3156 lines
		
	
	
		
			118 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3156 lines
		
	
	
		
			118 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements inline cost analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/InlineCost.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/BlockFrequencyInfo.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/ProfileSummaryInfo.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/IR/AssemblyAnnotationWriter.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <climits>
 | |
| #include <limits>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "inline-cost"
 | |
| 
 | |
| STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
 | |
| 
 | |
| static cl::opt<int>
 | |
|     DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225),
 | |
|                      cl::desc("Default amount of inlining to perform"));
 | |
| 
 | |
| // We introduce this option since there is a minor compile-time win by avoiding
 | |
| // addition of TTI attributes (target-features in particular) to inline
 | |
| // candidates when they are guaranteed to be the same as top level methods in
 | |
| // some use cases. If we avoid adding the attribute, we need an option to avoid
 | |
| // checking these attributes.
 | |
| static cl::opt<bool> IgnoreTTIInlineCompatible(
 | |
|     "ignore-tti-inline-compatible", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Ignore TTI attributes compatibility check between callee/caller "
 | |
|              "during inline cost calculation"));
 | |
| 
 | |
| static cl::opt<bool> PrintInstructionComments(
 | |
|     "print-instruction-comments", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Prints comments for instruction based on inline cost analysis"));
 | |
| 
 | |
| static cl::opt<int> InlineThreshold(
 | |
|     "inline-threshold", cl::Hidden, cl::init(225),
 | |
|     cl::desc("Control the amount of inlining to perform (default = 225)"));
 | |
| 
 | |
| static cl::opt<int> HintThreshold(
 | |
|     "inlinehint-threshold", cl::Hidden, cl::init(325),
 | |
|     cl::desc("Threshold for inlining functions with inline hint"));
 | |
| 
 | |
| static cl::opt<int>
 | |
|     ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
 | |
|                           cl::init(45),
 | |
|                           cl::desc("Threshold for inlining cold callsites"));
 | |
| 
 | |
| static cl::opt<bool> InlineEnableCostBenefitAnalysis(
 | |
|     "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Enable the cost-benefit analysis for the inliner"));
 | |
| 
 | |
| static cl::opt<int> InlineSavingsMultiplier(
 | |
|     "inline-savings-multiplier", cl::Hidden, cl::init(8),
 | |
|     cl::desc("Multiplier to multiply cycle savings by during inlining"));
 | |
| 
 | |
| static cl::opt<int>
 | |
|     InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100),
 | |
|                         cl::desc("The maximum size of a callee that get's "
 | |
|                                  "inlined without sufficient cycle savings"));
 | |
| 
 | |
| // We introduce this threshold to help performance of instrumentation based
 | |
| // PGO before we actually hook up inliner with analysis passes such as BPI and
 | |
| // BFI.
 | |
| static cl::opt<int> ColdThreshold(
 | |
|     "inlinecold-threshold", cl::Hidden, cl::init(45),
 | |
|     cl::desc("Threshold for inlining functions with cold attribute"));
 | |
| 
 | |
| static cl::opt<int>
 | |
|     HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
 | |
|                          cl::desc("Threshold for hot callsites "));
 | |
| 
 | |
| static cl::opt<int> LocallyHotCallSiteThreshold(
 | |
|     "locally-hot-callsite-threshold", cl::Hidden, cl::init(525),
 | |
|     cl::desc("Threshold for locally hot callsites "));
 | |
| 
 | |
| static cl::opt<int> ColdCallSiteRelFreq(
 | |
|     "cold-callsite-rel-freq", cl::Hidden, cl::init(2),
 | |
|     cl::desc("Maximum block frequency, expressed as a percentage of caller's "
 | |
|              "entry frequency, for a callsite to be cold in the absence of "
 | |
|              "profile information."));
 | |
| 
 | |
| static cl::opt<int> HotCallSiteRelFreq(
 | |
|     "hot-callsite-rel-freq", cl::Hidden, cl::init(60),
 | |
|     cl::desc("Minimum block frequency, expressed as a multiple of caller's "
 | |
|              "entry frequency, for a callsite to be hot in the absence of "
 | |
|              "profile information."));
 | |
| 
 | |
| static cl::opt<int>
 | |
|     InstrCost("inline-instr-cost", cl::Hidden, cl::init(5),
 | |
|               cl::desc("Cost of a single instruction when inlining"));
 | |
| 
 | |
| static cl::opt<int>
 | |
|     MemAccessCost("inline-memaccess-cost", cl::Hidden, cl::init(0),
 | |
|                   cl::desc("Cost of load/store instruction when inlining"));
 | |
| 
 | |
| static cl::opt<int> CallPenalty(
 | |
|     "inline-call-penalty", cl::Hidden, cl::init(25),
 | |
|     cl::desc("Call penalty that is applied per callsite when inlining"));
 | |
| 
 | |
| static cl::opt<size_t>
 | |
|     StackSizeThreshold("inline-max-stacksize", cl::Hidden,
 | |
|                        cl::init(std::numeric_limits<size_t>::max()),
 | |
|                        cl::desc("Do not inline functions with a stack size "
 | |
|                                 "that exceeds the specified limit"));
 | |
| 
 | |
| static cl::opt<size_t>
 | |
|     RecurStackSizeThreshold("recursive-inline-max-stacksize", cl::Hidden,
 | |
|                        cl::init(InlineConstants::TotalAllocaSizeRecursiveCaller),
 | |
|                        cl::desc("Do not inline recursive functions with a stack "
 | |
|                                 "size that exceeds the specified limit"));
 | |
| 
 | |
| static cl::opt<bool> OptComputeFullInlineCost(
 | |
|     "inline-cost-full", cl::Hidden,
 | |
|     cl::desc("Compute the full inline cost of a call site even when the cost "
 | |
|              "exceeds the threshold."));
 | |
| 
 | |
| static cl::opt<bool> InlineCallerSupersetNoBuiltin(
 | |
|     "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true),
 | |
|     cl::desc("Allow inlining when caller has a superset of callee's nobuiltin "
 | |
|              "attributes."));
 | |
| 
 | |
| static cl::opt<bool> DisableGEPConstOperand(
 | |
|     "disable-gep-const-evaluation", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Disables evaluation of GetElementPtr with constant operands"));
 | |
| 
 | |
| namespace llvm {
 | |
| Optional<int> getStringFnAttrAsInt(const Attribute &Attr) {
 | |
|   if (Attr.isValid()) {
 | |
|     int AttrValue = 0;
 | |
|     if (!Attr.getValueAsString().getAsInteger(10, AttrValue))
 | |
|       return AttrValue;
 | |
|   }
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) {
 | |
|   return getStringFnAttrAsInt(CB.getFnAttr(AttrKind));
 | |
| }
 | |
| 
 | |
| Optional<int> getStringFnAttrAsInt(Function *F, StringRef AttrKind) {
 | |
|   return getStringFnAttrAsInt(F->getFnAttribute(AttrKind));
 | |
| }
 | |
| 
 | |
| namespace InlineConstants {
 | |
| int getInstrCost() { return InstrCost; }
 | |
| 
 | |
| } // namespace InlineConstants
 | |
| 
 | |
| } // namespace llvm
 | |
| 
 | |
| namespace {
 | |
| class InlineCostCallAnalyzer;
 | |
| 
 | |
| // This struct is used to store information about inline cost of a
 | |
| // particular instruction
 | |
| struct InstructionCostDetail {
 | |
|   int CostBefore = 0;
 | |
|   int CostAfter = 0;
 | |
|   int ThresholdBefore = 0;
 | |
|   int ThresholdAfter = 0;
 | |
| 
 | |
|   int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; }
 | |
| 
 | |
|   int getCostDelta() const { return CostAfter - CostBefore; }
 | |
| 
 | |
|   bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; }
 | |
| };
 | |
| 
 | |
| class InlineCostAnnotationWriter : public AssemblyAnnotationWriter {
 | |
| private:
 | |
|   InlineCostCallAnalyzer *const ICCA;
 | |
| 
 | |
| public:
 | |
|   InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {}
 | |
|   void emitInstructionAnnot(const Instruction *I,
 | |
|                             formatted_raw_ostream &OS) override;
 | |
| };
 | |
| 
 | |
| /// Carry out call site analysis, in order to evaluate inlinability.
 | |
| /// NOTE: the type is currently used as implementation detail of functions such
 | |
| /// as llvm::getInlineCost. Note the function_ref constructor parameters - the
 | |
| /// expectation is that they come from the outer scope, from the wrapper
 | |
| /// functions. If we want to support constructing CallAnalyzer objects where
 | |
| /// lambdas are provided inline at construction, or where the object needs to
 | |
| /// otherwise survive past the scope of the provided functions, we need to
 | |
| /// revisit the argument types.
 | |
| class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
 | |
|   typedef InstVisitor<CallAnalyzer, bool> Base;
 | |
|   friend class InstVisitor<CallAnalyzer, bool>;
 | |
| 
 | |
| protected:
 | |
|   virtual ~CallAnalyzer() = default;
 | |
|   /// The TargetTransformInfo available for this compilation.
 | |
|   const TargetTransformInfo &TTI;
 | |
| 
 | |
|   /// Getter for the cache of @llvm.assume intrinsics.
 | |
|   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
 | |
| 
 | |
|   /// Getter for BlockFrequencyInfo
 | |
|   function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
 | |
| 
 | |
|   /// Profile summary information.
 | |
|   ProfileSummaryInfo *PSI;
 | |
| 
 | |
|   /// The called function.
 | |
|   Function &F;
 | |
| 
 | |
|   // Cache the DataLayout since we use it a lot.
 | |
|   const DataLayout &DL;
 | |
| 
 | |
|   /// The OptimizationRemarkEmitter available for this compilation.
 | |
|   OptimizationRemarkEmitter *ORE;
 | |
| 
 | |
|   /// The candidate callsite being analyzed. Please do not use this to do
 | |
|   /// analysis in the caller function; we want the inline cost query to be
 | |
|   /// easily cacheable. Instead, use the cover function paramHasAttr.
 | |
|   CallBase &CandidateCall;
 | |
| 
 | |
|   /// Extension points for handling callsite features.
 | |
|   // Called before a basic block was analyzed.
 | |
|   virtual void onBlockStart(const BasicBlock *BB) {}
 | |
| 
 | |
|   /// Called after a basic block was analyzed.
 | |
|   virtual void onBlockAnalyzed(const BasicBlock *BB) {}
 | |
| 
 | |
|   /// Called before an instruction was analyzed
 | |
|   virtual void onInstructionAnalysisStart(const Instruction *I) {}
 | |
| 
 | |
|   /// Called after an instruction was analyzed
 | |
|   virtual void onInstructionAnalysisFinish(const Instruction *I) {}
 | |
| 
 | |
|   /// Called at the end of the analysis of the callsite. Return the outcome of
 | |
|   /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
 | |
|   /// the reason it can't.
 | |
|   virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
 | |
|   /// Called when we're about to start processing a basic block, and every time
 | |
|   /// we are done processing an instruction. Return true if there is no point in
 | |
|   /// continuing the analysis (e.g. we've determined already the call site is
 | |
|   /// too expensive to inline)
 | |
|   virtual bool shouldStop() { return false; }
 | |
| 
 | |
|   /// Called before the analysis of the callee body starts (with callsite
 | |
|   /// contexts propagated).  It checks callsite-specific information. Return a
 | |
|   /// reason analysis can't continue if that's the case, or 'true' if it may
 | |
|   /// continue.
 | |
|   virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
 | |
|   /// Called if the analysis engine decides SROA cannot be done for the given
 | |
|   /// alloca.
 | |
|   virtual void onDisableSROA(AllocaInst *Arg) {}
 | |
| 
 | |
|   /// Called the analysis engine determines load elimination won't happen.
 | |
|   virtual void onDisableLoadElimination() {}
 | |
| 
 | |
|   /// Called when we visit a CallBase, before the analysis starts. Return false
 | |
|   /// to stop further processing of the instruction.
 | |
|   virtual bool onCallBaseVisitStart(CallBase &Call) { return true; }
 | |
| 
 | |
|   /// Called to account for a call.
 | |
|   virtual void onCallPenalty() {}
 | |
| 
 | |
|   /// Called to account for a load or store.
 | |
|   virtual void onMemAccess(){};
 | |
| 
 | |
|   /// Called to account for the expectation the inlining would result in a load
 | |
|   /// elimination.
 | |
|   virtual void onLoadEliminationOpportunity() {}
 | |
| 
 | |
|   /// Called to account for the cost of argument setup for the Call in the
 | |
|   /// callee's body (not the callsite currently under analysis).
 | |
|   virtual void onCallArgumentSetup(const CallBase &Call) {}
 | |
| 
 | |
|   /// Called to account for a load relative intrinsic.
 | |
|   virtual void onLoadRelativeIntrinsic() {}
 | |
| 
 | |
|   /// Called to account for a lowered call.
 | |
|   virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
 | |
|   }
 | |
| 
 | |
|   /// Account for a jump table of given size. Return false to stop further
 | |
|   /// processing the switch instruction
 | |
|   virtual bool onJumpTable(unsigned JumpTableSize) { return true; }
 | |
| 
 | |
|   /// Account for a case cluster of given size. Return false to stop further
 | |
|   /// processing of the instruction.
 | |
|   virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }
 | |
| 
 | |
|   /// Called at the end of processing a switch instruction, with the given
 | |
|   /// number of case clusters.
 | |
|   virtual void onFinalizeSwitch(unsigned JumpTableSize,
 | |
|                                 unsigned NumCaseCluster) {}
 | |
| 
 | |
|   /// Called to account for any other instruction not specifically accounted
 | |
|   /// for.
 | |
|   virtual void onMissedSimplification() {}
 | |
| 
 | |
|   /// Start accounting potential benefits due to SROA for the given alloca.
 | |
|   virtual void onInitializeSROAArg(AllocaInst *Arg) {}
 | |
| 
 | |
|   /// Account SROA savings for the AllocaInst value.
 | |
|   virtual void onAggregateSROAUse(AllocaInst *V) {}
 | |
| 
 | |
|   bool handleSROA(Value *V, bool DoNotDisable) {
 | |
|     // Check for SROA candidates in comparisons.
 | |
|     if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
 | |
|       if (DoNotDisable) {
 | |
|         onAggregateSROAUse(SROAArg);
 | |
|         return true;
 | |
|       }
 | |
|       disableSROAForArg(SROAArg);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool IsCallerRecursive = false;
 | |
|   bool IsRecursiveCall = false;
 | |
|   bool ExposesReturnsTwice = false;
 | |
|   bool HasDynamicAlloca = false;
 | |
|   bool ContainsNoDuplicateCall = false;
 | |
|   bool HasReturn = false;
 | |
|   bool HasIndirectBr = false;
 | |
|   bool HasUninlineableIntrinsic = false;
 | |
|   bool InitsVargArgs = false;
 | |
| 
 | |
|   /// Number of bytes allocated statically by the callee.
 | |
|   uint64_t AllocatedSize = 0;
 | |
|   unsigned NumInstructions = 0;
 | |
|   unsigned NumVectorInstructions = 0;
 | |
| 
 | |
|   /// While we walk the potentially-inlined instructions, we build up and
 | |
|   /// maintain a mapping of simplified values specific to this callsite. The
 | |
|   /// idea is to propagate any special information we have about arguments to
 | |
|   /// this call through the inlinable section of the function, and account for
 | |
|   /// likely simplifications post-inlining. The most important aspect we track
 | |
|   /// is CFG altering simplifications -- when we prove a basic block dead, that
 | |
|   /// can cause dramatic shifts in the cost of inlining a function.
 | |
|   DenseMap<Value *, Constant *> SimplifiedValues;
 | |
| 
 | |
|   /// Keep track of the values which map back (through function arguments) to
 | |
|   /// allocas on the caller stack which could be simplified through SROA.
 | |
|   DenseMap<Value *, AllocaInst *> SROAArgValues;
 | |
| 
 | |
|   /// Keep track of Allocas for which we believe we may get SROA optimization.
 | |
|   DenseSet<AllocaInst *> EnabledSROAAllocas;
 | |
| 
 | |
|   /// Keep track of values which map to a pointer base and constant offset.
 | |
|   DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
 | |
| 
 | |
|   /// Keep track of dead blocks due to the constant arguments.
 | |
|   SmallPtrSet<BasicBlock *, 16> DeadBlocks;
 | |
| 
 | |
|   /// The mapping of the blocks to their known unique successors due to the
 | |
|   /// constant arguments.
 | |
|   DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
 | |
| 
 | |
|   /// Model the elimination of repeated loads that is expected to happen
 | |
|   /// whenever we simplify away the stores that would otherwise cause them to be
 | |
|   /// loads.
 | |
|   bool EnableLoadElimination = true;
 | |
| 
 | |
|   /// Whether we allow inlining for recursive call.
 | |
|   bool AllowRecursiveCall = false;
 | |
| 
 | |
|   SmallPtrSet<Value *, 16> LoadAddrSet;
 | |
| 
 | |
|   AllocaInst *getSROAArgForValueOrNull(Value *V) const {
 | |
|     auto It = SROAArgValues.find(V);
 | |
|     if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
 | |
|       return nullptr;
 | |
|     return It->second;
 | |
|   }
 | |
| 
 | |
|   // Custom simplification helper routines.
 | |
|   bool isAllocaDerivedArg(Value *V);
 | |
|   void disableSROAForArg(AllocaInst *SROAArg);
 | |
|   void disableSROA(Value *V);
 | |
|   void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
 | |
|   void disableLoadElimination();
 | |
|   bool isGEPFree(GetElementPtrInst &GEP);
 | |
|   bool canFoldInboundsGEP(GetElementPtrInst &I);
 | |
|   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
 | |
|   bool simplifyCallSite(Function *F, CallBase &Call);
 | |
|   bool simplifyInstruction(Instruction &I);
 | |
|   bool simplifyIntrinsicCallIsConstant(CallBase &CB);
 | |
|   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
 | |
| 
 | |
|   /// Return true if the given argument to the function being considered for
 | |
|   /// inlining has the given attribute set either at the call site or the
 | |
|   /// function declaration.  Primarily used to inspect call site specific
 | |
|   /// attributes since these can be more precise than the ones on the callee
 | |
|   /// itself.
 | |
|   bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
 | |
| 
 | |
|   /// Return true if the given value is known non null within the callee if
 | |
|   /// inlined through this particular callsite.
 | |
|   bool isKnownNonNullInCallee(Value *V);
 | |
| 
 | |
|   /// Return true if size growth is allowed when inlining the callee at \p Call.
 | |
|   bool allowSizeGrowth(CallBase &Call);
 | |
| 
 | |
|   // Custom analysis routines.
 | |
|   InlineResult analyzeBlock(BasicBlock *BB,
 | |
|                             SmallPtrSetImpl<const Value *> &EphValues);
 | |
| 
 | |
|   // Disable several entry points to the visitor so we don't accidentally use
 | |
|   // them by declaring but not defining them here.
 | |
|   void visit(Module *);
 | |
|   void visit(Module &);
 | |
|   void visit(Function *);
 | |
|   void visit(Function &);
 | |
|   void visit(BasicBlock *);
 | |
|   void visit(BasicBlock &);
 | |
| 
 | |
|   // Provide base case for our instruction visit.
 | |
|   bool visitInstruction(Instruction &I);
 | |
| 
 | |
|   // Our visit overrides.
 | |
|   bool visitAlloca(AllocaInst &I);
 | |
|   bool visitPHI(PHINode &I);
 | |
|   bool visitGetElementPtr(GetElementPtrInst &I);
 | |
|   bool visitBitCast(BitCastInst &I);
 | |
|   bool visitPtrToInt(PtrToIntInst &I);
 | |
|   bool visitIntToPtr(IntToPtrInst &I);
 | |
|   bool visitCastInst(CastInst &I);
 | |
|   bool visitCmpInst(CmpInst &I);
 | |
|   bool visitSub(BinaryOperator &I);
 | |
|   bool visitBinaryOperator(BinaryOperator &I);
 | |
|   bool visitFNeg(UnaryOperator &I);
 | |
|   bool visitLoad(LoadInst &I);
 | |
|   bool visitStore(StoreInst &I);
 | |
|   bool visitExtractValue(ExtractValueInst &I);
 | |
|   bool visitInsertValue(InsertValueInst &I);
 | |
|   bool visitCallBase(CallBase &Call);
 | |
|   bool visitReturnInst(ReturnInst &RI);
 | |
|   bool visitBranchInst(BranchInst &BI);
 | |
|   bool visitSelectInst(SelectInst &SI);
 | |
|   bool visitSwitchInst(SwitchInst &SI);
 | |
|   bool visitIndirectBrInst(IndirectBrInst &IBI);
 | |
|   bool visitResumeInst(ResumeInst &RI);
 | |
|   bool visitCleanupReturnInst(CleanupReturnInst &RI);
 | |
|   bool visitCatchReturnInst(CatchReturnInst &RI);
 | |
|   bool visitUnreachableInst(UnreachableInst &I);
 | |
| 
 | |
| public:
 | |
|   CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI,
 | |
|                function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
 | |
|                function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
 | |
|                ProfileSummaryInfo *PSI = nullptr,
 | |
|                OptimizationRemarkEmitter *ORE = nullptr)
 | |
|       : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
 | |
|         PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
 | |
|         CandidateCall(Call) {}
 | |
| 
 | |
|   InlineResult analyze();
 | |
| 
 | |
|   Optional<Constant *> getSimplifiedValue(Instruction *I) {
 | |
|     if (SimplifiedValues.find(I) != SimplifiedValues.end())
 | |
|       return SimplifiedValues[I];
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   // Keep a bunch of stats about the cost savings found so we can print them
 | |
|   // out when debugging.
 | |
|   unsigned NumConstantArgs = 0;
 | |
|   unsigned NumConstantOffsetPtrArgs = 0;
 | |
|   unsigned NumAllocaArgs = 0;
 | |
|   unsigned NumConstantPtrCmps = 0;
 | |
|   unsigned NumConstantPtrDiffs = 0;
 | |
|   unsigned NumInstructionsSimplified = 0;
 | |
| 
 | |
|   void dump();
 | |
| };
 | |
| 
 | |
| // Considering forming a binary search, we should find the number of nodes
 | |
| // which is same as the number of comparisons when lowered. For a given
 | |
| // number of clusters, n, we can define a recursive function, f(n), to find
 | |
| // the number of nodes in the tree. The recursion is :
 | |
| // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
 | |
| // and f(n) = n, when n <= 3.
 | |
| // This will lead a binary tree where the leaf should be either f(2) or f(3)
 | |
| // when n > 3.  So, the number of comparisons from leaves should be n, while
 | |
| // the number of non-leaf should be :
 | |
| //   2^(log2(n) - 1) - 1
 | |
| //   = 2^log2(n) * 2^-1 - 1
 | |
| //   = n / 2 - 1.
 | |
| // Considering comparisons from leaf and non-leaf nodes, we can estimate the
 | |
| // number of comparisons in a simple closed form :
 | |
| //   n + n / 2 - 1 = n * 3 / 2 - 1
 | |
| int64_t getExpectedNumberOfCompare(int NumCaseCluster) {
 | |
|   return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1;
 | |
| }
 | |
| 
 | |
| /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
 | |
| /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
 | |
| class InlineCostCallAnalyzer final : public CallAnalyzer {
 | |
|   const bool ComputeFullInlineCost;
 | |
|   int LoadEliminationCost = 0;
 | |
|   /// Bonus to be applied when percentage of vector instructions in callee is
 | |
|   /// high (see more details in updateThreshold).
 | |
|   int VectorBonus = 0;
 | |
|   /// Bonus to be applied when the callee has only one reachable basic block.
 | |
|   int SingleBBBonus = 0;
 | |
| 
 | |
|   /// Tunable parameters that control the analysis.
 | |
|   const InlineParams &Params;
 | |
| 
 | |
|   // This DenseMap stores the delta change in cost and threshold after
 | |
|   // accounting for the given instruction. The map is filled only with the
 | |
|   // flag PrintInstructionComments on.
 | |
|   DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap;
 | |
| 
 | |
|   /// Upper bound for the inlining cost. Bonuses are being applied to account
 | |
|   /// for speculative "expected profit" of the inlining decision.
 | |
|   int Threshold = 0;
 | |
| 
 | |
|   /// Attempt to evaluate indirect calls to boost its inline cost.
 | |
|   const bool BoostIndirectCalls;
 | |
| 
 | |
|   /// Ignore the threshold when finalizing analysis.
 | |
|   const bool IgnoreThreshold;
 | |
| 
 | |
|   // True if the cost-benefit-analysis-based inliner is enabled.
 | |
|   const bool CostBenefitAnalysisEnabled;
 | |
| 
 | |
|   /// Inlining cost measured in abstract units, accounts for all the
 | |
|   /// instructions expected to be executed for a given function invocation.
 | |
|   /// Instructions that are statically proven to be dead based on call-site
 | |
|   /// arguments are not counted here.
 | |
|   int Cost = 0;
 | |
| 
 | |
|   // The cumulative cost at the beginning of the basic block being analyzed.  At
 | |
|   // the end of analyzing each basic block, "Cost - CostAtBBStart" represents
 | |
|   // the size of that basic block.
 | |
|   int CostAtBBStart = 0;
 | |
| 
 | |
|   // The static size of live but cold basic blocks.  This is "static" in the
 | |
|   // sense that it's not weighted by profile counts at all.
 | |
|   int ColdSize = 0;
 | |
| 
 | |
|   // Whether inlining is decided by cost-threshold analysis.
 | |
|   bool DecidedByCostThreshold = false;
 | |
| 
 | |
|   // Whether inlining is decided by cost-benefit analysis.
 | |
|   bool DecidedByCostBenefit = false;
 | |
| 
 | |
|   // The cost-benefit pair computed by cost-benefit analysis.
 | |
|   Optional<CostBenefitPair> CostBenefit = None;
 | |
| 
 | |
|   bool SingleBB = true;
 | |
| 
 | |
|   unsigned SROACostSavings = 0;
 | |
|   unsigned SROACostSavingsLost = 0;
 | |
| 
 | |
|   /// The mapping of caller Alloca values to their accumulated cost savings. If
 | |
|   /// we have to disable SROA for one of the allocas, this tells us how much
 | |
|   /// cost must be added.
 | |
|   DenseMap<AllocaInst *, int> SROAArgCosts;
 | |
| 
 | |
|   /// Return true if \p Call is a cold callsite.
 | |
|   bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
 | |
| 
 | |
|   /// Update Threshold based on callsite properties such as callee
 | |
|   /// attributes and callee hotness for PGO builds. The Callee is explicitly
 | |
|   /// passed to support analyzing indirect calls whose target is inferred by
 | |
|   /// analysis.
 | |
|   void updateThreshold(CallBase &Call, Function &Callee);
 | |
|   /// Return a higher threshold if \p Call is a hot callsite.
 | |
|   Optional<int> getHotCallSiteThreshold(CallBase &Call,
 | |
|                                         BlockFrequencyInfo *CallerBFI);
 | |
| 
 | |
|   /// Handle a capped 'int' increment for Cost.
 | |
|   void addCost(int64_t Inc) {
 | |
|     Inc = std::max<int64_t>(std::min<int64_t>(INT_MAX, Inc), INT_MIN);
 | |
|     Cost = std::max<int64_t>(std::min<int64_t>(INT_MAX, Inc + Cost), INT_MIN);
 | |
|   }
 | |
| 
 | |
|   void onDisableSROA(AllocaInst *Arg) override {
 | |
|     auto CostIt = SROAArgCosts.find(Arg);
 | |
|     if (CostIt == SROAArgCosts.end())
 | |
|       return;
 | |
|     addCost(CostIt->second);
 | |
|     SROACostSavings -= CostIt->second;
 | |
|     SROACostSavingsLost += CostIt->second;
 | |
|     SROAArgCosts.erase(CostIt);
 | |
|   }
 | |
| 
 | |
|   void onDisableLoadElimination() override {
 | |
|     addCost(LoadEliminationCost);
 | |
|     LoadEliminationCost = 0;
 | |
|   }
 | |
| 
 | |
|   bool onCallBaseVisitStart(CallBase &Call) override {
 | |
|     if (Optional<int> AttrCallThresholdBonus =
 | |
|             getStringFnAttrAsInt(Call, "call-threshold-bonus"))
 | |
|       Threshold += *AttrCallThresholdBonus;
 | |
| 
 | |
|     if (Optional<int> AttrCallCost =
 | |
|             getStringFnAttrAsInt(Call, "call-inline-cost")) {
 | |
|       addCost(*AttrCallCost);
 | |
|       // Prevent further processing of the call since we want to override its
 | |
|       // inline cost, not just add to it.
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   void onCallPenalty() override { addCost(CallPenalty); }
 | |
| 
 | |
|   void onMemAccess() override { addCost(MemAccessCost); }
 | |
| 
 | |
|   void onCallArgumentSetup(const CallBase &Call) override {
 | |
|     // Pay the price of the argument setup. We account for the average 1
 | |
|     // instruction per call argument setup here.
 | |
|     addCost(Call.arg_size() * InstrCost);
 | |
|   }
 | |
|   void onLoadRelativeIntrinsic() override {
 | |
|     // This is normally lowered to 4 LLVM instructions.
 | |
|     addCost(3 * InstrCost);
 | |
|   }
 | |
|   void onLoweredCall(Function *F, CallBase &Call,
 | |
|                      bool IsIndirectCall) override {
 | |
|     // We account for the average 1 instruction per call argument setup here.
 | |
|     addCost(Call.arg_size() * InstrCost);
 | |
| 
 | |
|     // If we have a constant that we are calling as a function, we can peer
 | |
|     // through it and see the function target. This happens not infrequently
 | |
|     // during devirtualization and so we want to give it a hefty bonus for
 | |
|     // inlining, but cap that bonus in the event that inlining wouldn't pan out.
 | |
|     // Pretend to inline the function, with a custom threshold.
 | |
|     if (IsIndirectCall && BoostIndirectCalls) {
 | |
|       auto IndirectCallParams = Params;
 | |
|       IndirectCallParams.DefaultThreshold =
 | |
|           InlineConstants::IndirectCallThreshold;
 | |
|       /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
 | |
|       /// to instantiate the derived class.
 | |
|       InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
 | |
|                                 GetAssumptionCache, GetBFI, PSI, ORE, false);
 | |
|       if (CA.analyze().isSuccess()) {
 | |
|         // We were able to inline the indirect call! Subtract the cost from the
 | |
|         // threshold to get the bonus we want to apply, but don't go below zero.
 | |
|         Cost -= std::max(0, CA.getThreshold() - CA.getCost());
 | |
|       }
 | |
|     } else
 | |
|       // Otherwise simply add the cost for merely making the call.
 | |
|       addCost(CallPenalty);
 | |
|   }
 | |
| 
 | |
|   void onFinalizeSwitch(unsigned JumpTableSize,
 | |
|                         unsigned NumCaseCluster) override {
 | |
|     // If suitable for a jump table, consider the cost for the table size and
 | |
|     // branch to destination.
 | |
|     // Maximum valid cost increased in this function.
 | |
|     if (JumpTableSize) {
 | |
|       int64_t JTCost =
 | |
|           static_cast<int64_t>(JumpTableSize) * InstrCost + 4 * InstrCost;
 | |
| 
 | |
|       addCost(JTCost);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (NumCaseCluster <= 3) {
 | |
|       // Suppose a comparison includes one compare and one conditional branch.
 | |
|       addCost(NumCaseCluster * 2 * InstrCost);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     int64_t ExpectedNumberOfCompare =
 | |
|         getExpectedNumberOfCompare(NumCaseCluster);
 | |
|     int64_t SwitchCost = ExpectedNumberOfCompare * 2 * InstrCost;
 | |
| 
 | |
|     addCost(SwitchCost);
 | |
|   }
 | |
|   void onMissedSimplification() override { addCost(InstrCost); }
 | |
| 
 | |
|   void onInitializeSROAArg(AllocaInst *Arg) override {
 | |
|     assert(Arg != nullptr &&
 | |
|            "Should not initialize SROA costs for null value.");
 | |
|     SROAArgCosts[Arg] = 0;
 | |
|   }
 | |
| 
 | |
|   void onAggregateSROAUse(AllocaInst *SROAArg) override {
 | |
|     auto CostIt = SROAArgCosts.find(SROAArg);
 | |
|     assert(CostIt != SROAArgCosts.end() &&
 | |
|            "expected this argument to have a cost");
 | |
|     CostIt->second += InstrCost;
 | |
|     SROACostSavings += InstrCost;
 | |
|   }
 | |
| 
 | |
|   void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; }
 | |
| 
 | |
|   void onBlockAnalyzed(const BasicBlock *BB) override {
 | |
|     if (CostBenefitAnalysisEnabled) {
 | |
|       // Keep track of the static size of live but cold basic blocks.  For now,
 | |
|       // we define a cold basic block to be one that's never executed.
 | |
|       assert(GetBFI && "GetBFI must be available");
 | |
|       BlockFrequencyInfo *BFI = &(GetBFI(F));
 | |
|       assert(BFI && "BFI must be available");
 | |
|       auto ProfileCount = BFI->getBlockProfileCount(BB);
 | |
|       assert(ProfileCount);
 | |
|       if (ProfileCount.value() == 0)
 | |
|         ColdSize += Cost - CostAtBBStart;
 | |
|     }
 | |
| 
 | |
|     auto *TI = BB->getTerminator();
 | |
|     // If we had any successors at this point, than post-inlining is likely to
 | |
|     // have them as well. Note that we assume any basic blocks which existed
 | |
|     // due to branches or switches which folded above will also fold after
 | |
|     // inlining.
 | |
|     if (SingleBB && TI->getNumSuccessors() > 1) {
 | |
|       // Take off the bonus we applied to the threshold.
 | |
|       Threshold -= SingleBBBonus;
 | |
|       SingleBB = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void onInstructionAnalysisStart(const Instruction *I) override {
 | |
|     // This function is called to store the initial cost of inlining before
 | |
|     // the given instruction was assessed.
 | |
|     if (!PrintInstructionComments)
 | |
|       return;
 | |
|     InstructionCostDetailMap[I].CostBefore = Cost;
 | |
|     InstructionCostDetailMap[I].ThresholdBefore = Threshold;
 | |
|   }
 | |
| 
 | |
|   void onInstructionAnalysisFinish(const Instruction *I) override {
 | |
|     // This function is called to find new values of cost and threshold after
 | |
|     // the instruction has been assessed.
 | |
|     if (!PrintInstructionComments)
 | |
|       return;
 | |
|     InstructionCostDetailMap[I].CostAfter = Cost;
 | |
|     InstructionCostDetailMap[I].ThresholdAfter = Threshold;
 | |
|   }
 | |
| 
 | |
|   bool isCostBenefitAnalysisEnabled() {
 | |
|     if (!PSI || !PSI->hasProfileSummary())
 | |
|       return false;
 | |
| 
 | |
|     if (!GetBFI)
 | |
|       return false;
 | |
| 
 | |
|     if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) {
 | |
|       // Honor the explicit request from the user.
 | |
|       if (!InlineEnableCostBenefitAnalysis)
 | |
|         return false;
 | |
|     } else {
 | |
|       // Otherwise, require instrumentation profile.
 | |
|       if (!PSI->hasInstrumentationProfile())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     auto *Caller = CandidateCall.getParent()->getParent();
 | |
|     if (!Caller->getEntryCount())
 | |
|       return false;
 | |
| 
 | |
|     BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller));
 | |
|     if (!CallerBFI)
 | |
|       return false;
 | |
| 
 | |
|     // For now, limit to hot call site.
 | |
|     if (!PSI->isHotCallSite(CandidateCall, CallerBFI))
 | |
|       return false;
 | |
| 
 | |
|     // Make sure we have a nonzero entry count.
 | |
|     auto EntryCount = F.getEntryCount();
 | |
|     if (!EntryCount || !EntryCount->getCount())
 | |
|       return false;
 | |
| 
 | |
|     BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
 | |
|     if (!CalleeBFI)
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Determine whether we should inline the given call site, taking into account
 | |
|   // both the size cost and the cycle savings.  Return None if we don't have
 | |
|   // suficient profiling information to determine.
 | |
|   Optional<bool> costBenefitAnalysis() {
 | |
|     if (!CostBenefitAnalysisEnabled)
 | |
|       return None;
 | |
| 
 | |
|     // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0
 | |
|     // for the prelink phase of the AutoFDO + ThinLTO build.  Honor the logic by
 | |
|     // falling back to the cost-based metric.
 | |
|     // TODO: Improve this hacky condition.
 | |
|     if (Threshold == 0)
 | |
|       return None;
 | |
| 
 | |
|     assert(GetBFI);
 | |
|     BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
 | |
|     assert(CalleeBFI);
 | |
| 
 | |
|     // The cycle savings expressed as the sum of InstrCost
 | |
|     // multiplied by the estimated dynamic count of each instruction we can
 | |
|     // avoid.  Savings come from the call site cost, such as argument setup and
 | |
|     // the call instruction, as well as the instructions that are folded.
 | |
|     //
 | |
|     // We use 128-bit APInt here to avoid potential overflow.  This variable
 | |
|     // should stay well below 10^^24 (or 2^^80) in practice.  This "worst" case
 | |
|     // assumes that we can avoid or fold a billion instructions, each with a
 | |
|     // profile count of 10^^15 -- roughly the number of cycles for a 24-hour
 | |
|     // period on a 4GHz machine.
 | |
|     APInt CycleSavings(128, 0);
 | |
| 
 | |
|     for (auto &BB : F) {
 | |
|       APInt CurrentSavings(128, 0);
 | |
|       for (auto &I : BB) {
 | |
|         if (BranchInst *BI = dyn_cast<BranchInst>(&I)) {
 | |
|           // Count a conditional branch as savings if it becomes unconditional.
 | |
|           if (BI->isConditional() &&
 | |
|               isa_and_nonnull<ConstantInt>(
 | |
|                   SimplifiedValues.lookup(BI->getCondition()))) {
 | |
|             CurrentSavings += InstrCost;
 | |
|           }
 | |
|         } else if (Value *V = dyn_cast<Value>(&I)) {
 | |
|           // Count an instruction as savings if we can fold it.
 | |
|           if (SimplifiedValues.count(V)) {
 | |
|             CurrentSavings += InstrCost;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB);
 | |
|       assert(ProfileCount);
 | |
|       CurrentSavings *= ProfileCount.value();
 | |
|       CycleSavings += CurrentSavings;
 | |
|     }
 | |
| 
 | |
|     // Compute the cycle savings per call.
 | |
|     auto EntryProfileCount = F.getEntryCount();
 | |
|     assert(EntryProfileCount && EntryProfileCount->getCount());
 | |
|     auto EntryCount = EntryProfileCount->getCount();
 | |
|     CycleSavings += EntryCount / 2;
 | |
|     CycleSavings = CycleSavings.udiv(EntryCount);
 | |
| 
 | |
|     // Compute the total savings for the call site.
 | |
|     auto *CallerBB = CandidateCall.getParent();
 | |
|     BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent())));
 | |
|     CycleSavings += getCallsiteCost(this->CandidateCall, DL);
 | |
|     CycleSavings *= *CallerBFI->getBlockProfileCount(CallerBB);
 | |
| 
 | |
|     // Remove the cost of the cold basic blocks.
 | |
|     int Size = Cost - ColdSize;
 | |
| 
 | |
|     // Allow tiny callees to be inlined regardless of whether they meet the
 | |
|     // savings threshold.
 | |
|     Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1;
 | |
| 
 | |
|     CostBenefit.emplace(APInt(128, Size), CycleSavings);
 | |
| 
 | |
|     // Return true if the savings justify the cost of inlining.  Specifically,
 | |
|     // we evaluate the following inequality:
 | |
|     //
 | |
|     //  CycleSavings      PSI->getOrCompHotCountThreshold()
 | |
|     // -------------- >= -----------------------------------
 | |
|     //       Size              InlineSavingsMultiplier
 | |
|     //
 | |
|     // Note that the left hand side is specific to a call site.  The right hand
 | |
|     // side is a constant for the entire executable.
 | |
|     APInt LHS = CycleSavings;
 | |
|     LHS *= InlineSavingsMultiplier;
 | |
|     APInt RHS(128, PSI->getOrCompHotCountThreshold());
 | |
|     RHS *= Size;
 | |
|     return LHS.uge(RHS);
 | |
|   }
 | |
| 
 | |
|   InlineResult finalizeAnalysis() override {
 | |
|     // Loops generally act a lot like calls in that they act like barriers to
 | |
|     // movement, require a certain amount of setup, etc. So when optimising for
 | |
|     // size, we penalise any call sites that perform loops. We do this after all
 | |
|     // other costs here, so will likely only be dealing with relatively small
 | |
|     // functions (and hence DT and LI will hopefully be cheap).
 | |
|     auto *Caller = CandidateCall.getFunction();
 | |
|     if (Caller->hasMinSize()) {
 | |
|       DominatorTree DT(F);
 | |
|       LoopInfo LI(DT);
 | |
|       int NumLoops = 0;
 | |
|       for (Loop *L : LI) {
 | |
|         // Ignore loops that will not be executed
 | |
|         if (DeadBlocks.count(L->getHeader()))
 | |
|           continue;
 | |
|         NumLoops++;
 | |
|       }
 | |
|       addCost(NumLoops * InlineConstants::LoopPenalty);
 | |
|     }
 | |
| 
 | |
|     // We applied the maximum possible vector bonus at the beginning. Now,
 | |
|     // subtract the excess bonus, if any, from the Threshold before
 | |
|     // comparing against Cost.
 | |
|     if (NumVectorInstructions <= NumInstructions / 10)
 | |
|       Threshold -= VectorBonus;
 | |
|     else if (NumVectorInstructions <= NumInstructions / 2)
 | |
|       Threshold -= VectorBonus / 2;
 | |
| 
 | |
|     if (Optional<int> AttrCost =
 | |
|             getStringFnAttrAsInt(CandidateCall, "function-inline-cost"))
 | |
|       Cost = *AttrCost;
 | |
| 
 | |
|     if (Optional<int> AttrCostMult = getStringFnAttrAsInt(
 | |
|             CandidateCall,
 | |
|             InlineConstants::FunctionInlineCostMultiplierAttributeName))
 | |
|       Cost *= *AttrCostMult;
 | |
| 
 | |
|     if (Optional<int> AttrThreshold =
 | |
|             getStringFnAttrAsInt(CandidateCall, "function-inline-threshold"))
 | |
|       Threshold = *AttrThreshold;
 | |
| 
 | |
|     if (auto Result = costBenefitAnalysis()) {
 | |
|       DecidedByCostBenefit = true;
 | |
|       if (*Result)
 | |
|         return InlineResult::success();
 | |
|       else
 | |
|         return InlineResult::failure("Cost over threshold.");
 | |
|     }
 | |
| 
 | |
|     if (IgnoreThreshold)
 | |
|       return InlineResult::success();
 | |
| 
 | |
|     DecidedByCostThreshold = true;
 | |
|     return Cost < std::max(1, Threshold)
 | |
|                ? InlineResult::success()
 | |
|                : InlineResult::failure("Cost over threshold.");
 | |
|   }
 | |
| 
 | |
|   bool shouldStop() override {
 | |
|     if (IgnoreThreshold || ComputeFullInlineCost)
 | |
|       return false;
 | |
|     // Bail out the moment we cross the threshold. This means we'll under-count
 | |
|     // the cost, but only when undercounting doesn't matter.
 | |
|     if (Cost < Threshold)
 | |
|       return false;
 | |
|     DecidedByCostThreshold = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   void onLoadEliminationOpportunity() override {
 | |
|     LoadEliminationCost += InstrCost;
 | |
|   }
 | |
| 
 | |
|   InlineResult onAnalysisStart() override {
 | |
|     // Perform some tweaks to the cost and threshold based on the direct
 | |
|     // callsite information.
 | |
| 
 | |
|     // We want to more aggressively inline vector-dense kernels, so up the
 | |
|     // threshold, and we'll lower it if the % of vector instructions gets too
 | |
|     // low. Note that these bonuses are some what arbitrary and evolved over
 | |
|     // time by accident as much as because they are principled bonuses.
 | |
|     //
 | |
|     // FIXME: It would be nice to remove all such bonuses. At least it would be
 | |
|     // nice to base the bonus values on something more scientific.
 | |
|     assert(NumInstructions == 0);
 | |
|     assert(NumVectorInstructions == 0);
 | |
| 
 | |
|     // Update the threshold based on callsite properties
 | |
|     updateThreshold(CandidateCall, F);
 | |
| 
 | |
|     // While Threshold depends on commandline options that can take negative
 | |
|     // values, we want to enforce the invariant that the computed threshold and
 | |
|     // bonuses are non-negative.
 | |
|     assert(Threshold >= 0);
 | |
|     assert(SingleBBBonus >= 0);
 | |
|     assert(VectorBonus >= 0);
 | |
| 
 | |
|     // Speculatively apply all possible bonuses to Threshold. If cost exceeds
 | |
|     // this Threshold any time, and cost cannot decrease, we can stop processing
 | |
|     // the rest of the function body.
 | |
|     Threshold += (SingleBBBonus + VectorBonus);
 | |
| 
 | |
|     // Give out bonuses for the callsite, as the instructions setting them up
 | |
|     // will be gone after inlining.
 | |
|     addCost(-getCallsiteCost(this->CandidateCall, DL));
 | |
| 
 | |
|     // If this function uses the coldcc calling convention, prefer not to inline
 | |
|     // it.
 | |
|     if (F.getCallingConv() == CallingConv::Cold)
 | |
|       Cost += InlineConstants::ColdccPenalty;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "      Initial cost: " << Cost << "\n");
 | |
| 
 | |
|     // Check if we're done. This can happen due to bonuses and penalties.
 | |
|     if (Cost >= Threshold && !ComputeFullInlineCost)
 | |
|       return InlineResult::failure("high cost");
 | |
| 
 | |
|     return InlineResult::success();
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   InlineCostCallAnalyzer(
 | |
|       Function &Callee, CallBase &Call, const InlineParams &Params,
 | |
|       const TargetTransformInfo &TTI,
 | |
|       function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
 | |
|       function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
 | |
|       ProfileSummaryInfo *PSI = nullptr,
 | |
|       OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true,
 | |
|       bool IgnoreThreshold = false)
 | |
|       : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE),
 | |
|         ComputeFullInlineCost(OptComputeFullInlineCost ||
 | |
|                               Params.ComputeFullInlineCost || ORE ||
 | |
|                               isCostBenefitAnalysisEnabled()),
 | |
|         Params(Params), Threshold(Params.DefaultThreshold),
 | |
|         BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold),
 | |
|         CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()),
 | |
|         Writer(this) {
 | |
|     AllowRecursiveCall = *Params.AllowRecursiveCall;
 | |
|   }
 | |
| 
 | |
|   /// Annotation Writer for instruction details
 | |
|   InlineCostAnnotationWriter Writer;
 | |
| 
 | |
|   void dump();
 | |
| 
 | |
|   // Prints the same analysis as dump(), but its definition is not dependent
 | |
|   // on the build.
 | |
|   void print(raw_ostream &OS);
 | |
| 
 | |
|   Optional<InstructionCostDetail> getCostDetails(const Instruction *I) {
 | |
|     if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end())
 | |
|       return InstructionCostDetailMap[I];
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   virtual ~InlineCostCallAnalyzer() = default;
 | |
|   int getThreshold() const { return Threshold; }
 | |
|   int getCost() const { return Cost; }
 | |
|   Optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; }
 | |
|   bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; }
 | |
|   bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; }
 | |
| };
 | |
| 
 | |
| class InlineCostFeaturesAnalyzer final : public CallAnalyzer {
 | |
| private:
 | |
|   InlineCostFeatures Cost = {};
 | |
| 
 | |
|   // FIXME: These constants are taken from the heuristic-based cost visitor.
 | |
|   // These should be removed entirely in a later revision to avoid reliance on
 | |
|   // heuristics in the ML inliner.
 | |
|   static constexpr int JTCostMultiplier = 4;
 | |
|   static constexpr int CaseClusterCostMultiplier = 2;
 | |
|   static constexpr int SwitchCostMultiplier = 2;
 | |
| 
 | |
|   // FIXME: These are taken from the heuristic-based cost visitor: we should
 | |
|   // eventually abstract these to the CallAnalyzer to avoid duplication.
 | |
|   unsigned SROACostSavingOpportunities = 0;
 | |
|   int VectorBonus = 0;
 | |
|   int SingleBBBonus = 0;
 | |
|   int Threshold = 5;
 | |
| 
 | |
|   DenseMap<AllocaInst *, unsigned> SROACosts;
 | |
| 
 | |
|   void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) {
 | |
|     Cost[static_cast<size_t>(Feature)] += Delta;
 | |
|   }
 | |
| 
 | |
|   void set(InlineCostFeatureIndex Feature, int64_t Value) {
 | |
|     Cost[static_cast<size_t>(Feature)] = Value;
 | |
|   }
 | |
| 
 | |
|   void onDisableSROA(AllocaInst *Arg) override {
 | |
|     auto CostIt = SROACosts.find(Arg);
 | |
|     if (CostIt == SROACosts.end())
 | |
|       return;
 | |
| 
 | |
|     increment(InlineCostFeatureIndex::SROALosses, CostIt->second);
 | |
|     SROACostSavingOpportunities -= CostIt->second;
 | |
|     SROACosts.erase(CostIt);
 | |
|   }
 | |
| 
 | |
|   void onDisableLoadElimination() override {
 | |
|     set(InlineCostFeatureIndex::LoadElimination, 1);
 | |
|   }
 | |
| 
 | |
|   void onCallPenalty() override {
 | |
|     increment(InlineCostFeatureIndex::CallPenalty, CallPenalty);
 | |
|   }
 | |
| 
 | |
|   void onCallArgumentSetup(const CallBase &Call) override {
 | |
|     increment(InlineCostFeatureIndex::CallArgumentSetup,
 | |
|               Call.arg_size() * InstrCost);
 | |
|   }
 | |
| 
 | |
|   void onLoadRelativeIntrinsic() override {
 | |
|     increment(InlineCostFeatureIndex::LoadRelativeIntrinsic, 3 * InstrCost);
 | |
|   }
 | |
| 
 | |
|   void onLoweredCall(Function *F, CallBase &Call,
 | |
|                      bool IsIndirectCall) override {
 | |
|     increment(InlineCostFeatureIndex::LoweredCallArgSetup,
 | |
|               Call.arg_size() * InstrCost);
 | |
| 
 | |
|     if (IsIndirectCall) {
 | |
|       InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0,
 | |
|                                          /*HintThreshold*/ {},
 | |
|                                          /*ColdThreshold*/ {},
 | |
|                                          /*OptSizeThreshold*/ {},
 | |
|                                          /*OptMinSizeThreshold*/ {},
 | |
|                                          /*HotCallSiteThreshold*/ {},
 | |
|                                          /*LocallyHotCallSiteThreshold*/ {},
 | |
|                                          /*ColdCallSiteThreshold*/ {},
 | |
|                                          /*ComputeFullInlineCost*/ true,
 | |
|                                          /*EnableDeferral*/ true};
 | |
|       IndirectCallParams.DefaultThreshold =
 | |
|           InlineConstants::IndirectCallThreshold;
 | |
| 
 | |
|       InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
 | |
|                                 GetAssumptionCache, GetBFI, PSI, ORE, false,
 | |
|                                 true);
 | |
|       if (CA.analyze().isSuccess()) {
 | |
|         increment(InlineCostFeatureIndex::NestedInlineCostEstimate,
 | |
|                   CA.getCost());
 | |
|         increment(InlineCostFeatureIndex::NestedInlines, 1);
 | |
|       }
 | |
|     } else {
 | |
|       onCallPenalty();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void onFinalizeSwitch(unsigned JumpTableSize,
 | |
|                         unsigned NumCaseCluster) override {
 | |
| 
 | |
|     if (JumpTableSize) {
 | |
|       int64_t JTCost = static_cast<int64_t>(JumpTableSize) * InstrCost +
 | |
|                        JTCostMultiplier * InstrCost;
 | |
|       increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (NumCaseCluster <= 3) {
 | |
|       increment(InlineCostFeatureIndex::CaseClusterPenalty,
 | |
|                 NumCaseCluster * CaseClusterCostMultiplier * InstrCost);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     int64_t ExpectedNumberOfCompare =
 | |
|         getExpectedNumberOfCompare(NumCaseCluster);
 | |
| 
 | |
|     int64_t SwitchCost =
 | |
|         ExpectedNumberOfCompare * SwitchCostMultiplier * InstrCost;
 | |
|     increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost);
 | |
|   }
 | |
| 
 | |
|   void onMissedSimplification() override {
 | |
|     increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions,
 | |
|               InstrCost);
 | |
|   }
 | |
| 
 | |
|   void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; }
 | |
|   void onAggregateSROAUse(AllocaInst *Arg) override {
 | |
|     SROACosts.find(Arg)->second += InstrCost;
 | |
|     SROACostSavingOpportunities += InstrCost;
 | |
|   }
 | |
| 
 | |
|   void onBlockAnalyzed(const BasicBlock *BB) override {
 | |
|     if (BB->getTerminator()->getNumSuccessors() > 1)
 | |
|       set(InlineCostFeatureIndex::IsMultipleBlocks, 1);
 | |
|     Threshold -= SingleBBBonus;
 | |
|   }
 | |
| 
 | |
|   InlineResult finalizeAnalysis() override {
 | |
|     auto *Caller = CandidateCall.getFunction();
 | |
|     if (Caller->hasMinSize()) {
 | |
|       DominatorTree DT(F);
 | |
|       LoopInfo LI(DT);
 | |
|       for (Loop *L : LI) {
 | |
|         // Ignore loops that will not be executed
 | |
|         if (DeadBlocks.count(L->getHeader()))
 | |
|           continue;
 | |
|         increment(InlineCostFeatureIndex::NumLoops,
 | |
|                   InlineConstants::LoopPenalty);
 | |
|       }
 | |
|     }
 | |
|     set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size());
 | |
|     set(InlineCostFeatureIndex::SimplifiedInstructions,
 | |
|         NumInstructionsSimplified);
 | |
|     set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs);
 | |
|     set(InlineCostFeatureIndex::ConstantOffsetPtrArgs,
 | |
|         NumConstantOffsetPtrArgs);
 | |
|     set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities);
 | |
| 
 | |
|     if (NumVectorInstructions <= NumInstructions / 10)
 | |
|       Threshold -= VectorBonus;
 | |
|     else if (NumVectorInstructions <= NumInstructions / 2)
 | |
|       Threshold -= VectorBonus / 2;
 | |
| 
 | |
|     set(InlineCostFeatureIndex::Threshold, Threshold);
 | |
| 
 | |
|     return InlineResult::success();
 | |
|   }
 | |
| 
 | |
|   bool shouldStop() override { return false; }
 | |
| 
 | |
|   void onLoadEliminationOpportunity() override {
 | |
|     increment(InlineCostFeatureIndex::LoadElimination, 1);
 | |
|   }
 | |
| 
 | |
|   InlineResult onAnalysisStart() override {
 | |
|     increment(InlineCostFeatureIndex::CallSiteCost,
 | |
|               -1 * getCallsiteCost(this->CandidateCall, DL));
 | |
| 
 | |
|     set(InlineCostFeatureIndex::ColdCcPenalty,
 | |
|         (F.getCallingConv() == CallingConv::Cold));
 | |
| 
 | |
|     set(InlineCostFeatureIndex::LastCallToStaticBonus,
 | |
|         (F.hasLocalLinkage() && F.hasOneLiveUse() &&
 | |
|          &F == CandidateCall.getCalledFunction()));
 | |
| 
 | |
|     // FIXME: we shouldn't repeat this logic in both the Features and Cost
 | |
|     // analyzer - instead, we should abstract it to a common method in the
 | |
|     // CallAnalyzer
 | |
|     int SingleBBBonusPercent = 50;
 | |
|     int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
 | |
|     Threshold += TTI.adjustInliningThreshold(&CandidateCall);
 | |
|     Threshold *= TTI.getInliningThresholdMultiplier();
 | |
|     SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
 | |
|     VectorBonus = Threshold * VectorBonusPercent / 100;
 | |
|     Threshold += (SingleBBBonus + VectorBonus);
 | |
| 
 | |
|     return InlineResult::success();
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   InlineCostFeaturesAnalyzer(
 | |
|       const TargetTransformInfo &TTI,
 | |
|       function_ref<AssumptionCache &(Function &)> &GetAssumptionCache,
 | |
|       function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
 | |
|       ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee,
 | |
|       CallBase &Call)
 | |
|       : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {}
 | |
| 
 | |
|   const InlineCostFeatures &features() const { return Cost; }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| /// Test whether the given value is an Alloca-derived function argument.
 | |
| bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
 | |
|   return SROAArgValues.count(V);
 | |
| }
 | |
| 
 | |
| void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
 | |
|   onDisableSROA(SROAArg);
 | |
|   EnabledSROAAllocas.erase(SROAArg);
 | |
|   disableLoadElimination();
 | |
| }
 | |
| 
 | |
| void InlineCostAnnotationWriter::emitInstructionAnnot(
 | |
|     const Instruction *I, formatted_raw_ostream &OS) {
 | |
|   // The cost of inlining of the given instruction is printed always.
 | |
|   // The threshold delta is printed only when it is non-zero. It happens
 | |
|   // when we decided to give a bonus at a particular instruction.
 | |
|   Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I);
 | |
|   if (!Record)
 | |
|     OS << "; No analysis for the instruction";
 | |
|   else {
 | |
|     OS << "; cost before = " << Record->CostBefore
 | |
|        << ", cost after = " << Record->CostAfter
 | |
|        << ", threshold before = " << Record->ThresholdBefore
 | |
|        << ", threshold after = " << Record->ThresholdAfter << ", ";
 | |
|     OS << "cost delta = " << Record->getCostDelta();
 | |
|     if (Record->hasThresholdChanged())
 | |
|       OS << ", threshold delta = " << Record->getThresholdDelta();
 | |
|   }
 | |
|   auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I));
 | |
|   if (C) {
 | |
|     OS << ", simplified to ";
 | |
|     (*C)->print(OS, true);
 | |
|   }
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| /// If 'V' maps to a SROA candidate, disable SROA for it.
 | |
| void CallAnalyzer::disableSROA(Value *V) {
 | |
|   if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
 | |
|     disableSROAForArg(SROAArg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CallAnalyzer::disableLoadElimination() {
 | |
|   if (EnableLoadElimination) {
 | |
|     onDisableLoadElimination();
 | |
|     EnableLoadElimination = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Accumulate a constant GEP offset into an APInt if possible.
 | |
| ///
 | |
| /// Returns false if unable to compute the offset for any reason. Respects any
 | |
| /// simplified values known during the analysis of this callsite.
 | |
| bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
 | |
|   unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
 | |
|   assert(IntPtrWidth == Offset.getBitWidth());
 | |
| 
 | |
|   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
 | |
|        GTI != GTE; ++GTI) {
 | |
|     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
 | |
|     if (!OpC)
 | |
|       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
 | |
|         OpC = dyn_cast<ConstantInt>(SimpleOp);
 | |
|     if (!OpC)
 | |
|       return false;
 | |
|     if (OpC->isZero())
 | |
|       continue;
 | |
| 
 | |
|     // Handle a struct index, which adds its field offset to the pointer.
 | |
|     if (StructType *STy = GTI.getStructTypeOrNull()) {
 | |
|       unsigned ElementIdx = OpC->getZExtValue();
 | |
|       const StructLayout *SL = DL.getStructLayout(STy);
 | |
|       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
 | |
|     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Use TTI to check whether a GEP is free.
 | |
| ///
 | |
| /// Respects any simplified values known during the analysis of this callsite.
 | |
| bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
 | |
|   SmallVector<Value *, 4> Operands;
 | |
|   Operands.push_back(GEP.getOperand(0));
 | |
|   for (const Use &Op : GEP.indices())
 | |
|     if (Constant *SimpleOp = SimplifiedValues.lookup(Op))
 | |
|       Operands.push_back(SimpleOp);
 | |
|     else
 | |
|       Operands.push_back(Op);
 | |
|   return TTI.getInstructionCost(&GEP, Operands,
 | |
|                                 TargetTransformInfo::TCK_SizeAndLatency) ==
 | |
|          TargetTransformInfo::TCC_Free;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitAlloca(AllocaInst &I) {
 | |
|   disableSROA(I.getOperand(0));
 | |
| 
 | |
|   // Check whether inlining will turn a dynamic alloca into a static
 | |
|   // alloca and handle that case.
 | |
|   if (I.isArrayAllocation()) {
 | |
|     Constant *Size = SimplifiedValues.lookup(I.getArraySize());
 | |
|     if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
 | |
|       // Sometimes a dynamic alloca could be converted into a static alloca
 | |
|       // after this constant prop, and become a huge static alloca on an
 | |
|       // unconditional CFG path. Avoid inlining if this is going to happen above
 | |
|       // a threshold.
 | |
|       // FIXME: If the threshold is removed or lowered too much, we could end up
 | |
|       // being too pessimistic and prevent inlining non-problematic code. This
 | |
|       // could result in unintended perf regressions. A better overall strategy
 | |
|       // is needed to track stack usage during inlining.
 | |
|       Type *Ty = I.getAllocatedType();
 | |
|       AllocatedSize = SaturatingMultiplyAdd(
 | |
|           AllocSize->getLimitedValue(),
 | |
|           DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize);
 | |
|       if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline)
 | |
|         HasDynamicAlloca = true;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Accumulate the allocated size.
 | |
|   if (I.isStaticAlloca()) {
 | |
|     Type *Ty = I.getAllocatedType();
 | |
|     AllocatedSize =
 | |
|         SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize);
 | |
|   }
 | |
| 
 | |
|   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
 | |
|   // a variety of reasons, and so we would like to not inline them into
 | |
|   // functions which don't currently have a dynamic alloca. This simply
 | |
|   // disables inlining altogether in the presence of a dynamic alloca.
 | |
|   if (!I.isStaticAlloca())
 | |
|     HasDynamicAlloca = true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitPHI(PHINode &I) {
 | |
|   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
 | |
|   // though we don't want to propagate it's bonuses. The idea is to disable
 | |
|   // SROA if it *might* be used in an inappropriate manner.
 | |
| 
 | |
|   // Phi nodes are always zero-cost.
 | |
|   // FIXME: Pointer sizes may differ between different address spaces, so do we
 | |
|   // need to use correct address space in the call to getPointerSizeInBits here?
 | |
|   // Or could we skip the getPointerSizeInBits call completely? As far as I can
 | |
|   // see the ZeroOffset is used as a dummy value, so we can probably use any
 | |
|   // bit width for the ZeroOffset?
 | |
|   APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0));
 | |
|   bool CheckSROA = I.getType()->isPointerTy();
 | |
| 
 | |
|   // Track the constant or pointer with constant offset we've seen so far.
 | |
|   Constant *FirstC = nullptr;
 | |
|   std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
 | |
|   Value *FirstV = nullptr;
 | |
| 
 | |
|   for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *Pred = I.getIncomingBlock(i);
 | |
|     // If the incoming block is dead, skip the incoming block.
 | |
|     if (DeadBlocks.count(Pred))
 | |
|       continue;
 | |
|     // If the parent block of phi is not the known successor of the incoming
 | |
|     // block, skip the incoming block.
 | |
|     BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
 | |
|     if (KnownSuccessor && KnownSuccessor != I.getParent())
 | |
|       continue;
 | |
| 
 | |
|     Value *V = I.getIncomingValue(i);
 | |
|     // If the incoming value is this phi itself, skip the incoming value.
 | |
|     if (&I == V)
 | |
|       continue;
 | |
| 
 | |
|     Constant *C = dyn_cast<Constant>(V);
 | |
|     if (!C)
 | |
|       C = SimplifiedValues.lookup(V);
 | |
| 
 | |
|     std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
 | |
|     if (!C && CheckSROA)
 | |
|       BaseAndOffset = ConstantOffsetPtrs.lookup(V);
 | |
| 
 | |
|     if (!C && !BaseAndOffset.first)
 | |
|       // The incoming value is neither a constant nor a pointer with constant
 | |
|       // offset, exit early.
 | |
|       return true;
 | |
| 
 | |
|     if (FirstC) {
 | |
|       if (FirstC == C)
 | |
|         // If we've seen a constant incoming value before and it is the same
 | |
|         // constant we see this time, continue checking the next incoming value.
 | |
|         continue;
 | |
|       // Otherwise early exit because we either see a different constant or saw
 | |
|       // a constant before but we have a pointer with constant offset this time.
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (FirstV) {
 | |
|       // The same logic as above, but check pointer with constant offset here.
 | |
|       if (FirstBaseAndOffset == BaseAndOffset)
 | |
|         continue;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (C) {
 | |
|       // This is the 1st time we've seen a constant, record it.
 | |
|       FirstC = C;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // The remaining case is that this is the 1st time we've seen a pointer with
 | |
|     // constant offset, record it.
 | |
|     FirstV = V;
 | |
|     FirstBaseAndOffset = BaseAndOffset;
 | |
|   }
 | |
| 
 | |
|   // Check if we can map phi to a constant.
 | |
|   if (FirstC) {
 | |
|     SimplifiedValues[&I] = FirstC;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check if we can map phi to a pointer with constant offset.
 | |
|   if (FirstBaseAndOffset.first) {
 | |
|     ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
 | |
| 
 | |
|     if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
 | |
|       SROAArgValues[&I] = SROAArg;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check we can fold GEPs of constant-offset call site argument pointers.
 | |
| /// This requires target data and inbounds GEPs.
 | |
| ///
 | |
| /// \return true if the specified GEP can be folded.
 | |
| bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
 | |
|   // Check if we have a base + offset for the pointer.
 | |
|   std::pair<Value *, APInt> BaseAndOffset =
 | |
|       ConstantOffsetPtrs.lookup(I.getPointerOperand());
 | |
|   if (!BaseAndOffset.first)
 | |
|     return false;
 | |
| 
 | |
|   // Check if the offset of this GEP is constant, and if so accumulate it
 | |
|   // into Offset.
 | |
|   if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
 | |
|     return false;
 | |
| 
 | |
|   // Add the result as a new mapping to Base + Offset.
 | |
|   ConstantOffsetPtrs[&I] = BaseAndOffset;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
 | |
|   auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());
 | |
| 
 | |
|   // Lambda to check whether a GEP's indices are all constant.
 | |
|   auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
 | |
|     for (const Use &Op : GEP.indices())
 | |
|       if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op))
 | |
|         return false;
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   if (!DisableGEPConstOperand)
 | |
|     if (simplifyInstruction(I))
 | |
|       return true;
 | |
| 
 | |
|   if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
 | |
|     if (SROAArg)
 | |
|       SROAArgValues[&I] = SROAArg;
 | |
| 
 | |
|     // Constant GEPs are modeled as free.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Variable GEPs will require math and will disable SROA.
 | |
|   if (SROAArg)
 | |
|     disableSROAForArg(SROAArg);
 | |
|   return isGEPFree(I);
 | |
| }
 | |
| 
 | |
| /// Simplify \p I if its operands are constants and update SimplifiedValues.
 | |
| bool CallAnalyzer::simplifyInstruction(Instruction &I) {
 | |
|   SmallVector<Constant *> COps;
 | |
|   for (Value *Op : I.operands()) {
 | |
|     Constant *COp = dyn_cast<Constant>(Op);
 | |
|     if (!COp)
 | |
|       COp = SimplifiedValues.lookup(Op);
 | |
|     if (!COp)
 | |
|       return false;
 | |
|     COps.push_back(COp);
 | |
|   }
 | |
|   auto *C = ConstantFoldInstOperands(&I, COps, DL);
 | |
|   if (!C)
 | |
|     return false;
 | |
|   SimplifiedValues[&I] = C;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Try to simplify a call to llvm.is.constant.
 | |
| ///
 | |
| /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since
 | |
| /// we expect calls of this specific intrinsic to be infrequent.
 | |
| ///
 | |
| /// FIXME: Given that we know CB's parent (F) caller
 | |
| /// (CandidateCall->getParent()->getParent()), we might be able to determine
 | |
| /// whether inlining F into F's caller would change how the call to
 | |
| /// llvm.is.constant would evaluate.
 | |
| bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) {
 | |
|   Value *Arg = CB.getArgOperand(0);
 | |
|   auto *C = dyn_cast<Constant>(Arg);
 | |
| 
 | |
|   if (!C)
 | |
|     C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg));
 | |
| 
 | |
|   Type *RT = CB.getFunctionType()->getReturnType();
 | |
|   SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitBitCast(BitCastInst &I) {
 | |
|   // Propagate constants through bitcasts.
 | |
|   if (simplifyInstruction(I))
 | |
|     return true;
 | |
| 
 | |
|   // Track base/offsets through casts
 | |
|   std::pair<Value *, APInt> BaseAndOffset =
 | |
|       ConstantOffsetPtrs.lookup(I.getOperand(0));
 | |
|   // Casts don't change the offset, just wrap it up.
 | |
|   if (BaseAndOffset.first)
 | |
|     ConstantOffsetPtrs[&I] = BaseAndOffset;
 | |
| 
 | |
|   // Also look for SROA candidates here.
 | |
|   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
 | |
|     SROAArgValues[&I] = SROAArg;
 | |
| 
 | |
|   // Bitcasts are always zero cost.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
 | |
|   // Propagate constants through ptrtoint.
 | |
|   if (simplifyInstruction(I))
 | |
|     return true;
 | |
| 
 | |
|   // Track base/offset pairs when converted to a plain integer provided the
 | |
|   // integer is large enough to represent the pointer.
 | |
|   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
 | |
|   unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
 | |
|   if (IntegerSize == DL.getPointerSizeInBits(AS)) {
 | |
|     std::pair<Value *, APInt> BaseAndOffset =
 | |
|         ConstantOffsetPtrs.lookup(I.getOperand(0));
 | |
|     if (BaseAndOffset.first)
 | |
|       ConstantOffsetPtrs[&I] = BaseAndOffset;
 | |
|   }
 | |
| 
 | |
|   // This is really weird. Technically, ptrtoint will disable SROA. However,
 | |
|   // unless that ptrtoint is *used* somewhere in the live basic blocks after
 | |
|   // inlining, it will be nuked, and SROA should proceed. All of the uses which
 | |
|   // would block SROA would also block SROA if applied directly to a pointer,
 | |
|   // and so we can just add the integer in here. The only places where SROA is
 | |
|   // preserved either cannot fire on an integer, or won't in-and-of themselves
 | |
|   // disable SROA (ext) w/o some later use that we would see and disable.
 | |
|   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
 | |
|     SROAArgValues[&I] = SROAArg;
 | |
| 
 | |
|   return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
 | |
|          TargetTransformInfo::TCC_Free;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
 | |
|   // Propagate constants through ptrtoint.
 | |
|   if (simplifyInstruction(I))
 | |
|     return true;
 | |
| 
 | |
|   // Track base/offset pairs when round-tripped through a pointer without
 | |
|   // modifications provided the integer is not too large.
 | |
|   Value *Op = I.getOperand(0);
 | |
|   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
 | |
|   if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
 | |
|     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
 | |
|     if (BaseAndOffset.first)
 | |
|       ConstantOffsetPtrs[&I] = BaseAndOffset;
 | |
|   }
 | |
| 
 | |
|   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
 | |
|   if (auto *SROAArg = getSROAArgForValueOrNull(Op))
 | |
|     SROAArgValues[&I] = SROAArg;
 | |
| 
 | |
|   return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
 | |
|          TargetTransformInfo::TCC_Free;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitCastInst(CastInst &I) {
 | |
|   // Propagate constants through casts.
 | |
|   if (simplifyInstruction(I))
 | |
|     return true;
 | |
| 
 | |
|   // Disable SROA in the face of arbitrary casts we don't explicitly list
 | |
|   // elsewhere.
 | |
|   disableSROA(I.getOperand(0));
 | |
| 
 | |
|   // If this is a floating-point cast, and the target says this operation
 | |
|   // is expensive, this may eventually become a library call. Treat the cost
 | |
|   // as such.
 | |
|   switch (I.getOpcode()) {
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|     if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
 | |
|       onCallPenalty();
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
 | |
|          TargetTransformInfo::TCC_Free;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
 | |
|   return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
 | |
|   // Does the *call site* have the NonNull attribute set on an argument?  We
 | |
|   // use the attribute on the call site to memoize any analysis done in the
 | |
|   // caller. This will also trip if the callee function has a non-null
 | |
|   // parameter attribute, but that's a less interesting case because hopefully
 | |
|   // the callee would already have been simplified based on that.
 | |
|   if (Argument *A = dyn_cast<Argument>(V))
 | |
|     if (paramHasAttr(A, Attribute::NonNull))
 | |
|       return true;
 | |
| 
 | |
|   // Is this an alloca in the caller?  This is distinct from the attribute case
 | |
|   // above because attributes aren't updated within the inliner itself and we
 | |
|   // always want to catch the alloca derived case.
 | |
|   if (isAllocaDerivedArg(V))
 | |
|     // We can actually predict the result of comparisons between an
 | |
|     // alloca-derived value and null. Note that this fires regardless of
 | |
|     // SROA firing.
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
 | |
|   // If the normal destination of the invoke or the parent block of the call
 | |
|   // site is unreachable-terminated, there is little point in inlining this
 | |
|   // unless there is literally zero cost.
 | |
|   // FIXME: Note that it is possible that an unreachable-terminated block has a
 | |
|   // hot entry. For example, in below scenario inlining hot_call_X() may be
 | |
|   // beneficial :
 | |
|   // main() {
 | |
|   //   hot_call_1();
 | |
|   //   ...
 | |
|   //   hot_call_N()
 | |
|   //   exit(0);
 | |
|   // }
 | |
|   // For now, we are not handling this corner case here as it is rare in real
 | |
|   // code. In future, we should elaborate this based on BPI and BFI in more
 | |
|   // general threshold adjusting heuristics in updateThreshold().
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
 | |
|     if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
 | |
|       return false;
 | |
|   } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
 | |
|                                             BlockFrequencyInfo *CallerBFI) {
 | |
|   // If global profile summary is available, then callsite's coldness is
 | |
|   // determined based on that.
 | |
|   if (PSI && PSI->hasProfileSummary())
 | |
|     return PSI->isColdCallSite(Call, CallerBFI);
 | |
| 
 | |
|   // Otherwise we need BFI to be available.
 | |
|   if (!CallerBFI)
 | |
|     return false;
 | |
| 
 | |
|   // Determine if the callsite is cold relative to caller's entry. We could
 | |
|   // potentially cache the computation of scaled entry frequency, but the added
 | |
|   // complexity is not worth it unless this scaling shows up high in the
 | |
|   // profiles.
 | |
|   const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
 | |
|   auto CallSiteBB = Call.getParent();
 | |
|   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
 | |
|   auto CallerEntryFreq =
 | |
|       CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
 | |
|   return CallSiteFreq < CallerEntryFreq * ColdProb;
 | |
| }
 | |
| 
 | |
| Optional<int>
 | |
| InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
 | |
|                                                 BlockFrequencyInfo *CallerBFI) {
 | |
| 
 | |
|   // If global profile summary is available, then callsite's hotness is
 | |
|   // determined based on that.
 | |
|   if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI))
 | |
|     return Params.HotCallSiteThreshold;
 | |
| 
 | |
|   // Otherwise we need BFI to be available and to have a locally hot callsite
 | |
|   // threshold.
 | |
|   if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
 | |
|     return None;
 | |
| 
 | |
|   // Determine if the callsite is hot relative to caller's entry. We could
 | |
|   // potentially cache the computation of scaled entry frequency, but the added
 | |
|   // complexity is not worth it unless this scaling shows up high in the
 | |
|   // profiles.
 | |
|   auto CallSiteBB = Call.getParent();
 | |
|   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
 | |
|   auto CallerEntryFreq = CallerBFI->getEntryFreq();
 | |
|   if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
 | |
|     return Params.LocallyHotCallSiteThreshold;
 | |
| 
 | |
|   // Otherwise treat it normally.
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
 | |
|   // If no size growth is allowed for this inlining, set Threshold to 0.
 | |
|   if (!allowSizeGrowth(Call)) {
 | |
|     Threshold = 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Function *Caller = Call.getCaller();
 | |
| 
 | |
|   // return min(A, B) if B is valid.
 | |
|   auto MinIfValid = [](int A, Optional<int> B) {
 | |
|     return B ? std::min(A, B.value()) : A;
 | |
|   };
 | |
| 
 | |
|   // return max(A, B) if B is valid.
 | |
|   auto MaxIfValid = [](int A, Optional<int> B) {
 | |
|     return B ? std::max(A, B.value()) : A;
 | |
|   };
 | |
| 
 | |
|   // Various bonus percentages. These are multiplied by Threshold to get the
 | |
|   // bonus values.
 | |
|   // SingleBBBonus: This bonus is applied if the callee has a single reachable
 | |
|   // basic block at the given callsite context. This is speculatively applied
 | |
|   // and withdrawn if more than one basic block is seen.
 | |
|   //
 | |
|   // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
 | |
|   // of the last call to a static function as inlining such functions is
 | |
|   // guaranteed to reduce code size.
 | |
|   //
 | |
|   // These bonus percentages may be set to 0 based on properties of the caller
 | |
|   // and the callsite.
 | |
|   int SingleBBBonusPercent = 50;
 | |
|   int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
 | |
|   int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
 | |
| 
 | |
|   // Lambda to set all the above bonus and bonus percentages to 0.
 | |
|   auto DisallowAllBonuses = [&]() {
 | |
|     SingleBBBonusPercent = 0;
 | |
|     VectorBonusPercent = 0;
 | |
|     LastCallToStaticBonus = 0;
 | |
|   };
 | |
| 
 | |
|   // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
 | |
|   // and reduce the threshold if the caller has the necessary attribute.
 | |
|   if (Caller->hasMinSize()) {
 | |
|     Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
 | |
|     // For minsize, we want to disable the single BB bonus and the vector
 | |
|     // bonuses, but not the last-call-to-static bonus. Inlining the last call to
 | |
|     // a static function will, at the minimum, eliminate the parameter setup and
 | |
|     // call/return instructions.
 | |
|     SingleBBBonusPercent = 0;
 | |
|     VectorBonusPercent = 0;
 | |
|   } else if (Caller->hasOptSize())
 | |
|     Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
 | |
| 
 | |
|   // Adjust the threshold based on inlinehint attribute and profile based
 | |
|   // hotness information if the caller does not have MinSize attribute.
 | |
|   if (!Caller->hasMinSize()) {
 | |
|     if (Callee.hasFnAttribute(Attribute::InlineHint))
 | |
|       Threshold = MaxIfValid(Threshold, Params.HintThreshold);
 | |
| 
 | |
|     // FIXME: After switching to the new passmanager, simplify the logic below
 | |
|     // by checking only the callsite hotness/coldness as we will reliably
 | |
|     // have local profile information.
 | |
|     //
 | |
|     // Callsite hotness and coldness can be determined if sample profile is
 | |
|     // used (which adds hotness metadata to calls) or if caller's
 | |
|     // BlockFrequencyInfo is available.
 | |
|     BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr;
 | |
|     auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
 | |
|     if (!Caller->hasOptSize() && HotCallSiteThreshold) {
 | |
|       LLVM_DEBUG(dbgs() << "Hot callsite.\n");
 | |
|       // FIXME: This should update the threshold only if it exceeds the
 | |
|       // current threshold, but AutoFDO + ThinLTO currently relies on this
 | |
|       // behavior to prevent inlining of hot callsites during ThinLTO
 | |
|       // compile phase.
 | |
|       Threshold = *HotCallSiteThreshold;
 | |
|     } else if (isColdCallSite(Call, CallerBFI)) {
 | |
|       LLVM_DEBUG(dbgs() << "Cold callsite.\n");
 | |
|       // Do not apply bonuses for a cold callsite including the
 | |
|       // LastCallToStatic bonus. While this bonus might result in code size
 | |
|       // reduction, it can cause the size of a non-cold caller to increase
 | |
|       // preventing it from being inlined.
 | |
|       DisallowAllBonuses();
 | |
|       Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
 | |
|     } else if (PSI) {
 | |
|       // Use callee's global profile information only if we have no way of
 | |
|       // determining this via callsite information.
 | |
|       if (PSI->isFunctionEntryHot(&Callee)) {
 | |
|         LLVM_DEBUG(dbgs() << "Hot callee.\n");
 | |
|         // If callsite hotness can not be determined, we may still know
 | |
|         // that the callee is hot and treat it as a weaker hint for threshold
 | |
|         // increase.
 | |
|         Threshold = MaxIfValid(Threshold, Params.HintThreshold);
 | |
|       } else if (PSI->isFunctionEntryCold(&Callee)) {
 | |
|         LLVM_DEBUG(dbgs() << "Cold callee.\n");
 | |
|         // Do not apply bonuses for a cold callee including the
 | |
|         // LastCallToStatic bonus. While this bonus might result in code size
 | |
|         // reduction, it can cause the size of a non-cold caller to increase
 | |
|         // preventing it from being inlined.
 | |
|         DisallowAllBonuses();
 | |
|         Threshold = MinIfValid(Threshold, Params.ColdThreshold);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Threshold += TTI.adjustInliningThreshold(&Call);
 | |
| 
 | |
|   // Finally, take the target-specific inlining threshold multiplier into
 | |
|   // account.
 | |
|   Threshold *= TTI.getInliningThresholdMultiplier();
 | |
| 
 | |
|   SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
 | |
|   VectorBonus = Threshold * VectorBonusPercent / 100;
 | |
| 
 | |
|   bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() &&
 | |
|                                     &F == Call.getCalledFunction();
 | |
|   // If there is only one call of the function, and it has internal linkage,
 | |
|   // the cost of inlining it drops dramatically. It may seem odd to update
 | |
|   // Cost in updateThreshold, but the bonus depends on the logic in this method.
 | |
|   if (OnlyOneCallAndLocalLinkage)
 | |
|     Cost -= LastCallToStaticBonus;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitCmpInst(CmpInst &I) {
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|   // First try to handle simplified comparisons.
 | |
|   if (simplifyInstruction(I))
 | |
|     return true;
 | |
| 
 | |
|   if (I.getOpcode() == Instruction::FCmp)
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise look for a comparison between constant offset pointers with
 | |
|   // a common base.
 | |
|   Value *LHSBase, *RHSBase;
 | |
|   APInt LHSOffset, RHSOffset;
 | |
|   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
 | |
|   if (LHSBase) {
 | |
|     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
 | |
|     if (RHSBase && LHSBase == RHSBase) {
 | |
|       // We have common bases, fold the icmp to a constant based on the
 | |
|       // offsets.
 | |
|       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
 | |
|       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
 | |
|       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
 | |
|         SimplifiedValues[&I] = C;
 | |
|         ++NumConstantPtrCmps;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is an equality comparison with null, we can simplify it
 | |
|   // if we know the value (argument) can't be null
 | |
|   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
 | |
|       isKnownNonNullInCallee(I.getOperand(0))) {
 | |
|     bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
 | |
|     SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
 | |
|                                       : ConstantInt::getFalse(I.getType());
 | |
|     return true;
 | |
|   }
 | |
|   return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitSub(BinaryOperator &I) {
 | |
|   // Try to handle a special case: we can fold computing the difference of two
 | |
|   // constant-related pointers.
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|   Value *LHSBase, *RHSBase;
 | |
|   APInt LHSOffset, RHSOffset;
 | |
|   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
 | |
|   if (LHSBase) {
 | |
|     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
 | |
|     if (RHSBase && LHSBase == RHSBase) {
 | |
|       // We have common bases, fold the subtract to a constant based on the
 | |
|       // offsets.
 | |
|       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
 | |
|       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
 | |
|       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
 | |
|         SimplifiedValues[&I] = C;
 | |
|         ++NumConstantPtrDiffs;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, fall back to the generic logic for simplifying and handling
 | |
|   // instructions.
 | |
|   return Base::visitSub(I);
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|   Constant *CLHS = dyn_cast<Constant>(LHS);
 | |
|   if (!CLHS)
 | |
|     CLHS = SimplifiedValues.lookup(LHS);
 | |
|   Constant *CRHS = dyn_cast<Constant>(RHS);
 | |
|   if (!CRHS)
 | |
|     CRHS = SimplifiedValues.lookup(RHS);
 | |
| 
 | |
|   Value *SimpleV = nullptr;
 | |
|   if (auto FI = dyn_cast<FPMathOperator>(&I))
 | |
|     SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
 | |
|                             FI->getFastMathFlags(), DL);
 | |
|   else
 | |
|     SimpleV =
 | |
|         simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
 | |
| 
 | |
|   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
 | |
|     SimplifiedValues[&I] = C;
 | |
| 
 | |
|   if (SimpleV)
 | |
|     return true;
 | |
| 
 | |
|   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
 | |
|   disableSROA(LHS);
 | |
|   disableSROA(RHS);
 | |
| 
 | |
|   // If the instruction is floating point, and the target says this operation
 | |
|   // is expensive, this may eventually become a library call. Treat the cost
 | |
|   // as such. Unless it's fneg which can be implemented with an xor.
 | |
|   using namespace llvm::PatternMatch;
 | |
|   if (I.getType()->isFloatingPointTy() &&
 | |
|       TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
 | |
|       !match(&I, m_FNeg(m_Value())))
 | |
|     onCallPenalty();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
 | |
|   Value *Op = I.getOperand(0);
 | |
|   Constant *COp = dyn_cast<Constant>(Op);
 | |
|   if (!COp)
 | |
|     COp = SimplifiedValues.lookup(Op);
 | |
| 
 | |
|   Value *SimpleV = simplifyFNegInst(
 | |
|       COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);
 | |
| 
 | |
|   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
 | |
|     SimplifiedValues[&I] = C;
 | |
| 
 | |
|   if (SimpleV)
 | |
|     return true;
 | |
| 
 | |
|   // Disable any SROA on arguments to arbitrary, unsimplified fneg.
 | |
|   disableSROA(Op);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitLoad(LoadInst &I) {
 | |
|   if (handleSROA(I.getPointerOperand(), I.isSimple()))
 | |
|     return true;
 | |
| 
 | |
|   // If the data is already loaded from this address and hasn't been clobbered
 | |
|   // by any stores or calls, this load is likely to be redundant and can be
 | |
|   // eliminated.
 | |
|   if (EnableLoadElimination &&
 | |
|       !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
 | |
|     onLoadEliminationOpportunity();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   onMemAccess();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitStore(StoreInst &I) {
 | |
|   if (handleSROA(I.getPointerOperand(), I.isSimple()))
 | |
|     return true;
 | |
| 
 | |
|   // The store can potentially clobber loads and prevent repeated loads from
 | |
|   // being eliminated.
 | |
|   // FIXME:
 | |
|   // 1. We can probably keep an initial set of eliminatable loads substracted
 | |
|   // from the cost even when we finally see a store. We just need to disable
 | |
|   // *further* accumulation of elimination savings.
 | |
|   // 2. We should probably at some point thread MemorySSA for the callee into
 | |
|   // this and then use that to actually compute *really* precise savings.
 | |
|   disableLoadElimination();
 | |
| 
 | |
|   onMemAccess();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
 | |
|   // Constant folding for extract value is trivial.
 | |
|   if (simplifyInstruction(I))
 | |
|     return true;
 | |
| 
 | |
|   // SROA can't look through these, but they may be free.
 | |
|   return Base::visitExtractValue(I);
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
 | |
|   // Constant folding for insert value is trivial.
 | |
|   if (simplifyInstruction(I))
 | |
|     return true;
 | |
| 
 | |
|   // SROA can't look through these, but they may be free.
 | |
|   return Base::visitInsertValue(I);
 | |
| }
 | |
| 
 | |
| /// Try to simplify a call site.
 | |
| ///
 | |
| /// Takes a concrete function and callsite and tries to actually simplify it by
 | |
| /// analyzing the arguments and call itself with instsimplify. Returns true if
 | |
| /// it has simplified the callsite to some other entity (a constant), making it
 | |
| /// free.
 | |
| bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
 | |
|   // FIXME: Using the instsimplify logic directly for this is inefficient
 | |
|   // because we have to continually rebuild the argument list even when no
 | |
|   // simplifications can be performed. Until that is fixed with remapping
 | |
|   // inside of instsimplify, directly constant fold calls here.
 | |
|   if (!canConstantFoldCallTo(&Call, F))
 | |
|     return false;
 | |
| 
 | |
|   // Try to re-map the arguments to constants.
 | |
|   SmallVector<Constant *, 4> ConstantArgs;
 | |
|   ConstantArgs.reserve(Call.arg_size());
 | |
|   for (Value *I : Call.args()) {
 | |
|     Constant *C = dyn_cast<Constant>(I);
 | |
|     if (!C)
 | |
|       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
 | |
|     if (!C)
 | |
|       return false; // This argument doesn't map to a constant.
 | |
| 
 | |
|     ConstantArgs.push_back(C);
 | |
|   }
 | |
|   if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
 | |
|     SimplifiedValues[&Call] = C;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitCallBase(CallBase &Call) {
 | |
|   if (!onCallBaseVisitStart(Call))
 | |
|     return true;
 | |
| 
 | |
|   if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
 | |
|       !F.hasFnAttribute(Attribute::ReturnsTwice)) {
 | |
|     // This aborts the entire analysis.
 | |
|     ExposesReturnsTwice = true;
 | |
|     return false;
 | |
|   }
 | |
|   if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
 | |
|     ContainsNoDuplicateCall = true;
 | |
| 
 | |
|   Function *F = Call.getCalledFunction();
 | |
|   bool IsIndirectCall = !F;
 | |
|   if (IsIndirectCall) {
 | |
|     // Check if this happens to be an indirect function call to a known function
 | |
|     // in this inline context. If not, we've done all we can.
 | |
|     Value *Callee = Call.getCalledOperand();
 | |
|     F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
 | |
|     if (!F || F->getFunctionType() != Call.getFunctionType()) {
 | |
|       onCallArgumentSetup(Call);
 | |
| 
 | |
|       if (!Call.onlyReadsMemory())
 | |
|         disableLoadElimination();
 | |
|       return Base::visitCallBase(Call);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(F && "Expected a call to a known function");
 | |
| 
 | |
|   // When we have a concrete function, first try to simplify it directly.
 | |
|   if (simplifyCallSite(F, Call))
 | |
|     return true;
 | |
| 
 | |
|   // Next check if it is an intrinsic we know about.
 | |
|   // FIXME: Lift this into part of the InstVisitor.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default:
 | |
|       if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
 | |
|         disableLoadElimination();
 | |
|       return Base::visitCallBase(Call);
 | |
| 
 | |
|     case Intrinsic::load_relative:
 | |
|       onLoadRelativeIntrinsic();
 | |
|       return false;
 | |
| 
 | |
|     case Intrinsic::memset:
 | |
|     case Intrinsic::memcpy:
 | |
|     case Intrinsic::memmove:
 | |
|       disableLoadElimination();
 | |
|       // SROA can usually chew through these intrinsics, but they aren't free.
 | |
|       return false;
 | |
|     case Intrinsic::icall_branch_funnel:
 | |
|     case Intrinsic::localescape:
 | |
|       HasUninlineableIntrinsic = true;
 | |
|       return false;
 | |
|     case Intrinsic::vastart:
 | |
|       InitsVargArgs = true;
 | |
|       return false;
 | |
|     case Intrinsic::launder_invariant_group:
 | |
|     case Intrinsic::strip_invariant_group:
 | |
|       if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0)))
 | |
|         SROAArgValues[II] = SROAArg;
 | |
|       return true;
 | |
|     case Intrinsic::is_constant:
 | |
|       return simplifyIntrinsicCallIsConstant(Call);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (F == Call.getFunction()) {
 | |
|     // This flag will fully abort the analysis, so don't bother with anything
 | |
|     // else.
 | |
|     IsRecursiveCall = true;
 | |
|     if (!AllowRecursiveCall)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (TTI.isLoweredToCall(F)) {
 | |
|     onLoweredCall(F, Call, IsIndirectCall);
 | |
|   }
 | |
| 
 | |
|   if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
 | |
|     disableLoadElimination();
 | |
|   return Base::visitCallBase(Call);
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
 | |
|   // At least one return instruction will be free after inlining.
 | |
|   bool Free = !HasReturn;
 | |
|   HasReturn = true;
 | |
|   return Free;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
 | |
|   // We model unconditional branches as essentially free -- they really
 | |
|   // shouldn't exist at all, but handling them makes the behavior of the
 | |
|   // inliner more regular and predictable. Interestingly, conditional branches
 | |
|   // which will fold away are also free.
 | |
|   return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
 | |
|          isa_and_nonnull<ConstantInt>(
 | |
|              SimplifiedValues.lookup(BI.getCondition()));
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
 | |
|   bool CheckSROA = SI.getType()->isPointerTy();
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
| 
 | |
|   Constant *TrueC = dyn_cast<Constant>(TrueVal);
 | |
|   if (!TrueC)
 | |
|     TrueC = SimplifiedValues.lookup(TrueVal);
 | |
|   Constant *FalseC = dyn_cast<Constant>(FalseVal);
 | |
|   if (!FalseC)
 | |
|     FalseC = SimplifiedValues.lookup(FalseVal);
 | |
|   Constant *CondC =
 | |
|       dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
 | |
| 
 | |
|   if (!CondC) {
 | |
|     // Select C, X, X => X
 | |
|     if (TrueC == FalseC && TrueC) {
 | |
|       SimplifiedValues[&SI] = TrueC;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (!CheckSROA)
 | |
|       return Base::visitSelectInst(SI);
 | |
| 
 | |
|     std::pair<Value *, APInt> TrueBaseAndOffset =
 | |
|         ConstantOffsetPtrs.lookup(TrueVal);
 | |
|     std::pair<Value *, APInt> FalseBaseAndOffset =
 | |
|         ConstantOffsetPtrs.lookup(FalseVal);
 | |
|     if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
 | |
|       ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
 | |
| 
 | |
|       if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
 | |
|         SROAArgValues[&SI] = SROAArg;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return Base::visitSelectInst(SI);
 | |
|   }
 | |
| 
 | |
|   // Select condition is a constant.
 | |
|   Value *SelectedV = CondC->isAllOnesValue()  ? TrueVal
 | |
|                      : (CondC->isNullValue()) ? FalseVal
 | |
|                                               : nullptr;
 | |
|   if (!SelectedV) {
 | |
|     // Condition is a vector constant that is not all 1s or all 0s.  If all
 | |
|     // operands are constants, ConstantExpr::getSelect() can handle the cases
 | |
|     // such as select vectors.
 | |
|     if (TrueC && FalseC) {
 | |
|       if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
 | |
|         SimplifiedValues[&SI] = C;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return Base::visitSelectInst(SI);
 | |
|   }
 | |
| 
 | |
|   // Condition is either all 1s or all 0s. SI can be simplified.
 | |
|   if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
 | |
|     SimplifiedValues[&SI] = SelectedC;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!CheckSROA)
 | |
|     return true;
 | |
| 
 | |
|   std::pair<Value *, APInt> BaseAndOffset =
 | |
|       ConstantOffsetPtrs.lookup(SelectedV);
 | |
|   if (BaseAndOffset.first) {
 | |
|     ConstantOffsetPtrs[&SI] = BaseAndOffset;
 | |
| 
 | |
|     if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
 | |
|       SROAArgValues[&SI] = SROAArg;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
 | |
|   // We model unconditional switches as free, see the comments on handling
 | |
|   // branches.
 | |
|   if (isa<ConstantInt>(SI.getCondition()))
 | |
|     return true;
 | |
|   if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
 | |
|     if (isa<ConstantInt>(V))
 | |
|       return true;
 | |
| 
 | |
|   // Assume the most general case where the switch is lowered into
 | |
|   // either a jump table, bit test, or a balanced binary tree consisting of
 | |
|   // case clusters without merging adjacent clusters with the same
 | |
|   // destination. We do not consider the switches that are lowered with a mix
 | |
|   // of jump table/bit test/binary search tree. The cost of the switch is
 | |
|   // proportional to the size of the tree or the size of jump table range.
 | |
|   //
 | |
|   // NB: We convert large switches which are just used to initialize large phi
 | |
|   // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent
 | |
|   // inlining those. It will prevent inlining in cases where the optimization
 | |
|   // does not (yet) fire.
 | |
| 
 | |
|   unsigned JumpTableSize = 0;
 | |
|   BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr;
 | |
|   unsigned NumCaseCluster =
 | |
|       TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);
 | |
| 
 | |
|   onFinalizeSwitch(JumpTableSize, NumCaseCluster);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
 | |
|   // We never want to inline functions that contain an indirectbr.  This is
 | |
|   // incorrect because all the blockaddress's (in static global initializers
 | |
|   // for example) would be referring to the original function, and this
 | |
|   // indirect jump would jump from the inlined copy of the function into the
 | |
|   // original function which is extremely undefined behavior.
 | |
|   // FIXME: This logic isn't really right; we can safely inline functions with
 | |
|   // indirectbr's as long as no other function or global references the
 | |
|   // blockaddress of a block within the current function.
 | |
|   HasIndirectBr = true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
 | |
|   // FIXME: It's not clear that a single instruction is an accurate model for
 | |
|   // the inline cost of a resume instruction.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
 | |
|   // FIXME: It's not clear that a single instruction is an accurate model for
 | |
|   // the inline cost of a cleanupret instruction.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
 | |
|   // FIXME: It's not clear that a single instruction is an accurate model for
 | |
|   // the inline cost of a catchret instruction.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
 | |
|   // FIXME: It might be reasonably to discount the cost of instructions leading
 | |
|   // to unreachable as they have the lowest possible impact on both runtime and
 | |
|   // code size.
 | |
|   return true; // No actual code is needed for unreachable.
 | |
| }
 | |
| 
 | |
| bool CallAnalyzer::visitInstruction(Instruction &I) {
 | |
|   // Some instructions are free. All of the free intrinsics can also be
 | |
|   // handled by SROA, etc.
 | |
|   if (TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
 | |
|       TargetTransformInfo::TCC_Free)
 | |
|     return true;
 | |
| 
 | |
|   // We found something we don't understand or can't handle. Mark any SROA-able
 | |
|   // values in the operand list as no longer viable.
 | |
|   for (const Use &Op : I.operands())
 | |
|     disableSROA(Op);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Analyze a basic block for its contribution to the inline cost.
 | |
| ///
 | |
| /// This method walks the analyzer over every instruction in the given basic
 | |
| /// block and accounts for their cost during inlining at this callsite. It
 | |
| /// aborts early if the threshold has been exceeded or an impossible to inline
 | |
| /// construct has been detected. It returns false if inlining is no longer
 | |
| /// viable, and true if inlining remains viable.
 | |
| InlineResult
 | |
| CallAnalyzer::analyzeBlock(BasicBlock *BB,
 | |
|                            SmallPtrSetImpl<const Value *> &EphValues) {
 | |
|   for (Instruction &I : *BB) {
 | |
|     // FIXME: Currently, the number of instructions in a function regardless of
 | |
|     // our ability to simplify them during inline to constants or dead code,
 | |
|     // are actually used by the vector bonus heuristic. As long as that's true,
 | |
|     // we have to special case debug intrinsics here to prevent differences in
 | |
|     // inlining due to debug symbols. Eventually, the number of unsimplified
 | |
|     // instructions shouldn't factor into the cost computation, but until then,
 | |
|     // hack around it here.
 | |
|     // Similarly, skip pseudo-probes.
 | |
|     if (I.isDebugOrPseudoInst())
 | |
|       continue;
 | |
| 
 | |
|     // Skip ephemeral values.
 | |
|     if (EphValues.count(&I))
 | |
|       continue;
 | |
| 
 | |
|     ++NumInstructions;
 | |
|     if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy())
 | |
|       ++NumVectorInstructions;
 | |
| 
 | |
|     // If the instruction simplified to a constant, there is no cost to this
 | |
|     // instruction. Visit the instructions using our InstVisitor to account for
 | |
|     // all of the per-instruction logic. The visit tree returns true if we
 | |
|     // consumed the instruction in any way, and false if the instruction's base
 | |
|     // cost should count against inlining.
 | |
|     onInstructionAnalysisStart(&I);
 | |
| 
 | |
|     if (Base::visit(&I))
 | |
|       ++NumInstructionsSimplified;
 | |
|     else
 | |
|       onMissedSimplification();
 | |
| 
 | |
|     onInstructionAnalysisFinish(&I);
 | |
|     using namespace ore;
 | |
|     // If the visit this instruction detected an uninlinable pattern, abort.
 | |
|     InlineResult IR = InlineResult::success();
 | |
|     if (IsRecursiveCall && !AllowRecursiveCall)
 | |
|       IR = InlineResult::failure("recursive");
 | |
|     else if (ExposesReturnsTwice)
 | |
|       IR = InlineResult::failure("exposes returns twice");
 | |
|     else if (HasDynamicAlloca)
 | |
|       IR = InlineResult::failure("dynamic alloca");
 | |
|     else if (HasIndirectBr)
 | |
|       IR = InlineResult::failure("indirect branch");
 | |
|     else if (HasUninlineableIntrinsic)
 | |
|       IR = InlineResult::failure("uninlinable intrinsic");
 | |
|     else if (InitsVargArgs)
 | |
|       IR = InlineResult::failure("varargs");
 | |
|     if (!IR.isSuccess()) {
 | |
|       if (ORE)
 | |
|         ORE->emit([&]() {
 | |
|           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
 | |
|                                           &CandidateCall)
 | |
|                  << NV("Callee", &F) << " has uninlinable pattern ("
 | |
|                  << NV("InlineResult", IR.getFailureReason())
 | |
|                  << ") and cost is not fully computed";
 | |
|         });
 | |
|       return IR;
 | |
|     }
 | |
| 
 | |
|     // If the caller is a recursive function then we don't want to inline
 | |
|     // functions which allocate a lot of stack space because it would increase
 | |
|     // the caller stack usage dramatically.
 | |
|     if (IsCallerRecursive && AllocatedSize > RecurStackSizeThreshold) {
 | |
|       auto IR =
 | |
|           InlineResult::failure("recursive and allocates too much stack space");
 | |
|       if (ORE)
 | |
|         ORE->emit([&]() {
 | |
|           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
 | |
|                                           &CandidateCall)
 | |
|                  << NV("Callee", &F) << " is "
 | |
|                  << NV("InlineResult", IR.getFailureReason())
 | |
|                  << ". Cost is not fully computed";
 | |
|         });
 | |
|       return IR;
 | |
|     }
 | |
| 
 | |
|     if (shouldStop())
 | |
|       return InlineResult::failure(
 | |
|           "Call site analysis is not favorable to inlining.");
 | |
|   }
 | |
| 
 | |
|   return InlineResult::success();
 | |
| }
 | |
| 
 | |
| /// Compute the base pointer and cumulative constant offsets for V.
 | |
| ///
 | |
| /// This strips all constant offsets off of V, leaving it the base pointer, and
 | |
| /// accumulates the total constant offset applied in the returned constant. It
 | |
| /// returns 0 if V is not a pointer, and returns the constant '0' if there are
 | |
| /// no constant offsets applied.
 | |
| ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
 | |
|   if (!V->getType()->isPointerTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned AS = V->getType()->getPointerAddressSpace();
 | |
|   unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
 | |
|   APInt Offset = APInt::getZero(IntPtrWidth);
 | |
| 
 | |
|   // Even though we don't look through PHI nodes, we could be called on an
 | |
|   // instruction in an unreachable block, which may be on a cycle.
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   Visited.insert(V);
 | |
|   do {
 | |
|     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
 | |
|         return nullptr;
 | |
|       V = GEP->getPointerOperand();
 | |
|     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
 | |
|       V = cast<Operator>(V)->getOperand(0);
 | |
|     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|       if (GA->isInterposable())
 | |
|         break;
 | |
|       V = GA->getAliasee();
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
 | |
|   } while (Visited.insert(V).second);
 | |
| 
 | |
|   Type *IdxPtrTy = DL.getIndexType(V->getType());
 | |
|   return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
 | |
| }
 | |
| 
 | |
| /// Find dead blocks due to deleted CFG edges during inlining.
 | |
| ///
 | |
| /// If we know the successor of the current block, \p CurrBB, has to be \p
 | |
| /// NextBB, the other successors of \p CurrBB are dead if these successors have
 | |
| /// no live incoming CFG edges.  If one block is found to be dead, we can
 | |
| /// continue growing the dead block list by checking the successors of the dead
 | |
| /// blocks to see if all their incoming edges are dead or not.
 | |
| void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
 | |
|   auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
 | |
|     // A CFG edge is dead if the predecessor is dead or the predecessor has a
 | |
|     // known successor which is not the one under exam.
 | |
|     return (DeadBlocks.count(Pred) ||
 | |
|             (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
 | |
|   };
 | |
| 
 | |
|   auto IsNewlyDead = [&](BasicBlock *BB) {
 | |
|     // If all the edges to a block are dead, the block is also dead.
 | |
|     return (!DeadBlocks.count(BB) &&
 | |
|             llvm::all_of(predecessors(BB),
 | |
|                          [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
 | |
|   };
 | |
| 
 | |
|   for (BasicBlock *Succ : successors(CurrBB)) {
 | |
|     if (Succ == NextBB || !IsNewlyDead(Succ))
 | |
|       continue;
 | |
|     SmallVector<BasicBlock *, 4> NewDead;
 | |
|     NewDead.push_back(Succ);
 | |
|     while (!NewDead.empty()) {
 | |
|       BasicBlock *Dead = NewDead.pop_back_val();
 | |
|       if (DeadBlocks.insert(Dead).second)
 | |
|         // Continue growing the dead block lists.
 | |
|         for (BasicBlock *S : successors(Dead))
 | |
|           if (IsNewlyDead(S))
 | |
|             NewDead.push_back(S);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Analyze a call site for potential inlining.
 | |
| ///
 | |
| /// Returns true if inlining this call is viable, and false if it is not
 | |
| /// viable. It computes the cost and adjusts the threshold based on numerous
 | |
| /// factors and heuristics. If this method returns false but the computed cost
 | |
| /// is below the computed threshold, then inlining was forcibly disabled by
 | |
| /// some artifact of the routine.
 | |
| InlineResult CallAnalyzer::analyze() {
 | |
|   ++NumCallsAnalyzed;
 | |
| 
 | |
|   auto Result = onAnalysisStart();
 | |
|   if (!Result.isSuccess())
 | |
|     return Result;
 | |
| 
 | |
|   if (F.empty())
 | |
|     return InlineResult::success();
 | |
| 
 | |
|   Function *Caller = CandidateCall.getFunction();
 | |
|   // Check if the caller function is recursive itself.
 | |
|   for (User *U : Caller->users()) {
 | |
|     CallBase *Call = dyn_cast<CallBase>(U);
 | |
|     if (Call && Call->getFunction() == Caller) {
 | |
|       IsCallerRecursive = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Populate our simplified values by mapping from function arguments to call
 | |
|   // arguments with known important simplifications.
 | |
|   auto CAI = CandidateCall.arg_begin();
 | |
|   for (Argument &FAI : F.args()) {
 | |
|     assert(CAI != CandidateCall.arg_end());
 | |
|     if (Constant *C = dyn_cast<Constant>(CAI))
 | |
|       SimplifiedValues[&FAI] = C;
 | |
| 
 | |
|     Value *PtrArg = *CAI;
 | |
|     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
 | |
|       ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue());
 | |
| 
 | |
|       // We can SROA any pointer arguments derived from alloca instructions.
 | |
|       if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
 | |
|         SROAArgValues[&FAI] = SROAArg;
 | |
|         onInitializeSROAArg(SROAArg);
 | |
|         EnabledSROAAllocas.insert(SROAArg);
 | |
|       }
 | |
|     }
 | |
|     ++CAI;
 | |
|   }
 | |
|   NumConstantArgs = SimplifiedValues.size();
 | |
|   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
 | |
|   NumAllocaArgs = SROAArgValues.size();
 | |
| 
 | |
|   // FIXME: If a caller has multiple calls to a callee, we end up recomputing
 | |
|   // the ephemeral values multiple times (and they're completely determined by
 | |
|   // the callee, so this is purely duplicate work).
 | |
|   SmallPtrSet<const Value *, 32> EphValues;
 | |
|   CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
 | |
| 
 | |
|   // The worklist of live basic blocks in the callee *after* inlining. We avoid
 | |
|   // adding basic blocks of the callee which can be proven to be dead for this
 | |
|   // particular call site in order to get more accurate cost estimates. This
 | |
|   // requires a somewhat heavyweight iteration pattern: we need to walk the
 | |
|   // basic blocks in a breadth-first order as we insert live successors. To
 | |
|   // accomplish this, prioritizing for small iterations because we exit after
 | |
|   // crossing our threshold, we use a small-size optimized SetVector.
 | |
|   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
 | |
|                     SmallPtrSet<BasicBlock *, 16>>
 | |
|       BBSetVector;
 | |
|   BBSetVector BBWorklist;
 | |
|   BBWorklist.insert(&F.getEntryBlock());
 | |
| 
 | |
|   // Note that we *must not* cache the size, this loop grows the worklist.
 | |
|   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
 | |
|     if (shouldStop())
 | |
|       break;
 | |
| 
 | |
|     BasicBlock *BB = BBWorklist[Idx];
 | |
|     if (BB->empty())
 | |
|       continue;
 | |
| 
 | |
|     onBlockStart(BB);
 | |
| 
 | |
|     // Disallow inlining a blockaddress with uses other than strictly callbr.
 | |
|     // A blockaddress only has defined behavior for an indirect branch in the
 | |
|     // same function, and we do not currently support inlining indirect
 | |
|     // branches.  But, the inliner may not see an indirect branch that ends up
 | |
|     // being dead code at a particular call site. If the blockaddress escapes
 | |
|     // the function, e.g., via a global variable, inlining may lead to an
 | |
|     // invalid cross-function reference.
 | |
|     // FIXME: pr/39560: continue relaxing this overt restriction.
 | |
|     if (BB->hasAddressTaken())
 | |
|       for (User *U : BlockAddress::get(&*BB)->users())
 | |
|         if (!isa<CallBrInst>(*U))
 | |
|           return InlineResult::failure("blockaddress used outside of callbr");
 | |
| 
 | |
|     // Analyze the cost of this block. If we blow through the threshold, this
 | |
|     // returns false, and we can bail on out.
 | |
|     InlineResult IR = analyzeBlock(BB, EphValues);
 | |
|     if (!IR.isSuccess())
 | |
|       return IR;
 | |
| 
 | |
|     Instruction *TI = BB->getTerminator();
 | |
| 
 | |
|     // Add in the live successors by first checking whether we have terminator
 | |
|     // that may be simplified based on the values simplified by this call.
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (BI->isConditional()) {
 | |
|         Value *Cond = BI->getCondition();
 | |
|         if (ConstantInt *SimpleCond =
 | |
|                 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
 | |
|           BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
 | |
|           BBWorklist.insert(NextBB);
 | |
|           KnownSuccessors[BB] = NextBB;
 | |
|           findDeadBlocks(BB, NextBB);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       Value *Cond = SI->getCondition();
 | |
|       if (ConstantInt *SimpleCond =
 | |
|               dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
 | |
|         BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
 | |
|         BBWorklist.insert(NextBB);
 | |
|         KnownSuccessors[BB] = NextBB;
 | |
|         findDeadBlocks(BB, NextBB);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we're unable to select a particular successor, just count all of
 | |
|     // them.
 | |
|     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
 | |
|          ++TIdx)
 | |
|       BBWorklist.insert(TI->getSuccessor(TIdx));
 | |
| 
 | |
|     onBlockAnalyzed(BB);
 | |
|   }
 | |
| 
 | |
|   bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() &&
 | |
|                                     &F == CandidateCall.getCalledFunction();
 | |
|   // If this is a noduplicate call, we can still inline as long as
 | |
|   // inlining this would cause the removal of the caller (so the instruction
 | |
|   // is not actually duplicated, just moved).
 | |
|   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
 | |
|     return InlineResult::failure("noduplicate");
 | |
| 
 | |
|   // If the callee's stack size exceeds the user-specified threshold,
 | |
|   // do not let it be inlined.
 | |
|   // The command line option overrides a limit set in the function attributes.
 | |
|   size_t FinalStackSizeThreshold = StackSizeThreshold;
 | |
|   if (!StackSizeThreshold.getNumOccurrences())
 | |
|     if (Optional<int> AttrMaxStackSize = getStringFnAttrAsInt(
 | |
|             Caller, InlineConstants::MaxInlineStackSizeAttributeName))
 | |
|       FinalStackSizeThreshold = *AttrMaxStackSize;
 | |
|   if (AllocatedSize > FinalStackSizeThreshold)
 | |
|     return InlineResult::failure("stacksize");
 | |
| 
 | |
|   return finalizeAnalysis();
 | |
| }
 | |
| 
 | |
| void InlineCostCallAnalyzer::print(raw_ostream &OS) {
 | |
| #define DEBUG_PRINT_STAT(x) OS << "      " #x ": " << x << "\n"
 | |
|   if (PrintInstructionComments)
 | |
|     F.print(OS, &Writer);
 | |
|   DEBUG_PRINT_STAT(NumConstantArgs);
 | |
|   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
 | |
|   DEBUG_PRINT_STAT(NumAllocaArgs);
 | |
|   DEBUG_PRINT_STAT(NumConstantPtrCmps);
 | |
|   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
 | |
|   DEBUG_PRINT_STAT(NumInstructionsSimplified);
 | |
|   DEBUG_PRINT_STAT(NumInstructions);
 | |
|   DEBUG_PRINT_STAT(SROACostSavings);
 | |
|   DEBUG_PRINT_STAT(SROACostSavingsLost);
 | |
|   DEBUG_PRINT_STAT(LoadEliminationCost);
 | |
|   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
 | |
|   DEBUG_PRINT_STAT(Cost);
 | |
|   DEBUG_PRINT_STAT(Threshold);
 | |
| #undef DEBUG_PRINT_STAT
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| /// Dump stats about this call's analysis.
 | |
| LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); }
 | |
| #endif
 | |
| 
 | |
| /// Test that there are no attribute conflicts between Caller and Callee
 | |
| ///        that prevent inlining.
 | |
| static bool functionsHaveCompatibleAttributes(
 | |
|     Function *Caller, Function *Callee, TargetTransformInfo &TTI,
 | |
|     function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) {
 | |
|   // Note that CalleeTLI must be a copy not a reference. The legacy pass manager
 | |
|   // caches the most recently created TLI in the TargetLibraryInfoWrapperPass
 | |
|   // object, and always returns the same object (which is overwritten on each
 | |
|   // GetTLI call). Therefore we copy the first result.
 | |
|   auto CalleeTLI = GetTLI(*Callee);
 | |
|   return (IgnoreTTIInlineCompatible ||
 | |
|           TTI.areInlineCompatible(Caller, Callee)) &&
 | |
|          GetTLI(*Caller).areInlineCompatible(CalleeTLI,
 | |
|                                              InlineCallerSupersetNoBuiltin) &&
 | |
|          AttributeFuncs::areInlineCompatible(*Caller, *Callee);
 | |
| }
 | |
| 
 | |
| int llvm::getCallsiteCost(const CallBase &Call, const DataLayout &DL) {
 | |
|   int64_t Cost = 0;
 | |
|   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
 | |
|     if (Call.isByValArgument(I)) {
 | |
|       // We approximate the number of loads and stores needed by dividing the
 | |
|       // size of the byval type by the target's pointer size.
 | |
|       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
 | |
|       unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I));
 | |
|       unsigned AS = PTy->getAddressSpace();
 | |
|       unsigned PointerSize = DL.getPointerSizeInBits(AS);
 | |
|       // Ceiling division.
 | |
|       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
 | |
| 
 | |
|       // If it generates more than 8 stores it is likely to be expanded as an
 | |
|       // inline memcpy so we take that as an upper bound. Otherwise we assume
 | |
|       // one load and one store per word copied.
 | |
|       // FIXME: The maxStoresPerMemcpy setting from the target should be used
 | |
|       // here instead of a magic number of 8, but it's not available via
 | |
|       // DataLayout.
 | |
|       NumStores = std::min(NumStores, 8U);
 | |
| 
 | |
|       Cost += 2 * NumStores * InstrCost;
 | |
|     } else {
 | |
|       // For non-byval arguments subtract off one instruction per call
 | |
|       // argument.
 | |
|       Cost += InstrCost;
 | |
|     }
 | |
|   }
 | |
|   // The call instruction also disappears after inlining.
 | |
|   Cost += InstrCost;
 | |
|   Cost += CallPenalty;
 | |
|   return std::min<int64_t>(Cost, INT_MAX);
 | |
| }
 | |
| 
 | |
| InlineCost llvm::getInlineCost(
 | |
|     CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
 | |
|     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
 | |
|     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
 | |
|     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
 | |
|     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
 | |
|   return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
 | |
|                        GetAssumptionCache, GetTLI, GetBFI, PSI, ORE);
 | |
| }
 | |
| 
 | |
| Optional<int> llvm::getInliningCostEstimate(
 | |
|     CallBase &Call, TargetTransformInfo &CalleeTTI,
 | |
|     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
 | |
|     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
 | |
|     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
 | |
|   const InlineParams Params = {/* DefaultThreshold*/ 0,
 | |
|                                /*HintThreshold*/ {},
 | |
|                                /*ColdThreshold*/ {},
 | |
|                                /*OptSizeThreshold*/ {},
 | |
|                                /*OptMinSizeThreshold*/ {},
 | |
|                                /*HotCallSiteThreshold*/ {},
 | |
|                                /*LocallyHotCallSiteThreshold*/ {},
 | |
|                                /*ColdCallSiteThreshold*/ {},
 | |
|                                /*ComputeFullInlineCost*/ true,
 | |
|                                /*EnableDeferral*/ true};
 | |
| 
 | |
|   InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI,
 | |
|                             GetAssumptionCache, GetBFI, PSI, ORE, true,
 | |
|                             /*IgnoreThreshold*/ true);
 | |
|   auto R = CA.analyze();
 | |
|   if (!R.isSuccess())
 | |
|     return None;
 | |
|   return CA.getCost();
 | |
| }
 | |
| 
 | |
| Optional<InlineCostFeatures> llvm::getInliningCostFeatures(
 | |
|     CallBase &Call, TargetTransformInfo &CalleeTTI,
 | |
|     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
 | |
|     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
 | |
|     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
 | |
|   InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI,
 | |
|                                  ORE, *Call.getCalledFunction(), Call);
 | |
|   auto R = CFA.analyze();
 | |
|   if (!R.isSuccess())
 | |
|     return None;
 | |
|   return CFA.features();
 | |
| }
 | |
| 
 | |
| Optional<InlineResult> llvm::getAttributeBasedInliningDecision(
 | |
|     CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI,
 | |
|     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
 | |
| 
 | |
|   // Cannot inline indirect calls.
 | |
|   if (!Callee)
 | |
|     return InlineResult::failure("indirect call");
 | |
| 
 | |
|   // When callee coroutine function is inlined into caller coroutine function
 | |
|   // before coro-split pass,
 | |
|   // coro-early pass can not handle this quiet well.
 | |
|   // So we won't inline the coroutine function if it have not been unsplited
 | |
|   if (Callee->isPresplitCoroutine())
 | |
|     return InlineResult::failure("unsplited coroutine call");
 | |
| 
 | |
|   // Never inline calls with byval arguments that does not have the alloca
 | |
|   // address space. Since byval arguments can be replaced with a copy to an
 | |
|   // alloca, the inlined code would need to be adjusted to handle that the
 | |
|   // argument is in the alloca address space (so it is a little bit complicated
 | |
|   // to solve).
 | |
|   unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
 | |
|   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
 | |
|     if (Call.isByValArgument(I)) {
 | |
|       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
 | |
|       if (PTy->getAddressSpace() != AllocaAS)
 | |
|         return InlineResult::failure("byval arguments without alloca"
 | |
|                                      " address space");
 | |
|     }
 | |
| 
 | |
|   // Calls to functions with always-inline attributes should be inlined
 | |
|   // whenever possible.
 | |
|   if (Call.hasFnAttr(Attribute::AlwaysInline)) {
 | |
|     if (Call.getAttributes().hasFnAttr(Attribute::NoInline))
 | |
|       return InlineResult::failure("noinline call site attribute");
 | |
| 
 | |
|     auto IsViable = isInlineViable(*Callee);
 | |
|     if (IsViable.isSuccess())
 | |
|       return InlineResult::success();
 | |
|     return InlineResult::failure(IsViable.getFailureReason());
 | |
|   }
 | |
| 
 | |
|   // Never inline functions with conflicting attributes (unless callee has
 | |
|   // always-inline attribute).
 | |
|   Function *Caller = Call.getCaller();
 | |
|   if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI))
 | |
|     return InlineResult::failure("conflicting attributes");
 | |
| 
 | |
|   // Don't inline this call if the caller has the optnone attribute.
 | |
|   if (Caller->hasOptNone())
 | |
|     return InlineResult::failure("optnone attribute");
 | |
| 
 | |
|   // Don't inline a function that treats null pointer as valid into a caller
 | |
|   // that does not have this attribute.
 | |
|   if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
 | |
|     return InlineResult::failure("nullptr definitions incompatible");
 | |
| 
 | |
|   // Don't inline functions which can be interposed at link-time.
 | |
|   if (Callee->isInterposable())
 | |
|     return InlineResult::failure("interposable");
 | |
| 
 | |
|   // Don't inline functions marked noinline.
 | |
|   if (Callee->hasFnAttribute(Attribute::NoInline))
 | |
|     return InlineResult::failure("noinline function attribute");
 | |
| 
 | |
|   // Don't inline call sites marked noinline.
 | |
|   if (Call.isNoInline())
 | |
|     return InlineResult::failure("noinline call site attribute");
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| InlineCost llvm::getInlineCost(
 | |
|     CallBase &Call, Function *Callee, const InlineParams &Params,
 | |
|     TargetTransformInfo &CalleeTTI,
 | |
|     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
 | |
|     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
 | |
|     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
 | |
|     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
 | |
| 
 | |
|   auto UserDecision =
 | |
|       llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI);
 | |
| 
 | |
|   if (UserDecision) {
 | |
|     if (UserDecision->isSuccess())
 | |
|       return llvm::InlineCost::getAlways("always inline attribute");
 | |
|     return llvm::InlineCost::getNever(UserDecision->getFailureReason());
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
 | |
|                           << "... (caller:" << Call.getCaller()->getName()
 | |
|                           << ")\n");
 | |
| 
 | |
|   InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI,
 | |
|                             GetAssumptionCache, GetBFI, PSI, ORE);
 | |
|   InlineResult ShouldInline = CA.analyze();
 | |
| 
 | |
|   LLVM_DEBUG(CA.dump());
 | |
| 
 | |
|   // Always make cost benefit based decision explicit.
 | |
|   // We use always/never here since threshold is not meaningful,
 | |
|   // as it's not what drives cost-benefit analysis.
 | |
|   if (CA.wasDecidedByCostBenefit()) {
 | |
|     if (ShouldInline.isSuccess())
 | |
|       return InlineCost::getAlways("benefit over cost",
 | |
|                                    CA.getCostBenefitPair());
 | |
|     else
 | |
|       return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair());
 | |
|   }
 | |
| 
 | |
|   if (CA.wasDecidedByCostThreshold())
 | |
|     return InlineCost::get(CA.getCost(), CA.getThreshold());
 | |
| 
 | |
|   // No details on how the decision was made, simply return always or never.
 | |
|   return ShouldInline.isSuccess()
 | |
|              ? InlineCost::getAlways("empty function")
 | |
|              : InlineCost::getNever(ShouldInline.getFailureReason());
 | |
| }
 | |
| 
 | |
| InlineResult llvm::isInlineViable(Function &F) {
 | |
|   bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
 | |
|   for (BasicBlock &BB : F) {
 | |
|     // Disallow inlining of functions which contain indirect branches.
 | |
|     if (isa<IndirectBrInst>(BB.getTerminator()))
 | |
|       return InlineResult::failure("contains indirect branches");
 | |
| 
 | |
|     // Disallow inlining of blockaddresses which are used by non-callbr
 | |
|     // instructions.
 | |
|     if (BB.hasAddressTaken())
 | |
|       for (User *U : BlockAddress::get(&BB)->users())
 | |
|         if (!isa<CallBrInst>(*U))
 | |
|           return InlineResult::failure("blockaddress used outside of callbr");
 | |
| 
 | |
|     for (auto &II : BB) {
 | |
|       CallBase *Call = dyn_cast<CallBase>(&II);
 | |
|       if (!Call)
 | |
|         continue;
 | |
| 
 | |
|       // Disallow recursive calls.
 | |
|       Function *Callee = Call->getCalledFunction();
 | |
|       if (&F == Callee)
 | |
|         return InlineResult::failure("recursive call");
 | |
| 
 | |
|       // Disallow calls which expose returns-twice to a function not previously
 | |
|       // attributed as such.
 | |
|       if (!ReturnsTwice && isa<CallInst>(Call) &&
 | |
|           cast<CallInst>(Call)->canReturnTwice())
 | |
|         return InlineResult::failure("exposes returns-twice attribute");
 | |
| 
 | |
|       if (Callee)
 | |
|         switch (Callee->getIntrinsicID()) {
 | |
|         default:
 | |
|           break;
 | |
|         case llvm::Intrinsic::icall_branch_funnel:
 | |
|           // Disallow inlining of @llvm.icall.branch.funnel because current
 | |
|           // backend can't separate call targets from call arguments.
 | |
|           return InlineResult::failure(
 | |
|               "disallowed inlining of @llvm.icall.branch.funnel");
 | |
|         case llvm::Intrinsic::localescape:
 | |
|           // Disallow inlining functions that call @llvm.localescape. Doing this
 | |
|           // correctly would require major changes to the inliner.
 | |
|           return InlineResult::failure(
 | |
|               "disallowed inlining of @llvm.localescape");
 | |
|         case llvm::Intrinsic::vastart:
 | |
|           // Disallow inlining of functions that initialize VarArgs with
 | |
|           // va_start.
 | |
|           return InlineResult::failure(
 | |
|               "contains VarArgs initialized with va_start");
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return InlineResult::success();
 | |
| }
 | |
| 
 | |
| // APIs to create InlineParams based on command line flags and/or other
 | |
| // parameters.
 | |
| 
 | |
| InlineParams llvm::getInlineParams(int Threshold) {
 | |
|   InlineParams Params;
 | |
| 
 | |
|   // This field is the threshold to use for a callee by default. This is
 | |
|   // derived from one or more of:
 | |
|   //  * optimization or size-optimization levels,
 | |
|   //  * a value passed to createFunctionInliningPass function, or
 | |
|   //  * the -inline-threshold flag.
 | |
|   //  If the -inline-threshold flag is explicitly specified, that is used
 | |
|   //  irrespective of anything else.
 | |
|   if (InlineThreshold.getNumOccurrences() > 0)
 | |
|     Params.DefaultThreshold = InlineThreshold;
 | |
|   else
 | |
|     Params.DefaultThreshold = Threshold;
 | |
| 
 | |
|   // Set the HintThreshold knob from the -inlinehint-threshold.
 | |
|   Params.HintThreshold = HintThreshold;
 | |
| 
 | |
|   // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
 | |
|   Params.HotCallSiteThreshold = HotCallSiteThreshold;
 | |
| 
 | |
|   // If the -locally-hot-callsite-threshold is explicitly specified, use it to
 | |
|   // populate LocallyHotCallSiteThreshold. Later, we populate
 | |
|   // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
 | |
|   // we know that optimization level is O3 (in the getInlineParams variant that
 | |
|   // takes the opt and size levels).
 | |
|   // FIXME: Remove this check (and make the assignment unconditional) after
 | |
|   // addressing size regression issues at O2.
 | |
|   if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
 | |
|     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
 | |
| 
 | |
|   // Set the ColdCallSiteThreshold knob from the
 | |
|   // -inline-cold-callsite-threshold.
 | |
|   Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
 | |
| 
 | |
|   // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
 | |
|   // -inlinehint-threshold commandline option is not explicitly given. If that
 | |
|   // option is present, then its value applies even for callees with size and
 | |
|   // minsize attributes.
 | |
|   // If the -inline-threshold is not specified, set the ColdThreshold from the
 | |
|   // -inlinecold-threshold even if it is not explicitly passed. If
 | |
|   // -inline-threshold is specified, then -inlinecold-threshold needs to be
 | |
|   // explicitly specified to set the ColdThreshold knob
 | |
|   if (InlineThreshold.getNumOccurrences() == 0) {
 | |
|     Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
 | |
|     Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
 | |
|     Params.ColdThreshold = ColdThreshold;
 | |
|   } else if (ColdThreshold.getNumOccurrences() > 0) {
 | |
|     Params.ColdThreshold = ColdThreshold;
 | |
|   }
 | |
|   return Params;
 | |
| }
 | |
| 
 | |
| InlineParams llvm::getInlineParams() {
 | |
|   return getInlineParams(DefaultThreshold);
 | |
| }
 | |
| 
 | |
| // Compute the default threshold for inlining based on the opt level and the
 | |
| // size opt level.
 | |
| static int computeThresholdFromOptLevels(unsigned OptLevel,
 | |
|                                          unsigned SizeOptLevel) {
 | |
|   if (OptLevel > 2)
 | |
|     return InlineConstants::OptAggressiveThreshold;
 | |
|   if (SizeOptLevel == 1) // -Os
 | |
|     return InlineConstants::OptSizeThreshold;
 | |
|   if (SizeOptLevel == 2) // -Oz
 | |
|     return InlineConstants::OptMinSizeThreshold;
 | |
|   return DefaultThreshold;
 | |
| }
 | |
| 
 | |
| InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
 | |
|   auto Params =
 | |
|       getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
 | |
|   // At O3, use the value of -locally-hot-callsite-threshold option to populate
 | |
|   // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
 | |
|   // when it is specified explicitly.
 | |
|   if (OptLevel > 2)
 | |
|     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
 | |
|   return Params;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses
 | |
| InlineCostAnnotationPrinterPass::run(Function &F,
 | |
|                                      FunctionAnalysisManager &FAM) {
 | |
|   PrintInstructionComments = true;
 | |
|   std::function<AssumptionCache &(Function &)> GetAssumptionCache =
 | |
|       [&](Function &F) -> AssumptionCache & {
 | |
|     return FAM.getResult<AssumptionAnalysis>(F);
 | |
|   };
 | |
|   Module *M = F.getParent();
 | |
|   ProfileSummaryInfo PSI(*M);
 | |
|   DataLayout DL(M);
 | |
|   TargetTransformInfo TTI(DL);
 | |
|   // FIXME: Redesign the usage of InlineParams to expand the scope of this pass.
 | |
|   // In the current implementation, the type of InlineParams doesn't matter as
 | |
|   // the pass serves only for verification of inliner's decisions.
 | |
|   // We can add a flag which determines InlineParams for this run. Right now,
 | |
|   // the default InlineParams are used.
 | |
|   const InlineParams Params = llvm::getInlineParams();
 | |
|   for (BasicBlock &BB : F) {
 | |
|     for (Instruction &I : BB) {
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
 | |
|         Function *CalledFunction = CI->getCalledFunction();
 | |
|         if (!CalledFunction || CalledFunction->isDeclaration())
 | |
|           continue;
 | |
|         OptimizationRemarkEmitter ORE(CalledFunction);
 | |
|         InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI,
 | |
|                                     GetAssumptionCache, nullptr, &PSI, &ORE);
 | |
|         ICCA.analyze();
 | |
|         OS << "      Analyzing call of " << CalledFunction->getName()
 | |
|            << "... (caller:" << CI->getCaller()->getName() << ")\n";
 | |
|         ICCA.print(OS);
 | |
|         OS << "\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return PreservedAnalyses::all();
 | |
| }
 |