839 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			839 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains support for writing exception info into assembly files.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "EHStreamer.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/BinaryFormat/Dwarf.h"
 | |
| #include "llvm/CodeGen/AsmPrinter.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCStreamer.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/MC/MCTargetOptions.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/LEB128.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
 | |
| 
 | |
| EHStreamer::~EHStreamer() = default;
 | |
| 
 | |
| /// How many leading type ids two landing pads have in common.
 | |
| unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
 | |
|                                    const LandingPadInfo *R) {
 | |
|   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
 | |
|   return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
 | |
|              .first -
 | |
|          LIds.begin();
 | |
| }
 | |
| 
 | |
| /// Compute the actions table and gather the first action index for each landing
 | |
| /// pad site.
 | |
| void EHStreamer::computeActionsTable(
 | |
|     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
 | |
|     SmallVectorImpl<ActionEntry> &Actions,
 | |
|     SmallVectorImpl<unsigned> &FirstActions) {
 | |
|   // The action table follows the call-site table in the LSDA. The individual
 | |
|   // records are of two types:
 | |
|   //
 | |
|   //   * Catch clause
 | |
|   //   * Exception specification
 | |
|   //
 | |
|   // The two record kinds have the same format, with only small differences.
 | |
|   // They are distinguished by the "switch value" field: Catch clauses
 | |
|   // (TypeInfos) have strictly positive switch values, and exception
 | |
|   // specifications (FilterIds) have strictly negative switch values. Value 0
 | |
|   // indicates a catch-all clause.
 | |
|   //
 | |
|   // Negative type IDs index into FilterIds. Positive type IDs index into
 | |
|   // TypeInfos.  The value written for a positive type ID is just the type ID
 | |
|   // itself.  For a negative type ID, however, the value written is the
 | |
|   // (negative) byte offset of the corresponding FilterIds entry.  The byte
 | |
|   // offset is usually equal to the type ID (because the FilterIds entries are
 | |
|   // written using a variable width encoding, which outputs one byte per entry
 | |
|   // as long as the value written is not too large) but can differ.  This kind
 | |
|   // of complication does not occur for positive type IDs because type infos are
 | |
|   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
 | |
|   // offset corresponding to FilterIds[i].
 | |
| 
 | |
|   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
 | |
|   SmallVector<int, 16> FilterOffsets;
 | |
|   FilterOffsets.reserve(FilterIds.size());
 | |
|   int Offset = -1;
 | |
| 
 | |
|   for (unsigned FilterId : FilterIds) {
 | |
|     FilterOffsets.push_back(Offset);
 | |
|     Offset -= getULEB128Size(FilterId);
 | |
|   }
 | |
| 
 | |
|   FirstActions.reserve(LandingPads.size());
 | |
| 
 | |
|   int FirstAction = 0;
 | |
|   unsigned SizeActions = 0; // Total size of all action entries for a function
 | |
|   const LandingPadInfo *PrevLPI = nullptr;
 | |
| 
 | |
|   for (const LandingPadInfo *LPI : LandingPads) {
 | |
|     const std::vector<int> &TypeIds = LPI->TypeIds;
 | |
|     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
 | |
|     unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
 | |
| 
 | |
|     if (NumShared < TypeIds.size()) {
 | |
|       // Size of one action entry (typeid + next action)
 | |
|       unsigned SizeActionEntry = 0;
 | |
|       unsigned PrevAction = (unsigned)-1;
 | |
| 
 | |
|       if (NumShared) {
 | |
|         unsigned SizePrevIds = PrevLPI->TypeIds.size();
 | |
|         assert(Actions.size());
 | |
|         PrevAction = Actions.size() - 1;
 | |
|         SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
 | |
|                           getSLEB128Size(Actions[PrevAction].ValueForTypeID);
 | |
| 
 | |
|         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
 | |
|           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
 | |
|           SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
 | |
|           SizeActionEntry += -Actions[PrevAction].NextAction;
 | |
|           PrevAction = Actions[PrevAction].Previous;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute the actions.
 | |
|       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
 | |
|         int TypeID = TypeIds[J];
 | |
|         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
 | |
|         int ValueForTypeID =
 | |
|             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
 | |
|         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
 | |
| 
 | |
|         int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
 | |
|         SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
 | |
|         SizeSiteActions += SizeActionEntry;
 | |
| 
 | |
|         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
 | |
|         Actions.push_back(Action);
 | |
|         PrevAction = Actions.size() - 1;
 | |
|       }
 | |
| 
 | |
|       // Record the first action of the landing pad site.
 | |
|       FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
 | |
|     } // else identical - re-use previous FirstAction
 | |
| 
 | |
|     // Information used when creating the call-site table. The action record
 | |
|     // field of the call site record is the offset of the first associated
 | |
|     // action record, relative to the start of the actions table. This value is
 | |
|     // biased by 1 (1 indicating the start of the actions table), and 0
 | |
|     // indicates that there are no actions.
 | |
|     FirstActions.push_back(FirstAction);
 | |
| 
 | |
|     // Compute this sites contribution to size.
 | |
|     SizeActions += SizeSiteActions;
 | |
| 
 | |
|     PrevLPI = LPI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return `true' if this is a call to a function marked `nounwind'. Return
 | |
| /// `false' otherwise.
 | |
| bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
 | |
|   assert(MI->isCall() && "This should be a call instruction!");
 | |
| 
 | |
|   bool MarkedNoUnwind = false;
 | |
|   bool SawFunc = false;
 | |
| 
 | |
|   for (const MachineOperand &MO : MI->operands()) {
 | |
|     if (!MO.isGlobal()) continue;
 | |
| 
 | |
|     const Function *F = dyn_cast<Function>(MO.getGlobal());
 | |
|     if (!F) continue;
 | |
| 
 | |
|     if (SawFunc) {
 | |
|       // Be conservative. If we have more than one function operand for this
 | |
|       // call, then we can't make the assumption that it's the callee and
 | |
|       // not a parameter to the call.
 | |
|       //
 | |
|       // FIXME: Determine if there's a way to say that `F' is the callee or
 | |
|       // parameter.
 | |
|       MarkedNoUnwind = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     MarkedNoUnwind = F->doesNotThrow();
 | |
|     SawFunc = true;
 | |
|   }
 | |
| 
 | |
|   return MarkedNoUnwind;
 | |
| }
 | |
| 
 | |
| void EHStreamer::computePadMap(
 | |
|     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
 | |
|     RangeMapType &PadMap) {
 | |
|   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
 | |
|   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
 | |
|   // try-ranges for them need be deduced so we can put them in the LSDA.
 | |
|   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
 | |
|     const LandingPadInfo *LandingPad = LandingPads[i];
 | |
|     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
 | |
|       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
 | |
|       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
 | |
|       PadRange P = { i, j };
 | |
|       PadMap[BeginLabel] = P;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Compute the call-site table.  The entry for an invoke has a try-range
 | |
| /// containing the call, a non-zero landing pad, and an appropriate action.  The
 | |
| /// entry for an ordinary call has a try-range containing the call and zero for
 | |
| /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
 | |
| /// must not be contained in the try-range of any entry - they form gaps in the
 | |
| /// table.  Entries must be ordered by try-range address.
 | |
| ///
 | |
| /// Call-sites are split into one or more call-site ranges associated with
 | |
| /// different sections of the function.
 | |
| ///
 | |
| ///   - Without -basic-block-sections, all call-sites are grouped into one
 | |
| ///     call-site-range corresponding to the function section.
 | |
| ///
 | |
| ///   - With -basic-block-sections, one call-site range is created for each
 | |
| ///     section, with its FragmentBeginLabel and FragmentEndLabel respectively
 | |
| //      set to the beginning and ending of the corresponding section and its
 | |
| //      ExceptionLabel set to the exception symbol dedicated for this section.
 | |
| //      Later, one LSDA header will be emitted for each call-site range with its
 | |
| //      call-sites following. The action table and type info table will be
 | |
| //      shared across all ranges.
 | |
| void EHStreamer::computeCallSiteTable(
 | |
|     SmallVectorImpl<CallSiteEntry> &CallSites,
 | |
|     SmallVectorImpl<CallSiteRange> &CallSiteRanges,
 | |
|     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
 | |
|     const SmallVectorImpl<unsigned> &FirstActions) {
 | |
|   RangeMapType PadMap;
 | |
|   computePadMap(LandingPads, PadMap);
 | |
| 
 | |
|   // The end label of the previous invoke or nounwind try-range.
 | |
|   MCSymbol *LastLabel = Asm->getFunctionBegin();
 | |
| 
 | |
|   // Whether there is a potentially throwing instruction (currently this means
 | |
|   // an ordinary call) between the end of the previous try-range and now.
 | |
|   bool SawPotentiallyThrowing = false;
 | |
| 
 | |
|   // Whether the last CallSite entry was for an invoke.
 | |
|   bool PreviousIsInvoke = false;
 | |
| 
 | |
|   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
 | |
| 
 | |
|   // Visit all instructions in order of address.
 | |
|   for (const auto &MBB : *Asm->MF) {
 | |
|     if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
 | |
|       // We start a call-site range upon function entry and at the beginning of
 | |
|       // every basic block section.
 | |
|       CallSiteRanges.push_back(
 | |
|           {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
 | |
|            Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
 | |
|            Asm->getMBBExceptionSym(MBB), CallSites.size()});
 | |
|       PreviousIsInvoke = false;
 | |
|       SawPotentiallyThrowing = false;
 | |
|       LastLabel = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (MBB.isEHPad())
 | |
|       CallSiteRanges.back().IsLPRange = true;
 | |
| 
 | |
|     for (const auto &MI : MBB) {
 | |
|       if (!MI.isEHLabel()) {
 | |
|         if (MI.isCall())
 | |
|           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // End of the previous try-range?
 | |
|       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
 | |
|       if (BeginLabel == LastLabel)
 | |
|         SawPotentiallyThrowing = false;
 | |
| 
 | |
|       // Beginning of a new try-range?
 | |
|       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
 | |
|       if (L == PadMap.end())
 | |
|         // Nope, it was just some random label.
 | |
|         continue;
 | |
| 
 | |
|       const PadRange &P = L->second;
 | |
|       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
 | |
|       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
 | |
|              "Inconsistent landing pad map!");
 | |
| 
 | |
|       // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
 | |
|       // If some instruction between the previous try-range and this one may
 | |
|       // throw, create a call-site entry with no landing pad for the region
 | |
|       // between the try-ranges.
 | |
|       if (SawPotentiallyThrowing &&
 | |
|           (Asm->MAI->usesCFIForEH() ||
 | |
|            Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
 | |
|         CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
 | |
|         PreviousIsInvoke = false;
 | |
|       }
 | |
| 
 | |
|       LastLabel = LandingPad->EndLabels[P.RangeIndex];
 | |
|       assert(BeginLabel && LastLabel && "Invalid landing pad!");
 | |
| 
 | |
|       if (!LandingPad->LandingPadLabel) {
 | |
|         // Create a gap.
 | |
|         PreviousIsInvoke = false;
 | |
|       } else {
 | |
|         // This try-range is for an invoke.
 | |
|         CallSiteEntry Site = {
 | |
|           BeginLabel,
 | |
|           LastLabel,
 | |
|           LandingPad,
 | |
|           FirstActions[P.PadIndex]
 | |
|         };
 | |
| 
 | |
|         // Try to merge with the previous call-site. SJLJ doesn't do this
 | |
|         if (PreviousIsInvoke && !IsSJLJ) {
 | |
|           CallSiteEntry &Prev = CallSites.back();
 | |
|           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
 | |
|             // Extend the range of the previous entry.
 | |
|             Prev.EndLabel = Site.EndLabel;
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Otherwise, create a new call-site.
 | |
|         if (!IsSJLJ)
 | |
|           CallSites.push_back(Site);
 | |
|         else {
 | |
|           // SjLj EH must maintain the call sites in the order assigned
 | |
|           // to them by the SjLjPrepare pass.
 | |
|           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
 | |
|           if (CallSites.size() < SiteNo)
 | |
|             CallSites.resize(SiteNo);
 | |
|           CallSites[SiteNo - 1] = Site;
 | |
|         }
 | |
|         PreviousIsInvoke = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We end the call-site range upon function exit and at the end of every
 | |
|     // basic block section.
 | |
|     if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
 | |
|       // If some instruction between the previous try-range and the end of the
 | |
|       // function may throw, create a call-site entry with no landing pad for
 | |
|       // the region following the try-range.
 | |
|       if (SawPotentiallyThrowing && !IsSJLJ) {
 | |
|         CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
 | |
|                               nullptr, 0};
 | |
|         CallSites.push_back(Site);
 | |
|         SawPotentiallyThrowing = false;
 | |
|       }
 | |
|       CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Emit landing pads and actions.
 | |
| ///
 | |
| /// The general organization of the table is complex, but the basic concepts are
 | |
| /// easy.  First there is a header which describes the location and organization
 | |
| /// of the three components that follow.
 | |
| ///
 | |
| ///  1. The landing pad site information describes the range of code covered by
 | |
| ///     the try.  In our case it's an accumulation of the ranges covered by the
 | |
| ///     invokes in the try.  There is also a reference to the landing pad that
 | |
| ///     handles the exception once processed.  Finally an index into the actions
 | |
| ///     table.
 | |
| ///  2. The action table, in our case, is composed of pairs of type IDs and next
 | |
| ///     action offset.  Starting with the action index from the landing pad
 | |
| ///     site, each type ID is checked for a match to the current exception.  If
 | |
| ///     it matches then the exception and type id are passed on to the landing
 | |
| ///     pad.  Otherwise the next action is looked up.  This chain is terminated
 | |
| ///     with a next action of zero.  If no type id is found then the frame is
 | |
| ///     unwound and handling continues.
 | |
| ///  3. Type ID table contains references to all the C++ typeinfo for all
 | |
| ///     catches in the function.  This tables is reverse indexed base 1.
 | |
| ///
 | |
| /// Returns the starting symbol of an exception table.
 | |
| MCSymbol *EHStreamer::emitExceptionTable() {
 | |
|   const MachineFunction *MF = Asm->MF;
 | |
|   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
 | |
|   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
 | |
|   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
 | |
| 
 | |
|   // Sort the landing pads in order of their type ids.  This is used to fold
 | |
|   // duplicate actions.
 | |
|   SmallVector<const LandingPadInfo *, 64> LandingPads;
 | |
|   LandingPads.reserve(PadInfos.size());
 | |
| 
 | |
|   for (const LandingPadInfo &LPI : PadInfos)
 | |
|     LandingPads.push_back(&LPI);
 | |
| 
 | |
|   // Order landing pads lexicographically by type id.
 | |
|   llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
 | |
|     return L->TypeIds < R->TypeIds;
 | |
|   });
 | |
| 
 | |
|   // Compute the actions table and gather the first action index for each
 | |
|   // landing pad site.
 | |
|   SmallVector<ActionEntry, 32> Actions;
 | |
|   SmallVector<unsigned, 64> FirstActions;
 | |
|   computeActionsTable(LandingPads, Actions, FirstActions);
 | |
| 
 | |
|   // Compute the call-site table and call-site ranges. Normally, there is only
 | |
|   // one call-site-range which covers the whole funciton. With
 | |
|   // -basic-block-sections, there is one call-site-range per basic block
 | |
|   // section.
 | |
|   SmallVector<CallSiteEntry, 64> CallSites;
 | |
|   SmallVector<CallSiteRange, 4> CallSiteRanges;
 | |
|   computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
 | |
| 
 | |
|   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
 | |
|   bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
 | |
|   bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
 | |
|   unsigned CallSiteEncoding =
 | |
|       IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
 | |
|                Asm->getObjFileLowering().getCallSiteEncoding();
 | |
|   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
 | |
| 
 | |
|   // Type infos.
 | |
|   MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA(
 | |
|       MF->getFunction(), *Asm->CurrentFnSym, Asm->TM);
 | |
|   unsigned TTypeEncoding;
 | |
| 
 | |
|   if (!HaveTTData) {
 | |
|     // If there is no TypeInfo, then we just explicitly say that we're omitting
 | |
|     // that bit.
 | |
|     TTypeEncoding = dwarf::DW_EH_PE_omit;
 | |
|   } else {
 | |
|     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
 | |
|     // pick a type encoding for them.  We're about to emit a list of pointers to
 | |
|     // typeinfo objects at the end of the LSDA.  However, unless we're in static
 | |
|     // mode, this reference will require a relocation by the dynamic linker.
 | |
|     //
 | |
|     // Because of this, we have a couple of options:
 | |
|     //
 | |
|     //   1) If we are in -static mode, we can always use an absolute reference
 | |
|     //      from the LSDA, because the static linker will resolve it.
 | |
|     //
 | |
|     //   2) Otherwise, if the LSDA section is writable, we can output the direct
 | |
|     //      reference to the typeinfo and allow the dynamic linker to relocate
 | |
|     //      it.  Since it is in a writable section, the dynamic linker won't
 | |
|     //      have a problem.
 | |
|     //
 | |
|     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
 | |
|     //      we need to use some form of indirection.  For example, on Darwin,
 | |
|     //      we can output a statically-relocatable reference to a dyld stub. The
 | |
|     //      offset to the stub is constant, but the contents are in a section
 | |
|     //      that is updated by the dynamic linker.  This is easy enough, but we
 | |
|     //      need to tell the personality function of the unwinder to indirect
 | |
|     //      through the dyld stub.
 | |
|     //
 | |
|     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
 | |
|     // somewhere.  This predicate should be moved to a shared location that is
 | |
|     // in target-independent code.
 | |
|     //
 | |
|     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
 | |
|   }
 | |
| 
 | |
|   // Begin the exception table.
 | |
|   // Sometimes we want not to emit the data into separate section (e.g. ARM
 | |
|   // EHABI). In this case LSDASection will be NULL.
 | |
|   if (LSDASection)
 | |
|     Asm->OutStreamer->switchSection(LSDASection);
 | |
|   Asm->emitAlignment(Align(4));
 | |
| 
 | |
|   // Emit the LSDA.
 | |
|   MCSymbol *GCCETSym =
 | |
|     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
 | |
|                                       Twine(Asm->getFunctionNumber()));
 | |
|   Asm->OutStreamer->emitLabel(GCCETSym);
 | |
|   MCSymbol *CstEndLabel = Asm->createTempSymbol(
 | |
|       CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
 | |
| 
 | |
|   MCSymbol *TTBaseLabel = nullptr;
 | |
|   if (HaveTTData)
 | |
|     TTBaseLabel = Asm->createTempSymbol("ttbase");
 | |
| 
 | |
|   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
 | |
| 
 | |
|   // Helper for emitting references (offsets) for type table and the end of the
 | |
|   // call-site table (which marks the beginning of the action table).
 | |
|   //  * For Itanium, these references will be emitted for every callsite range.
 | |
|   //  * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
 | |
|   auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
 | |
|     Asm->emitEncodingByte(TTypeEncoding, "@TType");
 | |
|     if (HaveTTData) {
 | |
|       // N.B.: There is a dependency loop between the size of the TTBase uleb128
 | |
|       // here and the amount of padding before the aligned type table. The
 | |
|       // assembler must sometimes pad this uleb128 or insert extra padding
 | |
|       // before the type table. See PR35809 or GNU as bug 4029.
 | |
|       MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
 | |
|       Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
 | |
|       Asm->OutStreamer->emitLabel(TTBaseRefLabel);
 | |
|     }
 | |
| 
 | |
|     // The Action table follows the call-site table. So we emit the
 | |
|     // label difference from here (start of the call-site table for SJLJ and
 | |
|     // Wasm, and start of a call-site range for Itanium) to the end of the
 | |
|     // whole call-site table (end of the last call-site range for Itanium).
 | |
|     MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
 | |
|     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
 | |
|     Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
 | |
|     Asm->OutStreamer->emitLabel(CstBeginLabel);
 | |
|   };
 | |
| 
 | |
|   // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
 | |
|   // For some platforms, the system assembler does not accept the form of
 | |
|   // `.uleb128 label2 - label1`. In those situations, we would need to calculate
 | |
|   // the size between label1 and label2 manually.
 | |
|   // In this case, we would need to calculate the LSDA size and the call
 | |
|   // site table size.
 | |
|   auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
 | |
|     assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
 | |
|            "Targets supporting .uleb128 do not need to take this path.");
 | |
|     if (CallSiteRanges.size() > 1)
 | |
|       report_fatal_error(
 | |
|           "-fbasic-block-sections is not yet supported on "
 | |
|           "platforms that do not have general LEB128 directive support.");
 | |
| 
 | |
|     uint64_t CallSiteTableSize = 0;
 | |
|     const CallSiteRange &CSRange = CallSiteRanges.back();
 | |
|     for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
 | |
|          CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
 | |
|       const CallSiteEntry &S = CallSites[CallSiteIdx];
 | |
|       // Each call site entry consists of 3 udata4 fields (12 bytes) and
 | |
|       // 1 ULEB128 field.
 | |
|       CallSiteTableSize += 12 + getULEB128Size(S.Action);
 | |
|       assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
 | |
|     }
 | |
| 
 | |
|     Asm->emitEncodingByte(TTypeEncoding, "@TType");
 | |
|     if (HaveTTData) {
 | |
|       const unsigned ByteSizeOfCallSiteOffset =
 | |
|           getULEB128Size(CallSiteTableSize);
 | |
|       uint64_t ActionTableSize = 0;
 | |
|       for (const ActionEntry &Action : Actions) {
 | |
|         // Each action entry consists of two SLEB128 fields.
 | |
|         ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
 | |
|                            getSLEB128Size(Action.NextAction);
 | |
|         assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
 | |
|       }
 | |
| 
 | |
|       const unsigned TypeInfoSize =
 | |
|           Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
 | |
| 
 | |
|       const uint64_t LSDASizeBeforeAlign =
 | |
|           1                          // Call site encoding byte.
 | |
|           + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
 | |
|           + CallSiteTableSize        // Call site table content.
 | |
|           + ActionTableSize;         // Action table content.
 | |
| 
 | |
|       const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
 | |
|       const unsigned ByteSizeOfLSDAWithoutAlign =
 | |
|           getULEB128Size(LSDASizeWithoutAlign);
 | |
|       const uint64_t DisplacementBeforeAlign =
 | |
|           2 // LPStartEncoding and TypeTableEncoding.
 | |
|           + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
 | |
| 
 | |
|       // The type info area starts with 4 byte alignment.
 | |
|       const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
 | |
|       uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
 | |
|       const unsigned ByteSizeOfLSDAWithAlign =
 | |
|           getULEB128Size(LSDASizeWithAlign);
 | |
| 
 | |
|       // The LSDASizeWithAlign could use 1 byte less padding for alignment
 | |
|       // when the data we use to represent the LSDA Size "needs" to be 1 byte
 | |
|       // larger than the one previously calculated without alignment.
 | |
|       if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
 | |
|         LSDASizeWithAlign -= 1;
 | |
| 
 | |
|       Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
 | |
|                                             ByteSizeOfLSDAWithAlign);
 | |
|     }
 | |
| 
 | |
|     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
 | |
|     Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
 | |
|   };
 | |
| 
 | |
|   // SjLj / Wasm Exception handling
 | |
|   if (IsSJLJ || IsWasm) {
 | |
|     Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
 | |
| 
 | |
|     // emit the LSDA header.
 | |
|     Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
 | |
|     EmitTypeTableRefAndCallSiteTableEndRef();
 | |
| 
 | |
|     unsigned idx = 0;
 | |
|     for (SmallVectorImpl<CallSiteEntry>::const_iterator
 | |
|          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
 | |
|       const CallSiteEntry &S = *I;
 | |
| 
 | |
|       // Index of the call site entry.
 | |
|       if (VerboseAsm) {
 | |
|         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
 | |
|         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
 | |
|       }
 | |
|       Asm->emitULEB128(idx);
 | |
| 
 | |
|       // Offset of the first associated action record, relative to the start of
 | |
|       // the action table. This value is biased by 1 (1 indicates the start of
 | |
|       // the action table), and 0 indicates that there are no actions.
 | |
|       if (VerboseAsm) {
 | |
|         if (S.Action == 0)
 | |
|           Asm->OutStreamer->AddComment("  Action: cleanup");
 | |
|         else
 | |
|           Asm->OutStreamer->AddComment("  Action: " +
 | |
|                                        Twine((S.Action - 1) / 2 + 1));
 | |
|       }
 | |
|       Asm->emitULEB128(S.Action);
 | |
|     }
 | |
|     Asm->OutStreamer->emitLabel(CstEndLabel);
 | |
|   } else {
 | |
|     // Itanium LSDA exception handling
 | |
| 
 | |
|     // The call-site table is a list of all call sites that may throw an
 | |
|     // exception (including C++ 'throw' statements) in the procedure
 | |
|     // fragment. It immediately follows the LSDA header. Each entry indicates,
 | |
|     // for a given call, the first corresponding action record and corresponding
 | |
|     // landing pad.
 | |
|     //
 | |
|     // The table begins with the number of bytes, stored as an LEB128
 | |
|     // compressed, unsigned integer. The records immediately follow the record
 | |
|     // count. They are sorted in increasing call-site address. Each record
 | |
|     // indicates:
 | |
|     //
 | |
|     //   * The position of the call-site.
 | |
|     //   * The position of the landing pad.
 | |
|     //   * The first action record for that call site.
 | |
|     //
 | |
|     // A missing entry in the call-site table indicates that a call is not
 | |
|     // supposed to throw.
 | |
| 
 | |
|     assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
 | |
| 
 | |
|     // There should be only one call-site range which includes all the landing
 | |
|     // pads. Find that call-site range here.
 | |
|     const CallSiteRange *LandingPadRange = nullptr;
 | |
|     for (const CallSiteRange &CSRange : CallSiteRanges) {
 | |
|       if (CSRange.IsLPRange) {
 | |
|         assert(LandingPadRange == nullptr &&
 | |
|                "All landing pads must be in a single callsite range.");
 | |
|         LandingPadRange = &CSRange;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The call-site table is split into its call-site ranges, each being
 | |
|     // emitted as:
 | |
|     //              [ LPStartEncoding | LPStart ]
 | |
|     //              [ TypeTableEncoding | TypeTableOffset ]
 | |
|     //              [ CallSiteEncoding | CallSiteTableEndOffset ]
 | |
|     // cst_begin -> { call-site entries contained in this range }
 | |
|     //
 | |
|     // and is followed by the next call-site range.
 | |
|     //
 | |
|     // For each call-site range, CallSiteTableEndOffset is computed as the
 | |
|     // difference between cst_begin of that range and the last call-site-table's
 | |
|     // end label. This offset is used to find the action table.
 | |
| 
 | |
|     unsigned Entry = 0;
 | |
|     for (const CallSiteRange &CSRange : CallSiteRanges) {
 | |
|       if (CSRange.CallSiteBeginIdx != 0) {
 | |
|         // Align the call-site range for all ranges except the first. The
 | |
|         // first range is already aligned due to the exception table alignment.
 | |
|         Asm->emitAlignment(Align(4));
 | |
|       }
 | |
|       Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
 | |
| 
 | |
|       // Emit the LSDA header.
 | |
|       // LPStart is omitted if either we have a single call-site range (in which
 | |
|       // case the function entry is treated as @LPStart) or if this function has
 | |
|       // no landing pads (in which case @LPStart is undefined).
 | |
|       if (CallSiteRanges.size() == 1 || LandingPadRange == nullptr) {
 | |
|         Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
 | |
|       } else if (!Asm->isPositionIndependent()) {
 | |
|         // For more than one call-site ranges, LPStart must be explicitly
 | |
|         // specified.
 | |
|         // For non-PIC we can simply use the absolute value.
 | |
|         Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
 | |
|         Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
 | |
|                                           Asm->MAI->getCodePointerSize());
 | |
|       } else {
 | |
|         // For PIC mode, we Emit a PC-relative address for LPStart.
 | |
|         Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
 | |
|         MCContext &Context = Asm->OutStreamer->getContext();
 | |
|         MCSymbol *Dot = Context.createTempSymbol();
 | |
|         Asm->OutStreamer->emitLabel(Dot);
 | |
|         Asm->OutStreamer->emitValue(
 | |
|             MCBinaryExpr::createSub(
 | |
|                 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
 | |
|                                         Context),
 | |
|                 MCSymbolRefExpr::create(Dot, Context), Context),
 | |
|             Asm->MAI->getCodePointerSize());
 | |
|       }
 | |
| 
 | |
|       if (HasLEB128Directives)
 | |
|         EmitTypeTableRefAndCallSiteTableEndRef();
 | |
|       else
 | |
|         EmitTypeTableOffsetAndCallSiteTableOffset();
 | |
| 
 | |
|       for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
 | |
|            CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
 | |
|         const CallSiteEntry &S = CallSites[CallSiteIdx];
 | |
| 
 | |
|         MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
 | |
|         MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
 | |
| 
 | |
|         MCSymbol *BeginLabel = S.BeginLabel;
 | |
|         if (!BeginLabel)
 | |
|           BeginLabel = EHFuncBeginSym;
 | |
|         MCSymbol *EndLabel = S.EndLabel;
 | |
|         if (!EndLabel)
 | |
|           EndLabel = EHFuncEndSym;
 | |
| 
 | |
|         // Offset of the call site relative to the start of the procedure.
 | |
|         if (VerboseAsm)
 | |
|           Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
 | |
|                                        " <<");
 | |
|         Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
 | |
|         if (VerboseAsm)
 | |
|           Asm->OutStreamer->AddComment(Twine("  Call between ") +
 | |
|                                        BeginLabel->getName() + " and " +
 | |
|                                        EndLabel->getName());
 | |
|         Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
 | |
| 
 | |
|         // Offset of the landing pad relative to the start of the landing pad
 | |
|         // fragment.
 | |
|         if (!S.LPad) {
 | |
|           if (VerboseAsm)
 | |
|             Asm->OutStreamer->AddComment("    has no landing pad");
 | |
|           Asm->emitCallSiteValue(0, CallSiteEncoding);
 | |
|         } else {
 | |
|           if (VerboseAsm)
 | |
|             Asm->OutStreamer->AddComment(Twine("    jumps to ") +
 | |
|                                          S.LPad->LandingPadLabel->getName());
 | |
|           Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
 | |
|                                   LandingPadRange->FragmentBeginLabel,
 | |
|                                   CallSiteEncoding);
 | |
|         }
 | |
| 
 | |
|         // Offset of the first associated action record, relative to the start
 | |
|         // of the action table. This value is biased by 1 (1 indicates the start
 | |
|         // of the action table), and 0 indicates that there are no actions.
 | |
|         if (VerboseAsm) {
 | |
|           if (S.Action == 0)
 | |
|             Asm->OutStreamer->AddComment("  On action: cleanup");
 | |
|           else
 | |
|             Asm->OutStreamer->AddComment("  On action: " +
 | |
|                                          Twine((S.Action - 1) / 2 + 1));
 | |
|         }
 | |
|         Asm->emitULEB128(S.Action);
 | |
|       }
 | |
|     }
 | |
|     Asm->OutStreamer->emitLabel(CstEndLabel);
 | |
|   }
 | |
| 
 | |
|   // Emit the Action Table.
 | |
|   int Entry = 0;
 | |
|   for (const ActionEntry &Action : Actions) {
 | |
|     if (VerboseAsm) {
 | |
|       // Emit comments that decode the action table.
 | |
|       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
 | |
|     }
 | |
| 
 | |
|     // Type Filter
 | |
|     //
 | |
|     //   Used by the runtime to match the type of the thrown exception to the
 | |
|     //   type of the catch clauses or the types in the exception specification.
 | |
|     if (VerboseAsm) {
 | |
|       if (Action.ValueForTypeID > 0)
 | |
|         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
 | |
|                                      Twine(Action.ValueForTypeID));
 | |
|       else if (Action.ValueForTypeID < 0)
 | |
|         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
 | |
|                                      Twine(Action.ValueForTypeID));
 | |
|       else
 | |
|         Asm->OutStreamer->AddComment("  Cleanup");
 | |
|     }
 | |
|     Asm->emitSLEB128(Action.ValueForTypeID);
 | |
| 
 | |
|     // Action Record
 | |
|     if (VerboseAsm) {
 | |
|       if (Action.Previous == unsigned(-1)) {
 | |
|         Asm->OutStreamer->AddComment("  No further actions");
 | |
|       } else {
 | |
|         Asm->OutStreamer->AddComment("  Continue to action " +
 | |
|                                      Twine(Action.Previous + 1));
 | |
|       }
 | |
|     }
 | |
|     Asm->emitSLEB128(Action.NextAction);
 | |
|   }
 | |
| 
 | |
|   if (HaveTTData) {
 | |
|     Asm->emitAlignment(Align(4));
 | |
|     emitTypeInfos(TTypeEncoding, TTBaseLabel);
 | |
|   }
 | |
| 
 | |
|   Asm->emitAlignment(Align(4));
 | |
|   return GCCETSym;
 | |
| }
 | |
| 
 | |
| void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
 | |
|   const MachineFunction *MF = Asm->MF;
 | |
|   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
 | |
|   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
 | |
| 
 | |
|   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
 | |
| 
 | |
|   int Entry = 0;
 | |
|   // Emit the Catch TypeInfos.
 | |
|   if (VerboseAsm && !TypeInfos.empty()) {
 | |
|     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
 | |
|     Asm->OutStreamer->addBlankLine();
 | |
|     Entry = TypeInfos.size();
 | |
|   }
 | |
| 
 | |
|   for (const GlobalValue *GV : llvm::reverse(TypeInfos)) {
 | |
|     if (VerboseAsm)
 | |
|       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
 | |
|     Asm->emitTTypeReference(GV, TTypeEncoding);
 | |
|   }
 | |
| 
 | |
|   Asm->OutStreamer->emitLabel(TTBaseLabel);
 | |
| 
 | |
|   // Emit the Exception Specifications.
 | |
|   if (VerboseAsm && !FilterIds.empty()) {
 | |
|     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
 | |
|     Asm->OutStreamer->addBlankLine();
 | |
|     Entry = 0;
 | |
|   }
 | |
|   for (std::vector<unsigned>::const_iterator
 | |
|          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
 | |
|     unsigned TypeID = *I;
 | |
|     if (VerboseAsm) {
 | |
|       --Entry;
 | |
|       if (isFilterEHSelector(TypeID))
 | |
|         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
 | |
|     }
 | |
| 
 | |
|     Asm->emitULEB128(TypeID);
 | |
|   }
 | |
| }
 |