742 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			742 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// This file defines the implementation for the loop cache analysis.
 | |
| /// The implementation is largely based on the following paper:
 | |
| ///
 | |
| ///       Compiler Optimizations for Improving Data Locality
 | |
| ///       By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
 | |
| ///       http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
 | |
| ///
 | |
| /// The general approach taken to estimate the number of cache lines used by the
 | |
| /// memory references in an inner loop is:
 | |
| ///    1. Partition memory references that exhibit temporal or spacial reuse
 | |
| ///       into reference groups.
 | |
| ///    2. For each loop L in the a loop nest LN:
 | |
| ///       a. Compute the cost of the reference group
 | |
| ///       b. Compute the loop cost by summing up the reference groups costs
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LoopCacheAnalysis.h"
 | |
| #include "llvm/ADT/BreadthFirstIterator.h"
 | |
| #include "llvm/ADT/Sequence.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Delinearization.h"
 | |
| #include "llvm/Analysis/DependenceAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-cache-cost"
 | |
| 
 | |
| static cl::opt<unsigned> DefaultTripCount(
 | |
|     "default-trip-count", cl::init(100), cl::Hidden,
 | |
|     cl::desc("Use this to specify the default trip count of a loop"));
 | |
| 
 | |
| // In this analysis two array references are considered to exhibit temporal
 | |
| // reuse if they access either the same memory location, or a memory location
 | |
| // with distance smaller than a configurable threshold.
 | |
| static cl::opt<unsigned> TemporalReuseThreshold(
 | |
|     "temporal-reuse-threshold", cl::init(2), cl::Hidden,
 | |
|     cl::desc("Use this to specify the max. distance between array elements "
 | |
|              "accessed in a loop so that the elements are classified to have "
 | |
|              "temporal reuse"));
 | |
| 
 | |
| /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
 | |
| /// nullptr if any loops in the loop vector supplied has more than one sibling.
 | |
| /// The loop vector is expected to contain loops collected in breadth-first
 | |
| /// order.
 | |
| static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
 | |
|   assert(!Loops.empty() && "Expecting a non-empy loop vector");
 | |
| 
 | |
|   Loop *LastLoop = Loops.back();
 | |
|   Loop *ParentLoop = LastLoop->getParentLoop();
 | |
| 
 | |
|   if (ParentLoop == nullptr) {
 | |
|     assert(Loops.size() == 1 && "Expecting a single loop");
 | |
|     return LastLoop;
 | |
|   }
 | |
| 
 | |
|   return (llvm::is_sorted(Loops,
 | |
|                           [](const Loop *L1, const Loop *L2) {
 | |
|                             return L1->getLoopDepth() < L2->getLoopDepth();
 | |
|                           }))
 | |
|              ? LastLoop
 | |
|              : nullptr;
 | |
| }
 | |
| 
 | |
| static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
 | |
|                                   const Loop &L, ScalarEvolution &SE) {
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
 | |
|   if (!AR || !AR->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   assert(AR->getLoop() && "AR should have a loop");
 | |
| 
 | |
|   // Check that start and increment are not add recurrences.
 | |
|   const SCEV *Start = AR->getStart();
 | |
|   const SCEV *Step = AR->getStepRecurrence(SE);
 | |
|   if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
 | |
|     return false;
 | |
| 
 | |
|   // Check that start and increment are both invariant in the loop.
 | |
|   if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *StepRec = AR->getStepRecurrence(SE);
 | |
|   if (StepRec && SE.isKnownNegative(StepRec))
 | |
|     StepRec = SE.getNegativeSCEV(StepRec);
 | |
| 
 | |
|   return StepRec == &ElemSize;
 | |
| }
 | |
| 
 | |
| /// Compute the trip count for the given loop \p L or assume a default value if
 | |
| /// it is not a compile time constant. Return the SCEV expression for the trip
 | |
| /// count.
 | |
| static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize,
 | |
|                                     ScalarEvolution &SE) {
 | |
|   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
 | |
|   const SCEV *TripCount = (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
 | |
|                            isa<SCEVConstant>(BackedgeTakenCount))
 | |
|                               ? SE.getTripCountFromExitCount(BackedgeTakenCount)
 | |
|                               : nullptr;
 | |
| 
 | |
|   if (!TripCount) {
 | |
|     LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
 | |
|                << " could not be computed, using DefaultTripCount\n");
 | |
|     TripCount = SE.getConstant(ElemSize.getType(), DefaultTripCount);
 | |
|   }
 | |
| 
 | |
|   return TripCount;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // IndexedReference implementation
 | |
| //
 | |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
 | |
|   if (!R.IsValid) {
 | |
|     OS << R.StoreOrLoadInst;
 | |
|     OS << ", IsValid=false.";
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
|   OS << *R.BasePointer;
 | |
|   for (const SCEV *Subscript : R.Subscripts)
 | |
|     OS << "[" << *Subscript << "]";
 | |
| 
 | |
|   OS << ", Sizes: ";
 | |
|   for (const SCEV *Size : R.Sizes)
 | |
|     OS << "[" << *Size << "]";
 | |
| 
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
 | |
|                                    const LoopInfo &LI, ScalarEvolution &SE)
 | |
|     : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
 | |
|   assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
 | |
|          "Expecting a load or store instruction");
 | |
| 
 | |
|   IsValid = delinearize(LI);
 | |
|   if (IsValid)
 | |
|     LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
 | |
|                                 << "\n");
 | |
| }
 | |
| 
 | |
| Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other,
 | |
|                                                  unsigned CLS,
 | |
|                                                  AAResults &AA) const {
 | |
|   assert(IsValid && "Expecting a valid reference");
 | |
| 
 | |
|   if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
 | |
|     LLVM_DEBUG(dbgs().indent(2)
 | |
|                << "No spacial reuse: different base pointers\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned NumSubscripts = getNumSubscripts();
 | |
|   if (NumSubscripts != Other.getNumSubscripts()) {
 | |
|     LLVM_DEBUG(dbgs().indent(2)
 | |
|                << "No spacial reuse: different number of subscripts\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // all subscripts must be equal, except the leftmost one (the last one).
 | |
|   for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
 | |
|     if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
 | |
|       LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
 | |
|                                   << "\n\t" << *getSubscript(SubNum) << "\n\t"
 | |
|                                   << *Other.getSubscript(SubNum) << "\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // the difference between the last subscripts must be less than the cache line
 | |
|   // size.
 | |
|   const SCEV *LastSubscript = getLastSubscript();
 | |
|   const SCEV *OtherLastSubscript = Other.getLastSubscript();
 | |
|   const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
 | |
|       SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
 | |
| 
 | |
|   if (Diff == nullptr) {
 | |
|     LLVM_DEBUG(dbgs().indent(2)
 | |
|                << "No spacial reuse, difference between subscript:\n\t"
 | |
|                << *LastSubscript << "\n\t" << OtherLastSubscript
 | |
|                << "\nis not constant.\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     if (InSameCacheLine)
 | |
|       dbgs().indent(2) << "Found spacial reuse.\n";
 | |
|     else
 | |
|       dbgs().indent(2) << "No spacial reuse.\n";
 | |
|   });
 | |
| 
 | |
|   return InSameCacheLine;
 | |
| }
 | |
| 
 | |
| Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other,
 | |
|                                                   unsigned MaxDistance,
 | |
|                                                   const Loop &L,
 | |
|                                                   DependenceInfo &DI,
 | |
|                                                   AAResults &AA) const {
 | |
|   assert(IsValid && "Expecting a valid reference");
 | |
| 
 | |
|   if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
 | |
|     LLVM_DEBUG(dbgs().indent(2)
 | |
|                << "No temporal reuse: different base pointer\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   std::unique_ptr<Dependence> D =
 | |
|       DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);
 | |
| 
 | |
|   if (D == nullptr) {
 | |
|     LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (D->isLoopIndependent()) {
 | |
|     LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check the dependence distance at every loop level. There is temporal reuse
 | |
|   // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
 | |
|   // it is zero at every other loop level.
 | |
|   int LoopDepth = L.getLoopDepth();
 | |
|   int Levels = D->getLevels();
 | |
|   for (int Level = 1; Level <= Levels; ++Level) {
 | |
|     const SCEV *Distance = D->getDistance(Level);
 | |
|     const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
 | |
| 
 | |
|     if (SCEVConst == nullptr) {
 | |
|       LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
 | |
|       return None;
 | |
|     }
 | |
| 
 | |
|     const ConstantInt &CI = *SCEVConst->getValue();
 | |
|     if (Level != LoopDepth && !CI.isZero()) {
 | |
|       LLVM_DEBUG(dbgs().indent(2)
 | |
|                  << "No temporal reuse: distance is not zero at depth=" << Level
 | |
|                  << "\n");
 | |
|       return false;
 | |
|     } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
 | |
|       LLVM_DEBUG(
 | |
|           dbgs().indent(2)
 | |
|           << "No temporal reuse: distance is greater than MaxDistance at depth="
 | |
|           << Level << "\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| CacheCostTy IndexedReference::computeRefCost(const Loop &L,
 | |
|                                              unsigned CLS) const {
 | |
|   assert(IsValid && "Expecting a valid reference");
 | |
|   LLVM_DEBUG({
 | |
|     dbgs().indent(2) << "Computing cache cost for:\n";
 | |
|     dbgs().indent(4) << *this << "\n";
 | |
|   });
 | |
| 
 | |
|   // If the indexed reference is loop invariant the cost is one.
 | |
|   if (isLoopInvariant(L)) {
 | |
|     LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   const SCEV *TripCount = computeTripCount(L, *Sizes.back(), SE);
 | |
|   assert(TripCount && "Expecting valid TripCount");
 | |
|   LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
 | |
| 
 | |
|   const SCEV *RefCost = nullptr;
 | |
|   const SCEV *Stride = nullptr;
 | |
|   if (isConsecutive(L, Stride, CLS)) {
 | |
|     // If the indexed reference is 'consecutive' the cost is
 | |
|     // (TripCount*Stride)/CLS.
 | |
|     assert(Stride != nullptr &&
 | |
|            "Stride should not be null for consecutive access!");
 | |
|     Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
 | |
|     const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS);
 | |
|     Stride = SE.getNoopOrAnyExtend(Stride, WiderType);
 | |
|     TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType);
 | |
|     const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
 | |
|     RefCost = SE.getUDivExpr(Numerator, CacheLineSize);
 | |
| 
 | |
|     LLVM_DEBUG(dbgs().indent(4)
 | |
|                << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
 | |
|                << *RefCost << "\n");
 | |
|   } else {
 | |
|     // If the indexed reference is not 'consecutive' the cost is proportional to
 | |
|     // the trip count and the depth of the dimension which the subject loop
 | |
|     // subscript is accessing. We try to estimate this by multiplying the cost
 | |
|     // by the trip counts of loops corresponding to the inner dimensions. For
 | |
|     // example, given the indexed reference 'A[i][j][k]', and assuming the
 | |
|     // i-loop is in the innermost position, the cost would be equal to the
 | |
|     // iterations of the i-loop multiplied by iterations of the j-loop.
 | |
|     RefCost = TripCount;
 | |
| 
 | |
|     int Index = getSubscriptIndex(L);
 | |
|     assert(Index >= 0 && "Cound not locate a valid Index");
 | |
| 
 | |
|     for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) {
 | |
|       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(I));
 | |
|       assert(AR && AR->getLoop() && "Expecting valid loop");
 | |
|       const SCEV *TripCount =
 | |
|           computeTripCount(*AR->getLoop(), *Sizes.back(), SE);
 | |
|       Type *WiderType = SE.getWiderType(RefCost->getType(), TripCount->getType());
 | |
|       RefCost = SE.getMulExpr(SE.getNoopOrAnyExtend(RefCost, WiderType),
 | |
|                               SE.getNoopOrAnyExtend(TripCount, WiderType));
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs().indent(4)
 | |
|                << "Access is not consecutive: RefCost=" << *RefCost << "\n");
 | |
|   }
 | |
|   assert(RefCost && "Expecting a valid RefCost");
 | |
| 
 | |
|   // Attempt to fold RefCost into a constant.
 | |
|   if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
 | |
|     return ConstantCost->getValue()->getSExtValue();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs().indent(4)
 | |
|              << "RefCost is not a constant! Setting to RefCost=InvalidCost "
 | |
|                 "(invalid value).\n");
 | |
| 
 | |
|   return CacheCost::InvalidCost;
 | |
| }
 | |
| 
 | |
| bool IndexedReference::tryDelinearizeFixedSize(
 | |
|     const SCEV *AccessFn, SmallVectorImpl<const SCEV *> &Subscripts) {
 | |
|   SmallVector<int, 4> ArraySizes;
 | |
|   if (!tryDelinearizeFixedSizeImpl(&SE, &StoreOrLoadInst, AccessFn, Subscripts,
 | |
|                                    ArraySizes))
 | |
|     return false;
 | |
| 
 | |
|   // Populate Sizes with scev expressions to be used in calculations later.
 | |
|   for (auto Idx : seq<unsigned>(1, Subscripts.size()))
 | |
|     Sizes.push_back(
 | |
|         SE.getConstant(Subscripts[Idx]->getType(), ArraySizes[Idx - 1]));
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Delinearized subscripts of fixed-size array\n"
 | |
|            << "GEP:" << *getLoadStorePointerOperand(&StoreOrLoadInst)
 | |
|            << "\n";
 | |
|   });
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool IndexedReference::delinearize(const LoopInfo &LI) {
 | |
|   assert(Subscripts.empty() && "Subscripts should be empty");
 | |
|   assert(Sizes.empty() && "Sizes should be empty");
 | |
|   assert(!IsValid && "Should be called once from the constructor");
 | |
|   LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
 | |
| 
 | |
|   const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
 | |
|   const BasicBlock *BB = StoreOrLoadInst.getParent();
 | |
| 
 | |
|   if (Loop *L = LI.getLoopFor(BB)) {
 | |
|     const SCEV *AccessFn =
 | |
|         SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
 | |
| 
 | |
|     BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
 | |
|     if (BasePointer == nullptr) {
 | |
|       LLVM_DEBUG(
 | |
|           dbgs().indent(2)
 | |
|           << "ERROR: failed to delinearize, can't identify base pointer\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool IsFixedSize = false;
 | |
|     // Try to delinearize fixed-size arrays.
 | |
|     if (tryDelinearizeFixedSize(AccessFn, Subscripts)) {
 | |
|       IsFixedSize = true;
 | |
|       // The last element of Sizes is the element size.
 | |
|       Sizes.push_back(ElemSize);
 | |
|       LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
 | |
|                                   << "', AccessFn: " << *AccessFn << "\n");
 | |
|     }
 | |
| 
 | |
|     AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
 | |
| 
 | |
|     // Try to delinearize parametric-size arrays.
 | |
|     if (!IsFixedSize) {
 | |
|       LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
 | |
|                                   << "', AccessFn: " << *AccessFn << "\n");
 | |
|       llvm::delinearize(SE, AccessFn, Subscripts, Sizes,
 | |
|                         SE.getElementSize(&StoreOrLoadInst));
 | |
|     }
 | |
| 
 | |
|     if (Subscripts.empty() || Sizes.empty() ||
 | |
|         Subscripts.size() != Sizes.size()) {
 | |
|       // Attempt to determine whether we have a single dimensional array access.
 | |
|       // before giving up.
 | |
|       if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
 | |
|         LLVM_DEBUG(dbgs().indent(2)
 | |
|                    << "ERROR: failed to delinearize reference\n");
 | |
|         Subscripts.clear();
 | |
|         Sizes.clear();
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // The array may be accessed in reverse, for example:
 | |
|       //   for (i = N; i > 0; i--)
 | |
|       //     A[i] = 0;
 | |
|       // In this case, reconstruct the access function using the absolute value
 | |
|       // of the step recurrence.
 | |
|       const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn);
 | |
|       const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr;
 | |
| 
 | |
|       if (StepRec && SE.isKnownNegative(StepRec))
 | |
|         AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(),
 | |
|                                     SE.getNegativeSCEV(StepRec),
 | |
|                                     AccessFnAR->getLoop(),
 | |
|                                     AccessFnAR->getNoWrapFlags());
 | |
|       const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
 | |
|       Subscripts.push_back(Div);
 | |
|       Sizes.push_back(ElemSize);
 | |
|     }
 | |
| 
 | |
|     return all_of(Subscripts, [&](const SCEV *Subscript) {
 | |
|       return isSimpleAddRecurrence(*Subscript, *L);
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool IndexedReference::isLoopInvariant(const Loop &L) const {
 | |
|   Value *Addr = getPointerOperand(&StoreOrLoadInst);
 | |
|   assert(Addr != nullptr && "Expecting either a load or a store instruction");
 | |
|   assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
 | |
| 
 | |
|   if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
 | |
|     return true;
 | |
| 
 | |
|   // The indexed reference is loop invariant if none of the coefficients use
 | |
|   // the loop induction variable.
 | |
|   bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
 | |
|     return isCoeffForLoopZeroOrInvariant(*Subscript, L);
 | |
|   });
 | |
| 
 | |
|   return allCoeffForLoopAreZero;
 | |
| }
 | |
| 
 | |
| bool IndexedReference::isConsecutive(const Loop &L, const SCEV *&Stride,
 | |
|                                      unsigned CLS) const {
 | |
|   // The indexed reference is 'consecutive' if the only coefficient that uses
 | |
|   // the loop induction variable is the last one...
 | |
|   const SCEV *LastSubscript = Subscripts.back();
 | |
|   for (const SCEV *Subscript : Subscripts) {
 | |
|     if (Subscript == LastSubscript)
 | |
|       continue;
 | |
|     if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // ...and the access stride is less than the cache line size.
 | |
|   const SCEV *Coeff = getLastCoefficient();
 | |
|   const SCEV *ElemSize = Sizes.back();
 | |
|   Type *WiderType = SE.getWiderType(Coeff->getType(), ElemSize->getType());
 | |
|   // FIXME: This assumes that all values are signed integers which may
 | |
|   // be incorrect in unusual codes and incorrectly use sext instead of zext.
 | |
|   // for (uint32_t i = 0; i < 512; ++i) {
 | |
|   //   uint8_t trunc = i;
 | |
|   //   A[trunc] = 42;
 | |
|   // }
 | |
|   // This consecutively iterates twice over A. If `trunc` is sign-extended,
 | |
|   // we would conclude that this may iterate backwards over the array.
 | |
|   // However, LoopCacheAnalysis is heuristic anyway and transformations must
 | |
|   // not result in wrong optimizations if the heuristic was incorrect.
 | |
|   Stride = SE.getMulExpr(SE.getNoopOrSignExtend(Coeff, WiderType),
 | |
|                          SE.getNoopOrSignExtend(ElemSize, WiderType));
 | |
|   const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
 | |
| 
 | |
|   Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride;
 | |
|   return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
 | |
| }
 | |
| 
 | |
| int IndexedReference::getSubscriptIndex(const Loop &L) const {
 | |
|   for (auto Idx : seq<int>(0, getNumSubscripts())) {
 | |
|     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(Idx));
 | |
|     if (AR && AR->getLoop() == &L) {
 | |
|       return Idx;
 | |
|     }
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| const SCEV *IndexedReference::getLastCoefficient() const {
 | |
|   const SCEV *LastSubscript = getLastSubscript();
 | |
|   auto *AR = cast<SCEVAddRecExpr>(LastSubscript);
 | |
|   return AR->getStepRecurrence(SE);
 | |
| }
 | |
| 
 | |
| bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
 | |
|                                                      const Loop &L) const {
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
 | |
|   return (AR != nullptr) ? AR->getLoop() != &L
 | |
|                          : SE.isLoopInvariant(&Subscript, &L);
 | |
| }
 | |
| 
 | |
| bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
 | |
|                                              const Loop &L) const {
 | |
|   if (!isa<SCEVAddRecExpr>(Subscript))
 | |
|     return false;
 | |
| 
 | |
|   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
 | |
|   assert(AR->getLoop() && "AR should have a loop");
 | |
| 
 | |
|   if (!AR->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *Start = AR->getStart();
 | |
|   const SCEV *Step = AR->getStepRecurrence(SE);
 | |
| 
 | |
|   if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool IndexedReference::isAliased(const IndexedReference &Other,
 | |
|                                  AAResults &AA) const {
 | |
|   const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
 | |
|   const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
 | |
|   return AA.isMustAlias(Loc1, Loc2);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // CacheCost implementation
 | |
| //
 | |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
 | |
|   for (const auto &LC : CC.LoopCosts) {
 | |
|     const Loop *L = LC.first;
 | |
|     OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
 | |
|   }
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
 | |
|                      ScalarEvolution &SE, TargetTransformInfo &TTI,
 | |
|                      AAResults &AA, DependenceInfo &DI, Optional<unsigned> TRT)
 | |
|     : Loops(Loops),
 | |
|       TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT),
 | |
|       LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) {
 | |
|   assert(!Loops.empty() && "Expecting a non-empty loop vector.");
 | |
| 
 | |
|   for (const Loop *L : Loops) {
 | |
|     unsigned TripCount = SE.getSmallConstantTripCount(L);
 | |
|     TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
 | |
|     TripCounts.push_back({L, TripCount});
 | |
|   }
 | |
| 
 | |
|   calculateCacheFootprint();
 | |
| }
 | |
| 
 | |
| std::unique_ptr<CacheCost>
 | |
| CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
 | |
|                         DependenceInfo &DI, Optional<unsigned> TRT) {
 | |
|   if (!Root.isOutermost()) {
 | |
|     LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   LoopVectorTy Loops;
 | |
|   append_range(Loops, breadth_first(&Root));
 | |
| 
 | |
|   if (!getInnerMostLoop(Loops)) {
 | |
|     LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
 | |
|                          "than one innermost loop\n");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
 | |
| }
 | |
| 
 | |
| void CacheCost::calculateCacheFootprint() {
 | |
|   LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
 | |
|   ReferenceGroupsTy RefGroups;
 | |
|   if (!populateReferenceGroups(RefGroups))
 | |
|     return;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
 | |
|   for (const Loop *L : Loops) {
 | |
|     assert(llvm::none_of(
 | |
|                LoopCosts,
 | |
|                [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) &&
 | |
|            "Should not add duplicate element");
 | |
|     CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
 | |
|     LoopCosts.push_back(std::make_pair(L, LoopCost));
 | |
|   }
 | |
| 
 | |
|   sortLoopCosts();
 | |
|   RefGroups.clear();
 | |
| }
 | |
| 
 | |
| bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
 | |
|   assert(RefGroups.empty() && "Reference groups should be empty");
 | |
| 
 | |
|   unsigned CLS = TTI.getCacheLineSize();
 | |
|   Loop *InnerMostLoop = getInnerMostLoop(Loops);
 | |
|   assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
 | |
| 
 | |
|   for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
 | |
|     for (Instruction &I : *BB) {
 | |
|       if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
 | |
|         continue;
 | |
| 
 | |
|       std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
 | |
|       if (!R->isValid())
 | |
|         continue;
 | |
| 
 | |
|       bool Added = false;
 | |
|       for (ReferenceGroupTy &RefGroup : RefGroups) {
 | |
|         const IndexedReference &Representative = *RefGroup.front();
 | |
|         LLVM_DEBUG({
 | |
|           dbgs() << "References:\n";
 | |
|           dbgs().indent(2) << *R << "\n";
 | |
|           dbgs().indent(2) << Representative << "\n";
 | |
|         });
 | |
| 
 | |
| 
 | |
|        // FIXME: Both positive and negative access functions will be placed
 | |
|        // into the same reference group, resulting in a bi-directional array
 | |
|        // access such as:
 | |
|        //   for (i = N; i > 0; i--)
 | |
|        //     A[i] = A[N - i];
 | |
|        // having the same cost calculation as a single dimention access pattern
 | |
|        //   for (i = 0; i < N; i++)
 | |
|        //     A[i] = A[i];
 | |
|        // when in actuality, depending on the array size, the first example
 | |
|        // should have a cost closer to 2x the second due to the two cache
 | |
|        // access per iteration from opposite ends of the array
 | |
|         Optional<bool> HasTemporalReuse =
 | |
|             R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
 | |
|         Optional<bool> HasSpacialReuse =
 | |
|             R->hasSpacialReuse(Representative, CLS, AA);
 | |
| 
 | |
|         if ((HasTemporalReuse && *HasTemporalReuse) ||
 | |
|             (HasSpacialReuse && *HasSpacialReuse)) {
 | |
|           RefGroup.push_back(std::move(R));
 | |
|           Added = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!Added) {
 | |
|         ReferenceGroupTy RG;
 | |
|         RG.push_back(std::move(R));
 | |
|         RefGroups.push_back(std::move(RG));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (RefGroups.empty())
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
 | |
|     int n = 1;
 | |
|     for (const ReferenceGroupTy &RG : RefGroups) {
 | |
|       dbgs().indent(2) << "RefGroup " << n << ":\n";
 | |
|       for (const auto &IR : RG)
 | |
|         dbgs().indent(4) << *IR << "\n";
 | |
|       n++;
 | |
|     }
 | |
|     dbgs() << "\n";
 | |
|   });
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| CacheCostTy
 | |
| CacheCost::computeLoopCacheCost(const Loop &L,
 | |
|                                 const ReferenceGroupsTy &RefGroups) const {
 | |
|   if (!L.isLoopSimplifyForm())
 | |
|     return InvalidCost;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
 | |
|                     << "' as innermost loop.\n");
 | |
| 
 | |
|   // Compute the product of the trip counts of each other loop in the nest.
 | |
|   CacheCostTy TripCountsProduct = 1;
 | |
|   for (const auto &TC : TripCounts) {
 | |
|     if (TC.first == &L)
 | |
|       continue;
 | |
|     TripCountsProduct *= TC.second;
 | |
|   }
 | |
| 
 | |
|   CacheCostTy LoopCost = 0;
 | |
|   for (const ReferenceGroupTy &RG : RefGroups) {
 | |
|     CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
 | |
|     LoopCost += RefGroupCost * TripCountsProduct;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
 | |
|                               << "' has cost=" << LoopCost << "\n");
 | |
| 
 | |
|   return LoopCost;
 | |
| }
 | |
| 
 | |
| CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
 | |
|                                                 const Loop &L) const {
 | |
|   assert(!RG.empty() && "Reference group should have at least one member.");
 | |
| 
 | |
|   const IndexedReference *Representative = RG.front().get();
 | |
|   return Representative->computeRefCost(L, TTI.getCacheLineSize());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LoopCachePrinterPass implementation
 | |
| //
 | |
| PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
 | |
|                                             LoopStandardAnalysisResults &AR,
 | |
|                                             LPMUpdater &U) {
 | |
|   Function *F = L.getHeader()->getParent();
 | |
|   DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
 | |
| 
 | |
|   if (auto CC = CacheCost::getCacheCost(L, AR, DI))
 | |
|     OS << *CC;
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| }
 |