977 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			977 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass builds a ModuleSummaryIndex object for the module, to be written
 | |
| // to bitcode or LLVM assembly.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ModuleSummaryAnalysis.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Analysis/BlockFrequencyInfo.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ProfileSummaryInfo.h"
 | |
| #include "llvm/Analysis/StackSafetyAnalysis.h"
 | |
| #include "llvm/Analysis/TypeMetadataUtils.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/ModuleSummaryIndex.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Object/ModuleSymbolTable.h"
 | |
| #include "llvm/Object/SymbolicFile.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/FileSystem.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "module-summary-analysis"
 | |
| 
 | |
| // Option to force edges cold which will block importing when the
 | |
| // -import-cold-multiplier is set to 0. Useful for debugging.
 | |
| FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
 | |
|     FunctionSummary::FSHT_None;
 | |
| cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
 | |
|     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
 | |
|     cl::desc("Force all edges in the function summary to cold"),
 | |
|     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
 | |
|                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
 | |
|                           "all-non-critical", "All non-critical edges."),
 | |
|                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
 | |
| 
 | |
| cl::opt<std::string> ModuleSummaryDotFile(
 | |
|     "module-summary-dot-file", cl::init(""), cl::Hidden,
 | |
|     cl::value_desc("filename"),
 | |
|     cl::desc("File to emit dot graph of new summary into."));
 | |
| 
 | |
| // Walk through the operands of a given User via worklist iteration and populate
 | |
| // the set of GlobalValue references encountered. Invoked either on an
 | |
| // Instruction or a GlobalVariable (which walks its initializer).
 | |
| // Return true if any of the operands contains blockaddress. This is important
 | |
| // to know when computing summary for global var, because if global variable
 | |
| // references basic block address we can't import it separately from function
 | |
| // containing that basic block. For simplicity we currently don't import such
 | |
| // global vars at all. When importing function we aren't interested if any
 | |
| // instruction in it takes an address of any basic block, because instruction
 | |
| // can only take an address of basic block located in the same function.
 | |
| static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
 | |
|                          SetVector<ValueInfo> &RefEdges,
 | |
|                          SmallPtrSet<const User *, 8> &Visited) {
 | |
|   bool HasBlockAddress = false;
 | |
|   SmallVector<const User *, 32> Worklist;
 | |
|   if (Visited.insert(CurUser).second)
 | |
|     Worklist.push_back(CurUser);
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     const User *U = Worklist.pop_back_val();
 | |
|     const auto *CB = dyn_cast<CallBase>(U);
 | |
| 
 | |
|     for (const auto &OI : U->operands()) {
 | |
|       const User *Operand = dyn_cast<User>(OI);
 | |
|       if (!Operand)
 | |
|         continue;
 | |
|       if (isa<BlockAddress>(Operand)) {
 | |
|         HasBlockAddress = true;
 | |
|         continue;
 | |
|       }
 | |
|       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
 | |
|         // We have a reference to a global value. This should be added to
 | |
|         // the reference set unless it is a callee. Callees are handled
 | |
|         // specially by WriteFunction and are added to a separate list.
 | |
|         if (!(CB && CB->isCallee(&OI)))
 | |
|           RefEdges.insert(Index.getOrInsertValueInfo(GV));
 | |
|         continue;
 | |
|       }
 | |
|       if (Visited.insert(Operand).second)
 | |
|         Worklist.push_back(Operand);
 | |
|     }
 | |
|   }
 | |
|   return HasBlockAddress;
 | |
| }
 | |
| 
 | |
| static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
 | |
|                                           ProfileSummaryInfo *PSI) {
 | |
|   if (!PSI)
 | |
|     return CalleeInfo::HotnessType::Unknown;
 | |
|   if (PSI->isHotCount(ProfileCount))
 | |
|     return CalleeInfo::HotnessType::Hot;
 | |
|   if (PSI->isColdCount(ProfileCount))
 | |
|     return CalleeInfo::HotnessType::Cold;
 | |
|   return CalleeInfo::HotnessType::None;
 | |
| }
 | |
| 
 | |
| static bool isNonRenamableLocal(const GlobalValue &GV) {
 | |
|   return GV.hasSection() && GV.hasLocalLinkage();
 | |
| }
 | |
| 
 | |
| /// Determine whether this call has all constant integer arguments (excluding
 | |
| /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
 | |
| static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
 | |
|                           SetVector<FunctionSummary::VFuncId> &VCalls,
 | |
|                           SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
 | |
|   std::vector<uint64_t> Args;
 | |
|   // Start from the second argument to skip the "this" pointer.
 | |
|   for (auto &Arg : drop_begin(Call.CB.args())) {
 | |
|     auto *CI = dyn_cast<ConstantInt>(Arg);
 | |
|     if (!CI || CI->getBitWidth() > 64) {
 | |
|       VCalls.insert({Guid, Call.Offset});
 | |
|       return;
 | |
|     }
 | |
|     Args.push_back(CI->getZExtValue());
 | |
|   }
 | |
|   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
 | |
| }
 | |
| 
 | |
| /// If this intrinsic call requires that we add information to the function
 | |
| /// summary, do so via the non-constant reference arguments.
 | |
| static void addIntrinsicToSummary(
 | |
|     const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
 | |
|     SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
 | |
|     SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
 | |
|     SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
 | |
|     SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
 | |
|     DominatorTree &DT) {
 | |
|   switch (CI->getCalledFunction()->getIntrinsicID()) {
 | |
|   case Intrinsic::type_test:
 | |
|   case Intrinsic::public_type_test: {
 | |
|     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
 | |
|     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
 | |
|     if (!TypeId)
 | |
|       break;
 | |
|     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
 | |
| 
 | |
|     // Produce a summary from type.test intrinsics. We only summarize type.test
 | |
|     // intrinsics that are used other than by an llvm.assume intrinsic.
 | |
|     // Intrinsics that are assumed are relevant only to the devirtualization
 | |
|     // pass, not the type test lowering pass.
 | |
|     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
 | |
|       return !isa<AssumeInst>(CIU.getUser());
 | |
|     });
 | |
|     if (HasNonAssumeUses)
 | |
|       TypeTests.insert(Guid);
 | |
| 
 | |
|     SmallVector<DevirtCallSite, 4> DevirtCalls;
 | |
|     SmallVector<CallInst *, 4> Assumes;
 | |
|     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
 | |
|     for (auto &Call : DevirtCalls)
 | |
|       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
 | |
|                     TypeTestAssumeConstVCalls);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::type_checked_load: {
 | |
|     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
 | |
|     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
 | |
|     if (!TypeId)
 | |
|       break;
 | |
|     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
 | |
| 
 | |
|     SmallVector<DevirtCallSite, 4> DevirtCalls;
 | |
|     SmallVector<Instruction *, 4> LoadedPtrs;
 | |
|     SmallVector<Instruction *, 4> Preds;
 | |
|     bool HasNonCallUses = false;
 | |
|     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
 | |
|                                                HasNonCallUses, CI, DT);
 | |
|     // Any non-call uses of the result of llvm.type.checked.load will
 | |
|     // prevent us from optimizing away the llvm.type.test.
 | |
|     if (HasNonCallUses)
 | |
|       TypeTests.insert(Guid);
 | |
|     for (auto &Call : DevirtCalls)
 | |
|       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
 | |
|                     TypeCheckedLoadConstVCalls);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isNonVolatileLoad(const Instruction *I) {
 | |
|   if (const auto *LI = dyn_cast<LoadInst>(I))
 | |
|     return !LI->isVolatile();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isNonVolatileStore(const Instruction *I) {
 | |
|   if (const auto *SI = dyn_cast<StoreInst>(I))
 | |
|     return !SI->isVolatile();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Returns true if the function definition must be unreachable.
 | |
| //
 | |
| // Note if this helper function returns true, `F` is guaranteed
 | |
| // to be unreachable; if it returns false, `F` might still
 | |
| // be unreachable but not covered by this helper function.
 | |
| static bool mustBeUnreachableFunction(const Function &F) {
 | |
|   // A function must be unreachable if its entry block ends with an
 | |
|   // 'unreachable'.
 | |
|   assert(!F.isDeclaration());
 | |
|   return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
 | |
| }
 | |
| 
 | |
| static void computeFunctionSummary(
 | |
|     ModuleSummaryIndex &Index, const Module &M, const Function &F,
 | |
|     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
 | |
|     bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
 | |
|     bool IsThinLTO,
 | |
|     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
 | |
|   // Summary not currently supported for anonymous functions, they should
 | |
|   // have been named.
 | |
|   assert(F.hasName());
 | |
| 
 | |
|   unsigned NumInsts = 0;
 | |
|   // Map from callee ValueId to profile count. Used to accumulate profile
 | |
|   // counts for all static calls to a given callee.
 | |
|   MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
 | |
|   SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
 | |
|   SetVector<GlobalValue::GUID> TypeTests;
 | |
|   SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
 | |
|       TypeCheckedLoadVCalls;
 | |
|   SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
 | |
|       TypeCheckedLoadConstVCalls;
 | |
|   ICallPromotionAnalysis ICallAnalysis;
 | |
|   SmallPtrSet<const User *, 8> Visited;
 | |
| 
 | |
|   // Add personality function, prefix data and prologue data to function's ref
 | |
|   // list.
 | |
|   findRefEdges(Index, &F, RefEdges, Visited);
 | |
|   std::vector<const Instruction *> NonVolatileLoads;
 | |
|   std::vector<const Instruction *> NonVolatileStores;
 | |
| 
 | |
|   bool HasInlineAsmMaybeReferencingInternal = false;
 | |
|   bool HasIndirBranchToBlockAddress = false;
 | |
|   bool HasUnknownCall = false;
 | |
|   bool MayThrow = false;
 | |
|   for (const BasicBlock &BB : F) {
 | |
|     // We don't allow inlining of function with indirect branch to blockaddress.
 | |
|     // If the blockaddress escapes the function, e.g., via a global variable,
 | |
|     // inlining may lead to an invalid cross-function reference. So we shouldn't
 | |
|     // import such function either.
 | |
|     if (BB.hasAddressTaken()) {
 | |
|       for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
 | |
|         if (!isa<CallBrInst>(*U)) {
 | |
|           HasIndirBranchToBlockAddress = true;
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (const Instruction &I : BB) {
 | |
|       if (I.isDebugOrPseudoInst())
 | |
|         continue;
 | |
|       ++NumInsts;
 | |
| 
 | |
|       // Regular LTO module doesn't participate in ThinLTO import,
 | |
|       // so no reference from it can be read/writeonly, since this
 | |
|       // would require importing variable as local copy
 | |
|       if (IsThinLTO) {
 | |
|         if (isNonVolatileLoad(&I)) {
 | |
|           // Postpone processing of non-volatile load instructions
 | |
|           // See comments below
 | |
|           Visited.insert(&I);
 | |
|           NonVolatileLoads.push_back(&I);
 | |
|           continue;
 | |
|         } else if (isNonVolatileStore(&I)) {
 | |
|           Visited.insert(&I);
 | |
|           NonVolatileStores.push_back(&I);
 | |
|           // All references from second operand of store (destination address)
 | |
|           // can be considered write-only if they're not referenced by any
 | |
|           // non-store instruction. References from first operand of store
 | |
|           // (stored value) can't be treated either as read- or as write-only
 | |
|           // so we add them to RefEdges as we do with all other instructions
 | |
|           // except non-volatile load.
 | |
|           Value *Stored = I.getOperand(0);
 | |
|           if (auto *GV = dyn_cast<GlobalValue>(Stored))
 | |
|             // findRefEdges will try to examine GV operands, so instead
 | |
|             // of calling it we should add GV to RefEdges directly.
 | |
|             RefEdges.insert(Index.getOrInsertValueInfo(GV));
 | |
|           else if (auto *U = dyn_cast<User>(Stored))
 | |
|             findRefEdges(Index, U, RefEdges, Visited);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       findRefEdges(Index, &I, RefEdges, Visited);
 | |
|       const auto *CB = dyn_cast<CallBase>(&I);
 | |
|       if (!CB) {
 | |
|         if (I.mayThrow())
 | |
|           MayThrow = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       const auto *CI = dyn_cast<CallInst>(&I);
 | |
|       // Since we don't know exactly which local values are referenced in inline
 | |
|       // assembly, conservatively mark the function as possibly referencing
 | |
|       // a local value from inline assembly to ensure we don't export a
 | |
|       // reference (which would require renaming and promotion of the
 | |
|       // referenced value).
 | |
|       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
 | |
|         HasInlineAsmMaybeReferencingInternal = true;
 | |
| 
 | |
|       auto *CalledValue = CB->getCalledOperand();
 | |
|       auto *CalledFunction = CB->getCalledFunction();
 | |
|       if (CalledValue && !CalledFunction) {
 | |
|         CalledValue = CalledValue->stripPointerCasts();
 | |
|         // Stripping pointer casts can reveal a called function.
 | |
|         CalledFunction = dyn_cast<Function>(CalledValue);
 | |
|       }
 | |
|       // Check if this is an alias to a function. If so, get the
 | |
|       // called aliasee for the checks below.
 | |
|       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
 | |
|         assert(!CalledFunction && "Expected null called function in callsite for alias");
 | |
|         CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
 | |
|       }
 | |
|       // Check if this is a direct call to a known function or a known
 | |
|       // intrinsic, or an indirect call with profile data.
 | |
|       if (CalledFunction) {
 | |
|         if (CI && CalledFunction->isIntrinsic()) {
 | |
|           addIntrinsicToSummary(
 | |
|               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
 | |
|               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
 | |
|           continue;
 | |
|         }
 | |
|         // We should have named any anonymous globals
 | |
|         assert(CalledFunction->hasName());
 | |
|         auto ScaledCount = PSI->getProfileCount(*CB, BFI);
 | |
|         auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
 | |
|                                    : CalleeInfo::HotnessType::Unknown;
 | |
|         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
 | |
|           Hotness = CalleeInfo::HotnessType::Cold;
 | |
| 
 | |
|         // Use the original CalledValue, in case it was an alias. We want
 | |
|         // to record the call edge to the alias in that case. Eventually
 | |
|         // an alias summary will be created to associate the alias and
 | |
|         // aliasee.
 | |
|         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
 | |
|             cast<GlobalValue>(CalledValue))];
 | |
|         ValueInfo.updateHotness(Hotness);
 | |
|         // Add the relative block frequency to CalleeInfo if there is no profile
 | |
|         // information.
 | |
|         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
 | |
|           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
 | |
|           uint64_t EntryFreq = BFI->getEntryFreq();
 | |
|           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
 | |
|         }
 | |
|       } else {
 | |
|         HasUnknownCall = true;
 | |
|         // Skip inline assembly calls.
 | |
|         if (CI && CI->isInlineAsm())
 | |
|           continue;
 | |
|         // Skip direct calls.
 | |
|         if (!CalledValue || isa<Constant>(CalledValue))
 | |
|           continue;
 | |
| 
 | |
|         // Check if the instruction has a callees metadata. If so, add callees
 | |
|         // to CallGraphEdges to reflect the references from the metadata, and
 | |
|         // to enable importing for subsequent indirect call promotion and
 | |
|         // inlining.
 | |
|         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
 | |
|           for (const auto &Op : MD->operands()) {
 | |
|             Function *Callee = mdconst::extract_or_null<Function>(Op);
 | |
|             if (Callee)
 | |
|               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         uint32_t NumVals, NumCandidates;
 | |
|         uint64_t TotalCount;
 | |
|         auto CandidateProfileData =
 | |
|             ICallAnalysis.getPromotionCandidatesForInstruction(
 | |
|                 &I, NumVals, TotalCount, NumCandidates);
 | |
|         for (const auto &Candidate : CandidateProfileData)
 | |
|           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
 | |
|               .updateHotness(getHotness(Candidate.Count, PSI));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   Index.addBlockCount(F.size());
 | |
| 
 | |
|   std::vector<ValueInfo> Refs;
 | |
|   if (IsThinLTO) {
 | |
|     auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
 | |
|                            SetVector<ValueInfo> &Edges,
 | |
|                            SmallPtrSet<const User *, 8> &Cache) {
 | |
|       for (const auto *I : Instrs) {
 | |
|         Cache.erase(I);
 | |
|         findRefEdges(Index, I, Edges, Cache);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     // By now we processed all instructions in a function, except
 | |
|     // non-volatile loads and non-volatile value stores. Let's find
 | |
|     // ref edges for both of instruction sets
 | |
|     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
 | |
|     // We can add some values to the Visited set when processing load
 | |
|     // instructions which are also used by stores in NonVolatileStores.
 | |
|     // For example this can happen if we have following code:
 | |
|     //
 | |
|     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
 | |
|     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
 | |
|     //
 | |
|     // After processing loads we'll add bitcast to the Visited set, and if
 | |
|     // we use the same set while processing stores, we'll never see store
 | |
|     // to @bar and @bar will be mistakenly treated as readonly.
 | |
|     SmallPtrSet<const llvm::User *, 8> StoreCache;
 | |
|     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
 | |
| 
 | |
|     // If both load and store instruction reference the same variable
 | |
|     // we won't be able to optimize it. Add all such reference edges
 | |
|     // to RefEdges set.
 | |
|     for (const auto &VI : StoreRefEdges)
 | |
|       if (LoadRefEdges.remove(VI))
 | |
|         RefEdges.insert(VI);
 | |
| 
 | |
|     unsigned RefCnt = RefEdges.size();
 | |
|     // All new reference edges inserted in two loops below are either
 | |
|     // read or write only. They will be grouped in the end of RefEdges
 | |
|     // vector, so we can use a single integer value to identify them.
 | |
|     for (const auto &VI : LoadRefEdges)
 | |
|       RefEdges.insert(VI);
 | |
| 
 | |
|     unsigned FirstWORef = RefEdges.size();
 | |
|     for (const auto &VI : StoreRefEdges)
 | |
|       RefEdges.insert(VI);
 | |
| 
 | |
|     Refs = RefEdges.takeVector();
 | |
|     for (; RefCnt < FirstWORef; ++RefCnt)
 | |
|       Refs[RefCnt].setReadOnly();
 | |
| 
 | |
|     for (; RefCnt < Refs.size(); ++RefCnt)
 | |
|       Refs[RefCnt].setWriteOnly();
 | |
|   } else {
 | |
|     Refs = RefEdges.takeVector();
 | |
|   }
 | |
|   // Explicit add hot edges to enforce importing for designated GUIDs for
 | |
|   // sample PGO, to enable the same inlines as the profiled optimized binary.
 | |
|   for (auto &I : F.getImportGUIDs())
 | |
|     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
 | |
|         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
 | |
|             ? CalleeInfo::HotnessType::Cold
 | |
|             : CalleeInfo::HotnessType::Critical);
 | |
| 
 | |
|   bool NonRenamableLocal = isNonRenamableLocal(F);
 | |
|   bool NotEligibleForImport = NonRenamableLocal ||
 | |
|                               HasInlineAsmMaybeReferencingInternal ||
 | |
|                               HasIndirBranchToBlockAddress;
 | |
|   GlobalValueSummary::GVFlags Flags(
 | |
|       F.getLinkage(), F.getVisibility(), NotEligibleForImport,
 | |
|       /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable());
 | |
|   FunctionSummary::FFlags FunFlags{
 | |
|       F.hasFnAttribute(Attribute::ReadNone),
 | |
|       F.hasFnAttribute(Attribute::ReadOnly),
 | |
|       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
 | |
|       // FIXME: refactor this to use the same code that inliner is using.
 | |
|       // Don't try to import functions with noinline attribute.
 | |
|       F.getAttributes().hasFnAttr(Attribute::NoInline),
 | |
|       F.hasFnAttribute(Attribute::AlwaysInline),
 | |
|       F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
 | |
|       mustBeUnreachableFunction(F)};
 | |
|   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
 | |
|   if (auto *SSI = GetSSICallback(F))
 | |
|     ParamAccesses = SSI->getParamAccesses(Index);
 | |
|   auto FuncSummary = std::make_unique<FunctionSummary>(
 | |
|       Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
 | |
|       CallGraphEdges.takeVector(), TypeTests.takeVector(),
 | |
|       TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
 | |
|       TypeTestAssumeConstVCalls.takeVector(),
 | |
|       TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses));
 | |
|   if (NonRenamableLocal)
 | |
|     CantBePromoted.insert(F.getGUID());
 | |
|   Index.addGlobalValueSummary(F, std::move(FuncSummary));
 | |
| }
 | |
| 
 | |
| /// Find function pointers referenced within the given vtable initializer
 | |
| /// (or subset of an initializer) \p I. The starting offset of \p I within
 | |
| /// the vtable initializer is \p StartingOffset. Any discovered function
 | |
| /// pointers are added to \p VTableFuncs along with their cumulative offset
 | |
| /// within the initializer.
 | |
| static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
 | |
|                              const Module &M, ModuleSummaryIndex &Index,
 | |
|                              VTableFuncList &VTableFuncs) {
 | |
|   // First check if this is a function pointer.
 | |
|   if (I->getType()->isPointerTy()) {
 | |
|     auto Fn = dyn_cast<Function>(I->stripPointerCasts());
 | |
|     // We can disregard __cxa_pure_virtual as a possible call target, as
 | |
|     // calls to pure virtuals are UB.
 | |
|     if (Fn && Fn->getName() != "__cxa_pure_virtual")
 | |
|       VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Walk through the elements in the constant struct or array and recursively
 | |
|   // look for virtual function pointers.
 | |
|   const DataLayout &DL = M.getDataLayout();
 | |
|   if (auto *C = dyn_cast<ConstantStruct>(I)) {
 | |
|     StructType *STy = dyn_cast<StructType>(C->getType());
 | |
|     assert(STy);
 | |
|     const StructLayout *SL = DL.getStructLayout(C->getType());
 | |
| 
 | |
|     for (auto EI : llvm::enumerate(STy->elements())) {
 | |
|       auto Offset = SL->getElementOffset(EI.index());
 | |
|       unsigned Op = SL->getElementContainingOffset(Offset);
 | |
|       findFuncPointers(cast<Constant>(I->getOperand(Op)),
 | |
|                        StartingOffset + Offset, M, Index, VTableFuncs);
 | |
|     }
 | |
|   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
 | |
|     ArrayType *ATy = C->getType();
 | |
|     Type *EltTy = ATy->getElementType();
 | |
|     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
 | |
|     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
 | |
|       findFuncPointers(cast<Constant>(I->getOperand(i)),
 | |
|                        StartingOffset + i * EltSize, M, Index, VTableFuncs);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Identify the function pointers referenced by vtable definition \p V.
 | |
| static void computeVTableFuncs(ModuleSummaryIndex &Index,
 | |
|                                const GlobalVariable &V, const Module &M,
 | |
|                                VTableFuncList &VTableFuncs) {
 | |
|   if (!V.isConstant())
 | |
|     return;
 | |
| 
 | |
|   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
 | |
|                    VTableFuncs);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Validate that the VTableFuncs list is ordered by offset.
 | |
|   uint64_t PrevOffset = 0;
 | |
|   for (auto &P : VTableFuncs) {
 | |
|     // The findVFuncPointers traversal should have encountered the
 | |
|     // functions in offset order. We need to use ">=" since PrevOffset
 | |
|     // starts at 0.
 | |
|     assert(P.VTableOffset >= PrevOffset);
 | |
|     PrevOffset = P.VTableOffset;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Record vtable definition \p V for each type metadata it references.
 | |
| static void
 | |
| recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
 | |
|                                        const GlobalVariable &V,
 | |
|                                        SmallVectorImpl<MDNode *> &Types) {
 | |
|   for (MDNode *Type : Types) {
 | |
|     auto TypeID = Type->getOperand(1).get();
 | |
| 
 | |
|     uint64_t Offset =
 | |
|         cast<ConstantInt>(
 | |
|             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
 | |
|             ->getZExtValue();
 | |
| 
 | |
|     if (auto *TypeId = dyn_cast<MDString>(TypeID))
 | |
|       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
 | |
|           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void computeVariableSummary(ModuleSummaryIndex &Index,
 | |
|                                    const GlobalVariable &V,
 | |
|                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
 | |
|                                    const Module &M,
 | |
|                                    SmallVectorImpl<MDNode *> &Types) {
 | |
|   SetVector<ValueInfo> RefEdges;
 | |
|   SmallPtrSet<const User *, 8> Visited;
 | |
|   bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
 | |
|   bool NonRenamableLocal = isNonRenamableLocal(V);
 | |
|   GlobalValueSummary::GVFlags Flags(
 | |
|       V.getLinkage(), V.getVisibility(), NonRenamableLocal,
 | |
|       /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable());
 | |
| 
 | |
|   VTableFuncList VTableFuncs;
 | |
|   // If splitting is not enabled, then we compute the summary information
 | |
|   // necessary for index-based whole program devirtualization.
 | |
|   if (!Index.enableSplitLTOUnit()) {
 | |
|     Types.clear();
 | |
|     V.getMetadata(LLVMContext::MD_type, Types);
 | |
|     if (!Types.empty()) {
 | |
|       // Identify the function pointers referenced by this vtable definition.
 | |
|       computeVTableFuncs(Index, V, M, VTableFuncs);
 | |
| 
 | |
|       // Record this vtable definition for each type metadata it references.
 | |
|       recordTypeIdCompatibleVtableReferences(Index, V, Types);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Don't mark variables we won't be able to internalize as read/write-only.
 | |
|   bool CanBeInternalized =
 | |
|       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
 | |
|       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
 | |
|   bool Constant = V.isConstant();
 | |
|   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
 | |
|                                        Constant ? false : CanBeInternalized,
 | |
|                                        Constant, V.getVCallVisibility());
 | |
|   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
 | |
|                                                          RefEdges.takeVector());
 | |
|   if (NonRenamableLocal)
 | |
|     CantBePromoted.insert(V.getGUID());
 | |
|   if (HasBlockAddress)
 | |
|     GVarSummary->setNotEligibleToImport();
 | |
|   if (!VTableFuncs.empty())
 | |
|     GVarSummary->setVTableFuncs(VTableFuncs);
 | |
|   Index.addGlobalValueSummary(V, std::move(GVarSummary));
 | |
| }
 | |
| 
 | |
| static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
 | |
|                                 DenseSet<GlobalValue::GUID> &CantBePromoted) {
 | |
|   // Skip summary for indirect function aliases as summary for aliasee will not
 | |
|   // be emitted.
 | |
|   const GlobalObject *Aliasee = A.getAliaseeObject();
 | |
|   if (isa<GlobalIFunc>(Aliasee))
 | |
|     return;
 | |
|   bool NonRenamableLocal = isNonRenamableLocal(A);
 | |
|   GlobalValueSummary::GVFlags Flags(
 | |
|       A.getLinkage(), A.getVisibility(), NonRenamableLocal,
 | |
|       /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable());
 | |
|   auto AS = std::make_unique<AliasSummary>(Flags);
 | |
|   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
 | |
|   assert(AliaseeVI && "Alias expects aliasee summary to be available");
 | |
|   assert(AliaseeVI.getSummaryList().size() == 1 &&
 | |
|          "Expected a single entry per aliasee in per-module index");
 | |
|   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
 | |
|   if (NonRenamableLocal)
 | |
|     CantBePromoted.insert(A.getGUID());
 | |
|   Index.addGlobalValueSummary(A, std::move(AS));
 | |
| }
 | |
| 
 | |
| // Set LiveRoot flag on entries matching the given value name.
 | |
| static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
 | |
|   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
 | |
|     for (const auto &Summary : VI.getSummaryList())
 | |
|       Summary->setLive(true);
 | |
| }
 | |
| 
 | |
| ModuleSummaryIndex llvm::buildModuleSummaryIndex(
 | |
|     const Module &M,
 | |
|     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
 | |
|     ProfileSummaryInfo *PSI,
 | |
|     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
 | |
|   assert(PSI);
 | |
|   bool EnableSplitLTOUnit = false;
 | |
|   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
 | |
|           M.getModuleFlag("EnableSplitLTOUnit")))
 | |
|     EnableSplitLTOUnit = MD->getZExtValue();
 | |
|   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);
 | |
| 
 | |
|   // Identify the local values in the llvm.used and llvm.compiler.used sets,
 | |
|   // which should not be exported as they would then require renaming and
 | |
|   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
 | |
|   // here because we use this information to mark functions containing inline
 | |
|   // assembly calls as not importable.
 | |
|   SmallPtrSet<GlobalValue *, 4> LocalsUsed;
 | |
|   SmallVector<GlobalValue *, 4> Used;
 | |
|   // First collect those in the llvm.used set.
 | |
|   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
 | |
|   // Next collect those in the llvm.compiler.used set.
 | |
|   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
 | |
|   DenseSet<GlobalValue::GUID> CantBePromoted;
 | |
|   for (auto *V : Used) {
 | |
|     if (V->hasLocalLinkage()) {
 | |
|       LocalsUsed.insert(V);
 | |
|       CantBePromoted.insert(V->getGUID());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool HasLocalInlineAsmSymbol = false;
 | |
|   if (!M.getModuleInlineAsm().empty()) {
 | |
|     // Collect the local values defined by module level asm, and set up
 | |
|     // summaries for these symbols so that they can be marked as NoRename,
 | |
|     // to prevent export of any use of them in regular IR that would require
 | |
|     // renaming within the module level asm. Note we don't need to create a
 | |
|     // summary for weak or global defs, as they don't need to be flagged as
 | |
|     // NoRename, and defs in module level asm can't be imported anyway.
 | |
|     // Also, any values used but not defined within module level asm should
 | |
|     // be listed on the llvm.used or llvm.compiler.used global and marked as
 | |
|     // referenced from there.
 | |
|     ModuleSymbolTable::CollectAsmSymbols(
 | |
|         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
 | |
|           // Symbols not marked as Weak or Global are local definitions.
 | |
|           if (Flags & (object::BasicSymbolRef::SF_Weak |
 | |
|                        object::BasicSymbolRef::SF_Global))
 | |
|             return;
 | |
|           HasLocalInlineAsmSymbol = true;
 | |
|           GlobalValue *GV = M.getNamedValue(Name);
 | |
|           if (!GV)
 | |
|             return;
 | |
|           assert(GV->isDeclaration() && "Def in module asm already has definition");
 | |
|           GlobalValueSummary::GVFlags GVFlags(
 | |
|               GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
 | |
|               /* NotEligibleToImport = */ true,
 | |
|               /* Live = */ true,
 | |
|               /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable());
 | |
|           CantBePromoted.insert(GV->getGUID());
 | |
|           // Create the appropriate summary type.
 | |
|           if (Function *F = dyn_cast<Function>(GV)) {
 | |
|             std::unique_ptr<FunctionSummary> Summary =
 | |
|                 std::make_unique<FunctionSummary>(
 | |
|                     GVFlags, /*InstCount=*/0,
 | |
|                     FunctionSummary::FFlags{
 | |
|                         F->hasFnAttribute(Attribute::ReadNone),
 | |
|                         F->hasFnAttribute(Attribute::ReadOnly),
 | |
|                         F->hasFnAttribute(Attribute::NoRecurse),
 | |
|                         F->returnDoesNotAlias(),
 | |
|                         /* NoInline = */ false,
 | |
|                         F->hasFnAttribute(Attribute::AlwaysInline),
 | |
|                         F->hasFnAttribute(Attribute::NoUnwind),
 | |
|                         /* MayThrow */ true,
 | |
|                         /* HasUnknownCall */ true,
 | |
|                         /* MustBeUnreachable */ false},
 | |
|                     /*EntryCount=*/0, ArrayRef<ValueInfo>{},
 | |
|                     ArrayRef<FunctionSummary::EdgeTy>{},
 | |
|                     ArrayRef<GlobalValue::GUID>{},
 | |
|                     ArrayRef<FunctionSummary::VFuncId>{},
 | |
|                     ArrayRef<FunctionSummary::VFuncId>{},
 | |
|                     ArrayRef<FunctionSummary::ConstVCall>{},
 | |
|                     ArrayRef<FunctionSummary::ConstVCall>{},
 | |
|                     ArrayRef<FunctionSummary::ParamAccess>{});
 | |
|             Index.addGlobalValueSummary(*GV, std::move(Summary));
 | |
|           } else {
 | |
|             std::unique_ptr<GlobalVarSummary> Summary =
 | |
|                 std::make_unique<GlobalVarSummary>(
 | |
|                     GVFlags,
 | |
|                     GlobalVarSummary::GVarFlags(
 | |
|                         false, false, cast<GlobalVariable>(GV)->isConstant(),
 | |
|                         GlobalObject::VCallVisibilityPublic),
 | |
|                     ArrayRef<ValueInfo>{});
 | |
|             Index.addGlobalValueSummary(*GV, std::move(Summary));
 | |
|           }
 | |
|         });
 | |
|   }
 | |
| 
 | |
|   bool IsThinLTO = true;
 | |
|   if (auto *MD =
 | |
|           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
 | |
|     IsThinLTO = MD->getZExtValue();
 | |
| 
 | |
|   // Compute summaries for all functions defined in module, and save in the
 | |
|   // index.
 | |
|   for (const auto &F : M) {
 | |
|     if (F.isDeclaration())
 | |
|       continue;
 | |
| 
 | |
|     DominatorTree DT(const_cast<Function &>(F));
 | |
|     BlockFrequencyInfo *BFI = nullptr;
 | |
|     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
 | |
|     if (GetBFICallback)
 | |
|       BFI = GetBFICallback(F);
 | |
|     else if (F.hasProfileData()) {
 | |
|       LoopInfo LI{DT};
 | |
|       BranchProbabilityInfo BPI{F, LI};
 | |
|       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
 | |
|       BFI = BFIPtr.get();
 | |
|     }
 | |
| 
 | |
|     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
 | |
|                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
 | |
|                            CantBePromoted, IsThinLTO, GetSSICallback);
 | |
|   }
 | |
| 
 | |
|   // Compute summaries for all variables defined in module, and save in the
 | |
|   // index.
 | |
|   SmallVector<MDNode *, 2> Types;
 | |
|   for (const GlobalVariable &G : M.globals()) {
 | |
|     if (G.isDeclaration())
 | |
|       continue;
 | |
|     computeVariableSummary(Index, G, CantBePromoted, M, Types);
 | |
|   }
 | |
| 
 | |
|   // Compute summaries for all aliases defined in module, and save in the
 | |
|   // index.
 | |
|   for (const GlobalAlias &A : M.aliases())
 | |
|     computeAliasSummary(Index, A, CantBePromoted);
 | |
| 
 | |
|   // Iterate through ifuncs, set their resolvers all alive.
 | |
|   for (const GlobalIFunc &I : M.ifuncs()) {
 | |
|     I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
 | |
|       Index.getGlobalValueSummary(GV)->setLive(true);
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   for (auto *V : LocalsUsed) {
 | |
|     auto *Summary = Index.getGlobalValueSummary(*V);
 | |
|     assert(Summary && "Missing summary for global value");
 | |
|     Summary->setNotEligibleToImport();
 | |
|   }
 | |
| 
 | |
|   // The linker doesn't know about these LLVM produced values, so we need
 | |
|   // to flag them as live in the index to ensure index-based dead value
 | |
|   // analysis treats them as live roots of the analysis.
 | |
|   setLiveRoot(Index, "llvm.used");
 | |
|   setLiveRoot(Index, "llvm.compiler.used");
 | |
|   setLiveRoot(Index, "llvm.global_ctors");
 | |
|   setLiveRoot(Index, "llvm.global_dtors");
 | |
|   setLiveRoot(Index, "llvm.global.annotations");
 | |
| 
 | |
|   for (auto &GlobalList : Index) {
 | |
|     // Ignore entries for references that are undefined in the current module.
 | |
|     if (GlobalList.second.SummaryList.empty())
 | |
|       continue;
 | |
| 
 | |
|     assert(GlobalList.second.SummaryList.size() == 1 &&
 | |
|            "Expected module's index to have one summary per GUID");
 | |
|     auto &Summary = GlobalList.second.SummaryList[0];
 | |
|     if (!IsThinLTO) {
 | |
|       Summary->setNotEligibleToImport();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     bool AllRefsCanBeExternallyReferenced =
 | |
|         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
 | |
|           return !CantBePromoted.count(VI.getGUID());
 | |
|         });
 | |
|     if (!AllRefsCanBeExternallyReferenced) {
 | |
|       Summary->setNotEligibleToImport();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
 | |
|       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
 | |
|           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
 | |
|             return !CantBePromoted.count(Edge.first.getGUID());
 | |
|           });
 | |
|       if (!AllCallsCanBeExternallyReferenced)
 | |
|         Summary->setNotEligibleToImport();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!ModuleSummaryDotFile.empty()) {
 | |
|     std::error_code EC;
 | |
|     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
 | |
|     if (EC)
 | |
|       report_fatal_error(Twine("Failed to open dot file ") +
 | |
|                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
 | |
|     Index.exportToDot(OSDot, {});
 | |
|   }
 | |
| 
 | |
|   return Index;
 | |
| }
 | |
| 
 | |
| AnalysisKey ModuleSummaryIndexAnalysis::Key;
 | |
| 
 | |
| ModuleSummaryIndex
 | |
| ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
 | |
|   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
 | |
|   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
 | |
|   bool NeedSSI = needsParamAccessSummary(M);
 | |
|   return buildModuleSummaryIndex(
 | |
|       M,
 | |
|       [&FAM](const Function &F) {
 | |
|         return &FAM.getResult<BlockFrequencyAnalysis>(
 | |
|             *const_cast<Function *>(&F));
 | |
|       },
 | |
|       &PSI,
 | |
|       [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
 | |
|         return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
 | |
|                              const_cast<Function &>(F))
 | |
|                        : nullptr;
 | |
|       });
 | |
| }
 | |
| 
 | |
| char ModuleSummaryIndexWrapperPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
 | |
|                       "Module Summary Analysis", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
 | |
|                     "Module Summary Analysis", false, true)
 | |
| 
 | |
| ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
 | |
|   return new ModuleSummaryIndexWrapperPass();
 | |
| }
 | |
| 
 | |
| ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
 | |
|     : ModulePass(ID) {
 | |
|   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
 | |
|   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | |
|   bool NeedSSI = needsParamAccessSummary(M);
 | |
|   Index.emplace(buildModuleSummaryIndex(
 | |
|       M,
 | |
|       [this](const Function &F) {
 | |
|         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
 | |
|                          *const_cast<Function *>(&F))
 | |
|                      .getBFI());
 | |
|       },
 | |
|       PSI,
 | |
|       [&](const Function &F) -> const StackSafetyInfo * {
 | |
|         return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
 | |
|                               const_cast<Function &>(F))
 | |
|                               .getResult()
 | |
|                        : nullptr;
 | |
|       }));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
 | |
|   Index.reset();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<BlockFrequencyInfoWrapperPass>();
 | |
|   AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | |
|   AU.addRequired<StackSafetyInfoWrapperPass>();
 | |
| }
 | |
| 
 | |
| char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
 | |
| 
 | |
| ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
 | |
|     const ModuleSummaryIndex *Index)
 | |
|     : ImmutablePass(ID), Index(Index) {
 | |
|   initializeImmutableModuleSummaryIndexWrapperPassPass(
 | |
|       *PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
 | |
|     AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
 | |
|     const ModuleSummaryIndex *Index) {
 | |
|   return new ImmutableModuleSummaryIndexWrapperPass(Index);
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
 | |
|                 "Module summary info", false, true)
 |