143 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			143 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
| """Generate a mock model for LLVM tests.
 | |
| 
 | |
| The generated model is not a neural net - it is just a tf.function with the
 | |
| correct input and output parameters. By construction, the mock model will always
 | |
| output 1.
 | |
| """
 | |
| 
 | |
| import os
 | |
| import importlib.util
 | |
| import sys
 | |
| 
 | |
| import tensorflow as tf
 | |
| 
 | |
| POLICY_DECISION_LABEL = 'inlining_decision'
 | |
| POLICY_OUTPUT_SPEC = """
 | |
| [
 | |
|     {
 | |
|         "logging_name": "inlining_decision",
 | |
|         "tensor_spec": {
 | |
|             "name": "StatefulPartitionedCall",
 | |
|             "port": 0,
 | |
|             "type": "int64_t",
 | |
|             "shape": [
 | |
|                 1
 | |
|             ]
 | |
|         }
 | |
|     }
 | |
| ]
 | |
| """
 | |
| 
 | |
| 
 | |
| # pylint: disable=g-complex-comprehension
 | |
| def get_input_signature():
 | |
|   """Returns the list of features for LLVM inlining."""
 | |
|   # int64 features
 | |
|   inputs = [
 | |
|       tf.TensorSpec(dtype=tf.int64, shape=(), name=key) for key in [
 | |
|           'caller_basic_block_count',
 | |
|           'caller_conditionally_executed_blocks',
 | |
|           'caller_users',
 | |
|           'callee_basic_block_count',
 | |
|           'callee_conditionally_executed_blocks',
 | |
|           'callee_users',
 | |
|           'nr_ctant_params',
 | |
|           'node_count',
 | |
|           'edge_count',
 | |
|           'callsite_height',
 | |
|           'cost_estimate',
 | |
|           'inlining_default',
 | |
|           'sroa_savings',
 | |
|           'sroa_losses',
 | |
|           'load_elimination',
 | |
|           'call_penalty',
 | |
|           'call_argument_setup',
 | |
|           'load_relative_intrinsic',
 | |
|           'lowered_call_arg_setup',
 | |
|           'indirect_call_penalty',
 | |
|           'jump_table_penalty',
 | |
|           'case_cluster_penalty',
 | |
|           'switch_penalty',
 | |
|           'unsimplified_common_instructions',
 | |
|           'num_loops',
 | |
|           'dead_blocks',
 | |
|           'simplified_instructions',
 | |
|           'constant_args',
 | |
|           'constant_offset_ptr_args',
 | |
|           'callsite_cost',
 | |
|           'cold_cc_penalty',
 | |
|           'last_call_to_static_bonus',
 | |
|           'is_multiple_blocks',
 | |
|           'nested_inlines',
 | |
|           'nested_inline_cost_estimate',
 | |
|           'threshold',
 | |
|       ]
 | |
|   ]
 | |
| 
 | |
|   # float32 features
 | |
|   inputs.extend([
 | |
|       tf.TensorSpec(dtype=tf.float32, shape=(), name=key)
 | |
|       for key in ['discount', 'reward']
 | |
|   ])
 | |
| 
 | |
|   # int32 features
 | |
|   inputs.extend([
 | |
|       tf.TensorSpec(dtype=tf.int32, shape=(), name=key)
 | |
|       for key in ['step_type']
 | |
|   ])
 | |
|   return inputs
 | |
| 
 | |
| 
 | |
| def get_output_signature():
 | |
|   return POLICY_DECISION_LABEL
 | |
| 
 | |
| 
 | |
| def get_output_spec():
 | |
|   return POLICY_OUTPUT_SPEC
 | |
| 
 | |
| def get_output_spec_path(path):
 | |
|   return os.path.join(path, 'output_spec.json')
 | |
| 
 | |
| 
 | |
| def build_mock_model(path, signature):
 | |
|   """Build and save the mock model with the given signature"""
 | |
|   module = tf.Module()
 | |
| 
 | |
|   # We have to set this useless variable in order for the TF C API to correctly
 | |
|   # intake it
 | |
|   module.var = tf.Variable(0.)
 | |
| 
 | |
|   def action(*inputs):
 | |
|     s = tf.reduce_sum([tf.cast(x, tf.float32) for x in tf.nest.flatten(inputs)])
 | |
|     return {signature['output']: tf.cast(tf.divide((s + module.var), tf.abs(s + module.var)), tf.int64)}
 | |
| 
 | |
|   module.action = tf.function()(action)
 | |
|   action = {'action': module.action.get_concrete_function(signature['inputs'])}
 | |
|   tf.saved_model.save(module, path, signatures=action)
 | |
| 
 | |
|   output_spec_path = get_output_spec_path(path)
 | |
|   with open(output_spec_path, 'w') as f:
 | |
|     print(f'Writing output spec to {output_spec_path}.')
 | |
|     f.write(signature['output_spec'])
 | |
| 
 | |
| 
 | |
| def get_signature():
 | |
|   return {
 | |
|       'inputs': get_input_signature(),
 | |
|       'output': get_output_signature(),
 | |
|       'output_spec': get_output_spec()
 | |
|   }
 | |
| 
 | |
| 
 | |
| def main(argv):
 | |
|   assert len(argv) == 2
 | |
|   model_path = argv[1]
 | |
| 
 | |
|   print(f'Output model to: [{argv[1]}]')
 | |
|   signature = get_signature()
 | |
|   build_mock_model(model_path, signature)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|   main(sys.argv)
 |