <= omsb) {
 | 
						|
    exponent = omsb - 1;
 | 
						|
    lost_fraction = lostFractionThroughTruncation(src, srcCount,
 | 
						|
                                                  omsb - precision);
 | 
						|
    APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
 | 
						|
  } else {
 | 
						|
    exponent = precision - 1;
 | 
						|
    lost_fraction = lfExactlyZero;
 | 
						|
    APInt::tcExtract(dst, dstCount, src, omsb, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  return normalize(rounding_mode, lost_fraction);
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned,
 | 
						|
                                                roundingMode rounding_mode) {
 | 
						|
  unsigned int partCount = Val.getNumWords();
 | 
						|
  APInt api = Val;
 | 
						|
 | 
						|
  sign = false;
 | 
						|
  if (isSigned && api.isNegative()) {
 | 
						|
    sign = true;
 | 
						|
    api = -api;
 | 
						|
  }
 | 
						|
 | 
						|
  return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a two's complement integer SRC to a floating point number,
 | 
						|
   rounding according to ROUNDING_MODE.  ISSIGNED is true if the
 | 
						|
   integer is signed, in which case it must be sign-extended.  */
 | 
						|
IEEEFloat::opStatus
 | 
						|
IEEEFloat::convertFromSignExtendedInteger(const integerPart *src,
 | 
						|
                                          unsigned int srcCount, bool isSigned,
 | 
						|
                                          roundingMode rounding_mode) {
 | 
						|
  opStatus status;
 | 
						|
 | 
						|
  if (isSigned &&
 | 
						|
      APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
 | 
						|
    integerPart *copy;
 | 
						|
 | 
						|
    /* If we're signed and negative negate a copy.  */
 | 
						|
    sign = true;
 | 
						|
    copy = new integerPart[srcCount];
 | 
						|
    APInt::tcAssign(copy, src, srcCount);
 | 
						|
    APInt::tcNegate(copy, srcCount);
 | 
						|
    status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
 | 
						|
    delete [] copy;
 | 
						|
  } else {
 | 
						|
    sign = false;
 | 
						|
    status = convertFromUnsignedParts(src, srcCount, rounding_mode);
 | 
						|
  }
 | 
						|
 | 
						|
  return status;
 | 
						|
}
 | 
						|
 | 
						|
/* FIXME: should this just take a const APInt reference?  */
 | 
						|
IEEEFloat::opStatus
 | 
						|
IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts,
 | 
						|
                                          unsigned int width, bool isSigned,
 | 
						|
                                          roundingMode rounding_mode) {
 | 
						|
  unsigned int partCount = partCountForBits(width);
 | 
						|
  APInt api = APInt(width, makeArrayRef(parts, partCount));
 | 
						|
 | 
						|
  sign = false;
 | 
						|
  if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
 | 
						|
    sign = true;
 | 
						|
    api = -api;
 | 
						|
  }
 | 
						|
 | 
						|
  return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::opStatus
 | 
						|
IEEEFloat::convertFromHexadecimalString(StringRef s,
 | 
						|
                                        roundingMode rounding_mode) {
 | 
						|
  lostFraction lost_fraction = lfExactlyZero;
 | 
						|
 | 
						|
  category = fcNormal;
 | 
						|
  zeroSignificand();
 | 
						|
  exponent = 0;
 | 
						|
 | 
						|
  integerPart *significand = significandParts();
 | 
						|
  unsigned partsCount = partCount();
 | 
						|
  unsigned bitPos = partsCount * integerPartWidth;
 | 
						|
  bool computedTrailingFraction = false;
 | 
						|
 | 
						|
  // Skip leading zeroes and any (hexa)decimal point.
 | 
						|
  StringRef::iterator begin = s.begin();
 | 
						|
  StringRef::iterator end = s.end();
 | 
						|
  StringRef::iterator dot;
 | 
						|
  StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
 | 
						|
  StringRef::iterator firstSignificantDigit = p;
 | 
						|
 | 
						|
  while (p != end) {
 | 
						|
    integerPart hex_value;
 | 
						|
 | 
						|
    if (*p == '.') {
 | 
						|
      assert(dot == end && "String contains multiple dots");
 | 
						|
      dot = p++;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    hex_value = hexDigitValue(*p);
 | 
						|
    if (hex_value == -1U)
 | 
						|
      break;
 | 
						|
 | 
						|
    p++;
 | 
						|
 | 
						|
    // Store the number while we have space.
 | 
						|
    if (bitPos) {
 | 
						|
      bitPos -= 4;
 | 
						|
      hex_value <<= bitPos % integerPartWidth;
 | 
						|
      significand[bitPos / integerPartWidth] |= hex_value;
 | 
						|
    } else if (!computedTrailingFraction) {
 | 
						|
      lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
 | 
						|
      computedTrailingFraction = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Hex floats require an exponent but not a hexadecimal point.  */
 | 
						|
  assert(p != end && "Hex strings require an exponent");
 | 
						|
  assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
 | 
						|
  assert(p != begin && "Significand has no digits");
 | 
						|
  assert((dot == end || p - begin != 1) && "Significand has no digits");
 | 
						|
 | 
						|
  /* Ignore the exponent if we are zero.  */
 | 
						|
  if (p != firstSignificantDigit) {
 | 
						|
    int expAdjustment;
 | 
						|
 | 
						|
    /* Implicit hexadecimal point?  */
 | 
						|
    if (dot == end)
 | 
						|
      dot = p;
 | 
						|
 | 
						|
    /* Calculate the exponent adjustment implicit in the number of
 | 
						|
       significant digits.  */
 | 
						|
    expAdjustment = static_cast<int>(dot - firstSignificantDigit);
 | 
						|
    if (expAdjustment < 0)
 | 
						|
      expAdjustment++;
 | 
						|
    expAdjustment = expAdjustment * 4 - 1;
 | 
						|
 | 
						|
    /* Adjust for writing the significand starting at the most
 | 
						|
       significant nibble.  */
 | 
						|
    expAdjustment += semantics->precision;
 | 
						|
    expAdjustment -= partsCount * integerPartWidth;
 | 
						|
 | 
						|
    /* Adjust for the given exponent.  */
 | 
						|
    exponent = totalExponent(p + 1, end, expAdjustment);
 | 
						|
  }
 | 
						|
 | 
						|
  return normalize(rounding_mode, lost_fraction);
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::opStatus
 | 
						|
IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts,
 | 
						|
                                        unsigned sigPartCount, int exp,
 | 
						|
                                        roundingMode rounding_mode) {
 | 
						|
  unsigned int parts, pow5PartCount;
 | 
						|
  fltSemantics calcSemantics = { 32767, -32767, 0, 0 };
 | 
						|
  integerPart pow5Parts[maxPowerOfFiveParts];
 | 
						|
  bool isNearest;
 | 
						|
 | 
						|
  isNearest = (rounding_mode == rmNearestTiesToEven ||
 | 
						|
               rounding_mode == rmNearestTiesToAway);
 | 
						|
 | 
						|
  parts = partCountForBits(semantics->precision + 11);
 | 
						|
 | 
						|
  /* Calculate pow(5, abs(exp)).  */
 | 
						|
  pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
 | 
						|
 | 
						|
  for (;; parts *= 2) {
 | 
						|
    opStatus sigStatus, powStatus;
 | 
						|
    unsigned int excessPrecision, truncatedBits;
 | 
						|
 | 
						|
    calcSemantics.precision = parts * integerPartWidth - 1;
 | 
						|
    excessPrecision = calcSemantics.precision - semantics->precision;
 | 
						|
    truncatedBits = excessPrecision;
 | 
						|
 | 
						|
    IEEEFloat decSig(calcSemantics, uninitialized);
 | 
						|
    decSig.makeZero(sign);
 | 
						|
    IEEEFloat pow5(calcSemantics);
 | 
						|
 | 
						|
    sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
 | 
						|
                                                rmNearestTiesToEven);
 | 
						|
    powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
 | 
						|
                                              rmNearestTiesToEven);
 | 
						|
    /* Add exp, as 10^n = 5^n * 2^n.  */
 | 
						|
    decSig.exponent += exp;
 | 
						|
 | 
						|
    lostFraction calcLostFraction;
 | 
						|
    integerPart HUerr, HUdistance;
 | 
						|
    unsigned int powHUerr;
 | 
						|
 | 
						|
    if (exp >= 0) {
 | 
						|
      /* multiplySignificand leaves the precision-th bit set to 1.  */
 | 
						|
      calcLostFraction = decSig.multiplySignificand(pow5, nullptr);
 | 
						|
      powHUerr = powStatus != opOK;
 | 
						|
    } else {
 | 
						|
      calcLostFraction = decSig.divideSignificand(pow5);
 | 
						|
      /* Denormal numbers have less precision.  */
 | 
						|
      if (decSig.exponent < semantics->minExponent) {
 | 
						|
        excessPrecision += (semantics->minExponent - decSig.exponent);
 | 
						|
        truncatedBits = excessPrecision;
 | 
						|
        if (excessPrecision > calcSemantics.precision)
 | 
						|
          excessPrecision = calcSemantics.precision;
 | 
						|
      }
 | 
						|
      /* Extra half-ulp lost in reciprocal of exponent.  */
 | 
						|
      powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Both multiplySignificand and divideSignificand return the
 | 
						|
       result with the integer bit set.  */
 | 
						|
    assert(APInt::tcExtractBit
 | 
						|
           (decSig.significandParts(), calcSemantics.precision - 1) == 1);
 | 
						|
 | 
						|
    HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
 | 
						|
                       powHUerr);
 | 
						|
    HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
 | 
						|
                                      excessPrecision, isNearest);
 | 
						|
 | 
						|
    /* Are we guaranteed to round correctly if we truncate?  */
 | 
						|
    if (HUdistance >= HUerr) {
 | 
						|
      APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
 | 
						|
                       calcSemantics.precision - excessPrecision,
 | 
						|
                       excessPrecision);
 | 
						|
      /* Take the exponent of decSig.  If we tcExtract-ed less bits
 | 
						|
         above we must adjust our exponent to compensate for the
 | 
						|
         implicit right shift.  */
 | 
						|
      exponent = (decSig.exponent + semantics->precision
 | 
						|
                  - (calcSemantics.precision - excessPrecision));
 | 
						|
      calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
 | 
						|
                                                       decSig.partCount(),
 | 
						|
                                                       truncatedBits);
 | 
						|
      return normalize(rounding_mode, calcLostFraction);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::opStatus
 | 
						|
IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) {
 | 
						|
  decimalInfo D;
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  /* Scan the text.  */
 | 
						|
  StringRef::iterator p = str.begin();
 | 
						|
  interpretDecimal(p, str.end(), &D);
 | 
						|
 | 
						|
  /* Handle the quick cases.  First the case of no significant digits,
 | 
						|
     i.e. zero, and then exponents that are obviously too large or too
 | 
						|
     small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
 | 
						|
     definitely overflows if
 | 
						|
 | 
						|
           (exp - 1) * L >= maxExponent
 | 
						|
 | 
						|
     and definitely underflows to zero where
 | 
						|
 | 
						|
           (exp + 1) * L <= minExponent - precision
 | 
						|
 | 
						|
     With integer arithmetic the tightest bounds for L are
 | 
						|
 | 
						|
           93/28 < L < 196/59            [ numerator <= 256 ]
 | 
						|
           42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
 | 
						|
  */
 | 
						|
 | 
						|
  // Test if we have a zero number allowing for strings with no null terminators
 | 
						|
  // and zero decimals with non-zero exponents.
 | 
						|
  //
 | 
						|
  // We computed firstSigDigit by ignoring all zeros and dots. Thus if
 | 
						|
  // D->firstSigDigit equals str.end(), every digit must be a zero and there can
 | 
						|
  // be at most one dot. On the other hand, if we have a zero with a non-zero
 | 
						|
  // exponent, then we know that D.firstSigDigit will be non-numeric.
 | 
						|
  if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
 | 
						|
    category = fcZero;
 | 
						|
    fs = opOK;
 | 
						|
 | 
						|
  /* Check whether the normalized exponent is high enough to overflow
 | 
						|
     max during the log-rebasing in the max-exponent check below. */
 | 
						|
  } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
 | 
						|
    fs = handleOverflow(rounding_mode);
 | 
						|
 | 
						|
  /* If it wasn't, then it also wasn't high enough to overflow max
 | 
						|
     during the log-rebasing in the min-exponent check.  Check that it
 | 
						|
     won't overflow min in either check, then perform the min-exponent
 | 
						|
     check. */
 | 
						|
  } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
 | 
						|
             (D.normalizedExponent + 1) * 28738 <=
 | 
						|
               8651 * (semantics->minExponent - (int) semantics->precision)) {
 | 
						|
    /* Underflow to zero and round.  */
 | 
						|
    category = fcNormal;
 | 
						|
    zeroSignificand();
 | 
						|
    fs = normalize(rounding_mode, lfLessThanHalf);
 | 
						|
 | 
						|
  /* We can finally safely perform the max-exponent check. */
 | 
						|
  } else if ((D.normalizedExponent - 1) * 42039
 | 
						|
             >= 12655 * semantics->maxExponent) {
 | 
						|
    /* Overflow and round.  */
 | 
						|
    fs = handleOverflow(rounding_mode);
 | 
						|
  } else {
 | 
						|
    integerPart *decSignificand;
 | 
						|
    unsigned int partCount;
 | 
						|
 | 
						|
    /* A tight upper bound on number of bits required to hold an
 | 
						|
       N-digit decimal integer is N * 196 / 59.  Allocate enough space
 | 
						|
       to hold the full significand, and an extra part required by
 | 
						|
       tcMultiplyPart.  */
 | 
						|
    partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
 | 
						|
    partCount = partCountForBits(1 + 196 * partCount / 59);
 | 
						|
    decSignificand = new integerPart[partCount + 1];
 | 
						|
    partCount = 0;
 | 
						|
 | 
						|
    /* Convert to binary efficiently - we do almost all multiplication
 | 
						|
       in an integerPart.  When this would overflow do we do a single
 | 
						|
       bignum multiplication, and then revert again to multiplication
 | 
						|
       in an integerPart.  */
 | 
						|
    do {
 | 
						|
      integerPart decValue, val, multiplier;
 | 
						|
 | 
						|
      val = 0;
 | 
						|
      multiplier = 1;
 | 
						|
 | 
						|
      do {
 | 
						|
        if (*p == '.') {
 | 
						|
          p++;
 | 
						|
          if (p == str.end()) {
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        decValue = decDigitValue(*p++);
 | 
						|
        assert(decValue < 10U && "Invalid character in significand");
 | 
						|
        multiplier *= 10;
 | 
						|
        val = val * 10 + decValue;
 | 
						|
        /* The maximum number that can be multiplied by ten with any
 | 
						|
           digit added without overflowing an integerPart.  */
 | 
						|
      } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
 | 
						|
 | 
						|
      /* Multiply out the current part.  */
 | 
						|
      APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
 | 
						|
                            partCount, partCount + 1, false);
 | 
						|
 | 
						|
      /* If we used another part (likely but not guaranteed), increase
 | 
						|
         the count.  */
 | 
						|
      if (decSignificand[partCount])
 | 
						|
        partCount++;
 | 
						|
    } while (p <= D.lastSigDigit);
 | 
						|
 | 
						|
    category = fcNormal;
 | 
						|
    fs = roundSignificandWithExponent(decSignificand, partCount,
 | 
						|
                                      D.exponent, rounding_mode);
 | 
						|
 | 
						|
    delete [] decSignificand;
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
bool IEEEFloat::convertFromStringSpecials(StringRef str) {
 | 
						|
  if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) {
 | 
						|
    makeInf(false);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (str.equals("-inf") || str.equals("-INFINITY") || str.equals("-Inf")) {
 | 
						|
    makeInf(true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (str.equals("nan") || str.equals("NaN")) {
 | 
						|
    makeNaN(false, false);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (str.equals("-nan") || str.equals("-NaN")) {
 | 
						|
    makeNaN(false, true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::opStatus IEEEFloat::convertFromString(StringRef str,
 | 
						|
                                                 roundingMode rounding_mode) {
 | 
						|
  assert(!str.empty() && "Invalid string length");
 | 
						|
 | 
						|
  // Handle special cases.
 | 
						|
  if (convertFromStringSpecials(str))
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  /* Handle a leading minus sign.  */
 | 
						|
  StringRef::iterator p = str.begin();
 | 
						|
  size_t slen = str.size();
 | 
						|
  sign = *p == '-' ? 1 : 0;
 | 
						|
  if (*p == '-' || *p == '+') {
 | 
						|
    p++;
 | 
						|
    slen--;
 | 
						|
    assert(slen && "String has no digits");
 | 
						|
  }
 | 
						|
 | 
						|
  if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
 | 
						|
    assert(slen - 2 && "Invalid string");
 | 
						|
    return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
 | 
						|
                                        rounding_mode);
 | 
						|
  }
 | 
						|
 | 
						|
  return convertFromDecimalString(StringRef(p, slen), rounding_mode);
 | 
						|
}
 | 
						|
 | 
						|
/* Write out a hexadecimal representation of the floating point value
 | 
						|
   to DST, which must be of sufficient size, in the C99 form
 | 
						|
   [-]0xh.hhhhp[+-]d.  Return the number of characters written,
 | 
						|
   excluding the terminating NUL.
 | 
						|
 | 
						|
   If UPPERCASE, the output is in upper case, otherwise in lower case.
 | 
						|
 | 
						|
   HEXDIGITS digits appear altogether, rounding the value if
 | 
						|
   necessary.  If HEXDIGITS is 0, the minimal precision to display the
 | 
						|
   number precisely is used instead.  If nothing would appear after
 | 
						|
   the decimal point it is suppressed.
 | 
						|
 | 
						|
   The decimal exponent is always printed and has at least one digit.
 | 
						|
   Zero values display an exponent of zero.  Infinities and NaNs
 | 
						|
   appear as "infinity" or "nan" respectively.
 | 
						|
 | 
						|
   The above rules are as specified by C99.  There is ambiguity about
 | 
						|
   what the leading hexadecimal digit should be.  This implementation
 | 
						|
   uses whatever is necessary so that the exponent is displayed as
 | 
						|
   stored.  This implies the exponent will fall within the IEEE format
 | 
						|
   range, and the leading hexadecimal digit will be 0 (for denormals),
 | 
						|
   1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
 | 
						|
   any other digits zero).
 | 
						|
*/
 | 
						|
unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits,
 | 
						|
                                           bool upperCase,
 | 
						|
                                           roundingMode rounding_mode) const {
 | 
						|
  char *p;
 | 
						|
 | 
						|
  p = dst;
 | 
						|
  if (sign)
 | 
						|
    *dst++ = '-';
 | 
						|
 | 
						|
  switch (category) {
 | 
						|
  case fcInfinity:
 | 
						|
    memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
 | 
						|
    dst += sizeof infinityL - 1;
 | 
						|
    break;
 | 
						|
 | 
						|
  case fcNaN:
 | 
						|
    memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
 | 
						|
    dst += sizeof NaNU - 1;
 | 
						|
    break;
 | 
						|
 | 
						|
  case fcZero:
 | 
						|
    *dst++ = '0';
 | 
						|
    *dst++ = upperCase ? 'X': 'x';
 | 
						|
    *dst++ = '0';
 | 
						|
    if (hexDigits > 1) {
 | 
						|
      *dst++ = '.';
 | 
						|
      memset (dst, '0', hexDigits - 1);
 | 
						|
      dst += hexDigits - 1;
 | 
						|
    }
 | 
						|
    *dst++ = upperCase ? 'P': 'p';
 | 
						|
    *dst++ = '0';
 | 
						|
    break;
 | 
						|
 | 
						|
  case fcNormal:
 | 
						|
    dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  *dst = 0;
 | 
						|
 | 
						|
  return static_cast<unsigned int>(dst - p);
 | 
						|
}
 | 
						|
 | 
						|
/* Does the hard work of outputting the correctly rounded hexadecimal
 | 
						|
   form of a normal floating point number with the specified number of
 | 
						|
   hexadecimal digits.  If HEXDIGITS is zero the minimum number of
 | 
						|
   digits necessary to print the value precisely is output.  */
 | 
						|
char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
 | 
						|
                                          bool upperCase,
 | 
						|
                                          roundingMode rounding_mode) const {
 | 
						|
  unsigned int count, valueBits, shift, partsCount, outputDigits;
 | 
						|
  const char *hexDigitChars;
 | 
						|
  const integerPart *significand;
 | 
						|
  char *p;
 | 
						|
  bool roundUp;
 | 
						|
 | 
						|
  *dst++ = '0';
 | 
						|
  *dst++ = upperCase ? 'X': 'x';
 | 
						|
 | 
						|
  roundUp = false;
 | 
						|
  hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
 | 
						|
 | 
						|
  significand = significandParts();
 | 
						|
  partsCount = partCount();
 | 
						|
 | 
						|
  /* +3 because the first digit only uses the single integer bit, so
 | 
						|
     we have 3 virtual zero most-significant-bits.  */
 | 
						|
  valueBits = semantics->precision + 3;
 | 
						|
  shift = integerPartWidth - valueBits % integerPartWidth;
 | 
						|
 | 
						|
  /* The natural number of digits required ignoring trailing
 | 
						|
     insignificant zeroes.  */
 | 
						|
  outputDigits = (valueBits - significandLSB () + 3) / 4;
 | 
						|
 | 
						|
  /* hexDigits of zero means use the required number for the
 | 
						|
     precision.  Otherwise, see if we are truncating.  If we are,
 | 
						|
     find out if we need to round away from zero.  */
 | 
						|
  if (hexDigits) {
 | 
						|
    if (hexDigits < outputDigits) {
 | 
						|
      /* We are dropping non-zero bits, so need to check how to round.
 | 
						|
         "bits" is the number of dropped bits.  */
 | 
						|
      unsigned int bits;
 | 
						|
      lostFraction fraction;
 | 
						|
 | 
						|
      bits = valueBits - hexDigits * 4;
 | 
						|
      fraction = lostFractionThroughTruncation (significand, partsCount, bits);
 | 
						|
      roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
 | 
						|
    }
 | 
						|
    outputDigits = hexDigits;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Write the digits consecutively, and start writing in the location
 | 
						|
     of the hexadecimal point.  We move the most significant digit
 | 
						|
     left and add the hexadecimal point later.  */
 | 
						|
  p = ++dst;
 | 
						|
 | 
						|
  count = (valueBits + integerPartWidth - 1) / integerPartWidth;
 | 
						|
 | 
						|
  while (outputDigits && count) {
 | 
						|
    integerPart part;
 | 
						|
 | 
						|
    /* Put the most significant integerPartWidth bits in "part".  */
 | 
						|
    if (--count == partsCount)
 | 
						|
      part = 0;  /* An imaginary higher zero part.  */
 | 
						|
    else
 | 
						|
      part = significand[count] << shift;
 | 
						|
 | 
						|
    if (count && shift)
 | 
						|
      part |= significand[count - 1] >> (integerPartWidth - shift);
 | 
						|
 | 
						|
    /* Convert as much of "part" to hexdigits as we can.  */
 | 
						|
    unsigned int curDigits = integerPartWidth / 4;
 | 
						|
 | 
						|
    if (curDigits > outputDigits)
 | 
						|
      curDigits = outputDigits;
 | 
						|
    dst += partAsHex (dst, part, curDigits, hexDigitChars);
 | 
						|
    outputDigits -= curDigits;
 | 
						|
  }
 | 
						|
 | 
						|
  if (roundUp) {
 | 
						|
    char *q = dst;
 | 
						|
 | 
						|
    /* Note that hexDigitChars has a trailing '0'.  */
 | 
						|
    do {
 | 
						|
      q--;
 | 
						|
      *q = hexDigitChars[hexDigitValue (*q) + 1];
 | 
						|
    } while (*q == '0');
 | 
						|
    assert(q >= p);
 | 
						|
  } else {
 | 
						|
    /* Add trailing zeroes.  */
 | 
						|
    memset (dst, '0', outputDigits);
 | 
						|
    dst += outputDigits;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Move the most significant digit to before the point, and if there
 | 
						|
     is something after the decimal point add it.  This must come
 | 
						|
     after rounding above.  */
 | 
						|
  p[-1] = p[0];
 | 
						|
  if (dst -1 == p)
 | 
						|
    dst--;
 | 
						|
  else
 | 
						|
    p[0] = '.';
 | 
						|
 | 
						|
  /* Finally output the exponent.  */
 | 
						|
  *dst++ = upperCase ? 'P': 'p';
 | 
						|
 | 
						|
  return writeSignedDecimal (dst, exponent);
 | 
						|
}
 | 
						|
 | 
						|
hash_code hash_value(const IEEEFloat &Arg) {
 | 
						|
  if (!Arg.isFiniteNonZero())
 | 
						|
    return hash_combine((uint8_t)Arg.category,
 | 
						|
                        // NaN has no sign, fix it at zero.
 | 
						|
                        Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
 | 
						|
                        Arg.semantics->precision);
 | 
						|
 | 
						|
  // Normal floats need their exponent and significand hashed.
 | 
						|
  return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
 | 
						|
                      Arg.semantics->precision, Arg.exponent,
 | 
						|
                      hash_combine_range(
 | 
						|
                        Arg.significandParts(),
 | 
						|
                        Arg.significandParts() + Arg.partCount()));
 | 
						|
}
 | 
						|
 | 
						|
// Conversion from APFloat to/from host float/double.  It may eventually be
 | 
						|
// possible to eliminate these and have everybody deal with APFloats, but that
 | 
						|
// will take a while.  This approach will not easily extend to long double.
 | 
						|
// Current implementation requires integerPartWidth==64, which is correct at
 | 
						|
// the moment but could be made more general.
 | 
						|
 | 
						|
// Denormals have exponent minExponent in APFloat, but minExponent-1 in
 | 
						|
// the actual IEEE respresentations.  We compensate for that here.
 | 
						|
 | 
						|
APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const {
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended);
 | 
						|
  assert(partCount()==2);
 | 
						|
 | 
						|
  uint64_t myexponent, mysignificand;
 | 
						|
 | 
						|
  if (isFiniteNonZero()) {
 | 
						|
    myexponent = exponent+16383; //bias
 | 
						|
    mysignificand = significandParts()[0];
 | 
						|
    if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
 | 
						|
      myexponent = 0;   // denormal
 | 
						|
  } else if (category==fcZero) {
 | 
						|
    myexponent = 0;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else if (category==fcInfinity) {
 | 
						|
    myexponent = 0x7fff;
 | 
						|
    mysignificand = 0x8000000000000000ULL;
 | 
						|
  } else {
 | 
						|
    assert(category == fcNaN && "Unknown category");
 | 
						|
    myexponent = 0x7fff;
 | 
						|
    mysignificand = significandParts()[0];
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t words[2];
 | 
						|
  words[0] = mysignificand;
 | 
						|
  words[1] =  ((uint64_t)(sign & 1) << 15) |
 | 
						|
              (myexponent & 0x7fffLL);
 | 
						|
  return APInt(80, words);
 | 
						|
}
 | 
						|
 | 
						|
APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const {
 | 
						|
  assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy);
 | 
						|
  assert(partCount()==2);
 | 
						|
 | 
						|
  uint64_t words[2];
 | 
						|
  opStatus fs;
 | 
						|
  bool losesInfo;
 | 
						|
 | 
						|
  // Convert number to double.  To avoid spurious underflows, we re-
 | 
						|
  // normalize against the "double" minExponent first, and only *then*
 | 
						|
  // truncate the mantissa.  The result of that second conversion
 | 
						|
  // may be inexact, but should never underflow.
 | 
						|
  // Declare fltSemantics before APFloat that uses it (and
 | 
						|
  // saves pointer to it) to ensure correct destruction order.
 | 
						|
  fltSemantics extendedSemantics = *semantics;
 | 
						|
  extendedSemantics.minExponent = semIEEEdouble.minExponent;
 | 
						|
  IEEEFloat extended(*this);
 | 
						|
  fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
 | 
						|
  assert(fs == opOK && !losesInfo);
 | 
						|
  (void)fs;
 | 
						|
 | 
						|
  IEEEFloat u(extended);
 | 
						|
  fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
 | 
						|
  assert(fs == opOK || fs == opInexact);
 | 
						|
  (void)fs;
 | 
						|
  words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
 | 
						|
 | 
						|
  // If conversion was exact or resulted in a special case, we're done;
 | 
						|
  // just set the second double to zero.  Otherwise, re-convert back to
 | 
						|
  // the extended format and compute the difference.  This now should
 | 
						|
  // convert exactly to double.
 | 
						|
  if (u.isFiniteNonZero() && losesInfo) {
 | 
						|
    fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
 | 
						|
    assert(fs == opOK && !losesInfo);
 | 
						|
    (void)fs;
 | 
						|
 | 
						|
    IEEEFloat v(extended);
 | 
						|
    v.subtract(u, rmNearestTiesToEven);
 | 
						|
    fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
 | 
						|
    assert(fs == opOK && !losesInfo);
 | 
						|
    (void)fs;
 | 
						|
    words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
 | 
						|
  } else {
 | 
						|
    words[1] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return APInt(128, words);
 | 
						|
}
 | 
						|
 | 
						|
APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const {
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&semIEEEquad);
 | 
						|
  assert(partCount()==2);
 | 
						|
 | 
						|
  uint64_t myexponent, mysignificand, mysignificand2;
 | 
						|
 | 
						|
  if (isFiniteNonZero()) {
 | 
						|
    myexponent = exponent+16383; //bias
 | 
						|
    mysignificand = significandParts()[0];
 | 
						|
    mysignificand2 = significandParts()[1];
 | 
						|
    if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
 | 
						|
      myexponent = 0;   // denormal
 | 
						|
  } else if (category==fcZero) {
 | 
						|
    myexponent = 0;
 | 
						|
    mysignificand = mysignificand2 = 0;
 | 
						|
  } else if (category==fcInfinity) {
 | 
						|
    myexponent = 0x7fff;
 | 
						|
    mysignificand = mysignificand2 = 0;
 | 
						|
  } else {
 | 
						|
    assert(category == fcNaN && "Unknown category!");
 | 
						|
    myexponent = 0x7fff;
 | 
						|
    mysignificand = significandParts()[0];
 | 
						|
    mysignificand2 = significandParts()[1];
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t words[2];
 | 
						|
  words[0] = mysignificand;
 | 
						|
  words[1] = ((uint64_t)(sign & 1) << 63) |
 | 
						|
             ((myexponent & 0x7fff) << 48) |
 | 
						|
             (mysignificand2 & 0xffffffffffffLL);
 | 
						|
 | 
						|
  return APInt(128, words);
 | 
						|
}
 | 
						|
 | 
						|
APInt IEEEFloat::convertDoubleAPFloatToAPInt() const {
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble);
 | 
						|
  assert(partCount()==1);
 | 
						|
 | 
						|
  uint64_t myexponent, mysignificand;
 | 
						|
 | 
						|
  if (isFiniteNonZero()) {
 | 
						|
    myexponent = exponent+1023; //bias
 | 
						|
    mysignificand = *significandParts();
 | 
						|
    if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
 | 
						|
      myexponent = 0;   // denormal
 | 
						|
  } else if (category==fcZero) {
 | 
						|
    myexponent = 0;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else if (category==fcInfinity) {
 | 
						|
    myexponent = 0x7ff;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else {
 | 
						|
    assert(category == fcNaN && "Unknown category!");
 | 
						|
    myexponent = 0x7ff;
 | 
						|
    mysignificand = *significandParts();
 | 
						|
  }
 | 
						|
 | 
						|
  return APInt(64, ((((uint64_t)(sign & 1) << 63) |
 | 
						|
                     ((myexponent & 0x7ff) <<  52) |
 | 
						|
                     (mysignificand & 0xfffffffffffffLL))));
 | 
						|
}
 | 
						|
 | 
						|
APInt IEEEFloat::convertFloatAPFloatToAPInt() const {
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle);
 | 
						|
  assert(partCount()==1);
 | 
						|
 | 
						|
  uint32_t myexponent, mysignificand;
 | 
						|
 | 
						|
  if (isFiniteNonZero()) {
 | 
						|
    myexponent = exponent+127; //bias
 | 
						|
    mysignificand = (uint32_t)*significandParts();
 | 
						|
    if (myexponent == 1 && !(mysignificand & 0x800000))
 | 
						|
      myexponent = 0;   // denormal
 | 
						|
  } else if (category==fcZero) {
 | 
						|
    myexponent = 0;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else if (category==fcInfinity) {
 | 
						|
    myexponent = 0xff;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else {
 | 
						|
    assert(category == fcNaN && "Unknown category!");
 | 
						|
    myexponent = 0xff;
 | 
						|
    mysignificand = (uint32_t)*significandParts();
 | 
						|
  }
 | 
						|
 | 
						|
  return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
 | 
						|
                    (mysignificand & 0x7fffff)));
 | 
						|
}
 | 
						|
 | 
						|
APInt IEEEFloat::convertHalfAPFloatToAPInt() const {
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf);
 | 
						|
  assert(partCount()==1);
 | 
						|
 | 
						|
  uint32_t myexponent, mysignificand;
 | 
						|
 | 
						|
  if (isFiniteNonZero()) {
 | 
						|
    myexponent = exponent+15; //bias
 | 
						|
    mysignificand = (uint32_t)*significandParts();
 | 
						|
    if (myexponent == 1 && !(mysignificand & 0x400))
 | 
						|
      myexponent = 0;   // denormal
 | 
						|
  } else if (category==fcZero) {
 | 
						|
    myexponent = 0;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else if (category==fcInfinity) {
 | 
						|
    myexponent = 0x1f;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else {
 | 
						|
    assert(category == fcNaN && "Unknown category!");
 | 
						|
    myexponent = 0x1f;
 | 
						|
    mysignificand = (uint32_t)*significandParts();
 | 
						|
  }
 | 
						|
 | 
						|
  return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
 | 
						|
                    (mysignificand & 0x3ff)));
 | 
						|
}
 | 
						|
 | 
						|
// This function creates an APInt that is just a bit map of the floating
 | 
						|
// point constant as it would appear in memory.  It is not a conversion,
 | 
						|
// and treating the result as a normal integer is unlikely to be useful.
 | 
						|
 | 
						|
APInt IEEEFloat::bitcastToAPInt() const {
 | 
						|
  if (semantics == (const llvm::fltSemantics*)&semIEEEhalf)
 | 
						|
    return convertHalfAPFloatToAPInt();
 | 
						|
 | 
						|
  if (semantics == (const llvm::fltSemantics*)&semIEEEsingle)
 | 
						|
    return convertFloatAPFloatToAPInt();
 | 
						|
 | 
						|
  if (semantics == (const llvm::fltSemantics*)&semIEEEdouble)
 | 
						|
    return convertDoubleAPFloatToAPInt();
 | 
						|
 | 
						|
  if (semantics == (const llvm::fltSemantics*)&semIEEEquad)
 | 
						|
    return convertQuadrupleAPFloatToAPInt();
 | 
						|
 | 
						|
  if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy)
 | 
						|
    return convertPPCDoubleDoubleAPFloatToAPInt();
 | 
						|
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended &&
 | 
						|
         "unknown format!");
 | 
						|
  return convertF80LongDoubleAPFloatToAPInt();
 | 
						|
}
 | 
						|
 | 
						|
float IEEEFloat::convertToFloat() const {
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle &&
 | 
						|
         "Float semantics are not IEEEsingle");
 | 
						|
  APInt api = bitcastToAPInt();
 | 
						|
  return api.bitsToFloat();
 | 
						|
}
 | 
						|
 | 
						|
double IEEEFloat::convertToDouble() const {
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble &&
 | 
						|
         "Float semantics are not IEEEdouble");
 | 
						|
  APInt api = bitcastToAPInt();
 | 
						|
  return api.bitsToDouble();
 | 
						|
}
 | 
						|
 | 
						|
/// Integer bit is explicit in this format.  Intel hardware (387 and later)
 | 
						|
/// does not support these bit patterns:
 | 
						|
///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
 | 
						|
///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
 | 
						|
///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
 | 
						|
///  exponent = 0, integer bit 1 ("pseudodenormal")
 | 
						|
/// At the moment, the first three are treated as NaNs, the last one as Normal.
 | 
						|
void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) {
 | 
						|
  assert(api.getBitWidth()==80);
 | 
						|
  uint64_t i1 = api.getRawData()[0];
 | 
						|
  uint64_t i2 = api.getRawData()[1];
 | 
						|
  uint64_t myexponent = (i2 & 0x7fff);
 | 
						|
  uint64_t mysignificand = i1;
 | 
						|
  uint8_t myintegerbit = mysignificand >> 63;
 | 
						|
 | 
						|
  initialize(&semX87DoubleExtended);
 | 
						|
  assert(partCount()==2);
 | 
						|
 | 
						|
  sign = static_cast<unsigned int>(i2>>15);
 | 
						|
  if (myexponent == 0 && mysignificand == 0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcZero;
 | 
						|
  } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcInfinity;
 | 
						|
  } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) ||
 | 
						|
             (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) {
 | 
						|
    // exponent meaningless
 | 
						|
    category = fcNaN;
 | 
						|
    significandParts()[0] = mysignificand;
 | 
						|
    significandParts()[1] = 0;
 | 
						|
  } else {
 | 
						|
    category = fcNormal;
 | 
						|
    exponent = myexponent - 16383;
 | 
						|
    significandParts()[0] = mysignificand;
 | 
						|
    significandParts()[1] = 0;
 | 
						|
    if (myexponent==0)          // denormal
 | 
						|
      exponent = -16382;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) {
 | 
						|
  assert(api.getBitWidth()==128);
 | 
						|
  uint64_t i1 = api.getRawData()[0];
 | 
						|
  uint64_t i2 = api.getRawData()[1];
 | 
						|
  opStatus fs;
 | 
						|
  bool losesInfo;
 | 
						|
 | 
						|
  // Get the first double and convert to our format.
 | 
						|
  initFromDoubleAPInt(APInt(64, i1));
 | 
						|
  fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo);
 | 
						|
  assert(fs == opOK && !losesInfo);
 | 
						|
  (void)fs;
 | 
						|
 | 
						|
  // Unless we have a special case, add in second double.
 | 
						|
  if (isFiniteNonZero()) {
 | 
						|
    IEEEFloat v(semIEEEdouble, APInt(64, i2));
 | 
						|
    fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo);
 | 
						|
    assert(fs == opOK && !losesInfo);
 | 
						|
    (void)fs;
 | 
						|
 | 
						|
    add(v, rmNearestTiesToEven);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) {
 | 
						|
  assert(api.getBitWidth()==128);
 | 
						|
  uint64_t i1 = api.getRawData()[0];
 | 
						|
  uint64_t i2 = api.getRawData()[1];
 | 
						|
  uint64_t myexponent = (i2 >> 48) & 0x7fff;
 | 
						|
  uint64_t mysignificand  = i1;
 | 
						|
  uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
 | 
						|
 | 
						|
  initialize(&semIEEEquad);
 | 
						|
  assert(partCount()==2);
 | 
						|
 | 
						|
  sign = static_cast<unsigned int>(i2>>63);
 | 
						|
  if (myexponent==0 &&
 | 
						|
      (mysignificand==0 && mysignificand2==0)) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcZero;
 | 
						|
  } else if (myexponent==0x7fff &&
 | 
						|
             (mysignificand==0 && mysignificand2==0)) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcInfinity;
 | 
						|
  } else if (myexponent==0x7fff &&
 | 
						|
             (mysignificand!=0 || mysignificand2 !=0)) {
 | 
						|
    // exponent meaningless
 | 
						|
    category = fcNaN;
 | 
						|
    significandParts()[0] = mysignificand;
 | 
						|
    significandParts()[1] = mysignificand2;
 | 
						|
  } else {
 | 
						|
    category = fcNormal;
 | 
						|
    exponent = myexponent - 16383;
 | 
						|
    significandParts()[0] = mysignificand;
 | 
						|
    significandParts()[1] = mysignificand2;
 | 
						|
    if (myexponent==0)          // denormal
 | 
						|
      exponent = -16382;
 | 
						|
    else
 | 
						|
      significandParts()[1] |= 0x1000000000000LL;  // integer bit
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::initFromDoubleAPInt(const APInt &api) {
 | 
						|
  assert(api.getBitWidth()==64);
 | 
						|
  uint64_t i = *api.getRawData();
 | 
						|
  uint64_t myexponent = (i >> 52) & 0x7ff;
 | 
						|
  uint64_t mysignificand = i & 0xfffffffffffffLL;
 | 
						|
 | 
						|
  initialize(&semIEEEdouble);
 | 
						|
  assert(partCount()==1);
 | 
						|
 | 
						|
  sign = static_cast<unsigned int>(i>>63);
 | 
						|
  if (myexponent==0 && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcZero;
 | 
						|
  } else if (myexponent==0x7ff && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcInfinity;
 | 
						|
  } else if (myexponent==0x7ff && mysignificand!=0) {
 | 
						|
    // exponent meaningless
 | 
						|
    category = fcNaN;
 | 
						|
    *significandParts() = mysignificand;
 | 
						|
  } else {
 | 
						|
    category = fcNormal;
 | 
						|
    exponent = myexponent - 1023;
 | 
						|
    *significandParts() = mysignificand;
 | 
						|
    if (myexponent==0)          // denormal
 | 
						|
      exponent = -1022;
 | 
						|
    else
 | 
						|
      *significandParts() |= 0x10000000000000LL;  // integer bit
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::initFromFloatAPInt(const APInt &api) {
 | 
						|
  assert(api.getBitWidth()==32);
 | 
						|
  uint32_t i = (uint32_t)*api.getRawData();
 | 
						|
  uint32_t myexponent = (i >> 23) & 0xff;
 | 
						|
  uint32_t mysignificand = i & 0x7fffff;
 | 
						|
 | 
						|
  initialize(&semIEEEsingle);
 | 
						|
  assert(partCount()==1);
 | 
						|
 | 
						|
  sign = i >> 31;
 | 
						|
  if (myexponent==0 && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcZero;
 | 
						|
  } else if (myexponent==0xff && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcInfinity;
 | 
						|
  } else if (myexponent==0xff && mysignificand!=0) {
 | 
						|
    // sign, exponent, significand meaningless
 | 
						|
    category = fcNaN;
 | 
						|
    *significandParts() = mysignificand;
 | 
						|
  } else {
 | 
						|
    category = fcNormal;
 | 
						|
    exponent = myexponent - 127;  //bias
 | 
						|
    *significandParts() = mysignificand;
 | 
						|
    if (myexponent==0)    // denormal
 | 
						|
      exponent = -126;
 | 
						|
    else
 | 
						|
      *significandParts() |= 0x800000; // integer bit
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::initFromHalfAPInt(const APInt &api) {
 | 
						|
  assert(api.getBitWidth()==16);
 | 
						|
  uint32_t i = (uint32_t)*api.getRawData();
 | 
						|
  uint32_t myexponent = (i >> 10) & 0x1f;
 | 
						|
  uint32_t mysignificand = i & 0x3ff;
 | 
						|
 | 
						|
  initialize(&semIEEEhalf);
 | 
						|
  assert(partCount()==1);
 | 
						|
 | 
						|
  sign = i >> 15;
 | 
						|
  if (myexponent==0 && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcZero;
 | 
						|
  } else if (myexponent==0x1f && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcInfinity;
 | 
						|
  } else if (myexponent==0x1f && mysignificand!=0) {
 | 
						|
    // sign, exponent, significand meaningless
 | 
						|
    category = fcNaN;
 | 
						|
    *significandParts() = mysignificand;
 | 
						|
  } else {
 | 
						|
    category = fcNormal;
 | 
						|
    exponent = myexponent - 15;  //bias
 | 
						|
    *significandParts() = mysignificand;
 | 
						|
    if (myexponent==0)    // denormal
 | 
						|
      exponent = -14;
 | 
						|
    else
 | 
						|
      *significandParts() |= 0x400; // integer bit
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Treat api as containing the bits of a floating point number.  Currently
 | 
						|
/// we infer the floating point type from the size of the APInt.  The
 | 
						|
/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
 | 
						|
/// when the size is anything else).
 | 
						|
void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) {
 | 
						|
  if (Sem == &semIEEEhalf)
 | 
						|
    return initFromHalfAPInt(api);
 | 
						|
  if (Sem == &semIEEEsingle)
 | 
						|
    return initFromFloatAPInt(api);
 | 
						|
  if (Sem == &semIEEEdouble)
 | 
						|
    return initFromDoubleAPInt(api);
 | 
						|
  if (Sem == &semX87DoubleExtended)
 | 
						|
    return initFromF80LongDoubleAPInt(api);
 | 
						|
  if (Sem == &semIEEEquad)
 | 
						|
    return initFromQuadrupleAPInt(api);
 | 
						|
  if (Sem == &semPPCDoubleDoubleLegacy)
 | 
						|
    return initFromPPCDoubleDoubleAPInt(api);
 | 
						|
 | 
						|
  llvm_unreachable(nullptr);
 | 
						|
}
 | 
						|
 | 
						|
/// Make this number the largest magnitude normal number in the given
 | 
						|
/// semantics.
 | 
						|
void IEEEFloat::makeLargest(bool Negative) {
 | 
						|
  // We want (in interchange format):
 | 
						|
  //   sign = {Negative}
 | 
						|
  //   exponent = 1..10
 | 
						|
  //   significand = 1..1
 | 
						|
  category = fcNormal;
 | 
						|
  sign = Negative;
 | 
						|
  exponent = semantics->maxExponent;
 | 
						|
 | 
						|
  // Use memset to set all but the highest integerPart to all ones.
 | 
						|
  integerPart *significand = significandParts();
 | 
						|
  unsigned PartCount = partCount();
 | 
						|
  memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
 | 
						|
 | 
						|
  // Set the high integerPart especially setting all unused top bits for
 | 
						|
  // internal consistency.
 | 
						|
  const unsigned NumUnusedHighBits =
 | 
						|
    PartCount*integerPartWidth - semantics->precision;
 | 
						|
  significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth)
 | 
						|
                                   ? (~integerPart(0) >> NumUnusedHighBits)
 | 
						|
                                   : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Make this number the smallest magnitude denormal number in the given
 | 
						|
/// semantics.
 | 
						|
void IEEEFloat::makeSmallest(bool Negative) {
 | 
						|
  // We want (in interchange format):
 | 
						|
  //   sign = {Negative}
 | 
						|
  //   exponent = 0..0
 | 
						|
  //   significand = 0..01
 | 
						|
  category = fcNormal;
 | 
						|
  sign = Negative;
 | 
						|
  exponent = semantics->minExponent;
 | 
						|
  APInt::tcSet(significandParts(), 1, partCount());
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::makeSmallestNormalized(bool Negative) {
 | 
						|
  // We want (in interchange format):
 | 
						|
  //   sign = {Negative}
 | 
						|
  //   exponent = 0..0
 | 
						|
  //   significand = 10..0
 | 
						|
 | 
						|
  category = fcNormal;
 | 
						|
  zeroSignificand();
 | 
						|
  sign = Negative;
 | 
						|
  exponent = semantics->minExponent;
 | 
						|
  significandParts()[partCountForBits(semantics->precision) - 1] |=
 | 
						|
      (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth));
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) {
 | 
						|
  initFromAPInt(&Sem, API);
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::IEEEFloat(float f) {
 | 
						|
  initFromAPInt(&semIEEEsingle, APInt::floatToBits(f));
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat::IEEEFloat(double d) {
 | 
						|
  initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
 | 
						|
    Buffer.append(Str.begin(), Str.end());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Removes data from the given significand until it is no more
 | 
						|
  /// precise than is required for the desired precision.
 | 
						|
  void AdjustToPrecision(APInt &significand,
 | 
						|
                         int &exp, unsigned FormatPrecision) {
 | 
						|
    unsigned bits = significand.getActiveBits();
 | 
						|
 | 
						|
    // 196/59 is a very slight overestimate of lg_2(10).
 | 
						|
    unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
 | 
						|
 | 
						|
    if (bits <= bitsRequired) return;
 | 
						|
 | 
						|
    unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
 | 
						|
    if (!tensRemovable) return;
 | 
						|
 | 
						|
    exp += tensRemovable;
 | 
						|
 | 
						|
    APInt divisor(significand.getBitWidth(), 1);
 | 
						|
    APInt powten(significand.getBitWidth(), 10);
 | 
						|
    while (true) {
 | 
						|
      if (tensRemovable & 1)
 | 
						|
        divisor *= powten;
 | 
						|
      tensRemovable >>= 1;
 | 
						|
      if (!tensRemovable) break;
 | 
						|
      powten *= powten;
 | 
						|
    }
 | 
						|
 | 
						|
    significand = significand.udiv(divisor);
 | 
						|
 | 
						|
    // Truncate the significand down to its active bit count.
 | 
						|
    significand = significand.trunc(significand.getActiveBits());
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  void AdjustToPrecision(SmallVectorImpl<char> &buffer,
 | 
						|
                         int &exp, unsigned FormatPrecision) {
 | 
						|
    unsigned N = buffer.size();
 | 
						|
    if (N <= FormatPrecision) return;
 | 
						|
 | 
						|
    // The most significant figures are the last ones in the buffer.
 | 
						|
    unsigned FirstSignificant = N - FormatPrecision;
 | 
						|
 | 
						|
    // Round.
 | 
						|
    // FIXME: this probably shouldn't use 'round half up'.
 | 
						|
 | 
						|
    // Rounding down is just a truncation, except we also want to drop
 | 
						|
    // trailing zeros from the new result.
 | 
						|
    if (buffer[FirstSignificant - 1] < '5') {
 | 
						|
      while (FirstSignificant < N && buffer[FirstSignificant] == '0')
 | 
						|
        FirstSignificant++;
 | 
						|
 | 
						|
      exp += FirstSignificant;
 | 
						|
      buffer.erase(&buffer[0], &buffer[FirstSignificant]);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Rounding up requires a decimal add-with-carry.  If we continue
 | 
						|
    // the carry, the newly-introduced zeros will just be truncated.
 | 
						|
    for (unsigned I = FirstSignificant; I != N; ++I) {
 | 
						|
      if (buffer[I] == '9') {
 | 
						|
        FirstSignificant++;
 | 
						|
      } else {
 | 
						|
        buffer[I]++;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we carried through, we have exactly one digit of precision.
 | 
						|
    if (FirstSignificant == N) {
 | 
						|
      exp += FirstSignificant;
 | 
						|
      buffer.clear();
 | 
						|
      buffer.push_back('1');
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    exp += FirstSignificant;
 | 
						|
    buffer.erase(&buffer[0], &buffer[FirstSignificant]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
 | 
						|
                         unsigned FormatMaxPadding, bool TruncateZero) const {
 | 
						|
  switch (category) {
 | 
						|
  case fcInfinity:
 | 
						|
    if (isNegative())
 | 
						|
      return append(Str, "-Inf");
 | 
						|
    else
 | 
						|
      return append(Str, "+Inf");
 | 
						|
 | 
						|
  case fcNaN: return append(Str, "NaN");
 | 
						|
 | 
						|
  case fcZero:
 | 
						|
    if (isNegative())
 | 
						|
      Str.push_back('-');
 | 
						|
 | 
						|
    if (!FormatMaxPadding) {
 | 
						|
      if (TruncateZero)
 | 
						|
        append(Str, "0.0E+0");
 | 
						|
      else {
 | 
						|
        append(Str, "0.0");
 | 
						|
        if (FormatPrecision > 1)
 | 
						|
          Str.append(FormatPrecision - 1, '0');
 | 
						|
        append(Str, "e+00");
 | 
						|
      }
 | 
						|
    } else
 | 
						|
      Str.push_back('0');
 | 
						|
    return;
 | 
						|
 | 
						|
  case fcNormal:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isNegative())
 | 
						|
    Str.push_back('-');
 | 
						|
 | 
						|
  // Decompose the number into an APInt and an exponent.
 | 
						|
  int exp = exponent - ((int) semantics->precision - 1);
 | 
						|
  APInt significand(semantics->precision,
 | 
						|
                    makeArrayRef(significandParts(),
 | 
						|
                                 partCountForBits(semantics->precision)));
 | 
						|
 | 
						|
  // Set FormatPrecision if zero.  We want to do this before we
 | 
						|
  // truncate trailing zeros, as those are part of the precision.
 | 
						|
  if (!FormatPrecision) {
 | 
						|
    // We use enough digits so the number can be round-tripped back to an
 | 
						|
    // APFloat. The formula comes from "How to Print Floating-Point Numbers
 | 
						|
    // Accurately" by Steele and White.
 | 
						|
    // FIXME: Using a formula based purely on the precision is conservative;
 | 
						|
    // we can print fewer digits depending on the actual value being printed.
 | 
						|
 | 
						|
    // FormatPrecision = 2 + floor(significandBits / lg_2(10))
 | 
						|
    FormatPrecision = 2 + semantics->precision * 59 / 196;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ignore trailing binary zeros.
 | 
						|
  int trailingZeros = significand.countTrailingZeros();
 | 
						|
  exp += trailingZeros;
 | 
						|
  significand.lshrInPlace(trailingZeros);
 | 
						|
 | 
						|
  // Change the exponent from 2^e to 10^e.
 | 
						|
  if (exp == 0) {
 | 
						|
    // Nothing to do.
 | 
						|
  } else if (exp > 0) {
 | 
						|
    // Just shift left.
 | 
						|
    significand = significand.zext(semantics->precision + exp);
 | 
						|
    significand <<= exp;
 | 
						|
    exp = 0;
 | 
						|
  } else { /* exp < 0 */
 | 
						|
    int texp = -exp;
 | 
						|
 | 
						|
    // We transform this using the identity:
 | 
						|
    //   (N)(2^-e) == (N)(5^e)(10^-e)
 | 
						|
    // This means we have to multiply N (the significand) by 5^e.
 | 
						|
    // To avoid overflow, we have to operate on numbers large
 | 
						|
    // enough to store N * 5^e:
 | 
						|
    //   log2(N * 5^e) == log2(N) + e * log2(5)
 | 
						|
    //                 <= semantics->precision + e * 137 / 59
 | 
						|
    //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
 | 
						|
 | 
						|
    unsigned precision = semantics->precision + (137 * texp + 136) / 59;
 | 
						|
 | 
						|
    // Multiply significand by 5^e.
 | 
						|
    //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
 | 
						|
    significand = significand.zext(precision);
 | 
						|
    APInt five_to_the_i(precision, 5);
 | 
						|
    while (true) {
 | 
						|
      if (texp & 1) significand *= five_to_the_i;
 | 
						|
 | 
						|
      texp >>= 1;
 | 
						|
      if (!texp) break;
 | 
						|
      five_to_the_i *= five_to_the_i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AdjustToPrecision(significand, exp, FormatPrecision);
 | 
						|
 | 
						|
  SmallVector<char, 256> buffer;
 | 
						|
 | 
						|
  // Fill the buffer.
 | 
						|
  unsigned precision = significand.getBitWidth();
 | 
						|
  APInt ten(precision, 10);
 | 
						|
  APInt digit(precision, 0);
 | 
						|
 | 
						|
  bool inTrail = true;
 | 
						|
  while (significand != 0) {
 | 
						|
    // digit <- significand % 10
 | 
						|
    // significand <- significand / 10
 | 
						|
    APInt::udivrem(significand, ten, significand, digit);
 | 
						|
 | 
						|
    unsigned d = digit.getZExtValue();
 | 
						|
 | 
						|
    // Drop trailing zeros.
 | 
						|
    if (inTrail && !d) exp++;
 | 
						|
    else {
 | 
						|
      buffer.push_back((char) ('0' + d));
 | 
						|
      inTrail = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!buffer.empty() && "no characters in buffer!");
 | 
						|
 | 
						|
  // Drop down to FormatPrecision.
 | 
						|
  // TODO: don't do more precise calculations above than are required.
 | 
						|
  AdjustToPrecision(buffer, exp, FormatPrecision);
 | 
						|
 | 
						|
  unsigned NDigits = buffer.size();
 | 
						|
 | 
						|
  // Check whether we should use scientific notation.
 | 
						|
  bool FormatScientific;
 | 
						|
  if (!FormatMaxPadding)
 | 
						|
    FormatScientific = true;
 | 
						|
  else {
 | 
						|
    if (exp >= 0) {
 | 
						|
      // 765e3 --> 765000
 | 
						|
      //              ^^^
 | 
						|
      // But we shouldn't make the number look more precise than it is.
 | 
						|
      FormatScientific = ((unsigned) exp > FormatMaxPadding ||
 | 
						|
                          NDigits + (unsigned) exp > FormatPrecision);
 | 
						|
    } else {
 | 
						|
      // Power of the most significant digit.
 | 
						|
      int MSD = exp + (int) (NDigits - 1);
 | 
						|
      if (MSD >= 0) {
 | 
						|
        // 765e-2 == 7.65
 | 
						|
        FormatScientific = false;
 | 
						|
      } else {
 | 
						|
        // 765e-5 == 0.00765
 | 
						|
        //           ^ ^^
 | 
						|
        FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Scientific formatting is pretty straightforward.
 | 
						|
  if (FormatScientific) {
 | 
						|
    exp += (NDigits - 1);
 | 
						|
 | 
						|
    Str.push_back(buffer[NDigits-1]);
 | 
						|
    Str.push_back('.');
 | 
						|
    if (NDigits == 1 && TruncateZero)
 | 
						|
      Str.push_back('0');
 | 
						|
    else
 | 
						|
      for (unsigned I = 1; I != NDigits; ++I)
 | 
						|
        Str.push_back(buffer[NDigits-1-I]);
 | 
						|
    // Fill with zeros up to FormatPrecision.
 | 
						|
    if (!TruncateZero && FormatPrecision > NDigits - 1)
 | 
						|
      Str.append(FormatPrecision - NDigits + 1, '0');
 | 
						|
    // For !TruncateZero we use lower 'e'.
 | 
						|
    Str.push_back(TruncateZero ? 'E' : 'e');
 | 
						|
 | 
						|
    Str.push_back(exp >= 0 ? '+' : '-');
 | 
						|
    if (exp < 0) exp = -exp;
 | 
						|
    SmallVector<char, 6> expbuf;
 | 
						|
    do {
 | 
						|
      expbuf.push_back((char) ('0' + (exp % 10)));
 | 
						|
      exp /= 10;
 | 
						|
    } while (exp);
 | 
						|
    // Exponent always at least two digits if we do not truncate zeros.
 | 
						|
    if (!TruncateZero && expbuf.size() < 2)
 | 
						|
      expbuf.push_back('0');
 | 
						|
    for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
 | 
						|
      Str.push_back(expbuf[E-1-I]);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Non-scientific, positive exponents.
 | 
						|
  if (exp >= 0) {
 | 
						|
    for (unsigned I = 0; I != NDigits; ++I)
 | 
						|
      Str.push_back(buffer[NDigits-1-I]);
 | 
						|
    for (unsigned I = 0; I != (unsigned) exp; ++I)
 | 
						|
      Str.push_back('0');
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Non-scientific, negative exponents.
 | 
						|
 | 
						|
  // The number of digits to the left of the decimal point.
 | 
						|
  int NWholeDigits = exp + (int) NDigits;
 | 
						|
 | 
						|
  unsigned I = 0;
 | 
						|
  if (NWholeDigits > 0) {
 | 
						|
    for (; I != (unsigned) NWholeDigits; ++I)
 | 
						|
      Str.push_back(buffer[NDigits-I-1]);
 | 
						|
    Str.push_back('.');
 | 
						|
  } else {
 | 
						|
    unsigned NZeros = 1 + (unsigned) -NWholeDigits;
 | 
						|
 | 
						|
    Str.push_back('0');
 | 
						|
    Str.push_back('.');
 | 
						|
    for (unsigned Z = 1; Z != NZeros; ++Z)
 | 
						|
      Str.push_back('0');
 | 
						|
  }
 | 
						|
 | 
						|
  for (; I != NDigits; ++I)
 | 
						|
    Str.push_back(buffer[NDigits-I-1]);
 | 
						|
}
 | 
						|
 | 
						|
bool IEEEFloat::getExactInverse(APFloat *inv) const {
 | 
						|
  // Special floats and denormals have no exact inverse.
 | 
						|
  if (!isFiniteNonZero())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the number is a power of two by making sure that only the
 | 
						|
  // integer bit is set in the significand.
 | 
						|
  if (significandLSB() != semantics->precision - 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the inverse.
 | 
						|
  IEEEFloat reciprocal(*semantics, 1ULL);
 | 
						|
  if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Avoid multiplication with a denormal, it is not safe on all platforms and
 | 
						|
  // may be slower than a normal division.
 | 
						|
  if (reciprocal.isDenormal())
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(reciprocal.isFiniteNonZero() &&
 | 
						|
         reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
 | 
						|
 | 
						|
  if (inv)
 | 
						|
    *inv = APFloat(reciprocal, *semantics);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool IEEEFloat::isSignaling() const {
 | 
						|
  if (!isNaN())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
 | 
						|
  // first bit of the trailing significand being 0.
 | 
						|
  return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
 | 
						|
}
 | 
						|
 | 
						|
/// IEEE-754R 2008 5.3.1: nextUp/nextDown.
 | 
						|
///
 | 
						|
/// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
 | 
						|
/// appropriate sign switching before/after the computation.
 | 
						|
IEEEFloat::opStatus IEEEFloat::next(bool nextDown) {
 | 
						|
  // If we are performing nextDown, swap sign so we have -x.
 | 
						|
  if (nextDown)
 | 
						|
    changeSign();
 | 
						|
 | 
						|
  // Compute nextUp(x)
 | 
						|
  opStatus result = opOK;
 | 
						|
 | 
						|
  // Handle each float category separately.
 | 
						|
  switch (category) {
 | 
						|
  case fcInfinity:
 | 
						|
    // nextUp(+inf) = +inf
 | 
						|
    if (!isNegative())
 | 
						|
      break;
 | 
						|
    // nextUp(-inf) = -getLargest()
 | 
						|
    makeLargest(true);
 | 
						|
    break;
 | 
						|
  case fcNaN:
 | 
						|
    // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
 | 
						|
    // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
 | 
						|
    //                     change the payload.
 | 
						|
    if (isSignaling()) {
 | 
						|
      result = opInvalidOp;
 | 
						|
      // For consistency, propagate the sign of the sNaN to the qNaN.
 | 
						|
      makeNaN(false, isNegative(), nullptr);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case fcZero:
 | 
						|
    // nextUp(pm 0) = +getSmallest()
 | 
						|
    makeSmallest(false);
 | 
						|
    break;
 | 
						|
  case fcNormal:
 | 
						|
    // nextUp(-getSmallest()) = -0
 | 
						|
    if (isSmallest() && isNegative()) {
 | 
						|
      APInt::tcSet(significandParts(), 0, partCount());
 | 
						|
      category = fcZero;
 | 
						|
      exponent = 0;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // nextUp(getLargest()) == INFINITY
 | 
						|
    if (isLargest() && !isNegative()) {
 | 
						|
      APInt::tcSet(significandParts(), 0, partCount());
 | 
						|
      category = fcInfinity;
 | 
						|
      exponent = semantics->maxExponent + 1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // nextUp(normal) == normal + inc.
 | 
						|
    if (isNegative()) {
 | 
						|
      // If we are negative, we need to decrement the significand.
 | 
						|
 | 
						|
      // We only cross a binade boundary that requires adjusting the exponent
 | 
						|
      // if:
 | 
						|
      //   1. exponent != semantics->minExponent. This implies we are not in the
 | 
						|
      //   smallest binade or are dealing with denormals.
 | 
						|
      //   2. Our significand excluding the integral bit is all zeros.
 | 
						|
      bool WillCrossBinadeBoundary =
 | 
						|
        exponent != semantics->minExponent && isSignificandAllZeros();
 | 
						|
 | 
						|
      // Decrement the significand.
 | 
						|
      //
 | 
						|
      // We always do this since:
 | 
						|
      //   1. If we are dealing with a non-binade decrement, by definition we
 | 
						|
      //   just decrement the significand.
 | 
						|
      //   2. If we are dealing with a normal -> normal binade decrement, since
 | 
						|
      //   we have an explicit integral bit the fact that all bits but the
 | 
						|
      //   integral bit are zero implies that subtracting one will yield a
 | 
						|
      //   significand with 0 integral bit and 1 in all other spots. Thus we
 | 
						|
      //   must just adjust the exponent and set the integral bit to 1.
 | 
						|
      //   3. If we are dealing with a normal -> denormal binade decrement,
 | 
						|
      //   since we set the integral bit to 0 when we represent denormals, we
 | 
						|
      //   just decrement the significand.
 | 
						|
      integerPart *Parts = significandParts();
 | 
						|
      APInt::tcDecrement(Parts, partCount());
 | 
						|
 | 
						|
      if (WillCrossBinadeBoundary) {
 | 
						|
        // Our result is a normal number. Do the following:
 | 
						|
        // 1. Set the integral bit to 1.
 | 
						|
        // 2. Decrement the exponent.
 | 
						|
        APInt::tcSetBit(Parts, semantics->precision - 1);
 | 
						|
        exponent--;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // If we are positive, we need to increment the significand.
 | 
						|
 | 
						|
      // We only cross a binade boundary that requires adjusting the exponent if
 | 
						|
      // the input is not a denormal and all of said input's significand bits
 | 
						|
      // are set. If all of said conditions are true: clear the significand, set
 | 
						|
      // the integral bit to 1, and increment the exponent. If we have a
 | 
						|
      // denormal always increment since moving denormals and the numbers in the
 | 
						|
      // smallest normal binade have the same exponent in our representation.
 | 
						|
      bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
 | 
						|
 | 
						|
      if (WillCrossBinadeBoundary) {
 | 
						|
        integerPart *Parts = significandParts();
 | 
						|
        APInt::tcSet(Parts, 0, partCount());
 | 
						|
        APInt::tcSetBit(Parts, semantics->precision - 1);
 | 
						|
        assert(exponent != semantics->maxExponent &&
 | 
						|
               "We can not increment an exponent beyond the maxExponent allowed"
 | 
						|
               " by the given floating point semantics.");
 | 
						|
        exponent++;
 | 
						|
      } else {
 | 
						|
        incrementSignificand();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are performing nextDown, swap sign so we have -nextUp(-x)
 | 
						|
  if (nextDown)
 | 
						|
    changeSign();
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::makeInf(bool Negative) {
 | 
						|
  category = fcInfinity;
 | 
						|
  sign = Negative;
 | 
						|
  exponent = semantics->maxExponent + 1;
 | 
						|
  APInt::tcSet(significandParts(), 0, partCount());
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::makeZero(bool Negative) {
 | 
						|
  category = fcZero;
 | 
						|
  sign = Negative;
 | 
						|
  exponent = semantics->minExponent-1;
 | 
						|
  APInt::tcSet(significandParts(), 0, partCount());
 | 
						|
}
 | 
						|
 | 
						|
void IEEEFloat::makeQuiet() {
 | 
						|
  assert(isNaN());
 | 
						|
  APInt::tcSetBit(significandParts(), semantics->precision - 2);
 | 
						|
}
 | 
						|
 | 
						|
int ilogb(const IEEEFloat &Arg) {
 | 
						|
  if (Arg.isNaN())
 | 
						|
    return IEEEFloat::IEK_NaN;
 | 
						|
  if (Arg.isZero())
 | 
						|
    return IEEEFloat::IEK_Zero;
 | 
						|
  if (Arg.isInfinity())
 | 
						|
    return IEEEFloat::IEK_Inf;
 | 
						|
  if (!Arg.isDenormal())
 | 
						|
    return Arg.exponent;
 | 
						|
 | 
						|
  IEEEFloat Normalized(Arg);
 | 
						|
  int SignificandBits = Arg.getSemantics().precision - 1;
 | 
						|
 | 
						|
  Normalized.exponent += SignificandBits;
 | 
						|
  Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero);
 | 
						|
  return Normalized.exponent - SignificandBits;
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) {
 | 
						|
  auto MaxExp = X.getSemantics().maxExponent;
 | 
						|
  auto MinExp = X.getSemantics().minExponent;
 | 
						|
 | 
						|
  // If Exp is wildly out-of-scale, simply adding it to X.exponent will
 | 
						|
  // overflow; clamp it to a safe range before adding, but ensure that the range
 | 
						|
  // is large enough that the clamp does not change the result. The range we
 | 
						|
  // need to support is the difference between the largest possible exponent and
 | 
						|
  // the normalized exponent of half the smallest denormal.
 | 
						|
 | 
						|
  int SignificandBits = X.getSemantics().precision - 1;
 | 
						|
  int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1;
 | 
						|
 | 
						|
  // Clamp to one past the range ends to let normalize handle overlflow.
 | 
						|
  X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement);
 | 
						|
  X.normalize(RoundingMode, lfExactlyZero);
 | 
						|
  if (X.isNaN())
 | 
						|
    X.makeQuiet();
 | 
						|
  return X;
 | 
						|
}
 | 
						|
 | 
						|
IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) {
 | 
						|
  Exp = ilogb(Val);
 | 
						|
 | 
						|
  // Quiet signalling nans.
 | 
						|
  if (Exp == IEEEFloat::IEK_NaN) {
 | 
						|
    IEEEFloat Quiet(Val);
 | 
						|
    Quiet.makeQuiet();
 | 
						|
    return Quiet;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Exp == IEEEFloat::IEK_Inf)
 | 
						|
    return Val;
 | 
						|
 | 
						|
  // 1 is added because frexp is defined to return a normalized fraction in
 | 
						|
  // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
 | 
						|
  Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1;
 | 
						|
  return scalbn(Val, -Exp, RM);
 | 
						|
}
 | 
						|
 | 
						|
DoubleAPFloat::DoubleAPFloat(const fltSemantics &S)
 | 
						|
    : Semantics(&S),
 | 
						|
      Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble);
 | 
						|
}
 | 
						|
 | 
						|
DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag)
 | 
						|
    : Semantics(&S),
 | 
						|
      Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized),
 | 
						|
                            APFloat(semIEEEdouble, uninitialized)}) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble);
 | 
						|
}
 | 
						|
 | 
						|
DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I)
 | 
						|
    : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I),
 | 
						|
                                           APFloat(semIEEEdouble)}) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble);
 | 
						|
}
 | 
						|
 | 
						|
DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I)
 | 
						|
    : Semantics(&S),
 | 
						|
      Floats(new APFloat[2]{
 | 
						|
          APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])),
 | 
						|
          APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble);
 | 
						|
}
 | 
						|
 | 
						|
DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First,
 | 
						|
                             APFloat &&Second)
 | 
						|
    : Semantics(&S),
 | 
						|
      Floats(new APFloat[2]{std::move(First), std::move(Second)}) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble);
 | 
						|
  assert(&Floats[0].getSemantics() == &semIEEEdouble);
 | 
						|
  assert(&Floats[1].getSemantics() == &semIEEEdouble);
 | 
						|
}
 | 
						|
 | 
						|
DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS)
 | 
						|
    : Semantics(RHS.Semantics),
 | 
						|
      Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]),
 | 
						|
                                         APFloat(RHS.Floats[1])}
 | 
						|
                        : nullptr) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble);
 | 
						|
}
 | 
						|
 | 
						|
DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS)
 | 
						|
    : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) {
 | 
						|
  RHS.Semantics = &semBogus;
 | 
						|
  assert(Semantics == &semPPCDoubleDouble);
 | 
						|
}
 | 
						|
 | 
						|
DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) {
 | 
						|
  if (Semantics == RHS.Semantics && RHS.Floats) {
 | 
						|
    Floats[0] = RHS.Floats[0];
 | 
						|
    Floats[1] = RHS.Floats[1];
 | 
						|
  } else if (this != &RHS) {
 | 
						|
    this->~DoubleAPFloat();
 | 
						|
    new (this) DoubleAPFloat(RHS);
 | 
						|
  }
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
// Implement addition, subtraction, multiplication and division based on:
 | 
						|
// "Software for Doubled-Precision Floating-Point Computations",
 | 
						|
// by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283.
 | 
						|
APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa,
 | 
						|
                                         const APFloat &c, const APFloat &cc,
 | 
						|
                                         roundingMode RM) {
 | 
						|
  int Status = opOK;
 | 
						|
  APFloat z = a;
 | 
						|
  Status |= z.add(c, RM);
 | 
						|
  if (!z.isFinite()) {
 | 
						|
    if (!z.isInfinity()) {
 | 
						|
      Floats[0] = std::move(z);
 | 
						|
      Floats[1].makeZero(/* Neg = */ false);
 | 
						|
      return (opStatus)Status;
 | 
						|
    }
 | 
						|
    Status = opOK;
 | 
						|
    auto AComparedToC = a.compareAbsoluteValue(c);
 | 
						|
    z = cc;
 | 
						|
    Status |= z.add(aa, RM);
 | 
						|
    if (AComparedToC == APFloat::cmpGreaterThan) {
 | 
						|
      // z = cc + aa + c + a;
 | 
						|
      Status |= z.add(c, RM);
 | 
						|
      Status |= z.add(a, RM);
 | 
						|
    } else {
 | 
						|
      // z = cc + aa + a + c;
 | 
						|
      Status |= z.add(a, RM);
 | 
						|
      Status |= z.add(c, RM);
 | 
						|
    }
 | 
						|
    if (!z.isFinite()) {
 | 
						|
      Floats[0] = std::move(z);
 | 
						|
      Floats[1].makeZero(/* Neg = */ false);
 | 
						|
      return (opStatus)Status;
 | 
						|
    }
 | 
						|
    Floats[0] = z;
 | 
						|
    APFloat zz = aa;
 | 
						|
    Status |= zz.add(cc, RM);
 | 
						|
    if (AComparedToC == APFloat::cmpGreaterThan) {
 | 
						|
      // Floats[1] = a - z + c + zz;
 | 
						|
      Floats[1] = a;
 | 
						|
      Status |= Floats[1].subtract(z, RM);
 | 
						|
      Status |= Floats[1].add(c, RM);
 | 
						|
      Status |= Floats[1].add(zz, RM);
 | 
						|
    } else {
 | 
						|
      // Floats[1] = c - z + a + zz;
 | 
						|
      Floats[1] = c;
 | 
						|
      Status |= Floats[1].subtract(z, RM);
 | 
						|
      Status |= Floats[1].add(a, RM);
 | 
						|
      Status |= Floats[1].add(zz, RM);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // q = a - z;
 | 
						|
    APFloat q = a;
 | 
						|
    Status |= q.subtract(z, RM);
 | 
						|
 | 
						|
    // zz = q + c + (a - (q + z)) + aa + cc;
 | 
						|
    // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies.
 | 
						|
    auto zz = q;
 | 
						|
    Status |= zz.add(c, RM);
 | 
						|
    Status |= q.add(z, RM);
 | 
						|
    Status |= q.subtract(a, RM);
 | 
						|
    q.changeSign();
 | 
						|
    Status |= zz.add(q, RM);
 | 
						|
    Status |= zz.add(aa, RM);
 | 
						|
    Status |= zz.add(cc, RM);
 | 
						|
    if (zz.isZero() && !zz.isNegative()) {
 | 
						|
      Floats[0] = std::move(z);
 | 
						|
      Floats[1].makeZero(/* Neg = */ false);
 | 
						|
      return opOK;
 | 
						|
    }
 | 
						|
    Floats[0] = z;
 | 
						|
    Status |= Floats[0].add(zz, RM);
 | 
						|
    if (!Floats[0].isFinite()) {
 | 
						|
      Floats[1].makeZero(/* Neg = */ false);
 | 
						|
      return (opStatus)Status;
 | 
						|
    }
 | 
						|
    Floats[1] = std::move(z);
 | 
						|
    Status |= Floats[1].subtract(Floats[0], RM);
 | 
						|
    Status |= Floats[1].add(zz, RM);
 | 
						|
  }
 | 
						|
  return (opStatus)Status;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS,
 | 
						|
                                                const DoubleAPFloat &RHS,
 | 
						|
                                                DoubleAPFloat &Out,
 | 
						|
                                                roundingMode RM) {
 | 
						|
  if (LHS.getCategory() == fcNaN) {
 | 
						|
    Out = LHS;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  if (RHS.getCategory() == fcNaN) {
 | 
						|
    Out = RHS;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  if (LHS.getCategory() == fcZero) {
 | 
						|
    Out = RHS;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  if (RHS.getCategory() == fcZero) {
 | 
						|
    Out = LHS;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity &&
 | 
						|
      LHS.isNegative() != RHS.isNegative()) {
 | 
						|
    Out.makeNaN(false, Out.isNegative(), nullptr);
 | 
						|
    return opInvalidOp;
 | 
						|
  }
 | 
						|
  if (LHS.getCategory() == fcInfinity) {
 | 
						|
    Out = LHS;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  if (RHS.getCategory() == fcInfinity) {
 | 
						|
    Out = RHS;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal);
 | 
						|
 | 
						|
  APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]),
 | 
						|
      CC(RHS.Floats[1]);
 | 
						|
  assert(&A.getSemantics() == &semIEEEdouble);
 | 
						|
  assert(&AA.getSemantics() == &semIEEEdouble);
 | 
						|
  assert(&C.getSemantics() == &semIEEEdouble);
 | 
						|
  assert(&CC.getSemantics() == &semIEEEdouble);
 | 
						|
  assert(&Out.Floats[0].getSemantics() == &semIEEEdouble);
 | 
						|
  assert(&Out.Floats[1].getSemantics() == &semIEEEdouble);
 | 
						|
  return Out.addImpl(A, AA, C, CC, RM);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS,
 | 
						|
                                     roundingMode RM) {
 | 
						|
  return addWithSpecial(*this, RHS, *this, RM);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS,
 | 
						|
                                          roundingMode RM) {
 | 
						|
  changeSign();
 | 
						|
  auto Ret = add(RHS, RM);
 | 
						|
  changeSign();
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS,
 | 
						|
                                          APFloat::roundingMode RM) {
 | 
						|
  const auto &LHS = *this;
 | 
						|
  auto &Out = *this;
 | 
						|
  /* Interesting observation: For special categories, finding the lowest
 | 
						|
     common ancestor of the following layered graph gives the correct
 | 
						|
     return category:
 | 
						|
 | 
						|
        NaN
 | 
						|
       /   \
 | 
						|
     Zero  Inf
 | 
						|
       \   /
 | 
						|
       Normal
 | 
						|
 | 
						|
     e.g. NaN * NaN = NaN
 | 
						|
          Zero * Inf = NaN
 | 
						|
          Normal * Zero = Zero
 | 
						|
          Normal * Inf = Inf
 | 
						|
  */
 | 
						|
  if (LHS.getCategory() == fcNaN) {
 | 
						|
    Out = LHS;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  if (RHS.getCategory() == fcNaN) {
 | 
						|
    Out = RHS;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) ||
 | 
						|
      (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) {
 | 
						|
    Out.makeNaN(false, false, nullptr);
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) {
 | 
						|
    Out = LHS;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) {
 | 
						|
    Out = RHS;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal &&
 | 
						|
         "Special cases not handled exhaustively");
 | 
						|
 | 
						|
  int Status = opOK;
 | 
						|
  APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1];
 | 
						|
  // t = a * c
 | 
						|
  APFloat T = A;
 | 
						|
  Status |= T.multiply(C, RM);
 | 
						|
  if (!T.isFiniteNonZero()) {
 | 
						|
    Floats[0] = T;
 | 
						|
    Floats[1].makeZero(/* Neg = */ false);
 | 
						|
    return (opStatus)Status;
 | 
						|
  }
 | 
						|
 | 
						|
  // tau = fmsub(a, c, t), that is -fmadd(-a, c, t).
 | 
						|
  APFloat Tau = A;
 | 
						|
  T.changeSign();
 | 
						|
  Status |= Tau.fusedMultiplyAdd(C, T, RM);
 | 
						|
  T.changeSign();
 | 
						|
  {
 | 
						|
    // v = a * d
 | 
						|
    APFloat V = A;
 | 
						|
    Status |= V.multiply(D, RM);
 | 
						|
    // w = b * c
 | 
						|
    APFloat W = B;
 | 
						|
    Status |= W.multiply(C, RM);
 | 
						|
    Status |= V.add(W, RM);
 | 
						|
    // tau += v + w
 | 
						|
    Status |= Tau.add(V, RM);
 | 
						|
  }
 | 
						|
  // u = t + tau
 | 
						|
  APFloat U = T;
 | 
						|
  Status |= U.add(Tau, RM);
 | 
						|
 | 
						|
  Floats[0] = U;
 | 
						|
  if (!U.isFinite()) {
 | 
						|
    Floats[1].makeZero(/* Neg = */ false);
 | 
						|
  } else {
 | 
						|
    // Floats[1] = (t - u) + tau
 | 
						|
    Status |= T.subtract(U, RM);
 | 
						|
    Status |= T.add(Tau, RM);
 | 
						|
    Floats[1] = T;
 | 
						|
  }
 | 
						|
  return (opStatus)Status;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS,
 | 
						|
                                        APFloat::roundingMode RM) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
 | 
						|
  auto Ret =
 | 
						|
      Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM);
 | 
						|
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
 | 
						|
  auto Ret =
 | 
						|
      Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()));
 | 
						|
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
 | 
						|
  auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()));
 | 
						|
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
 | 
						|
                                const DoubleAPFloat &Addend,
 | 
						|
                                APFloat::roundingMode RM) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
 | 
						|
  auto Ret = Tmp.fusedMultiplyAdd(
 | 
						|
      APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()),
 | 
						|
      APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM);
 | 
						|
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
 | 
						|
  auto Ret = Tmp.roundToIntegral(RM);
 | 
						|
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
void DoubleAPFloat::changeSign() {
 | 
						|
  Floats[0].changeSign();
 | 
						|
  Floats[1].changeSign();
 | 
						|
}
 | 
						|
 | 
						|
APFloat::cmpResult
 | 
						|
DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const {
 | 
						|
  auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]);
 | 
						|
  if (Result != cmpEqual)
 | 
						|
    return Result;
 | 
						|
  Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]);
 | 
						|
  if (Result == cmpLessThan || Result == cmpGreaterThan) {
 | 
						|
    auto Against = Floats[0].isNegative() ^ Floats[1].isNegative();
 | 
						|
    auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative();
 | 
						|
    if (Against && !RHSAgainst)
 | 
						|
      return cmpLessThan;
 | 
						|
    if (!Against && RHSAgainst)
 | 
						|
      return cmpGreaterThan;
 | 
						|
    if (!Against && !RHSAgainst)
 | 
						|
      return Result;
 | 
						|
    if (Against && RHSAgainst)
 | 
						|
      return (cmpResult)(cmpLessThan + cmpGreaterThan - Result);
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::fltCategory DoubleAPFloat::getCategory() const {
 | 
						|
  return Floats[0].getCategory();
 | 
						|
}
 | 
						|
 | 
						|
bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); }
 | 
						|
 | 
						|
void DoubleAPFloat::makeInf(bool Neg) {
 | 
						|
  Floats[0].makeInf(Neg);
 | 
						|
  Floats[1].makeZero(/* Neg = */ false);
 | 
						|
}
 | 
						|
 | 
						|
void DoubleAPFloat::makeZero(bool Neg) {
 | 
						|
  Floats[0].makeZero(Neg);
 | 
						|
  Floats[1].makeZero(/* Neg = */ false);
 | 
						|
}
 | 
						|
 | 
						|
void DoubleAPFloat::makeLargest(bool Neg) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull));
 | 
						|
  Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull));
 | 
						|
  if (Neg)
 | 
						|
    changeSign();
 | 
						|
}
 | 
						|
 | 
						|
void DoubleAPFloat::makeSmallest(bool Neg) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  Floats[0].makeSmallest(Neg);
 | 
						|
  Floats[1].makeZero(/* Neg = */ false);
 | 
						|
}
 | 
						|
 | 
						|
void DoubleAPFloat::makeSmallestNormalized(bool Neg) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull));
 | 
						|
  if (Neg)
 | 
						|
    Floats[0].changeSign();
 | 
						|
  Floats[1].makeZero(/* Neg = */ false);
 | 
						|
}
 | 
						|
 | 
						|
void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) {
 | 
						|
  Floats[0].makeNaN(SNaN, Neg, fill);
 | 
						|
  Floats[1].makeZero(/* Neg = */ false);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const {
 | 
						|
  auto Result = Floats[0].compare(RHS.Floats[0]);
 | 
						|
  // |Float[0]| > |Float[1]|
 | 
						|
  if (Result == APFloat::cmpEqual)
 | 
						|
    return Floats[1].compare(RHS.Floats[1]);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const {
 | 
						|
  return Floats[0].bitwiseIsEqual(RHS.Floats[0]) &&
 | 
						|
         Floats[1].bitwiseIsEqual(RHS.Floats[1]);
 | 
						|
}
 | 
						|
 | 
						|
hash_code hash_value(const DoubleAPFloat &Arg) {
 | 
						|
  if (Arg.Floats)
 | 
						|
    return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1]));
 | 
						|
  return hash_combine(Arg.Semantics);
 | 
						|
}
 | 
						|
 | 
						|
APInt DoubleAPFloat::bitcastToAPInt() const {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  uint64_t Data[] = {
 | 
						|
      Floats[0].bitcastToAPInt().getRawData()[0],
 | 
						|
      Floats[1].bitcastToAPInt().getRawData()[0],
 | 
						|
  };
 | 
						|
  return APInt(128, 2, Data);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::convertFromString(StringRef S,
 | 
						|
                                                   roundingMode RM) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy);
 | 
						|
  auto Ret = Tmp.convertFromString(S, RM);
 | 
						|
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::next(bool nextDown) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
 | 
						|
  auto Ret = Tmp.next(nextDown);
 | 
						|
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input,
 | 
						|
                                unsigned int Width, bool IsSigned,
 | 
						|
                                roundingMode RM, bool *IsExact) const {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
 | 
						|
      .convertToInteger(Input, Width, IsSigned, RM, IsExact);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input,
 | 
						|
                                                  bool IsSigned,
 | 
						|
                                                  roundingMode RM) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy);
 | 
						|
  auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM);
 | 
						|
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input,
 | 
						|
                                              unsigned int InputSize,
 | 
						|
                                              bool IsSigned, roundingMode RM) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy);
 | 
						|
  auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM);
 | 
						|
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input,
 | 
						|
                                              unsigned int InputSize,
 | 
						|
                                              bool IsSigned, roundingMode RM) {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy);
 | 
						|
  auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM);
 | 
						|
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
unsigned int DoubleAPFloat::convertToHexString(char *DST,
 | 
						|
                                               unsigned int HexDigits,
 | 
						|
                                               bool UpperCase,
 | 
						|
                                               roundingMode RM) const {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
 | 
						|
      .convertToHexString(DST, HexDigits, UpperCase, RM);
 | 
						|
}
 | 
						|
 | 
						|
bool DoubleAPFloat::isDenormal() const {
 | 
						|
  return getCategory() == fcNormal &&
 | 
						|
         (Floats[0].isDenormal() || Floats[1].isDenormal() ||
 | 
						|
          // (double)(Hi + Lo) == Hi defines a normal number.
 | 
						|
          Floats[0].compare(Floats[0] + Floats[1]) != cmpEqual);
 | 
						|
}
 | 
						|
 | 
						|
bool DoubleAPFloat::isSmallest() const {
 | 
						|
  if (getCategory() != fcNormal)
 | 
						|
    return false;
 | 
						|
  DoubleAPFloat Tmp(*this);
 | 
						|
  Tmp.makeSmallest(this->isNegative());
 | 
						|
  return Tmp.compare(*this) == cmpEqual;
 | 
						|
}
 | 
						|
 | 
						|
bool DoubleAPFloat::isLargest() const {
 | 
						|
  if (getCategory() != fcNormal)
 | 
						|
    return false;
 | 
						|
  DoubleAPFloat Tmp(*this);
 | 
						|
  Tmp.makeLargest(this->isNegative());
 | 
						|
  return Tmp.compare(*this) == cmpEqual;
 | 
						|
}
 | 
						|
 | 
						|
bool DoubleAPFloat::isInteger() const {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  return Floats[0].isInteger() && Floats[1].isInteger();
 | 
						|
}
 | 
						|
 | 
						|
void DoubleAPFloat::toString(SmallVectorImpl<char> &Str,
 | 
						|
                             unsigned FormatPrecision,
 | 
						|
                             unsigned FormatMaxPadding,
 | 
						|
                             bool TruncateZero) const {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
 | 
						|
      .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero);
 | 
						|
}
 | 
						|
 | 
						|
bool DoubleAPFloat::getExactInverse(APFloat *inv) const {
 | 
						|
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
 | 
						|
  if (!inv)
 | 
						|
    return Tmp.getExactInverse(nullptr);
 | 
						|
  APFloat Inv(semPPCDoubleDoubleLegacy);
 | 
						|
  auto Ret = Tmp.getExactInverse(&Inv);
 | 
						|
  *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt());
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
DoubleAPFloat scalbn(DoubleAPFloat Arg, int Exp, APFloat::roundingMode RM) {
 | 
						|
  assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM),
 | 
						|
                       scalbn(Arg.Floats[1], Exp, RM));
 | 
						|
}
 | 
						|
 | 
						|
DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp,
 | 
						|
                    APFloat::roundingMode RM) {
 | 
						|
  assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
 | 
						|
  APFloat First = frexp(Arg.Floats[0], Exp, RM);
 | 
						|
  APFloat Second = Arg.Floats[1];
 | 
						|
  if (Arg.getCategory() == APFloat::fcNormal)
 | 
						|
    Second = scalbn(Second, -Exp, RM);
 | 
						|
  return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second));
 | 
						|
}
 | 
						|
 | 
						|
} // End detail namespace
 | 
						|
 | 
						|
APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) {
 | 
						|
  if (usesLayout<IEEEFloat>(Semantics)) {
 | 
						|
    new (&IEEE) IEEEFloat(std::move(F));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (usesLayout<DoubleAPFloat>(Semantics)) {
 | 
						|
    const fltSemantics IEEESemantics = F.getSemantics();
 | 
						|
    new (&Double) DoubleAPFloat(Semantics, APFloat(std::move(F), IEEESemantics),
 | 
						|
                                APFloat(semIEEEdouble));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unexpected semantics");
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus APFloat::convertFromString(StringRef Str, roundingMode RM) {
 | 
						|
  APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM));
 | 
						|
}
 | 
						|
 | 
						|
hash_code hash_value(const APFloat &Arg) {
 | 
						|
  if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics()))
 | 
						|
    return hash_value(Arg.U.IEEE);
 | 
						|
  if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics()))
 | 
						|
    return hash_value(Arg.U.Double);
 | 
						|
  llvm_unreachable("Unexpected semantics");
 | 
						|
}
 | 
						|
 | 
						|
APFloat::APFloat(const fltSemantics &Semantics, StringRef S)
 | 
						|
    : APFloat(Semantics) {
 | 
						|
  convertFromString(S, rmNearestTiesToEven);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics,
 | 
						|
                                   roundingMode RM, bool *losesInfo) {
 | 
						|
  if (&getSemantics() == &ToSemantics) {
 | 
						|
    *losesInfo = false;
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
  if (usesLayout<IEEEFloat>(getSemantics()) &&
 | 
						|
      usesLayout<IEEEFloat>(ToSemantics))
 | 
						|
    return U.IEEE.convert(ToSemantics, RM, losesInfo);
 | 
						|
  if (usesLayout<IEEEFloat>(getSemantics()) &&
 | 
						|
      usesLayout<DoubleAPFloat>(ToSemantics)) {
 | 
						|
    assert(&ToSemantics == &semPPCDoubleDouble);
 | 
						|
    auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo);
 | 
						|
    *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt());
 | 
						|
    return Ret;
 | 
						|
  }
 | 
						|
  if (usesLayout<DoubleAPFloat>(getSemantics()) &&
 | 
						|
      usesLayout<IEEEFloat>(ToSemantics)) {
 | 
						|
    auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo);
 | 
						|
    *this = APFloat(std::move(getIEEE()), ToSemantics);
 | 
						|
    return Ret;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unexpected semantics");
 | 
						|
}
 | 
						|
 | 
						|
APFloat APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE) {
 | 
						|
  if (isIEEE) {
 | 
						|
    switch (BitWidth) {
 | 
						|
    case 16:
 | 
						|
      return APFloat(semIEEEhalf, APInt::getAllOnesValue(BitWidth));
 | 
						|
    case 32:
 | 
						|
      return APFloat(semIEEEsingle, APInt::getAllOnesValue(BitWidth));
 | 
						|
    case 64:
 | 
						|
      return APFloat(semIEEEdouble, APInt::getAllOnesValue(BitWidth));
 | 
						|
    case 80:
 | 
						|
      return APFloat(semX87DoubleExtended, APInt::getAllOnesValue(BitWidth));
 | 
						|
    case 128:
 | 
						|
      return APFloat(semIEEEquad, APInt::getAllOnesValue(BitWidth));
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown floating bit width");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(BitWidth == 128);
 | 
						|
    return APFloat(semPPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void APFloat::print(raw_ostream &OS) const {
 | 
						|
  SmallVector<char, 16> Buffer;
 | 
						|
  toString(Buffer);
 | 
						|
  OS << Buffer << "\n";
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); }
 | 
						|
#endif
 | 
						|
 | 
						|
void APFloat::Profile(FoldingSetNodeID &NID) const {
 | 
						|
  NID.Add(bitcastToAPInt());
 | 
						|
}
 | 
						|
 | 
						|
/* Same as convertToInteger(integerPart*, ...), except the result is returned in
 | 
						|
   an APSInt, whose initial bit-width and signed-ness are used to determine the
 | 
						|
   precision of the conversion.
 | 
						|
 */
 | 
						|
APFloat::opStatus APFloat::convertToInteger(APSInt &result,
 | 
						|
                                            roundingMode rounding_mode,
 | 
						|
                                            bool *isExact) const {
 | 
						|
  unsigned bitWidth = result.getBitWidth();
 | 
						|
  SmallVector<uint64_t, 4> parts(result.getNumWords());
 | 
						|
  opStatus status = convertToInteger(parts, bitWidth, result.isSigned(),
 | 
						|
                                     rounding_mode, isExact);
 | 
						|
  // Keeps the original signed-ness.
 | 
						|
  result = APInt(bitWidth, parts);
 | 
						|
  return status;
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#undef APFLOAT_DISPATCH_ON_SEMANTICS
 |