324 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			324 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
//==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Implementation of some scaled number algorithms.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Support/ScaledNumber.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::ScaledNumbers;
 | 
						|
 | 
						|
std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
 | 
						|
                                                       uint64_t RHS) {
 | 
						|
  // Separate into two 32-bit digits (U.L).
 | 
						|
  auto getU = [](uint64_t N) { return N >> 32; };
 | 
						|
  auto getL = [](uint64_t N) { return N & UINT32_MAX; };
 | 
						|
  uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
 | 
						|
 | 
						|
  // Compute cross products.
 | 
						|
  uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
 | 
						|
 | 
						|
  // Sum into two 64-bit digits.
 | 
						|
  uint64_t Upper = P1, Lower = P4;
 | 
						|
  auto addWithCarry = [&](uint64_t N) {
 | 
						|
    uint64_t NewLower = Lower + (getL(N) << 32);
 | 
						|
    Upper += getU(N) + (NewLower < Lower);
 | 
						|
    Lower = NewLower;
 | 
						|
  };
 | 
						|
  addWithCarry(P2);
 | 
						|
  addWithCarry(P3);
 | 
						|
 | 
						|
  // Check whether the upper digit is empty.
 | 
						|
  if (!Upper)
 | 
						|
    return std::make_pair(Lower, 0);
 | 
						|
 | 
						|
  // Shift as little as possible to maximize precision.
 | 
						|
  unsigned LeadingZeros = countLeadingZeros(Upper);
 | 
						|
  int Shift = 64 - LeadingZeros;
 | 
						|
  if (LeadingZeros)
 | 
						|
    Upper = Upper << LeadingZeros | Lower >> Shift;
 | 
						|
  return getRounded(Upper, Shift,
 | 
						|
                    Shift && (Lower & UINT64_C(1) << (Shift - 1)));
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
 | 
						|
 | 
						|
std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
 | 
						|
                                                     uint32_t Divisor) {
 | 
						|
  assert(Dividend && "expected non-zero dividend");
 | 
						|
  assert(Divisor && "expected non-zero divisor");
 | 
						|
 | 
						|
  // Use 64-bit math and canonicalize the dividend to gain precision.
 | 
						|
  uint64_t Dividend64 = Dividend;
 | 
						|
  int Shift = 0;
 | 
						|
  if (int Zeros = countLeadingZeros(Dividend64)) {
 | 
						|
    Shift -= Zeros;
 | 
						|
    Dividend64 <<= Zeros;
 | 
						|
  }
 | 
						|
  uint64_t Quotient = Dividend64 / Divisor;
 | 
						|
  uint64_t Remainder = Dividend64 % Divisor;
 | 
						|
 | 
						|
  // If Quotient needs to be shifted, leave the rounding to getAdjusted().
 | 
						|
  if (Quotient > UINT32_MAX)
 | 
						|
    return getAdjusted<uint32_t>(Quotient, Shift);
 | 
						|
 | 
						|
  // Round based on the value of the next bit.
 | 
						|
  return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
 | 
						|
}
 | 
						|
 | 
						|
std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
 | 
						|
                                                     uint64_t Divisor) {
 | 
						|
  assert(Dividend && "expected non-zero dividend");
 | 
						|
  assert(Divisor && "expected non-zero divisor");
 | 
						|
 | 
						|
  // Minimize size of divisor.
 | 
						|
  int Shift = 0;
 | 
						|
  if (int Zeros = countTrailingZeros(Divisor)) {
 | 
						|
    Shift -= Zeros;
 | 
						|
    Divisor >>= Zeros;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for powers of two.
 | 
						|
  if (Divisor == 1)
 | 
						|
    return std::make_pair(Dividend, Shift);
 | 
						|
 | 
						|
  // Maximize size of dividend.
 | 
						|
  if (int Zeros = countLeadingZeros(Dividend)) {
 | 
						|
    Shift -= Zeros;
 | 
						|
    Dividend <<= Zeros;
 | 
						|
  }
 | 
						|
 | 
						|
  // Start with the result of a divide.
 | 
						|
  uint64_t Quotient = Dividend / Divisor;
 | 
						|
  Dividend %= Divisor;
 | 
						|
 | 
						|
  // Continue building the quotient with long division.
 | 
						|
  while (!(Quotient >> 63) && Dividend) {
 | 
						|
    // Shift Dividend and check for overflow.
 | 
						|
    bool IsOverflow = Dividend >> 63;
 | 
						|
    Dividend <<= 1;
 | 
						|
    --Shift;
 | 
						|
 | 
						|
    // Get the next bit of Quotient.
 | 
						|
    Quotient <<= 1;
 | 
						|
    if (IsOverflow || Divisor <= Dividend) {
 | 
						|
      Quotient |= 1;
 | 
						|
      Dividend -= Divisor;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
 | 
						|
}
 | 
						|
 | 
						|
int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
 | 
						|
  assert(ScaleDiff >= 0 && "wrong argument order");
 | 
						|
  assert(ScaleDiff < 64 && "numbers too far apart");
 | 
						|
 | 
						|
  uint64_t L_adjusted = L >> ScaleDiff;
 | 
						|
  if (L_adjusted < R)
 | 
						|
    return -1;
 | 
						|
  if (L_adjusted > R)
 | 
						|
    return 1;
 | 
						|
 | 
						|
  return L > L_adjusted << ScaleDiff ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
static void appendDigit(std::string &Str, unsigned D) {
 | 
						|
  assert(D < 10);
 | 
						|
  Str += '0' + D % 10;
 | 
						|
}
 | 
						|
 | 
						|
static void appendNumber(std::string &Str, uint64_t N) {
 | 
						|
  while (N) {
 | 
						|
    appendDigit(Str, N % 10);
 | 
						|
    N /= 10;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool doesRoundUp(char Digit) {
 | 
						|
  switch (Digit) {
 | 
						|
  case '5':
 | 
						|
  case '6':
 | 
						|
  case '7':
 | 
						|
  case '8':
 | 
						|
  case '9':
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
 | 
						|
  assert(E >= ScaledNumbers::MinScale);
 | 
						|
  assert(E <= ScaledNumbers::MaxScale);
 | 
						|
 | 
						|
  // Find a new E, but don't let it increase past MaxScale.
 | 
						|
  int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
 | 
						|
  int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
 | 
						|
  int Shift = 63 - (NewE - E);
 | 
						|
  assert(Shift <= LeadingZeros);
 | 
						|
  assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
 | 
						|
  assert(Shift >= 0 && Shift < 64 && "undefined behavior");
 | 
						|
  D <<= Shift;
 | 
						|
  E = NewE;
 | 
						|
 | 
						|
  // Check for a denormal.
 | 
						|
  unsigned AdjustedE = E + 16383;
 | 
						|
  if (!(D >> 63)) {
 | 
						|
    assert(E == ScaledNumbers::MaxScale);
 | 
						|
    AdjustedE = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the float and print it.
 | 
						|
  uint64_t RawBits[2] = {D, AdjustedE};
 | 
						|
  APFloat Float(APFloat::x87DoubleExtended(), APInt(80, RawBits));
 | 
						|
  SmallVector<char, 24> Chars;
 | 
						|
  Float.toString(Chars, Precision, 0);
 | 
						|
  return std::string(Chars.begin(), Chars.end());
 | 
						|
}
 | 
						|
 | 
						|
static std::string stripTrailingZeros(const std::string &Float) {
 | 
						|
  size_t NonZero = Float.find_last_not_of('0');
 | 
						|
  assert(NonZero != std::string::npos && "no . in floating point string");
 | 
						|
 | 
						|
  if (Float[NonZero] == '.')
 | 
						|
    ++NonZero;
 | 
						|
 | 
						|
  return Float.substr(0, NonZero + 1);
 | 
						|
}
 | 
						|
 | 
						|
std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
 | 
						|
                                       unsigned Precision) {
 | 
						|
  if (!D)
 | 
						|
    return "0.0";
 | 
						|
 | 
						|
  // Canonicalize exponent and digits.
 | 
						|
  uint64_t Above0 = 0;
 | 
						|
  uint64_t Below0 = 0;
 | 
						|
  uint64_t Extra = 0;
 | 
						|
  int ExtraShift = 0;
 | 
						|
  if (E == 0) {
 | 
						|
    Above0 = D;
 | 
						|
  } else if (E > 0) {
 | 
						|
    if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
 | 
						|
      D <<= Shift;
 | 
						|
      E -= Shift;
 | 
						|
 | 
						|
      if (!E)
 | 
						|
        Above0 = D;
 | 
						|
    }
 | 
						|
  } else if (E > -64) {
 | 
						|
    Above0 = D >> -E;
 | 
						|
    Below0 = D << (64 + E);
 | 
						|
  } else if (E == -64) {
 | 
						|
    // Special case: shift by 64 bits is undefined behavior.
 | 
						|
    Below0 = D;
 | 
						|
  } else if (E > -120) {
 | 
						|
    Below0 = D >> (-E - 64);
 | 
						|
    Extra = D << (128 + E);
 | 
						|
    ExtraShift = -64 - E;
 | 
						|
  }
 | 
						|
 | 
						|
  // Fall back on APFloat for very small and very large numbers.
 | 
						|
  if (!Above0 && !Below0)
 | 
						|
    return toStringAPFloat(D, E, Precision);
 | 
						|
 | 
						|
  // Append the digits before the decimal.
 | 
						|
  std::string Str;
 | 
						|
  size_t DigitsOut = 0;
 | 
						|
  if (Above0) {
 | 
						|
    appendNumber(Str, Above0);
 | 
						|
    DigitsOut = Str.size();
 | 
						|
  } else
 | 
						|
    appendDigit(Str, 0);
 | 
						|
  std::reverse(Str.begin(), Str.end());
 | 
						|
 | 
						|
  // Return early if there's nothing after the decimal.
 | 
						|
  if (!Below0)
 | 
						|
    return Str + ".0";
 | 
						|
 | 
						|
  // Append the decimal and beyond.
 | 
						|
  Str += '.';
 | 
						|
  uint64_t Error = UINT64_C(1) << (64 - Width);
 | 
						|
 | 
						|
  // We need to shift Below0 to the right to make space for calculating
 | 
						|
  // digits.  Save the precision we're losing in Extra.
 | 
						|
  Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
 | 
						|
  Below0 >>= 4;
 | 
						|
  size_t SinceDot = 0;
 | 
						|
  size_t AfterDot = Str.size();
 | 
						|
  do {
 | 
						|
    if (ExtraShift) {
 | 
						|
      --ExtraShift;
 | 
						|
      Error *= 5;
 | 
						|
    } else
 | 
						|
      Error *= 10;
 | 
						|
 | 
						|
    Below0 *= 10;
 | 
						|
    Extra *= 10;
 | 
						|
    Below0 += (Extra >> 60);
 | 
						|
    Extra = Extra & (UINT64_MAX >> 4);
 | 
						|
    appendDigit(Str, Below0 >> 60);
 | 
						|
    Below0 = Below0 & (UINT64_MAX >> 4);
 | 
						|
    if (DigitsOut || Str.back() != '0')
 | 
						|
      ++DigitsOut;
 | 
						|
    ++SinceDot;
 | 
						|
  } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
 | 
						|
           (!Precision || DigitsOut <= Precision || SinceDot < 2));
 | 
						|
 | 
						|
  // Return early for maximum precision.
 | 
						|
  if (!Precision || DigitsOut <= Precision)
 | 
						|
    return stripTrailingZeros(Str);
 | 
						|
 | 
						|
  // Find where to truncate.
 | 
						|
  size_t Truncate =
 | 
						|
      std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
 | 
						|
 | 
						|
  // Check if there's anything to truncate.
 | 
						|
  if (Truncate >= Str.size())
 | 
						|
    return stripTrailingZeros(Str);
 | 
						|
 | 
						|
  bool Carry = doesRoundUp(Str[Truncate]);
 | 
						|
  if (!Carry)
 | 
						|
    return stripTrailingZeros(Str.substr(0, Truncate));
 | 
						|
 | 
						|
  // Round with the first truncated digit.
 | 
						|
  for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (*I == '.')
 | 
						|
      continue;
 | 
						|
    if (*I == '9') {
 | 
						|
      *I = '0';
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ++*I;
 | 
						|
    Carry = false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add "1" in front if we still need to carry.
 | 
						|
  return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
 | 
						|
                                     int Width, unsigned Precision) {
 | 
						|
  return OS << toString(D, E, Width, Precision);
 | 
						|
}
 | 
						|
 | 
						|
void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
 | 
						|
  print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
 | 
						|
                                << "]";
 | 
						|
}
 |