374 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			374 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements bookkeeping for "interesting" users of expressions
 | 
						|
// computed from induction variables.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/IVUsers.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/CodeMetrics.h"
 | 
						|
#include "llvm/Analysis/LoopAnalysisManager.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "iv-users"
 | 
						|
 | 
						|
AnalysisKey IVUsersAnalysis::Key;
 | 
						|
 | 
						|
IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM,
 | 
						|
                             LoopStandardAnalysisResults &AR) {
 | 
						|
  return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE);
 | 
						|
}
 | 
						|
 | 
						|
char IVUsersWrapperPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
 | 
						|
                      "Induction Variable Users", false, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | 
						|
INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
 | 
						|
                    false, true)
 | 
						|
 | 
						|
Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
 | 
						|
 | 
						|
/// isInteresting - Test whether the given expression is "interesting" when
 | 
						|
/// used by the given expression, within the context of analyzing the
 | 
						|
/// given loop.
 | 
						|
static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
 | 
						|
                          ScalarEvolution *SE, LoopInfo *LI) {
 | 
						|
  // An addrec is interesting if it's affine or if it has an interesting start.
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    // Keep things simple. Don't touch loop-variant strides unless they're
 | 
						|
    // only used outside the loop and we can simplify them.
 | 
						|
    if (AR->getLoop() == L)
 | 
						|
      return AR->isAffine() ||
 | 
						|
             (!L->contains(I) &&
 | 
						|
              SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
 | 
						|
    // Otherwise recurse to see if the start value is interesting, and that
 | 
						|
    // the step value is not interesting, since we don't yet know how to
 | 
						|
    // do effective SCEV expansions for addrecs with interesting steps.
 | 
						|
    return isInteresting(AR->getStart(), I, L, SE, LI) &&
 | 
						|
          !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
 | 
						|
  }
 | 
						|
 | 
						|
  // An add is interesting if exactly one of its operands is interesting.
 | 
						|
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    bool AnyInterestingYet = false;
 | 
						|
    for (const auto *Op : Add->operands())
 | 
						|
      if (isInteresting(Op, I, L, SE, LI)) {
 | 
						|
        if (AnyInterestingYet)
 | 
						|
          return false;
 | 
						|
        AnyInterestingYet = true;
 | 
						|
      }
 | 
						|
    return AnyInterestingYet;
 | 
						|
  }
 | 
						|
 | 
						|
  // Nothing else is interesting here.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
 | 
						|
/// and now we need to decide whether the user should use the preinc or post-inc
 | 
						|
/// value.  If this user should use the post-inc version of the IV, return true.
 | 
						|
///
 | 
						|
/// Choosing wrong here can break dominance properties (if we choose to use the
 | 
						|
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
 | 
						|
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
 | 
						|
/// should use the post-inc value).
 | 
						|
static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
 | 
						|
                                       const Loop *L, DominatorTree *DT) {
 | 
						|
  // If the user is in the loop, use the preinc value.
 | 
						|
  if (L->contains(User))
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  if (!LatchBlock)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ok, the user is outside of the loop.  If it is dominated by the latch
 | 
						|
  // block, use the post-inc value.
 | 
						|
  if (DT->dominates(LatchBlock, User->getParent()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // There is one case we have to be careful of: PHI nodes.  These little guys
 | 
						|
  // can live in blocks that are not dominated by the latch block, but (since
 | 
						|
  // their uses occur in the predecessor block, not the block the PHI lives in)
 | 
						|
  // should still use the post-inc value.  Check for this case now.
 | 
						|
  PHINode *PN = dyn_cast<PHINode>(User);
 | 
						|
  if (!PN || !Operand)
 | 
						|
    return false; // not a phi, not dominated by latch block.
 | 
						|
 | 
						|
  // Look at all of the uses of Operand by the PHI node.  If any use corresponds
 | 
						|
  // to a block that is not dominated by the latch block, give up and use the
 | 
						|
  // preincremented value.
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
    if (PN->getIncomingValue(i) == Operand &&
 | 
						|
        !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Okay, all uses of Operand by PN are in predecessor blocks that really are
 | 
						|
  // dominated by the latch block.  Use the post-incremented value.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Inspect the specified instruction.  If it is a reducible SCEV, recursively
 | 
						|
/// add its users to the IVUsesByStride set and return true.  Otherwise, return
 | 
						|
/// false.
 | 
						|
bool IVUsers::AddUsersIfInteresting(Instruction *I) {
 | 
						|
  const DataLayout &DL = I->getModule()->getDataLayout();
 | 
						|
 | 
						|
  // Add this IV user to the Processed set before returning false to ensure that
 | 
						|
  // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
 | 
						|
  if (!Processed.insert(I).second)
 | 
						|
    return true;    // Instruction already handled.
 | 
						|
 | 
						|
  if (!SE->isSCEVable(I->getType()))
 | 
						|
    return false;   // Void and FP expressions cannot be reduced.
 | 
						|
 | 
						|
  // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
 | 
						|
  // pass to SCEVExpander. Expressions are not safe to expand if they represent
 | 
						|
  // operations that are not safe to speculate, namely integer division.
 | 
						|
  if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // LSR is not APInt clean, do not touch integers bigger than 64-bits.
 | 
						|
  // Also avoid creating IVs of non-native types. For example, we don't want a
 | 
						|
  // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
 | 
						|
  uint64_t Width = SE->getTypeSizeInBits(I->getType());
 | 
						|
  if (Width > 64 || !DL.isLegalInteger(Width))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't attempt to promote ephemeral values to indvars. They will be removed
 | 
						|
  // later anyway.
 | 
						|
  if (EphValues.count(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the symbolic expression for this instruction.
 | 
						|
  const SCEV *ISE = SE->getSCEV(I);
 | 
						|
 | 
						|
  // If we've come to an uninteresting expression, stop the traversal and
 | 
						|
  // call this a user.
 | 
						|
  if (!isInteresting(ISE, I, L, SE, LI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 4> UniqueUsers;
 | 
						|
  for (Use &U : I->uses()) {
 | 
						|
    Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
    if (!UniqueUsers.insert(User).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Do not infinitely recurse on PHI nodes.
 | 
						|
    if (isa<PHINode>(User) && Processed.count(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Descend recursively, but not into PHI nodes outside the current loop.
 | 
						|
    // It's important to see the entire expression outside the loop to get
 | 
						|
    // choices that depend on addressing mode use right, although we won't
 | 
						|
    // consider references outside the loop in all cases.
 | 
						|
    // If User is already in Processed, we don't want to recurse into it again,
 | 
						|
    // but do want to record a second reference in the same instruction.
 | 
						|
    bool AddUserToIVUsers = false;
 | 
						|
    if (LI->getLoopFor(User->getParent()) != L) {
 | 
						|
      if (isa<PHINode>(User) || Processed.count(User) ||
 | 
						|
          !AddUsersIfInteresting(User)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
 | 
						|
                          << "   OF SCEV: " << *ISE << '\n');
 | 
						|
        AddUserToIVUsers = true;
 | 
						|
      }
 | 
						|
    } else if (Processed.count(User) || !AddUsersIfInteresting(User)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
 | 
						|
                        << "   OF SCEV: " << *ISE << '\n');
 | 
						|
      AddUserToIVUsers = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (AddUserToIVUsers) {
 | 
						|
      // Okay, we found a user that we cannot reduce.
 | 
						|
      IVStrideUse &NewUse = AddUser(User, I);
 | 
						|
      // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
 | 
						|
      // The regular return value here is discarded; instead of recording
 | 
						|
      // it, we just recompute it when we need it.
 | 
						|
      const SCEV *OriginalISE = ISE;
 | 
						|
 | 
						|
      auto NormalizePred = [&](const SCEVAddRecExpr *AR) {
 | 
						|
        auto *L = AR->getLoop();
 | 
						|
        bool Result = IVUseShouldUsePostIncValue(User, I, L, DT);
 | 
						|
        if (Result)
 | 
						|
          NewUse.PostIncLoops.insert(L);
 | 
						|
        return Result;
 | 
						|
      };
 | 
						|
 | 
						|
      ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE);
 | 
						|
 | 
						|
      // PostIncNormalization effectively simplifies the expression under
 | 
						|
      // pre-increment assumptions. Those assumptions (no wrapping) might not
 | 
						|
      // hold for the post-inc value. Catch such cases by making sure the
 | 
						|
      // transformation is invertible.
 | 
						|
      if (OriginalISE != ISE) {
 | 
						|
        const SCEV *DenormalizedISE =
 | 
						|
            denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE);
 | 
						|
 | 
						|
        // If we normalized the expression, but denormalization doesn't give the
 | 
						|
        // original one, discard this user.
 | 
						|
        if (OriginalISE != DenormalizedISE) {
 | 
						|
          LLVM_DEBUG(dbgs()
 | 
						|
                     << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
 | 
						|
                     << *ISE << '\n');
 | 
						|
          IVUses.pop_back();
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs()
 | 
						|
                 << "   NORMALIZED TO: " << *ISE << '\n');
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
 | 
						|
  IVUses.push_back(new IVStrideUse(this, User, Operand));
 | 
						|
  return IVUses.back();
 | 
						|
}
 | 
						|
 | 
						|
IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT,
 | 
						|
                 ScalarEvolution *SE)
 | 
						|
    : L(L), AC(AC), LI(LI), DT(DT), SE(SE) {
 | 
						|
  // Collect ephemeral values so that AddUsersIfInteresting skips them.
 | 
						|
  EphValues.clear();
 | 
						|
  CodeMetrics::collectEphemeralValues(L, AC, EphValues);
 | 
						|
 | 
						|
  // Find all uses of induction variables in this loop, and categorize
 | 
						|
  // them by stride.  Start by finding all of the PHI nodes in the header for
 | 
						|
  // this loop.  If they are induction variables, inspect their uses.
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
 | 
						|
    (void)AddUsersIfInteresting(&*I);
 | 
						|
}
 | 
						|
 | 
						|
void IVUsers::print(raw_ostream &OS, const Module *M) const {
 | 
						|
  OS << "IV Users for loop ";
 | 
						|
  L->getHeader()->printAsOperand(OS, false);
 | 
						|
  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
 | 
						|
    OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
 | 
						|
  }
 | 
						|
  OS << ":\n";
 | 
						|
 | 
						|
  for (const IVStrideUse &IVUse : IVUses) {
 | 
						|
    OS << "  ";
 | 
						|
    IVUse.getOperandValToReplace()->printAsOperand(OS, false);
 | 
						|
    OS << " = " << *getReplacementExpr(IVUse);
 | 
						|
    for (const auto *PostIncLoop : IVUse.PostIncLoops) {
 | 
						|
      OS << " (post-inc with loop ";
 | 
						|
      PostIncLoop->getHeader()->printAsOperand(OS, false);
 | 
						|
      OS << ")";
 | 
						|
    }
 | 
						|
    OS << " in  ";
 | 
						|
    if (IVUse.getUser())
 | 
						|
      IVUse.getUser()->print(OS);
 | 
						|
    else
 | 
						|
      OS << "Printing <null> User";
 | 
						|
    OS << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
 | 
						|
#endif
 | 
						|
 | 
						|
void IVUsers::releaseMemory() {
 | 
						|
  Processed.clear();
 | 
						|
  IVUses.clear();
 | 
						|
}
 | 
						|
 | 
						|
IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
 | 
						|
  initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<AssumptionCacheTracker>();
 | 
						|
  AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<ScalarEvolutionWrapperPass>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
 | 
						|
      *L->getHeader()->getParent());
 | 
						|
  auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
 | 
						|
  IU.reset(new IVUsers(L, AC, LI, DT, SE));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
 | 
						|
  IU->print(OS, M);
 | 
						|
}
 | 
						|
 | 
						|
void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
 | 
						|
 | 
						|
/// getReplacementExpr - Return a SCEV expression which computes the
 | 
						|
/// value of the OperandValToReplace.
 | 
						|
const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
 | 
						|
  return SE->getSCEV(IU.getOperandValToReplace());
 | 
						|
}
 | 
						|
 | 
						|
/// getExpr - Return the expression for the use.
 | 
						|
const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
 | 
						|
  return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(),
 | 
						|
                                *SE);
 | 
						|
}
 | 
						|
 | 
						|
static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
 | 
						|
  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    if (AR->getLoop() == L)
 | 
						|
      return AR;
 | 
						|
    return findAddRecForLoop(AR->getStart(), L);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | 
						|
    for (const auto *Op : Add->operands())
 | 
						|
      if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L))
 | 
						|
        return AR;
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
 | 
						|
  if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
 | 
						|
    return AR->getStepRecurrence(*SE);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void IVStrideUse::transformToPostInc(const Loop *L) {
 | 
						|
  PostIncLoops.insert(L);
 | 
						|
}
 | 
						|
 | 
						|
void IVStrideUse::deleted() {
 | 
						|
  // Remove this user from the list.
 | 
						|
  Parent->Processed.erase(this->getUser());
 | 
						|
  Parent->IVUses.erase(this);
 | 
						|
  // this now dangles!
 | 
						|
}
 |