1327 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1327 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Loops should be simplified before this analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SCCIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/ProfDataUtils.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <map>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "branch-prob"
 | |
| 
 | |
| static cl::opt<bool> PrintBranchProb(
 | |
|     "print-bpi", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Print the branch probability info."));
 | |
| 
 | |
| cl::opt<std::string> PrintBranchProbFuncName(
 | |
|     "print-bpi-func-name", cl::Hidden,
 | |
|     cl::desc("The option to specify the name of the function "
 | |
|              "whose branch probability info is printed."));
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
 | |
|                       "Branch Probability Analysis", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
 | |
|                     "Branch Probability Analysis", false, true)
 | |
| 
 | |
| BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
 | |
|     : FunctionPass(ID) {
 | |
|   initializeBranchProbabilityInfoWrapperPassPass(
 | |
|       *PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| char BranchProbabilityInfoWrapperPass::ID = 0;
 | |
| 
 | |
| // Weights are for internal use only. They are used by heuristics to help to
 | |
| // estimate edges' probability. Example:
 | |
| //
 | |
| // Using "Loop Branch Heuristics" we predict weights of edges for the
 | |
| // block BB2.
 | |
| //         ...
 | |
| //          |
 | |
| //          V
 | |
| //         BB1<-+
 | |
| //          |   |
 | |
| //          |   | (Weight = 124)
 | |
| //          V   |
 | |
| //         BB2--+
 | |
| //          |
 | |
| //          | (Weight = 4)
 | |
| //          V
 | |
| //         BB3
 | |
| //
 | |
| // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
 | |
| // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
 | |
| static const uint32_t LBH_TAKEN_WEIGHT = 124;
 | |
| static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
 | |
| 
 | |
| /// Unreachable-terminating branch taken probability.
 | |
| ///
 | |
| /// This is the probability for a branch being taken to a block that terminates
 | |
| /// (eventually) in unreachable. These are predicted as unlikely as possible.
 | |
| /// All reachable probability will proportionally share the remaining part.
 | |
| static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
 | |
| 
 | |
| /// Heuristics and lookup tables for non-loop branches:
 | |
| /// Pointer Heuristics (PH)
 | |
| static const uint32_t PH_TAKEN_WEIGHT = 20;
 | |
| static const uint32_t PH_NONTAKEN_WEIGHT = 12;
 | |
| static const BranchProbability
 | |
|     PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
 | |
| static const BranchProbability
 | |
|     PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
 | |
| 
 | |
| using ProbabilityList = SmallVector<BranchProbability>;
 | |
| using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
 | |
| 
 | |
| /// Pointer comparisons:
 | |
| static const ProbabilityTable PointerTable{
 | |
|     {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
 | |
|     {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
 | |
| };
 | |
| 
 | |
| /// Zero Heuristics (ZH)
 | |
| static const uint32_t ZH_TAKEN_WEIGHT = 20;
 | |
| static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
 | |
| static const BranchProbability
 | |
|     ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
 | |
| static const BranchProbability
 | |
|     ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
 | |
| 
 | |
| /// Integer compares with 0:
 | |
| static const ProbabilityTable ICmpWithZeroTable{
 | |
|     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == 0 -> Unlikely
 | |
|     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != 0 -> Likely
 | |
|     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0  -> Unlikely
 | |
|     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0  -> Likely
 | |
| };
 | |
| 
 | |
| /// Integer compares with -1:
 | |
| static const ProbabilityTable ICmpWithMinusOneTable{
 | |
|     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == -1 -> Unlikely
 | |
|     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != -1 -> Likely
 | |
|     // InstCombine canonicalizes X >= 0 into X > -1
 | |
|     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0  -> Likely
 | |
| };
 | |
| 
 | |
| /// Integer compares with 1:
 | |
| static const ProbabilityTable ICmpWithOneTable{
 | |
|     // InstCombine canonicalizes X <= 0 into X < 1
 | |
|     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
 | |
| };
 | |
| 
 | |
| /// strcmp and similar functions return zero, negative, or positive, if the
 | |
| /// first string is equal, less, or greater than the second. We consider it
 | |
| /// likely that the strings are not equal, so a comparison with zero is
 | |
| /// probably false, but also a comparison with any other number is also
 | |
| /// probably false given that what exactly is returned for nonzero values is
 | |
| /// not specified. Any kind of comparison other than equality we know
 | |
| /// nothing about.
 | |
| static const ProbabilityTable ICmpWithLibCallTable{
 | |
|     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
 | |
|     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
 | |
| };
 | |
| 
 | |
| // Floating-Point Heuristics (FPH)
 | |
| static const uint32_t FPH_TAKEN_WEIGHT = 20;
 | |
| static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
 | |
| 
 | |
| /// This is the probability for an ordered floating point comparison.
 | |
| static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
 | |
| /// This is the probability for an unordered floating point comparison, it means
 | |
| /// one or two of the operands are NaN. Usually it is used to test for an
 | |
| /// exceptional case, so the result is unlikely.
 | |
| static const uint32_t FPH_UNO_WEIGHT = 1;
 | |
| 
 | |
| static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
 | |
|                                               FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
 | |
| static const BranchProbability
 | |
|     FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
 | |
| static const BranchProbability
 | |
|     FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
 | |
| static const BranchProbability
 | |
|     FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
 | |
| 
 | |
| /// Floating-Point compares:
 | |
| static const ProbabilityTable FCmpTable{
 | |
|     {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
 | |
|     {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
 | |
| };
 | |
| 
 | |
| /// Set of dedicated "absolute" execution weights for a block. These weights are
 | |
| /// meaningful relative to each other and their derivatives only.
 | |
| enum class BlockExecWeight : std::uint32_t {
 | |
|   /// Special weight used for cases with exact zero probability.
 | |
|   ZERO = 0x0,
 | |
|   /// Minimal possible non zero weight.
 | |
|   LOWEST_NON_ZERO = 0x1,
 | |
|   /// Weight to an 'unreachable' block.
 | |
|   UNREACHABLE = ZERO,
 | |
|   /// Weight to a block containing non returning call.
 | |
|   NORETURN = LOWEST_NON_ZERO,
 | |
|   /// Weight to 'unwind' block of an invoke instruction.
 | |
|   UNWIND = LOWEST_NON_ZERO,
 | |
|   /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
 | |
|   /// with attribute 'cold'.
 | |
|   COLD = 0xffff,
 | |
|   /// Default weight is used in cases when there is no dedicated execution
 | |
|   /// weight set. It is not propagated through the domination line either.
 | |
|   DEFAULT = 0xfffff
 | |
| };
 | |
| 
 | |
| BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
 | |
|   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
 | |
|   // FIXME: We could only calculate this if the CFG is known to be irreducible
 | |
|   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
 | |
|   int SccNum = 0;
 | |
|   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
 | |
|        ++It, ++SccNum) {
 | |
|     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
 | |
|     // catch them.
 | |
|     const std::vector<const BasicBlock *> &Scc = *It;
 | |
|     if (Scc.size() == 1)
 | |
|       continue;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
 | |
|     for (const auto *BB : Scc) {
 | |
|       LLVM_DEBUG(dbgs() << " " << BB->getName());
 | |
|       SccNums[BB] = SccNum;
 | |
|       calculateSccBlockType(BB, SccNum);
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
 | |
|   auto SccIt = SccNums.find(BB);
 | |
|   if (SccIt == SccNums.end())
 | |
|     return -1;
 | |
|   return SccIt->second;
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
 | |
|     int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
 | |
| 
 | |
|   for (auto MapIt : SccBlocks[SccNum]) {
 | |
|     const auto *BB = MapIt.first;
 | |
|     if (isSCCHeader(BB, SccNum))
 | |
|       for (const auto *Pred : predecessors(BB))
 | |
|         if (getSCCNum(Pred) != SccNum)
 | |
|           Enters.push_back(const_cast<BasicBlock *>(BB));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
 | |
|     int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
 | |
|   for (auto MapIt : SccBlocks[SccNum]) {
 | |
|     const auto *BB = MapIt.first;
 | |
|     if (isSCCExitingBlock(BB, SccNum))
 | |
|       for (const auto *Succ : successors(BB))
 | |
|         if (getSCCNum(Succ) != SccNum)
 | |
|           Exits.push_back(const_cast<BasicBlock *>(Succ));
 | |
|   }
 | |
| }
 | |
| 
 | |
| uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
 | |
|                                                          int SccNum) const {
 | |
|   assert(getSCCNum(BB) == SccNum);
 | |
| 
 | |
|   assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
 | |
|   const auto &SccBlockTypes = SccBlocks[SccNum];
 | |
| 
 | |
|   auto It = SccBlockTypes.find(BB);
 | |
|   if (It != SccBlockTypes.end()) {
 | |
|     return It->second;
 | |
|   }
 | |
|   return Inner;
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
 | |
|                                                            int SccNum) {
 | |
|   assert(getSCCNum(BB) == SccNum);
 | |
|   uint32_t BlockType = Inner;
 | |
| 
 | |
|   if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
 | |
|         // Consider any block that is an entry point to the SCC as
 | |
|         // a header.
 | |
|         return getSCCNum(Pred) != SccNum;
 | |
|       }))
 | |
|     BlockType |= Header;
 | |
| 
 | |
|   if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
 | |
|         return getSCCNum(Succ) != SccNum;
 | |
|       }))
 | |
|     BlockType |= Exiting;
 | |
| 
 | |
|   // Lazily compute the set of headers for a given SCC and cache the results
 | |
|   // in the SccHeaderMap.
 | |
|   if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
 | |
|     SccBlocks.resize(SccNum + 1);
 | |
|   auto &SccBlockTypes = SccBlocks[SccNum];
 | |
| 
 | |
|   if (BlockType != Inner) {
 | |
|     bool IsInserted;
 | |
|     std::tie(std::ignore, IsInserted) =
 | |
|         SccBlockTypes.insert(std::make_pair(BB, BlockType));
 | |
|     assert(IsInserted && "Duplicated block in SCC");
 | |
|   }
 | |
| }
 | |
| 
 | |
| BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
 | |
|                                             const LoopInfo &LI,
 | |
|                                             const SccInfo &SccI)
 | |
|     : BB(BB) {
 | |
|   LD.first = LI.getLoopFor(BB);
 | |
|   if (!LD.first) {
 | |
|     LD.second = SccI.getSCCNum(BB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
 | |
|   const auto &SrcBlock = Edge.first;
 | |
|   const auto &DstBlock = Edge.second;
 | |
|   return (DstBlock.getLoop() &&
 | |
|           !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
 | |
|          // Assume that SCCs can't be nested.
 | |
|          (DstBlock.getSccNum() != -1 &&
 | |
|           SrcBlock.getSccNum() != DstBlock.getSccNum());
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
 | |
|   return isLoopEnteringEdge({Edge.second, Edge.first});
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
 | |
|     const LoopEdge &Edge) const {
 | |
|   return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
 | |
|   const auto &SrcBlock = Edge.first;
 | |
|   const auto &DstBlock = Edge.second;
 | |
|   return SrcBlock.belongsToSameLoop(DstBlock) &&
 | |
|          ((DstBlock.getLoop() &&
 | |
|            DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
 | |
|           (DstBlock.getSccNum() != -1 &&
 | |
|            SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::getLoopEnterBlocks(
 | |
|     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
 | |
|   if (LB.getLoop()) {
 | |
|     auto *Header = LB.getLoop()->getHeader();
 | |
|     Enters.append(pred_begin(Header), pred_end(Header));
 | |
|   } else {
 | |
|     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
 | |
|     SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::getLoopExitBlocks(
 | |
|     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
 | |
|   if (LB.getLoop()) {
 | |
|     LB.getLoop()->getExitBlocks(Exits);
 | |
|   } else {
 | |
|     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
 | |
|     SccI->getSccExitBlocks(LB.getSccNum(), Exits);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Propagate existing explicit probabilities from either profile data or
 | |
| // 'expect' intrinsic processing. Examine metadata against unreachable
 | |
| // heuristic. The probability of the edge coming to unreachable block is
 | |
| // set to min of metadata and unreachable heuristic.
 | |
| bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
 | |
|   const Instruction *TI = BB->getTerminator();
 | |
|   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
 | |
|   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
 | |
|         isa<InvokeInst>(TI)))
 | |
|     return false;
 | |
| 
 | |
|   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
 | |
|   if (!WeightsNode)
 | |
|     return false;
 | |
| 
 | |
|   // Check that the number of successors is manageable.
 | |
|   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
 | |
| 
 | |
|   // Ensure there are weights for all of the successors. Note that the first
 | |
|   // operand to the metadata node is a name, not a weight.
 | |
|   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
 | |
|     return false;
 | |
| 
 | |
|   // Build up the final weights that will be used in a temporary buffer.
 | |
|   // Compute the sum of all weights to later decide whether they need to
 | |
|   // be scaled to fit in 32 bits.
 | |
|   uint64_t WeightSum = 0;
 | |
|   SmallVector<uint32_t, 2> Weights;
 | |
|   SmallVector<unsigned, 2> UnreachableIdxs;
 | |
|   SmallVector<unsigned, 2> ReachableIdxs;
 | |
| 
 | |
|   extractBranchWeights(*TI, Weights);
 | |
|   for (unsigned I = 0, E = Weights.size(); I != E; ++I) {
 | |
|     WeightSum += Weights[I];
 | |
|     const LoopBlock SrcLoopBB = getLoopBlock(BB);
 | |
|     const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I));
 | |
|     auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
 | |
|     if (EstimatedWeight &&
 | |
|         *EstimatedWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
 | |
|       UnreachableIdxs.push_back(I);
 | |
|     else
 | |
|       ReachableIdxs.push_back(I);
 | |
|   }
 | |
|   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
 | |
| 
 | |
|   // If the sum of weights does not fit in 32 bits, scale every weight down
 | |
|   // accordingly.
 | |
|   uint64_t ScalingFactor =
 | |
|       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
 | |
| 
 | |
|   if (ScalingFactor > 1) {
 | |
|     WeightSum = 0;
 | |
|     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
 | |
|       Weights[I] /= ScalingFactor;
 | |
|       WeightSum += Weights[I];
 | |
|     }
 | |
|   }
 | |
|   assert(WeightSum <= UINT32_MAX &&
 | |
|          "Expected weights to scale down to 32 bits");
 | |
| 
 | |
|   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
 | |
|     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
 | |
|       Weights[I] = 1;
 | |
|     WeightSum = TI->getNumSuccessors();
 | |
|   }
 | |
| 
 | |
|   // Set the probability.
 | |
|   SmallVector<BranchProbability, 2> BP;
 | |
|   for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
 | |
|     BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
 | |
| 
 | |
|   // Examine the metadata against unreachable heuristic.
 | |
|   // If the unreachable heuristic is more strong then we use it for this edge.
 | |
|   if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
 | |
|     setEdgeProbability(BB, BP);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   auto UnreachableProb = UR_TAKEN_PROB;
 | |
|   for (auto I : UnreachableIdxs)
 | |
|     if (UnreachableProb < BP[I]) {
 | |
|       BP[I] = UnreachableProb;
 | |
|     }
 | |
| 
 | |
|   // Sum of all edge probabilities must be 1.0. If we modified the probability
 | |
|   // of some edges then we must distribute the introduced difference over the
 | |
|   // reachable blocks.
 | |
|   //
 | |
|   // Proportional distribution: the relation between probabilities of the
 | |
|   // reachable edges is kept unchanged. That is for any reachable edges i and j:
 | |
|   //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
 | |
|   //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
 | |
|   // Where K is independent of i,j.
 | |
|   //   newBP[i] == oldBP[i] * K
 | |
|   // We need to find K.
 | |
|   // Make sum of all reachables of the left and right parts:
 | |
|   //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
 | |
|   // Sum of newBP must be equal to 1.0:
 | |
|   //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
 | |
|   //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
 | |
|   // Where sum_of_unreachable(newBP) is what has been just changed.
 | |
|   // Finally:
 | |
|   //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
 | |
|   //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
 | |
|   BranchProbability NewUnreachableSum = BranchProbability::getZero();
 | |
|   for (auto I : UnreachableIdxs)
 | |
|     NewUnreachableSum += BP[I];
 | |
| 
 | |
|   BranchProbability NewReachableSum =
 | |
|       BranchProbability::getOne() - NewUnreachableSum;
 | |
| 
 | |
|   BranchProbability OldReachableSum = BranchProbability::getZero();
 | |
|   for (auto I : ReachableIdxs)
 | |
|     OldReachableSum += BP[I];
 | |
| 
 | |
|   if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
 | |
|     if (OldReachableSum.isZero()) {
 | |
|       // If all oldBP[i] are zeroes then the proportional distribution results
 | |
|       // in all zero probabilities and the error stays big. In this case we
 | |
|       // evenly spread NewReachableSum over the reachable edges.
 | |
|       BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
 | |
|       for (auto I : ReachableIdxs)
 | |
|         BP[I] = PerEdge;
 | |
|     } else {
 | |
|       for (auto I : ReachableIdxs) {
 | |
|         // We use uint64_t to avoid double rounding error of the following
 | |
|         // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
 | |
|         // The formula is taken from the private constructor
 | |
|         // BranchProbability(uint32_t Numerator, uint32_t Denominator)
 | |
|         uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
 | |
|                        BP[I].getNumerator();
 | |
|         uint32_t Div = static_cast<uint32_t>(
 | |
|             divideNearest(Mul, OldReachableSum.getNumerator()));
 | |
|         BP[I] = BranchProbability::getRaw(Div);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   setEdgeProbability(BB, BP);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
 | |
| // between two pointer or pointer and NULL will fail.
 | |
| bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
 | |
|   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|   if (!BI || !BI->isConditional())
 | |
|     return false;
 | |
| 
 | |
|   Value *Cond = BI->getCondition();
 | |
|   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
 | |
|   if (!CI || !CI->isEquality())
 | |
|     return false;
 | |
| 
 | |
|   Value *LHS = CI->getOperand(0);
 | |
| 
 | |
|   if (!LHS->getType()->isPointerTy())
 | |
|     return false;
 | |
| 
 | |
|   assert(CI->getOperand(1)->getType()->isPointerTy());
 | |
| 
 | |
|   auto Search = PointerTable.find(CI->getPredicate());
 | |
|   if (Search == PointerTable.end())
 | |
|     return false;
 | |
|   setEdgeProbability(BB, Search->second);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Compute the unlikely successors to the block BB in the loop L, specifically
 | |
| // those that are unlikely because this is a loop, and add them to the
 | |
| // UnlikelyBlocks set.
 | |
| static void
 | |
| computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
 | |
|                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
 | |
|   // Sometimes in a loop we have a branch whose condition is made false by
 | |
|   // taking it. This is typically something like
 | |
|   //  int n = 0;
 | |
|   //  while (...) {
 | |
|   //    if (++n >= MAX) {
 | |
|   //      n = 0;
 | |
|   //    }
 | |
|   //  }
 | |
|   // In this sort of situation taking the branch means that at the very least it
 | |
|   // won't be taken again in the next iteration of the loop, so we should
 | |
|   // consider it less likely than a typical branch.
 | |
|   //
 | |
|   // We detect this by looking back through the graph of PHI nodes that sets the
 | |
|   // value that the condition depends on, and seeing if we can reach a successor
 | |
|   // block which can be determined to make the condition false.
 | |
|   //
 | |
|   // FIXME: We currently consider unlikely blocks to be half as likely as other
 | |
|   // blocks, but if we consider the example above the likelyhood is actually
 | |
|   // 1/MAX. We could therefore be more precise in how unlikely we consider
 | |
|   // blocks to be, but it would require more careful examination of the form
 | |
|   // of the comparison expression.
 | |
|   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|   if (!BI || !BI->isConditional())
 | |
|     return;
 | |
| 
 | |
|   // Check if the branch is based on an instruction compared with a constant
 | |
|   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
 | |
|   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
 | |
|       !isa<Constant>(CI->getOperand(1)))
 | |
|     return;
 | |
| 
 | |
|   // Either the instruction must be a PHI, or a chain of operations involving
 | |
|   // constants that ends in a PHI which we can then collapse into a single value
 | |
|   // if the PHI value is known.
 | |
|   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
 | |
|   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
 | |
|   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
 | |
|   // Collect the instructions until we hit a PHI
 | |
|   SmallVector<BinaryOperator *, 1> InstChain;
 | |
|   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
 | |
|          isa<Constant>(CmpLHS->getOperand(1))) {
 | |
|     // Stop if the chain extends outside of the loop
 | |
|     if (!L->contains(CmpLHS))
 | |
|       return;
 | |
|     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
 | |
|     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
 | |
|     if (CmpLHS)
 | |
|       CmpPHI = dyn_cast<PHINode>(CmpLHS);
 | |
|   }
 | |
|   if (!CmpPHI || !L->contains(CmpPHI))
 | |
|     return;
 | |
| 
 | |
|   // Trace the phi node to find all values that come from successors of BB
 | |
|   SmallPtrSet<PHINode*, 8> VisitedInsts;
 | |
|   SmallVector<PHINode*, 8> WorkList;
 | |
|   WorkList.push_back(CmpPHI);
 | |
|   VisitedInsts.insert(CmpPHI);
 | |
|   while (!WorkList.empty()) {
 | |
|     PHINode *P = WorkList.pop_back_val();
 | |
|     for (BasicBlock *B : P->blocks()) {
 | |
|       // Skip blocks that aren't part of the loop
 | |
|       if (!L->contains(B))
 | |
|         continue;
 | |
|       Value *V = P->getIncomingValueForBlock(B);
 | |
|       // If the source is a PHI add it to the work list if we haven't
 | |
|       // already visited it.
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|         if (VisitedInsts.insert(PN).second)
 | |
|           WorkList.push_back(PN);
 | |
|         continue;
 | |
|       }
 | |
|       // If this incoming value is a constant and B is a successor of BB, then
 | |
|       // we can constant-evaluate the compare to see if it makes the branch be
 | |
|       // taken or not.
 | |
|       Constant *CmpLHSConst = dyn_cast<Constant>(V);
 | |
|       if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
 | |
|         continue;
 | |
|       // First collapse InstChain
 | |
|       const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
|       for (Instruction *I : llvm::reverse(InstChain)) {
 | |
|         CmpLHSConst = ConstantFoldBinaryOpOperands(
 | |
|             I->getOpcode(), CmpLHSConst, cast<Constant>(I->getOperand(1)), DL);
 | |
|         if (!CmpLHSConst)
 | |
|           break;
 | |
|       }
 | |
|       if (!CmpLHSConst)
 | |
|         continue;
 | |
|       // Now constant-evaluate the compare
 | |
|       Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
 | |
|                                                   CmpLHSConst, CmpConst, true);
 | |
|       // If the result means we don't branch to the block then that block is
 | |
|       // unlikely.
 | |
|       if (Result &&
 | |
|           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
 | |
|            (Result->isOneValue() && B == BI->getSuccessor(1))))
 | |
|         UnlikelyBlocks.insert(B);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Optional<uint32_t>
 | |
| BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
 | |
|   auto WeightIt = EstimatedBlockWeight.find(BB);
 | |
|   if (WeightIt == EstimatedBlockWeight.end())
 | |
|     return None;
 | |
|   return WeightIt->second;
 | |
| }
 | |
| 
 | |
| Optional<uint32_t>
 | |
| BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
 | |
|   auto WeightIt = EstimatedLoopWeight.find(L);
 | |
|   if (WeightIt == EstimatedLoopWeight.end())
 | |
|     return None;
 | |
|   return WeightIt->second;
 | |
| }
 | |
| 
 | |
| Optional<uint32_t>
 | |
| BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
 | |
|   // For edges entering a loop take weight of a loop rather than an individual
 | |
|   // block in the loop.
 | |
|   return isLoopEnteringEdge(Edge)
 | |
|              ? getEstimatedLoopWeight(Edge.second.getLoopData())
 | |
|              : getEstimatedBlockWeight(Edge.second.getBlock());
 | |
| }
 | |
| 
 | |
| template <class IterT>
 | |
| Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
 | |
|     const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
 | |
|   SmallVector<uint32_t, 4> Weights;
 | |
|   Optional<uint32_t> MaxWeight;
 | |
|   for (const BasicBlock *DstBB : Successors) {
 | |
|     const LoopBlock DstLoopBB = getLoopBlock(DstBB);
 | |
|     auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
 | |
| 
 | |
|     if (!Weight)
 | |
|       return None;
 | |
| 
 | |
|     if (!MaxWeight || *MaxWeight < *Weight)
 | |
|       MaxWeight = Weight;
 | |
|   }
 | |
| 
 | |
|   return MaxWeight;
 | |
| }
 | |
| 
 | |
| // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
 | |
| // an associated weight it is unchanged and false is returned.
 | |
| //
 | |
| // Please note by the algorithm the weight is not expected to change once set
 | |
| // thus 'false' status is used to track visited blocks.
 | |
| bool BranchProbabilityInfo::updateEstimatedBlockWeight(
 | |
|     LoopBlock &LoopBB, uint32_t BBWeight,
 | |
|     SmallVectorImpl<BasicBlock *> &BlockWorkList,
 | |
|     SmallVectorImpl<LoopBlock> &LoopWorkList) {
 | |
|   BasicBlock *BB = LoopBB.getBlock();
 | |
| 
 | |
|   // In general, weight is assigned to a block when it has final value and
 | |
|   // can't/shouldn't be changed.  However, there are cases when a block
 | |
|   // inherently has several (possibly "contradicting") weights. For example,
 | |
|   // "unwind" block may also contain "cold" call. In that case the first
 | |
|   // set weight is favored and all consequent weights are ignored.
 | |
|   if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
 | |
|     return false;
 | |
| 
 | |
|   for (BasicBlock *PredBlock : predecessors(BB)) {
 | |
|     LoopBlock PredLoop = getLoopBlock(PredBlock);
 | |
|     // Add affected block/loop to a working list.
 | |
|     if (isLoopExitingEdge({PredLoop, LoopBB})) {
 | |
|       if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
 | |
|         LoopWorkList.push_back(PredLoop);
 | |
|     } else if (!EstimatedBlockWeight.count(PredBlock))
 | |
|       BlockWorkList.push_back(PredBlock);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
 | |
| // to all such blocks that are post dominated by \BB. In other words to all
 | |
| // blocks that the one is executed if and only if another one is executed.
 | |
| // Importantly, we skip loops here for two reasons. First weights of blocks in
 | |
| // a loop should be scaled by trip count (yet possibly unknown). Second there is
 | |
| // no any value in doing that because that doesn't give any additional
 | |
| // information regarding distribution of probabilities inside the loop.
 | |
| // Exception is loop 'enter' and 'exit' edges that are handled in a special way
 | |
| // at calcEstimatedHeuristics.
 | |
| //
 | |
| // In addition, \p WorkList is populated with basic blocks if at leas one
 | |
| // successor has updated estimated weight.
 | |
| void BranchProbabilityInfo::propagateEstimatedBlockWeight(
 | |
|     const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
 | |
|     uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
 | |
|     SmallVectorImpl<LoopBlock> &LoopWorkList) {
 | |
|   const BasicBlock *BB = LoopBB.getBlock();
 | |
|   const auto *DTStartNode = DT->getNode(BB);
 | |
|   const auto *PDTStartNode = PDT->getNode(BB);
 | |
| 
 | |
|   // TODO: Consider propagating weight down the domination line as well.
 | |
|   for (const auto *DTNode = DTStartNode; DTNode != nullptr;
 | |
|        DTNode = DTNode->getIDom()) {
 | |
|     auto *DomBB = DTNode->getBlock();
 | |
|     // Consider blocks which lie on one 'line'.
 | |
|     if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
 | |
|       // If BB doesn't post dominate DomBB it will not post dominate dominators
 | |
|       // of DomBB as well.
 | |
|       break;
 | |
| 
 | |
|     LoopBlock DomLoopBB = getLoopBlock(DomBB);
 | |
|     const LoopEdge Edge{DomLoopBB, LoopBB};
 | |
|     // Don't propagate weight to blocks belonging to different loops.
 | |
|     if (!isLoopEnteringExitingEdge(Edge)) {
 | |
|       if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
 | |
|                                       LoopWorkList))
 | |
|         // If DomBB has weight set then all it's predecessors are already
 | |
|         // processed (since we propagate weight up to the top of IR each time).
 | |
|         break;
 | |
|     } else if (isLoopExitingEdge(Edge)) {
 | |
|       LoopWorkList.push_back(DomLoopBB);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
 | |
|     const BasicBlock *BB) {
 | |
|   // Returns true if \p BB has call marked with "NoReturn" attribute.
 | |
|   auto hasNoReturn = [&](const BasicBlock *BB) {
 | |
|     for (const auto &I : reverse(*BB))
 | |
|       if (const CallInst *CI = dyn_cast<CallInst>(&I))
 | |
|         if (CI->hasFnAttr(Attribute::NoReturn))
 | |
|           return true;
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // Important note regarding the order of checks. They are ordered by weight
 | |
|   // from lowest to highest. Doing that allows to avoid "unstable" results
 | |
|   // when several conditions heuristics can be applied simultaneously.
 | |
|   if (isa<UnreachableInst>(BB->getTerminator()) ||
 | |
|       // If this block is terminated by a call to
 | |
|       // @llvm.experimental.deoptimize then treat it like an unreachable
 | |
|       // since it is expected to practically never execute.
 | |
|       // TODO: Should we actually treat as never returning call?
 | |
|       BB->getTerminatingDeoptimizeCall())
 | |
|     return hasNoReturn(BB)
 | |
|                ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
 | |
|                : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
 | |
| 
 | |
|   // Check if the block is 'unwind' handler of  some invoke instruction.
 | |
|   for (const auto *Pred : predecessors(BB))
 | |
|     if (Pred)
 | |
|       if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
 | |
|         if (II->getUnwindDest() == BB)
 | |
|           return static_cast<uint32_t>(BlockExecWeight::UNWIND);
 | |
| 
 | |
|   // Check if the block contains 'cold' call.
 | |
|   for (const auto &I : *BB)
 | |
|     if (const CallInst *CI = dyn_cast<CallInst>(&I))
 | |
|       if (CI->hasFnAttr(Attribute::Cold))
 | |
|         return static_cast<uint32_t>(BlockExecWeight::COLD);
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| // Does RPO traversal over all blocks in \p F and assigns weights to
 | |
| // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
 | |
| // best to propagate the weight to up/down the IR.
 | |
| void BranchProbabilityInfo::computeEestimateBlockWeight(
 | |
|     const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
 | |
|   SmallVector<BasicBlock *, 8> BlockWorkList;
 | |
|   SmallVector<LoopBlock, 8> LoopWorkList;
 | |
| 
 | |
|   // By doing RPO we make sure that all predecessors already have weights
 | |
|   // calculated before visiting theirs successors.
 | |
|   ReversePostOrderTraversal<const Function *> RPOT(&F);
 | |
|   for (const auto *BB : RPOT)
 | |
|     if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
 | |
|       // If we were able to find estimated weight for the block set it to this
 | |
|       // block and propagate up the IR.
 | |
|       propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, BBWeight.value(),
 | |
|                                     BlockWorkList, LoopWorkList);
 | |
| 
 | |
|   // BlockWorklist/LoopWorkList contains blocks/loops with at least one
 | |
|   // successor/exit having estimated weight. Try to propagate weight to such
 | |
|   // blocks/loops from successors/exits.
 | |
|   // Process loops and blocks. Order is not important.
 | |
|   do {
 | |
|     while (!LoopWorkList.empty()) {
 | |
|       const LoopBlock LoopBB = LoopWorkList.pop_back_val();
 | |
| 
 | |
|       if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
 | |
|         continue;
 | |
| 
 | |
|       SmallVector<BasicBlock *, 4> Exits;
 | |
|       getLoopExitBlocks(LoopBB, Exits);
 | |
|       auto LoopWeight = getMaxEstimatedEdgeWeight(
 | |
|           LoopBB, make_range(Exits.begin(), Exits.end()));
 | |
| 
 | |
|       if (LoopWeight) {
 | |
|         // If we never exit the loop then we can enter it once at maximum.
 | |
|         if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
 | |
|           LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
 | |
| 
 | |
|         EstimatedLoopWeight.insert({LoopBB.getLoopData(), *LoopWeight});
 | |
|         // Add all blocks entering the loop into working list.
 | |
|         getLoopEnterBlocks(LoopBB, BlockWorkList);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     while (!BlockWorkList.empty()) {
 | |
|       // We can reach here only if BlockWorkList is not empty.
 | |
|       const BasicBlock *BB = BlockWorkList.pop_back_val();
 | |
|       if (EstimatedBlockWeight.count(BB))
 | |
|         continue;
 | |
| 
 | |
|       // We take maximum over all weights of successors. In other words we take
 | |
|       // weight of "hot" path. In theory we can probably find a better function
 | |
|       // which gives higher accuracy results (comparing to "maximum") but I
 | |
|       // can't
 | |
|       // think of any right now. And I doubt it will make any difference in
 | |
|       // practice.
 | |
|       const LoopBlock LoopBB = getLoopBlock(BB);
 | |
|       auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
 | |
| 
 | |
|       if (MaxWeight)
 | |
|         propagateEstimatedBlockWeight(LoopBB, DT, PDT, *MaxWeight,
 | |
|                                       BlockWorkList, LoopWorkList);
 | |
|     }
 | |
|   } while (!BlockWorkList.empty() || !LoopWorkList.empty());
 | |
| }
 | |
| 
 | |
| // Calculate edge probabilities based on block's estimated weight.
 | |
| // Note that gathered weights were not scaled for loops. Thus edges entering
 | |
| // and exiting loops requires special processing.
 | |
| bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
 | |
|   assert(BB->getTerminator()->getNumSuccessors() > 1 &&
 | |
|          "expected more than one successor!");
 | |
| 
 | |
|   const LoopBlock LoopBB = getLoopBlock(BB);
 | |
| 
 | |
|   SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
 | |
|   uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
 | |
|   if (LoopBB.getLoop())
 | |
|     computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
 | |
| 
 | |
|   // Changed to 'true' if at least one successor has estimated weight.
 | |
|   bool FoundEstimatedWeight = false;
 | |
|   SmallVector<uint32_t, 4> SuccWeights;
 | |
|   uint64_t TotalWeight = 0;
 | |
|   // Go over all successors of BB and put their weights into SuccWeights.
 | |
|   for (const BasicBlock *SuccBB : successors(BB)) {
 | |
|     Optional<uint32_t> Weight;
 | |
|     const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
 | |
|     const LoopEdge Edge{LoopBB, SuccLoopBB};
 | |
| 
 | |
|     Weight = getEstimatedEdgeWeight(Edge);
 | |
| 
 | |
|     if (isLoopExitingEdge(Edge) &&
 | |
|         // Avoid adjustment of ZERO weight since it should remain unchanged.
 | |
|         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
 | |
|       // Scale down loop exiting weight by trip count.
 | |
|       Weight = std::max(
 | |
|           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
 | |
|           Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
 | |
|               TC);
 | |
|     }
 | |
|     bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
 | |
|     if (IsUnlikelyEdge &&
 | |
|         // Avoid adjustment of ZERO weight since it should remain unchanged.
 | |
|         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
 | |
|       // 'Unlikely' blocks have twice lower weight.
 | |
|       Weight = std::max(
 | |
|           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
 | |
|           Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 2);
 | |
|     }
 | |
| 
 | |
|     if (Weight)
 | |
|       FoundEstimatedWeight = true;
 | |
| 
 | |
|     auto WeightVal =
 | |
|         Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
 | |
|     TotalWeight += WeightVal;
 | |
|     SuccWeights.push_back(WeightVal);
 | |
|   }
 | |
| 
 | |
|   // If non of blocks have estimated weight bail out.
 | |
|   // If TotalWeight is 0 that means weight of each successor is 0 as well and
 | |
|   // equally likely. Bail out early to not deal with devision by zero.
 | |
|   if (!FoundEstimatedWeight || TotalWeight == 0)
 | |
|     return false;
 | |
| 
 | |
|   assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
 | |
|   const unsigned SuccCount = SuccWeights.size();
 | |
| 
 | |
|   // If the sum of weights does not fit in 32 bits, scale every weight down
 | |
|   // accordingly.
 | |
|   if (TotalWeight > UINT32_MAX) {
 | |
|     uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
 | |
|     TotalWeight = 0;
 | |
|     for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
 | |
|       SuccWeights[Idx] /= ScalingFactor;
 | |
|       if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
 | |
|         SuccWeights[Idx] =
 | |
|             static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
 | |
|       TotalWeight += SuccWeights[Idx];
 | |
|     }
 | |
|     assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
 | |
|   }
 | |
| 
 | |
|   // Finally set probabilities to edges according to estimated block weights.
 | |
|   SmallVector<BranchProbability, 4> EdgeProbabilities(
 | |
|       SuccCount, BranchProbability::getUnknown());
 | |
| 
 | |
|   for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
 | |
|     EdgeProbabilities[Idx] =
 | |
|         BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
 | |
|   }
 | |
|   setEdgeProbability(BB, EdgeProbabilities);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
 | |
|                                                const TargetLibraryInfo *TLI) {
 | |
|   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|   if (!BI || !BI->isConditional())
 | |
|     return false;
 | |
| 
 | |
|   Value *Cond = BI->getCondition();
 | |
|   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
 | |
|   if (!CI)
 | |
|     return false;
 | |
| 
 | |
|   auto GetConstantInt = [](Value *V) {
 | |
|     if (auto *I = dyn_cast<BitCastInst>(V))
 | |
|       return dyn_cast<ConstantInt>(I->getOperand(0));
 | |
|     return dyn_cast<ConstantInt>(V);
 | |
|   };
 | |
| 
 | |
|   Value *RHS = CI->getOperand(1);
 | |
|   ConstantInt *CV = GetConstantInt(RHS);
 | |
|   if (!CV)
 | |
|     return false;
 | |
| 
 | |
|   // If the LHS is the result of AND'ing a value with a single bit bitmask,
 | |
|   // we don't have information about probabilities.
 | |
|   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
 | |
|     if (LHS->getOpcode() == Instruction::And)
 | |
|       if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
 | |
|         if (AndRHS->getValue().isPowerOf2())
 | |
|           return false;
 | |
| 
 | |
|   // Check if the LHS is the return value of a library function
 | |
|   LibFunc Func = NumLibFuncs;
 | |
|   if (TLI)
 | |
|     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
 | |
|       if (Function *CalledFn = Call->getCalledFunction())
 | |
|         TLI->getLibFunc(*CalledFn, Func);
 | |
| 
 | |
|   ProbabilityTable::const_iterator Search;
 | |
|   if (Func == LibFunc_strcasecmp ||
 | |
|       Func == LibFunc_strcmp ||
 | |
|       Func == LibFunc_strncasecmp ||
 | |
|       Func == LibFunc_strncmp ||
 | |
|       Func == LibFunc_memcmp ||
 | |
|       Func == LibFunc_bcmp) {
 | |
|     Search = ICmpWithLibCallTable.find(CI->getPredicate());
 | |
|     if (Search == ICmpWithLibCallTable.end())
 | |
|       return false;
 | |
|   } else if (CV->isZero()) {
 | |
|     Search = ICmpWithZeroTable.find(CI->getPredicate());
 | |
|     if (Search == ICmpWithZeroTable.end())
 | |
|       return false;
 | |
|   } else if (CV->isOne()) {
 | |
|     Search = ICmpWithOneTable.find(CI->getPredicate());
 | |
|     if (Search == ICmpWithOneTable.end())
 | |
|       return false;
 | |
|   } else if (CV->isMinusOne()) {
 | |
|     Search = ICmpWithMinusOneTable.find(CI->getPredicate());
 | |
|     if (Search == ICmpWithMinusOneTable.end())
 | |
|       return false;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   setEdgeProbability(BB, Search->second);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
 | |
|   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|   if (!BI || !BI->isConditional())
 | |
|     return false;
 | |
| 
 | |
|   Value *Cond = BI->getCondition();
 | |
|   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
 | |
|   if (!FCmp)
 | |
|     return false;
 | |
| 
 | |
|   ProbabilityList ProbList;
 | |
|   if (FCmp->isEquality()) {
 | |
|     ProbList = !FCmp->isTrueWhenEqual() ?
 | |
|       // f1 == f2 -> Unlikely
 | |
|       ProbabilityList({FPTakenProb, FPUntakenProb}) :
 | |
|       // f1 != f2 -> Likely
 | |
|       ProbabilityList({FPUntakenProb, FPTakenProb});
 | |
|   } else {
 | |
|     auto Search = FCmpTable.find(FCmp->getPredicate());
 | |
|     if (Search == FCmpTable.end())
 | |
|       return false;
 | |
|     ProbList = Search->second;
 | |
|   }
 | |
| 
 | |
|   setEdgeProbability(BB, ProbList);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::releaseMemory() {
 | |
|   Probs.clear();
 | |
|   Handles.clear();
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
 | |
|                                        FunctionAnalysisManager::Invalidator &) {
 | |
|   // Check whether the analysis, all analyses on functions, or the function's
 | |
|   // CFG have been preserved.
 | |
|   auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
 | |
|   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
 | |
|            PAC.preservedSet<CFGAnalyses>());
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::print(raw_ostream &OS) const {
 | |
|   OS << "---- Branch Probabilities ----\n";
 | |
|   // We print the probabilities from the last function the analysis ran over,
 | |
|   // or the function it is currently running over.
 | |
|   assert(LastF && "Cannot print prior to running over a function");
 | |
|   for (const auto &BI : *LastF) {
 | |
|     for (const BasicBlock *Succ : successors(&BI))
 | |
|       printEdgeProbability(OS << "  ", &BI, Succ);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfo::
 | |
| isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
 | |
|   // Hot probability is at least 4/5 = 80%
 | |
|   // FIXME: Compare against a static "hot" BranchProbability.
 | |
|   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
 | |
| }
 | |
| 
 | |
| /// Get the raw edge probability for the edge. If can't find it, return a
 | |
| /// default probability 1/N where N is the number of successors. Here an edge is
 | |
| /// specified using PredBlock and an
 | |
| /// index to the successors.
 | |
| BranchProbability
 | |
| BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | |
|                                           unsigned IndexInSuccessors) const {
 | |
|   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
 | |
|   assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
 | |
|              (Probs.end() == I) &&
 | |
|          "Probability for I-th successor must always be defined along with the "
 | |
|          "probability for the first successor");
 | |
| 
 | |
|   if (I != Probs.end())
 | |
|     return I->second;
 | |
| 
 | |
|   return {1, static_cast<uint32_t>(succ_size(Src))};
 | |
| }
 | |
| 
 | |
| BranchProbability
 | |
| BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | |
|                                           const_succ_iterator Dst) const {
 | |
|   return getEdgeProbability(Src, Dst.getSuccessorIndex());
 | |
| }
 | |
| 
 | |
| /// Get the raw edge probability calculated for the block pair. This returns the
 | |
| /// sum of all raw edge probabilities from Src to Dst.
 | |
| BranchProbability
 | |
| BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | |
|                                           const BasicBlock *Dst) const {
 | |
|   if (!Probs.count(std::make_pair(Src, 0)))
 | |
|     return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
 | |
| 
 | |
|   auto Prob = BranchProbability::getZero();
 | |
|   for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
 | |
|     if (*I == Dst)
 | |
|       Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
 | |
| 
 | |
|   return Prob;
 | |
| }
 | |
| 
 | |
| /// Set the edge probability for all edges at once.
 | |
| void BranchProbabilityInfo::setEdgeProbability(
 | |
|     const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
 | |
|   assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
 | |
|   eraseBlock(Src); // Erase stale data if any.
 | |
|   if (Probs.size() == 0)
 | |
|     return; // Nothing to set.
 | |
| 
 | |
|   Handles.insert(BasicBlockCallbackVH(Src, this));
 | |
|   uint64_t TotalNumerator = 0;
 | |
|   for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
 | |
|     this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
 | |
|     LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
 | |
|                       << " successor probability to " << Probs[SuccIdx]
 | |
|                       << "\n");
 | |
|     TotalNumerator += Probs[SuccIdx].getNumerator();
 | |
|   }
 | |
| 
 | |
|   // Because of rounding errors the total probability cannot be checked to be
 | |
|   // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
 | |
|   // Instead, every single probability in Probs must be as accurate as possible.
 | |
|   // This results in error 1/denominator at most, thus the total absolute error
 | |
|   // should be within Probs.size / BranchProbability::getDenominator.
 | |
|   assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
 | |
|   assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
 | |
|   (void)TotalNumerator;
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
 | |
|                                                   BasicBlock *Dst) {
 | |
|   eraseBlock(Dst); // Erase stale data if any.
 | |
|   unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
 | |
|   assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
 | |
|   if (NumSuccessors == 0)
 | |
|     return; // Nothing to set.
 | |
|   if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
 | |
|     return; // No probability is set for edges from Src. Keep the same for Dst.
 | |
| 
 | |
|   Handles.insert(BasicBlockCallbackVH(Dst, this));
 | |
|   for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
 | |
|     auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
 | |
|     this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
 | |
|     LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
 | |
|                       << " successor probability to " << Prob << "\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| raw_ostream &
 | |
| BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
 | |
|                                             const BasicBlock *Src,
 | |
|                                             const BasicBlock *Dst) const {
 | |
|   const BranchProbability Prob = getEdgeProbability(Src, Dst);
 | |
|   OS << "edge " << Src->getName() << " -> " << Dst->getName()
 | |
|      << " probability is " << Prob
 | |
|      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
 | |
| 
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
 | |
|   LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
 | |
| 
 | |
|   // Note that we cannot use successors of BB because the terminator of BB may
 | |
|   // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
 | |
|   // Instead we remove prob data for the block by iterating successors by their
 | |
|   // indices from 0 till the last which exists. There could not be prob data for
 | |
|   // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
 | |
|   // set for all successors from 0 to M at once by the method
 | |
|   // setEdgeProbability().
 | |
|   Handles.erase(BasicBlockCallbackVH(BB, this));
 | |
|   for (unsigned I = 0;; ++I) {
 | |
|     auto MapI = Probs.find(std::make_pair(BB, I));
 | |
|     if (MapI == Probs.end()) {
 | |
|       assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
 | |
|              "Must be no more successors");
 | |
|       return;
 | |
|     }
 | |
|     Probs.erase(MapI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
 | |
|                                       const TargetLibraryInfo *TLI,
 | |
|                                       DominatorTree *DT,
 | |
|                                       PostDominatorTree *PDT) {
 | |
|   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
 | |
|                     << " ----\n\n");
 | |
|   LastF = &F; // Store the last function we ran on for printing.
 | |
|   LI = &LoopI;
 | |
| 
 | |
|   SccI = std::make_unique<SccInfo>(F);
 | |
| 
 | |
|   assert(EstimatedBlockWeight.empty());
 | |
|   assert(EstimatedLoopWeight.empty());
 | |
| 
 | |
|   std::unique_ptr<DominatorTree> DTPtr;
 | |
|   std::unique_ptr<PostDominatorTree> PDTPtr;
 | |
| 
 | |
|   if (!DT) {
 | |
|     DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
 | |
|     DT = DTPtr.get();
 | |
|   }
 | |
| 
 | |
|   if (!PDT) {
 | |
|     PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
 | |
|     PDT = PDTPtr.get();
 | |
|   }
 | |
| 
 | |
|   computeEestimateBlockWeight(F, DT, PDT);
 | |
| 
 | |
|   // Walk the basic blocks in post-order so that we can build up state about
 | |
|   // the successors of a block iteratively.
 | |
|   for (const auto *BB : post_order(&F.getEntryBlock())) {
 | |
|     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
 | |
|                       << "\n");
 | |
|     // If there is no at least two successors, no sense to set probability.
 | |
|     if (BB->getTerminator()->getNumSuccessors() < 2)
 | |
|       continue;
 | |
|     if (calcMetadataWeights(BB))
 | |
|       continue;
 | |
|     if (calcEstimatedHeuristics(BB))
 | |
|       continue;
 | |
|     if (calcPointerHeuristics(BB))
 | |
|       continue;
 | |
|     if (calcZeroHeuristics(BB, TLI))
 | |
|       continue;
 | |
|     if (calcFloatingPointHeuristics(BB))
 | |
|       continue;
 | |
|   }
 | |
| 
 | |
|   EstimatedLoopWeight.clear();
 | |
|   EstimatedBlockWeight.clear();
 | |
|   SccI.reset();
 | |
| 
 | |
|   if (PrintBranchProb &&
 | |
|       (PrintBranchProbFuncName.empty() ||
 | |
|        F.getName().equals(PrintBranchProbFuncName))) {
 | |
|     print(dbgs());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
 | |
|     AnalysisUsage &AU) const {
 | |
|   // We require DT so it's available when LI is available. The LI updating code
 | |
|   // asserts that DT is also present so if we don't make sure that we have DT
 | |
|   // here, that assert will trigger.
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   AU.addRequired<LoopInfoWrapperPass>();
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   AU.addRequired<PostDominatorTreeWrapperPass>();
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
 | |
|   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   const TargetLibraryInfo &TLI =
 | |
|       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | |
|   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   PostDominatorTree &PDT =
 | |
|       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
 | |
|   BPI.calculate(F, LI, &TLI, &DT, &PDT);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
 | |
| 
 | |
| void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
 | |
|                                              const Module *) const {
 | |
|   BPI.print(OS);
 | |
| }
 | |
| 
 | |
| AnalysisKey BranchProbabilityAnalysis::Key;
 | |
| BranchProbabilityInfo
 | |
| BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   BranchProbabilityInfo BPI;
 | |
|   BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
 | |
|                 &AM.getResult<TargetLibraryAnalysis>(F),
 | |
|                 &AM.getResult<DominatorTreeAnalysis>(F),
 | |
|                 &AM.getResult<PostDominatorTreeAnalysis>(F));
 | |
|   return BPI;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses
 | |
| BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   OS << "Printing analysis results of BPI for function "
 | |
|      << "'" << F.getName() << "':"
 | |
|      << "\n";
 | |
|   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
 | |
|   return PreservedAnalyses::all();
 | |
| }
 |