2367 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2367 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the machine instruction level if-conversion pass, which
 | |
| // tries to convert conditional branches into predicated instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "BranchFolding.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/ScopeExit.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/SparseSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/ProfileSummaryInfo.h"
 | |
| #include "llvm/CodeGen/LivePhysRegs.h"
 | |
| #include "llvm/CodeGen/MBFIWrapper.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSchedule.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <functional>
 | |
| #include <iterator>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "if-converter"
 | |
| 
 | |
| // Hidden options for help debugging.
 | |
| static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
 | |
| static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
 | |
| static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
 | |
| static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
 | |
|                                    cl::init(false), cl::Hidden);
 | |
| static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
 | |
|                                     cl::init(false), cl::Hidden);
 | |
| static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
 | |
|                                      cl::init(false), cl::Hidden);
 | |
| static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
 | |
|                                       cl::init(false), cl::Hidden);
 | |
| static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
 | |
|                                       cl::init(false), cl::Hidden);
 | |
| static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
 | |
|                                        cl::init(false), cl::Hidden);
 | |
| static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
 | |
|                                     cl::init(false), cl::Hidden);
 | |
| static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
 | |
|                                         cl::init(false), cl::Hidden);
 | |
| static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
 | |
|                                      cl::init(true), cl::Hidden);
 | |
| 
 | |
| STATISTIC(NumSimple,       "Number of simple if-conversions performed");
 | |
| STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
 | |
| STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
 | |
| STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
 | |
| STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
 | |
| STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
 | |
| STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
 | |
| STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
 | |
| STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
 | |
| STATISTIC(NumDupBBs,       "Number of duplicated blocks");
 | |
| STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class IfConverter : public MachineFunctionPass {
 | |
|     enum IfcvtKind {
 | |
|       ICNotClassfied,  // BB data valid, but not classified.
 | |
|       ICSimpleFalse,   // Same as ICSimple, but on the false path.
 | |
|       ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
 | |
|       ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
 | |
|       ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
 | |
|       ICTriangleFalse, // Same as ICTriangle, but on the false path.
 | |
|       ICTriangle,      // BB is entry of a triangle sub-CFG.
 | |
|       ICDiamond,       // BB is entry of a diamond sub-CFG.
 | |
|       ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
 | |
|                        // common tail that can be shared.
 | |
|     };
 | |
| 
 | |
|     /// One per MachineBasicBlock, this is used to cache the result
 | |
|     /// if-conversion feasibility analysis. This includes results from
 | |
|     /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
 | |
|     /// classification, and common tail block of its successors (if it's a
 | |
|     /// diamond shape), its size, whether it's predicable, and whether any
 | |
|     /// instruction can clobber the 'would-be' predicate.
 | |
|     ///
 | |
|     /// IsDone          - True if BB is not to be considered for ifcvt.
 | |
|     /// IsBeingAnalyzed - True if BB is currently being analyzed.
 | |
|     /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
 | |
|     /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
 | |
|     /// IsBrAnalyzable  - True if analyzeBranch() returns false.
 | |
|     /// HasFallThrough  - True if BB may fallthrough to the following BB.
 | |
|     /// IsUnpredicable  - True if BB is known to be unpredicable.
 | |
|     /// ClobbersPred    - True if BB could modify predicates (e.g. has
 | |
|     ///                   cmp, call, etc.)
 | |
|     /// NonPredSize     - Number of non-predicated instructions.
 | |
|     /// ExtraCost       - Extra cost for multi-cycle instructions.
 | |
|     /// ExtraCost2      - Some instructions are slower when predicated
 | |
|     /// BB              - Corresponding MachineBasicBlock.
 | |
|     /// TrueBB / FalseBB- See analyzeBranch().
 | |
|     /// BrCond          - Conditions for end of block conditional branches.
 | |
|     /// Predicate       - Predicate used in the BB.
 | |
|     struct BBInfo {
 | |
|       bool IsDone          : 1;
 | |
|       bool IsBeingAnalyzed : 1;
 | |
|       bool IsAnalyzed      : 1;
 | |
|       bool IsEnqueued      : 1;
 | |
|       bool IsBrAnalyzable  : 1;
 | |
|       bool IsBrReversible  : 1;
 | |
|       bool HasFallThrough  : 1;
 | |
|       bool IsUnpredicable  : 1;
 | |
|       bool CannotBeCopied  : 1;
 | |
|       bool ClobbersPred    : 1;
 | |
|       unsigned NonPredSize = 0;
 | |
|       unsigned ExtraCost = 0;
 | |
|       unsigned ExtraCost2 = 0;
 | |
|       MachineBasicBlock *BB = nullptr;
 | |
|       MachineBasicBlock *TrueBB = nullptr;
 | |
|       MachineBasicBlock *FalseBB = nullptr;
 | |
|       SmallVector<MachineOperand, 4> BrCond;
 | |
|       SmallVector<MachineOperand, 4> Predicate;
 | |
| 
 | |
|       BBInfo() : IsDone(false), IsBeingAnalyzed(false),
 | |
|                  IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
 | |
|                  IsBrReversible(false), HasFallThrough(false),
 | |
|                  IsUnpredicable(false), CannotBeCopied(false),
 | |
|                  ClobbersPred(false) {}
 | |
|     };
 | |
| 
 | |
|     /// Record information about pending if-conversions to attempt:
 | |
|     /// BBI             - Corresponding BBInfo.
 | |
|     /// Kind            - Type of block. See IfcvtKind.
 | |
|     /// NeedSubsumption - True if the to-be-predicated BB has already been
 | |
|     ///                   predicated.
 | |
|     /// NumDups      - Number of instructions that would be duplicated due
 | |
|     ///                   to this if-conversion. (For diamonds, the number of
 | |
|     ///                   identical instructions at the beginnings of both
 | |
|     ///                   paths).
 | |
|     /// NumDups2     - For diamonds, the number of identical instructions
 | |
|     ///                   at the ends of both paths.
 | |
|     struct IfcvtToken {
 | |
|       BBInfo &BBI;
 | |
|       IfcvtKind Kind;
 | |
|       unsigned NumDups;
 | |
|       unsigned NumDups2;
 | |
|       bool NeedSubsumption : 1;
 | |
|       bool TClobbersPred : 1;
 | |
|       bool FClobbersPred : 1;
 | |
| 
 | |
|       IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
 | |
|                  bool tc = false, bool fc = false)
 | |
|         : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
 | |
|           TClobbersPred(tc), FClobbersPred(fc) {}
 | |
|     };
 | |
| 
 | |
|     /// Results of if-conversion feasibility analysis indexed by basic block
 | |
|     /// number.
 | |
|     std::vector<BBInfo> BBAnalysis;
 | |
|     TargetSchedModel SchedModel;
 | |
| 
 | |
|     const TargetLoweringBase *TLI;
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     const MachineBranchProbabilityInfo *MBPI;
 | |
|     MachineRegisterInfo *MRI;
 | |
| 
 | |
|     LivePhysRegs Redefs;
 | |
| 
 | |
|     bool PreRegAlloc;
 | |
|     bool MadeChange;
 | |
|     int FnNum = -1;
 | |
|     std::function<bool(const MachineFunction &)> PredicateFtor;
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
| 
 | |
|     IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
 | |
|         : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
 | |
|       initializeIfConverterPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<MachineBlockFrequencyInfo>();
 | |
|       AU.addRequired<MachineBranchProbabilityInfo>();
 | |
|       AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|     MachineFunctionProperties getRequiredProperties() const override {
 | |
|       return MachineFunctionProperties().set(
 | |
|           MachineFunctionProperties::Property::NoVRegs);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     bool reverseBranchCondition(BBInfo &BBI) const;
 | |
|     bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
 | |
|                      BranchProbability Prediction) const;
 | |
|     bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
 | |
|                        bool FalseBranch, unsigned &Dups,
 | |
|                        BranchProbability Prediction) const;
 | |
|     bool CountDuplicatedInstructions(
 | |
|         MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
 | |
|         MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
 | |
|         unsigned &Dups1, unsigned &Dups2,
 | |
|         MachineBasicBlock &TBB, MachineBasicBlock &FBB,
 | |
|         bool SkipUnconditionalBranches) const;
 | |
|     bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
 | |
|                       unsigned &Dups1, unsigned &Dups2,
 | |
|                       BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
 | |
|     bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
 | |
|                             unsigned &Dups1, unsigned &Dups2,
 | |
|                             BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
 | |
|     void AnalyzeBranches(BBInfo &BBI);
 | |
|     void ScanInstructions(BBInfo &BBI,
 | |
|                           MachineBasicBlock::iterator &Begin,
 | |
|                           MachineBasicBlock::iterator &End,
 | |
|                           bool BranchUnpredicable = false) const;
 | |
|     bool RescanInstructions(
 | |
|         MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
 | |
|         MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
 | |
|         BBInfo &TrueBBI, BBInfo &FalseBBI) const;
 | |
|     void AnalyzeBlock(MachineBasicBlock &MBB,
 | |
|                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
 | |
|     bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
 | |
|                              bool isTriangle = false, bool RevBranch = false,
 | |
|                              bool hasCommonTail = false);
 | |
|     void AnalyzeBlocks(MachineFunction &MF,
 | |
|                        std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
 | |
|     void InvalidatePreds(MachineBasicBlock &MBB);
 | |
|     bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
 | |
|     bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
 | |
|     bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
 | |
|                                 unsigned NumDups1, unsigned NumDups2,
 | |
|                                 bool TClobbersPred, bool FClobbersPred,
 | |
|                                 bool RemoveBranch, bool MergeAddEdges);
 | |
|     bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
 | |
|                           unsigned NumDups1, unsigned NumDups2,
 | |
|                           bool TClobbers, bool FClobbers);
 | |
|     bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
 | |
|                               unsigned NumDups1, unsigned NumDups2,
 | |
|                               bool TClobbers, bool FClobbers);
 | |
|     void PredicateBlock(BBInfo &BBI,
 | |
|                         MachineBasicBlock::iterator E,
 | |
|                         SmallVectorImpl<MachineOperand> &Cond,
 | |
|                         SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
 | |
|     void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
 | |
|                                SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                bool IgnoreBr = false);
 | |
|     void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
 | |
| 
 | |
|     bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
 | |
|                             unsigned Cycle, unsigned Extra,
 | |
|                             BranchProbability Prediction) const {
 | |
|       return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
 | |
|                                                    Prediction);
 | |
|     }
 | |
| 
 | |
|     bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo,
 | |
|                             MachineBasicBlock &CommBB, unsigned Dups,
 | |
|                             BranchProbability Prediction, bool Forked) const {
 | |
|       const MachineFunction &MF = *TBBInfo.BB->getParent();
 | |
|       if (MF.getFunction().hasMinSize()) {
 | |
|         MachineBasicBlock::iterator TIB = TBBInfo.BB->begin();
 | |
|         MachineBasicBlock::iterator FIB = FBBInfo.BB->begin();
 | |
|         MachineBasicBlock::iterator TIE = TBBInfo.BB->end();
 | |
|         MachineBasicBlock::iterator FIE = FBBInfo.BB->end();
 | |
| 
 | |
|         unsigned Dups1 = 0, Dups2 = 0;
 | |
|         if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
 | |
|                                          *TBBInfo.BB, *FBBInfo.BB,
 | |
|                                          /*SkipUnconditionalBranches*/ true))
 | |
|           llvm_unreachable("should already have been checked by ValidDiamond");
 | |
| 
 | |
|         unsigned BranchBytes = 0;
 | |
|         unsigned CommonBytes = 0;
 | |
| 
 | |
|         // Count common instructions at the start of the true and false blocks.
 | |
|         for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) {
 | |
|           LLVM_DEBUG(dbgs() << "Common inst: " << I);
 | |
|           CommonBytes += TII->getInstSizeInBytes(I);
 | |
|         }
 | |
|         for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) {
 | |
|           LLVM_DEBUG(dbgs() << "Common inst: " << I);
 | |
|           CommonBytes += TII->getInstSizeInBytes(I);
 | |
|         }
 | |
| 
 | |
|         // Count instructions at the end of the true and false blocks, after
 | |
|         // the ones we plan to predicate. Analyzable branches will be removed
 | |
|         // (unless this is a forked diamond), and all other instructions are
 | |
|         // common between the two blocks.
 | |
|         for (auto &I : make_range(TIE, TBBInfo.BB->end())) {
 | |
|           if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) {
 | |
|             LLVM_DEBUG(dbgs() << "Saving branch: " << I);
 | |
|             BranchBytes += TII->predictBranchSizeForIfCvt(I);
 | |
|           } else {
 | |
|             LLVM_DEBUG(dbgs() << "Common inst: " << I);
 | |
|             CommonBytes += TII->getInstSizeInBytes(I);
 | |
|           }
 | |
|         }
 | |
|         for (auto &I : make_range(FIE, FBBInfo.BB->end())) {
 | |
|           if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) {
 | |
|             LLVM_DEBUG(dbgs() << "Saving branch: " << I);
 | |
|             BranchBytes += TII->predictBranchSizeForIfCvt(I);
 | |
|           } else {
 | |
|             LLVM_DEBUG(dbgs() << "Common inst: " << I);
 | |
|             CommonBytes += TII->getInstSizeInBytes(I);
 | |
|           }
 | |
|         }
 | |
|         for (auto &I : CommBB.terminators()) {
 | |
|           if (I.isBranch()) {
 | |
|             LLVM_DEBUG(dbgs() << "Saving branch: " << I);
 | |
|             BranchBytes += TII->predictBranchSizeForIfCvt(I);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // The common instructions in one branch will be eliminated, halving
 | |
|         // their code size.
 | |
|         CommonBytes /= 2;
 | |
| 
 | |
|         // Count the instructions which we need to predicate.
 | |
|         unsigned NumPredicatedInstructions = 0;
 | |
|         for (auto &I : make_range(TIB, TIE)) {
 | |
|           if (!I.isDebugInstr()) {
 | |
|             LLVM_DEBUG(dbgs() << "Predicating: " << I);
 | |
|             NumPredicatedInstructions++;
 | |
|           }
 | |
|         }
 | |
|         for (auto &I : make_range(FIB, FIE)) {
 | |
|           if (!I.isDebugInstr()) {
 | |
|             LLVM_DEBUG(dbgs() << "Predicating: " << I);
 | |
|             NumPredicatedInstructions++;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Even though we're optimising for size at the expense of performance,
 | |
|         // avoid creating really long predicated blocks.
 | |
|         if (NumPredicatedInstructions > 15)
 | |
|           return false;
 | |
| 
 | |
|         // Some targets (e.g. Thumb2) need to insert extra instructions to
 | |
|         // start predicated blocks.
 | |
|         unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions(
 | |
|             MF, NumPredicatedInstructions);
 | |
| 
 | |
|         LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
 | |
|                           << ", CommonBytes=" << CommonBytes
 | |
|                           << ", NumPredicatedInstructions="
 | |
|                           << NumPredicatedInstructions
 | |
|                           << ", ExtraPredicateBytes=" << ExtraPredicateBytes
 | |
|                           << ")\n");
 | |
|         return (BranchBytes + CommonBytes) > ExtraPredicateBytes;
 | |
|       } else {
 | |
|         unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups;
 | |
|         unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups;
 | |
|         bool Res = TCycle > 0 && FCycle > 0 &&
 | |
|                    TII->isProfitableToIfCvt(
 | |
|                        *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB,
 | |
|                        FCycle, FBBInfo.ExtraCost2, Prediction);
 | |
|         LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
 | |
|                           << ", FCycle=" << FCycle
 | |
|                           << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra="
 | |
|                           << FBBInfo.ExtraCost2 << ") = " << Res << "\n");
 | |
|         return Res;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// Returns true if Block ends without a terminator.
 | |
|     bool blockAlwaysFallThrough(BBInfo &BBI) const {
 | |
|       return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
 | |
|     }
 | |
| 
 | |
|     /// Used to sort if-conversion candidates.
 | |
|     static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
 | |
|                               const std::unique_ptr<IfcvtToken> &C2) {
 | |
|       int Incr1 = (C1->Kind == ICDiamond)
 | |
|         ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
 | |
|       int Incr2 = (C2->Kind == ICDiamond)
 | |
|         ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
 | |
|       if (Incr1 > Incr2)
 | |
|         return true;
 | |
|       else if (Incr1 == Incr2) {
 | |
|         // Favors subsumption.
 | |
|         if (!C1->NeedSubsumption && C2->NeedSubsumption)
 | |
|           return true;
 | |
|         else if (C1->NeedSubsumption == C2->NeedSubsumption) {
 | |
|           // Favors diamond over triangle, etc.
 | |
|           if ((unsigned)C1->Kind < (unsigned)C2->Kind)
 | |
|             return true;
 | |
|           else if (C1->Kind == C2->Kind)
 | |
|             return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
 | |
|         }
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char IfConverter::ID = 0;
 | |
| 
 | |
| char &llvm::IfConverterID = IfConverter::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
 | |
| 
 | |
| bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
 | |
|     return false;
 | |
| 
 | |
|   const TargetSubtargetInfo &ST = MF.getSubtarget();
 | |
|   TLI = ST.getTargetLowering();
 | |
|   TII = ST.getInstrInfo();
 | |
|   TRI = ST.getRegisterInfo();
 | |
|   MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
 | |
|   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
 | |
|   ProfileSummaryInfo *PSI =
 | |
|       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   SchedModel.init(&ST);
 | |
| 
 | |
|   if (!TII) return false;
 | |
| 
 | |
|   PreRegAlloc = MRI->isSSA();
 | |
| 
 | |
|   bool BFChange = false;
 | |
|   if (!PreRegAlloc) {
 | |
|     // Tail merge tend to expose more if-conversion opportunities.
 | |
|     BranchFolder BF(true, false, MBFI, *MBPI, PSI);
 | |
|     BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo());
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
 | |
|                     << MF.getName() << "\'");
 | |
| 
 | |
|   if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
 | |
|     LLVM_DEBUG(dbgs() << " skipped\n");
 | |
|     return false;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "\n");
 | |
| 
 | |
|   MF.RenumberBlocks();
 | |
|   BBAnalysis.resize(MF.getNumBlockIDs());
 | |
| 
 | |
|   std::vector<std::unique_ptr<IfcvtToken>> Tokens;
 | |
|   MadeChange = false;
 | |
|   unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
 | |
|     NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
 | |
|   while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
 | |
|     // Do an initial analysis for each basic block and find all the potential
 | |
|     // candidates to perform if-conversion.
 | |
|     bool Change = false;
 | |
|     AnalyzeBlocks(MF, Tokens);
 | |
|     while (!Tokens.empty()) {
 | |
|       std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
 | |
|       Tokens.pop_back();
 | |
|       BBInfo &BBI = Token->BBI;
 | |
|       IfcvtKind Kind = Token->Kind;
 | |
|       unsigned NumDups = Token->NumDups;
 | |
|       unsigned NumDups2 = Token->NumDups2;
 | |
| 
 | |
|       // If the block has been evicted out of the queue or it has already been
 | |
|       // marked dead (due to it being predicated), then skip it.
 | |
|       if (BBI.IsDone)
 | |
|         BBI.IsEnqueued = false;
 | |
|       if (!BBI.IsEnqueued)
 | |
|         continue;
 | |
| 
 | |
|       BBI.IsEnqueued = false;
 | |
| 
 | |
|       bool RetVal = false;
 | |
|       switch (Kind) {
 | |
|       default: llvm_unreachable("Unexpected!");
 | |
|       case ICSimple:
 | |
|       case ICSimpleFalse: {
 | |
|         bool isFalse = Kind == ICSimpleFalse;
 | |
|         if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
 | |
|         LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
 | |
|                           << (Kind == ICSimpleFalse ? " false" : "")
 | |
|                           << "): " << printMBBReference(*BBI.BB) << " ("
 | |
|                           << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
 | |
|                                                       : BBI.TrueBB->getNumber())
 | |
|                           << ") ");
 | |
|         RetVal = IfConvertSimple(BBI, Kind);
 | |
|         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
 | |
|         if (RetVal) {
 | |
|           if (isFalse) ++NumSimpleFalse;
 | |
|           else         ++NumSimple;
 | |
|         }
 | |
|        break;
 | |
|       }
 | |
|       case ICTriangle:
 | |
|       case ICTriangleRev:
 | |
|       case ICTriangleFalse:
 | |
|       case ICTriangleFRev: {
 | |
|         bool isFalse = Kind == ICTriangleFalse;
 | |
|         bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
 | |
|         if (DisableTriangle && !isFalse && !isRev) break;
 | |
|         if (DisableTriangleR && !isFalse && isRev) break;
 | |
|         if (DisableTriangleF && isFalse && !isRev) break;
 | |
|         if (DisableTriangleFR && isFalse && isRev) break;
 | |
|         LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
 | |
|         if (isFalse)
 | |
|           LLVM_DEBUG(dbgs() << " false");
 | |
|         if (isRev)
 | |
|           LLVM_DEBUG(dbgs() << " rev");
 | |
|         LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
 | |
|                           << " (T:" << BBI.TrueBB->getNumber()
 | |
|                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
 | |
|         RetVal = IfConvertTriangle(BBI, Kind);
 | |
|         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
 | |
|         if (RetVal) {
 | |
|           if (isFalse) {
 | |
|             if (isRev) ++NumTriangleFRev;
 | |
|             else       ++NumTriangleFalse;
 | |
|           } else {
 | |
|             if (isRev) ++NumTriangleRev;
 | |
|             else       ++NumTriangle;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case ICDiamond:
 | |
|         if (DisableDiamond) break;
 | |
|         LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
 | |
|                           << " (T:" << BBI.TrueBB->getNumber()
 | |
|                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
 | |
|         RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
 | |
|                                   Token->TClobbersPred,
 | |
|                                   Token->FClobbersPred);
 | |
|         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
 | |
|         if (RetVal) ++NumDiamonds;
 | |
|         break;
 | |
|       case ICForkedDiamond:
 | |
|         if (DisableForkedDiamond) break;
 | |
|         LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
 | |
|                           << printMBBReference(*BBI.BB)
 | |
|                           << " (T:" << BBI.TrueBB->getNumber()
 | |
|                           << ",F:" << BBI.FalseBB->getNumber() << ") ");
 | |
|         RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
 | |
|                                       Token->TClobbersPred,
 | |
|                                       Token->FClobbersPred);
 | |
|         LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
 | |
|         if (RetVal) ++NumForkedDiamonds;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (RetVal && MRI->tracksLiveness())
 | |
|         recomputeLivenessFlags(*BBI.BB);
 | |
| 
 | |
|       Change |= RetVal;
 | |
| 
 | |
|       NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
 | |
|         NumTriangleFalse + NumTriangleFRev + NumDiamonds;
 | |
|       if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (!Change)
 | |
|       break;
 | |
|     MadeChange |= Change;
 | |
|   }
 | |
| 
 | |
|   Tokens.clear();
 | |
|   BBAnalysis.clear();
 | |
| 
 | |
|   if (MadeChange && IfCvtBranchFold) {
 | |
|     BranchFolder BF(false, false, MBFI, *MBPI, PSI);
 | |
|     BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo());
 | |
|   }
 | |
| 
 | |
|   MadeChange |= BFChange;
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
 | |
| static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
 | |
|                                          MachineBasicBlock *TrueBB) {
 | |
|   for (MachineBasicBlock *SuccBB : BB->successors()) {
 | |
|     if (SuccBB != TrueBB)
 | |
|       return SuccBB;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Reverse the condition of the end of the block branch. Swap block's 'true'
 | |
| /// and 'false' successors.
 | |
| bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
 | |
|   DebugLoc dl;  // FIXME: this is nowhere
 | |
|   if (!TII->reverseBranchCondition(BBI.BrCond)) {
 | |
|     TII->removeBranch(*BBI.BB);
 | |
|     TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
 | |
|     std::swap(BBI.TrueBB, BBI.FalseBB);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns the next block in the function blocks ordering. If it is the end,
 | |
| /// returns NULL.
 | |
| static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
 | |
|   MachineFunction::iterator I = MBB.getIterator();
 | |
|   MachineFunction::iterator E = MBB.getParent()->end();
 | |
|   if (++I == E)
 | |
|     return nullptr;
 | |
|   return &*I;
 | |
| }
 | |
| 
 | |
| /// Returns true if the 'true' block (along with its predecessor) forms a valid
 | |
| /// simple shape for ifcvt. It also returns the number of instructions that the
 | |
| /// ifcvt would need to duplicate if performed in Dups.
 | |
| bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
 | |
|                               BranchProbability Prediction) const {
 | |
|   Dups = 0;
 | |
|   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
 | |
|     return false;
 | |
| 
 | |
|   if (TrueBBI.IsBrAnalyzable)
 | |
|     return false;
 | |
| 
 | |
|   if (TrueBBI.BB->pred_size() > 1) {
 | |
|     if (TrueBBI.CannotBeCopied ||
 | |
|         !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
 | |
|                                         Prediction))
 | |
|       return false;
 | |
|     Dups = TrueBBI.NonPredSize;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns true if the 'true' and 'false' blocks (along with their common
 | |
| /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
 | |
| /// true, it checks if 'true' block's false branch branches to the 'false' block
 | |
| /// rather than the other way around. It also returns the number of instructions
 | |
| /// that the ifcvt would need to duplicate if performed in 'Dups'.
 | |
| bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
 | |
|                                 bool FalseBranch, unsigned &Dups,
 | |
|                                 BranchProbability Prediction) const {
 | |
|   Dups = 0;
 | |
|   if (TrueBBI.BB == FalseBBI.BB)
 | |
|     return false;
 | |
| 
 | |
|   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
 | |
|     return false;
 | |
| 
 | |
|   if (TrueBBI.BB->pred_size() > 1) {
 | |
|     if (TrueBBI.CannotBeCopied)
 | |
|       return false;
 | |
| 
 | |
|     unsigned Size = TrueBBI.NonPredSize;
 | |
|     if (TrueBBI.IsBrAnalyzable) {
 | |
|       if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
 | |
|         // Ends with an unconditional branch. It will be removed.
 | |
|         --Size;
 | |
|       else {
 | |
|         MachineBasicBlock *FExit = FalseBranch
 | |
|           ? TrueBBI.TrueBB : TrueBBI.FalseBB;
 | |
|         if (FExit)
 | |
|           // Require a conditional branch
 | |
|           ++Size;
 | |
|       }
 | |
|     }
 | |
|     if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
 | |
|       return false;
 | |
|     Dups = Size;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
 | |
|   if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
 | |
|     MachineFunction::iterator I = TrueBBI.BB->getIterator();
 | |
|     if (++I == TrueBBI.BB->getParent()->end())
 | |
|       return false;
 | |
|     TExit = &*I;
 | |
|   }
 | |
|   return TExit && TExit == FalseBBI.BB;
 | |
| }
 | |
| 
 | |
| /// Count duplicated instructions and move the iterators to show where they
 | |
| /// are.
 | |
| /// @param TIB True Iterator Begin
 | |
| /// @param FIB False Iterator Begin
 | |
| /// These two iterators initially point to the first instruction of the two
 | |
| /// blocks, and finally point to the first non-shared instruction.
 | |
| /// @param TIE True Iterator End
 | |
| /// @param FIE False Iterator End
 | |
| /// These two iterators initially point to End() for the two blocks() and
 | |
| /// finally point to the first shared instruction in the tail.
 | |
| /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
 | |
| /// two blocks.
 | |
| /// @param Dups1 count of duplicated instructions at the beginning of the 2
 | |
| /// blocks.
 | |
| /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
 | |
| /// @param SkipUnconditionalBranches if true, Don't make sure that
 | |
| /// unconditional branches at the end of the blocks are the same. True is
 | |
| /// passed when the blocks are analyzable to allow for fallthrough to be
 | |
| /// handled.
 | |
| /// @return false if the shared portion prevents if conversion.
 | |
| bool IfConverter::CountDuplicatedInstructions(
 | |
|     MachineBasicBlock::iterator &TIB,
 | |
|     MachineBasicBlock::iterator &FIB,
 | |
|     MachineBasicBlock::iterator &TIE,
 | |
|     MachineBasicBlock::iterator &FIE,
 | |
|     unsigned &Dups1, unsigned &Dups2,
 | |
|     MachineBasicBlock &TBB, MachineBasicBlock &FBB,
 | |
|     bool SkipUnconditionalBranches) const {
 | |
|   while (TIB != TIE && FIB != FIE) {
 | |
|     // Skip dbg_value instructions. These do not count.
 | |
|     TIB = skipDebugInstructionsForward(TIB, TIE, false);
 | |
|     FIB = skipDebugInstructionsForward(FIB, FIE, false);
 | |
|     if (TIB == TIE || FIB == FIE)
 | |
|       break;
 | |
|     if (!TIB->isIdenticalTo(*FIB))
 | |
|       break;
 | |
|     // A pred-clobbering instruction in the shared portion prevents
 | |
|     // if-conversion.
 | |
|     std::vector<MachineOperand> PredDefs;
 | |
|     if (TII->ClobbersPredicate(*TIB, PredDefs, false))
 | |
|       return false;
 | |
|     // If we get all the way to the branch instructions, don't count them.
 | |
|     if (!TIB->isBranch())
 | |
|       ++Dups1;
 | |
|     ++TIB;
 | |
|     ++FIB;
 | |
|   }
 | |
| 
 | |
|   // Check for already containing all of the block.
 | |
|   if (TIB == TIE || FIB == FIE)
 | |
|     return true;
 | |
|   // Now, in preparation for counting duplicate instructions at the ends of the
 | |
|   // blocks, switch to reverse_iterators. Note that getReverse() returns an
 | |
|   // iterator that points to the same instruction, unlike std::reverse_iterator.
 | |
|   // We have to do our own shifting so that we get the same range.
 | |
|   MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
 | |
|   MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
 | |
|   const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
 | |
|   const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
 | |
| 
 | |
|   if (!TBB.succ_empty() || !FBB.succ_empty()) {
 | |
|     if (SkipUnconditionalBranches) {
 | |
|       while (RTIE != RTIB && RTIE->isUnconditionalBranch())
 | |
|         ++RTIE;
 | |
|       while (RFIE != RFIB && RFIE->isUnconditionalBranch())
 | |
|         ++RFIE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Count duplicate instructions at the ends of the blocks.
 | |
|   while (RTIE != RTIB && RFIE != RFIB) {
 | |
|     // Skip dbg_value instructions. These do not count.
 | |
|     // Note that these are reverse iterators going forward.
 | |
|     RTIE = skipDebugInstructionsForward(RTIE, RTIB, false);
 | |
|     RFIE = skipDebugInstructionsForward(RFIE, RFIB, false);
 | |
|     if (RTIE == RTIB || RFIE == RFIB)
 | |
|       break;
 | |
|     if (!RTIE->isIdenticalTo(*RFIE))
 | |
|       break;
 | |
|     // We have to verify that any branch instructions are the same, and then we
 | |
|     // don't count them toward the # of duplicate instructions.
 | |
|     if (!RTIE->isBranch())
 | |
|       ++Dups2;
 | |
|     ++RTIE;
 | |
|     ++RFIE;
 | |
|   }
 | |
|   TIE = std::next(RTIE.getReverse());
 | |
|   FIE = std::next(RFIE.getReverse());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// RescanInstructions - Run ScanInstructions on a pair of blocks.
 | |
| /// @param TIB - True Iterator Begin, points to first non-shared instruction
 | |
| /// @param FIB - False Iterator Begin, points to first non-shared instruction
 | |
| /// @param TIE - True Iterator End, points past last non-shared instruction
 | |
| /// @param FIE - False Iterator End, points past last non-shared instruction
 | |
| /// @param TrueBBI  - BBInfo to update for the true block.
 | |
| /// @param FalseBBI - BBInfo to update for the false block.
 | |
| /// @returns - false if either block cannot be predicated or if both blocks end
 | |
| ///   with a predicate-clobbering instruction.
 | |
| bool IfConverter::RescanInstructions(
 | |
|     MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
 | |
|     MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
 | |
|     BBInfo &TrueBBI, BBInfo &FalseBBI) const {
 | |
|   bool BranchUnpredicable = true;
 | |
|   TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
 | |
|   ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
 | |
|   if (TrueBBI.IsUnpredicable)
 | |
|     return false;
 | |
|   ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
 | |
|   if (FalseBBI.IsUnpredicable)
 | |
|     return false;
 | |
|   if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static void verifySameBranchInstructions(
 | |
|     MachineBasicBlock *MBB1,
 | |
|     MachineBasicBlock *MBB2) {
 | |
|   const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
 | |
|   const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
 | |
|   MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
 | |
|   MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
 | |
|   while (E1 != B1 && E2 != B2) {
 | |
|     skipDebugInstructionsForward(E1, B1, false);
 | |
|     skipDebugInstructionsForward(E2, B2, false);
 | |
|     if (E1 == B1 && E2 == B2)
 | |
|       break;
 | |
| 
 | |
|     if (E1 == B1) {
 | |
|       assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
 | |
|       break;
 | |
|     }
 | |
|     if (E2 == B2) {
 | |
|       assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (E1->isBranch() || E2->isBranch())
 | |
|       assert(E1->isIdenticalTo(*E2) &&
 | |
|              "Branch mis-match, branch instructions don't match.");
 | |
|     else
 | |
|       break;
 | |
|     ++E1;
 | |
|     ++E2;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
 | |
| /// with their common predecessor) form a diamond if a common tail block is
 | |
| /// extracted.
 | |
| /// While not strictly a diamond, this pattern would form a diamond if
 | |
| /// tail-merging had merged the shared tails.
 | |
| ///           EBB
 | |
| ///         _/   \_
 | |
| ///         |     |
 | |
| ///        TBB   FBB
 | |
| ///        /  \ /   \
 | |
| ///  FalseBB TrueBB FalseBB
 | |
| /// Currently only handles analyzable branches.
 | |
| /// Specifically excludes actual diamonds to avoid overlap.
 | |
| bool IfConverter::ValidForkedDiamond(
 | |
|     BBInfo &TrueBBI, BBInfo &FalseBBI,
 | |
|     unsigned &Dups1, unsigned &Dups2,
 | |
|     BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
 | |
|   Dups1 = Dups2 = 0;
 | |
|   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
 | |
|       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
 | |
|     return false;
 | |
| 
 | |
|   if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
 | |
|     return false;
 | |
|   // Don't IfConvert blocks that can't be folded into their predecessor.
 | |
|   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
 | |
|     return false;
 | |
| 
 | |
|   // This function is specifically looking for conditional tails, as
 | |
|   // unconditional tails are already handled by the standard diamond case.
 | |
|   if (TrueBBI.BrCond.size() == 0 ||
 | |
|       FalseBBI.BrCond.size() == 0)
 | |
|     return false;
 | |
| 
 | |
|   MachineBasicBlock *TT = TrueBBI.TrueBB;
 | |
|   MachineBasicBlock *TF = TrueBBI.FalseBB;
 | |
|   MachineBasicBlock *FT = FalseBBI.TrueBB;
 | |
|   MachineBasicBlock *FF = FalseBBI.FalseBB;
 | |
| 
 | |
|   if (!TT)
 | |
|     TT = getNextBlock(*TrueBBI.BB);
 | |
|   if (!TF)
 | |
|     TF = getNextBlock(*TrueBBI.BB);
 | |
|   if (!FT)
 | |
|     FT = getNextBlock(*FalseBBI.BB);
 | |
|   if (!FF)
 | |
|     FF = getNextBlock(*FalseBBI.BB);
 | |
| 
 | |
|   if (!TT || !TF)
 | |
|     return false;
 | |
| 
 | |
|   // Check successors. If they don't match, bail.
 | |
|   if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
 | |
|     return false;
 | |
| 
 | |
|   bool FalseReversed = false;
 | |
|   if (TF == FT && TT == FF) {
 | |
|     // If the branches are opposing, but we can't reverse, don't do it.
 | |
|     if (!FalseBBI.IsBrReversible)
 | |
|       return false;
 | |
|     FalseReversed = true;
 | |
|     reverseBranchCondition(FalseBBI);
 | |
|   }
 | |
|   auto UnReverseOnExit = make_scope_exit([&]() {
 | |
|     if (FalseReversed)
 | |
|       reverseBranchCondition(FalseBBI);
 | |
|   });
 | |
| 
 | |
|   // Count duplicate instructions at the beginning of the true and false blocks.
 | |
|   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
 | |
|   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
 | |
|   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
 | |
|   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
 | |
|   if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
 | |
|                                   *TrueBBI.BB, *FalseBBI.BB,
 | |
|                                   /* SkipUnconditionalBranches */ true))
 | |
|     return false;
 | |
| 
 | |
|   TrueBBICalc.BB = TrueBBI.BB;
 | |
|   FalseBBICalc.BB = FalseBBI.BB;
 | |
|   TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
 | |
|   FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
 | |
|   if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
 | |
|     return false;
 | |
| 
 | |
|   // The size is used to decide whether to if-convert, and the shared portions
 | |
|   // are subtracted off. Because of the subtraction, we just use the size that
 | |
|   // was calculated by the original ScanInstructions, as it is correct.
 | |
|   TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
 | |
|   FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
 | |
| /// with their common predecessor) forms a valid diamond shape for ifcvt.
 | |
| bool IfConverter::ValidDiamond(
 | |
|     BBInfo &TrueBBI, BBInfo &FalseBBI,
 | |
|     unsigned &Dups1, unsigned &Dups2,
 | |
|     BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
 | |
|   Dups1 = Dups2 = 0;
 | |
|   if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
 | |
|       FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
 | |
|     return false;
 | |
| 
 | |
|   // If the True and False BBs are equal we're dealing with a degenerate case
 | |
|   // that we don't treat as a diamond.
 | |
|   if (TrueBBI.BB == FalseBBI.BB)
 | |
|     return false;
 | |
| 
 | |
|   MachineBasicBlock *TT = TrueBBI.TrueBB;
 | |
|   MachineBasicBlock *FT = FalseBBI.TrueBB;
 | |
| 
 | |
|   if (!TT && blockAlwaysFallThrough(TrueBBI))
 | |
|     TT = getNextBlock(*TrueBBI.BB);
 | |
|   if (!FT && blockAlwaysFallThrough(FalseBBI))
 | |
|     FT = getNextBlock(*FalseBBI.BB);
 | |
|   if (TT != FT)
 | |
|     return false;
 | |
|   if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
 | |
|     return false;
 | |
|   if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: Allow true block to have an early exit?
 | |
|   if (TrueBBI.FalseBB || FalseBBI.FalseBB)
 | |
|     return false;
 | |
| 
 | |
|   // Count duplicate instructions at the beginning and end of the true and
 | |
|   // false blocks.
 | |
|   // Skip unconditional branches only if we are considering an analyzable
 | |
|   // diamond. Otherwise the branches must be the same.
 | |
|   bool SkipUnconditionalBranches =
 | |
|       TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
 | |
|   MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
 | |
|   MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
 | |
|   MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
 | |
|   MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
 | |
|   if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
 | |
|                                   *TrueBBI.BB, *FalseBBI.BB,
 | |
|                                   SkipUnconditionalBranches))
 | |
|     return false;
 | |
| 
 | |
|   TrueBBICalc.BB = TrueBBI.BB;
 | |
|   FalseBBICalc.BB = FalseBBI.BB;
 | |
|   TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
 | |
|   FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
 | |
|   if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
 | |
|     return false;
 | |
|   // The size is used to decide whether to if-convert, and the shared portions
 | |
|   // are subtracted off. Because of the subtraction, we just use the size that
 | |
|   // was calculated by the original ScanInstructions, as it is correct.
 | |
|   TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
 | |
|   FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// AnalyzeBranches - Look at the branches at the end of a block to determine if
 | |
| /// the block is predicable.
 | |
| void IfConverter::AnalyzeBranches(BBInfo &BBI) {
 | |
|   if (BBI.IsDone)
 | |
|     return;
 | |
| 
 | |
|   BBI.TrueBB = BBI.FalseBB = nullptr;
 | |
|   BBI.BrCond.clear();
 | |
|   BBI.IsBrAnalyzable =
 | |
|       !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
 | |
|   if (!BBI.IsBrAnalyzable) {
 | |
|     BBI.TrueBB = nullptr;
 | |
|     BBI.FalseBB = nullptr;
 | |
|     BBI.BrCond.clear();
 | |
|   }
 | |
| 
 | |
|   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
 | |
|   BBI.IsBrReversible = (RevCond.size() == 0) ||
 | |
|       !TII->reverseBranchCondition(RevCond);
 | |
|   BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
 | |
| 
 | |
|   if (BBI.BrCond.size()) {
 | |
|     // No false branch. This BB must end with a conditional branch and a
 | |
|     // fallthrough.
 | |
|     if (!BBI.FalseBB)
 | |
|       BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
 | |
|     if (!BBI.FalseBB) {
 | |
|       // Malformed bcc? True and false blocks are the same?
 | |
|       BBI.IsUnpredicable = true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScanInstructions - Scan all the instructions in the block to determine if
 | |
| /// the block is predicable. In most cases, that means all the instructions
 | |
| /// in the block are isPredicable(). Also checks if the block contains any
 | |
| /// instruction which can clobber a predicate (e.g. condition code register).
 | |
| /// If so, the block is not predicable unless it's the last instruction.
 | |
| void IfConverter::ScanInstructions(BBInfo &BBI,
 | |
|                                    MachineBasicBlock::iterator &Begin,
 | |
|                                    MachineBasicBlock::iterator &End,
 | |
|                                    bool BranchUnpredicable) const {
 | |
|   if (BBI.IsDone || BBI.IsUnpredicable)
 | |
|     return;
 | |
| 
 | |
|   bool AlreadyPredicated = !BBI.Predicate.empty();
 | |
| 
 | |
|   BBI.NonPredSize = 0;
 | |
|   BBI.ExtraCost = 0;
 | |
|   BBI.ExtraCost2 = 0;
 | |
|   BBI.ClobbersPred = false;
 | |
|   for (MachineInstr &MI : make_range(Begin, End)) {
 | |
|     if (MI.isDebugInstr())
 | |
|       continue;
 | |
| 
 | |
|     // It's unsafe to duplicate convergent instructions in this context, so set
 | |
|     // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
 | |
|     // following CFG, which is subject to our "simple" transformation.
 | |
|     //
 | |
|     //    BB0     // if (c1) goto BB1; else goto BB2;
 | |
|     //   /   \
 | |
|     //  BB1   |
 | |
|     //   |   BB2  // if (c2) goto TBB; else goto FBB;
 | |
|     //   |   / |
 | |
|     //   |  /  |
 | |
|     //   TBB   |
 | |
|     //    |    |
 | |
|     //    |   FBB
 | |
|     //    |
 | |
|     //    exit
 | |
|     //
 | |
|     // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
 | |
|     // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
 | |
|     // TBB contains a convergent instruction.  This is safe iff doing so does
 | |
|     // not add a control-flow dependency to the convergent instruction -- i.e.,
 | |
|     // it's safe iff the set of control flows that leads us to the convergent
 | |
|     // instruction does not get smaller after the transformation.
 | |
|     //
 | |
|     // Originally we executed TBB if c1 || c2.  After the transformation, there
 | |
|     // are two copies of TBB's instructions.  We get to the first if c1, and we
 | |
|     // get to the second if !c1 && c2.
 | |
|     //
 | |
|     // There are clearly fewer ways to satisfy the condition "c1" than
 | |
|     // "c1 || c2".  Since we've shrunk the set of control flows which lead to
 | |
|     // our convergent instruction, the transformation is unsafe.
 | |
|     if (MI.isNotDuplicable() || MI.isConvergent())
 | |
|       BBI.CannotBeCopied = true;
 | |
| 
 | |
|     bool isPredicated = TII->isPredicated(MI);
 | |
|     bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
 | |
| 
 | |
|     if (BranchUnpredicable && MI.isBranch()) {
 | |
|       BBI.IsUnpredicable = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // A conditional branch is not predicable, but it may be eliminated.
 | |
|     if (isCondBr)
 | |
|       continue;
 | |
| 
 | |
|     if (!isPredicated) {
 | |
|       BBI.NonPredSize++;
 | |
|       unsigned ExtraPredCost = TII->getPredicationCost(MI);
 | |
|       unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
 | |
|       if (NumCycles > 1)
 | |
|         BBI.ExtraCost += NumCycles-1;
 | |
|       BBI.ExtraCost2 += ExtraPredCost;
 | |
|     } else if (!AlreadyPredicated) {
 | |
|       // FIXME: This instruction is already predicated before the
 | |
|       // if-conversion pass. It's probably something like a conditional move.
 | |
|       // Mark this block unpredicable for now.
 | |
|       BBI.IsUnpredicable = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (BBI.ClobbersPred && !isPredicated) {
 | |
|       // Predicate modification instruction should end the block (except for
 | |
|       // already predicated instructions and end of block branches).
 | |
|       // Predicate may have been modified, the subsequent (currently)
 | |
|       // unpredicated instructions cannot be correctly predicated.
 | |
|       BBI.IsUnpredicable = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
 | |
|     // still potentially predicable.
 | |
|     std::vector<MachineOperand> PredDefs;
 | |
|     if (TII->ClobbersPredicate(MI, PredDefs, true))
 | |
|       BBI.ClobbersPred = true;
 | |
| 
 | |
|     if (!TII->isPredicable(MI)) {
 | |
|       BBI.IsUnpredicable = true;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determine if the block is a suitable candidate to be predicated by the
 | |
| /// specified predicate.
 | |
| /// @param BBI BBInfo for the block to check
 | |
| /// @param Pred Predicate array for the branch that leads to BBI
 | |
| /// @param isTriangle true if the Analysis is for a triangle
 | |
| /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
 | |
| ///        case
 | |
| /// @param hasCommonTail true if BBI shares a tail with a sibling block that
 | |
| ///        contains any instruction that would make the block unpredicable.
 | |
| bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
 | |
|                                       SmallVectorImpl<MachineOperand> &Pred,
 | |
|                                       bool isTriangle, bool RevBranch,
 | |
|                                       bool hasCommonTail) {
 | |
|   // If the block is dead or unpredicable, then it cannot be predicated.
 | |
|   // Two blocks may share a common unpredicable tail, but this doesn't prevent
 | |
|   // them from being if-converted. The non-shared portion is assumed to have
 | |
|   // been checked
 | |
|   if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
 | |
|     return false;
 | |
| 
 | |
|   // If it is already predicated but we couldn't analyze its terminator, the
 | |
|   // latter might fallthrough, but we can't determine where to.
 | |
|   // Conservatively avoid if-converting again.
 | |
|   if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
 | |
|     return false;
 | |
| 
 | |
|   // If it is already predicated, check if the new predicate subsumes
 | |
|   // its predicate.
 | |
|   if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
 | |
|     return false;
 | |
| 
 | |
|   if (!hasCommonTail && BBI.BrCond.size()) {
 | |
|     if (!isTriangle)
 | |
|       return false;
 | |
| 
 | |
|     // Test predicate subsumption.
 | |
|     SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
 | |
|     SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
 | |
|     if (RevBranch) {
 | |
|       if (TII->reverseBranchCondition(Cond))
 | |
|         return false;
 | |
|     }
 | |
|     if (TII->reverseBranchCondition(RevPred) ||
 | |
|         !TII->SubsumesPredicate(Cond, RevPred))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Analyze the structure of the sub-CFG starting from the specified block.
 | |
| /// Record its successors and whether it looks like an if-conversion candidate.
 | |
| void IfConverter::AnalyzeBlock(
 | |
|     MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
 | |
|   struct BBState {
 | |
|     BBState(MachineBasicBlock &MBB) : MBB(&MBB) {}
 | |
|     MachineBasicBlock *MBB;
 | |
| 
 | |
|     /// This flag is true if MBB's successors have been analyzed.
 | |
|     bool SuccsAnalyzed = false;
 | |
|   };
 | |
| 
 | |
|   // Push MBB to the stack.
 | |
|   SmallVector<BBState, 16> BBStack(1, MBB);
 | |
| 
 | |
|   while (!BBStack.empty()) {
 | |
|     BBState &State = BBStack.back();
 | |
|     MachineBasicBlock *BB = State.MBB;
 | |
|     BBInfo &BBI = BBAnalysis[BB->getNumber()];
 | |
| 
 | |
|     if (!State.SuccsAnalyzed) {
 | |
|       if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
 | |
|         BBStack.pop_back();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       BBI.BB = BB;
 | |
|       BBI.IsBeingAnalyzed = true;
 | |
| 
 | |
|       AnalyzeBranches(BBI);
 | |
|       MachineBasicBlock::iterator Begin = BBI.BB->begin();
 | |
|       MachineBasicBlock::iterator End = BBI.BB->end();
 | |
|       ScanInstructions(BBI, Begin, End);
 | |
| 
 | |
|       // Unanalyzable or ends with fallthrough or unconditional branch, or if is
 | |
|       // not considered for ifcvt anymore.
 | |
|       if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
 | |
|         BBI.IsBeingAnalyzed = false;
 | |
|         BBI.IsAnalyzed = true;
 | |
|         BBStack.pop_back();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Do not ifcvt if either path is a back edge to the entry block.
 | |
|       if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
 | |
|         BBI.IsBeingAnalyzed = false;
 | |
|         BBI.IsAnalyzed = true;
 | |
|         BBStack.pop_back();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Do not ifcvt if true and false fallthrough blocks are the same.
 | |
|       if (!BBI.FalseBB) {
 | |
|         BBI.IsBeingAnalyzed = false;
 | |
|         BBI.IsAnalyzed = true;
 | |
|         BBStack.pop_back();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Push the False and True blocks to the stack.
 | |
|       State.SuccsAnalyzed = true;
 | |
|       BBStack.push_back(*BBI.FalseBB);
 | |
|       BBStack.push_back(*BBI.TrueBB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
 | |
|     BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
 | |
| 
 | |
|     if (TrueBBI.IsDone && FalseBBI.IsDone) {
 | |
|       BBI.IsBeingAnalyzed = false;
 | |
|       BBI.IsAnalyzed = true;
 | |
|       BBStack.pop_back();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SmallVector<MachineOperand, 4>
 | |
|         RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
 | |
|     bool CanRevCond = !TII->reverseBranchCondition(RevCond);
 | |
| 
 | |
|     unsigned Dups = 0;
 | |
|     unsigned Dups2 = 0;
 | |
|     bool TNeedSub = !TrueBBI.Predicate.empty();
 | |
|     bool FNeedSub = !FalseBBI.Predicate.empty();
 | |
|     bool Enqueued = false;
 | |
| 
 | |
|     BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
 | |
| 
 | |
|     if (CanRevCond) {
 | |
|       BBInfo TrueBBICalc, FalseBBICalc;
 | |
|       auto feasibleDiamond = [&](bool Forked) {
 | |
|         bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB,
 | |
|                                             Dups + Dups2, Prediction, Forked);
 | |
|         bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
 | |
|                                                 /* IsTriangle */ false, /* RevCond */ false,
 | |
|                                                 /* hasCommonTail */ true);
 | |
|         bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
 | |
|                                                  /* IsTriangle */ false, /* RevCond */ false,
 | |
|                                                  /* hasCommonTail */ true);
 | |
|         return MeetsSize && TrueFeasible && FalseFeasible;
 | |
|       };
 | |
| 
 | |
|       if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
 | |
|                        TrueBBICalc, FalseBBICalc)) {
 | |
|         if (feasibleDiamond(false)) {
 | |
|           // Diamond:
 | |
|           //   EBB
 | |
|           //   / \_
 | |
|           //  |   |
 | |
|           // TBB FBB
 | |
|           //   \ /
 | |
|           //  TailBB
 | |
|           // Note TailBB can be empty.
 | |
|           Tokens.push_back(std::make_unique<IfcvtToken>(
 | |
|               BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
 | |
|               (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
 | |
|           Enqueued = true;
 | |
|         }
 | |
|       } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
 | |
|                                     TrueBBICalc, FalseBBICalc)) {
 | |
|         if (feasibleDiamond(true)) {
 | |
|           // ForkedDiamond:
 | |
|           // if TBB and FBB have a common tail that includes their conditional
 | |
|           // branch instructions, then we can If Convert this pattern.
 | |
|           //          EBB
 | |
|           //         _/ \_
 | |
|           //         |   |
 | |
|           //        TBB  FBB
 | |
|           //        / \ /   \
 | |
|           //  FalseBB TrueBB FalseBB
 | |
|           //
 | |
|           Tokens.push_back(std::make_unique<IfcvtToken>(
 | |
|               BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
 | |
|               (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
 | |
|           Enqueued = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
 | |
|         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
 | |
|                            TrueBBI.ExtraCost2, Prediction) &&
 | |
|         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
 | |
|       // Triangle:
 | |
|       //   EBB
 | |
|       //   | \_
 | |
|       //   |  |
 | |
|       //   | TBB
 | |
|       //   |  /
 | |
|       //   FBB
 | |
|       Tokens.push_back(
 | |
|           std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
 | |
|       Enqueued = true;
 | |
|     }
 | |
| 
 | |
|     if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
 | |
|         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
 | |
|                            TrueBBI.ExtraCost2, Prediction) &&
 | |
|         FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
 | |
|       Tokens.push_back(
 | |
|           std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
 | |
|       Enqueued = true;
 | |
|     }
 | |
| 
 | |
|     if (ValidSimple(TrueBBI, Dups, Prediction) &&
 | |
|         MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
 | |
|                            TrueBBI.ExtraCost2, Prediction) &&
 | |
|         FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
 | |
|       // Simple (split, no rejoin):
 | |
|       //   EBB
 | |
|       //   | \_
 | |
|       //   |  |
 | |
|       //   | TBB---> exit
 | |
|       //   |
 | |
|       //   FBB
 | |
|       Tokens.push_back(
 | |
|           std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
 | |
|       Enqueued = true;
 | |
|     }
 | |
| 
 | |
|     if (CanRevCond) {
 | |
|       // Try the other path...
 | |
|       if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
 | |
|                         Prediction.getCompl()) &&
 | |
|           MeetIfcvtSizeLimit(*FalseBBI.BB,
 | |
|                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
 | |
|                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
 | |
|           FeasibilityAnalysis(FalseBBI, RevCond, true)) {
 | |
|         Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
 | |
|                                                        FNeedSub, Dups));
 | |
|         Enqueued = true;
 | |
|       }
 | |
| 
 | |
|       if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
 | |
|                         Prediction.getCompl()) &&
 | |
|           MeetIfcvtSizeLimit(*FalseBBI.BB,
 | |
|                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
 | |
|                            FalseBBI.ExtraCost2, Prediction.getCompl()) &&
 | |
|         FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
 | |
|         Tokens.push_back(
 | |
|             std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
 | |
|         Enqueued = true;
 | |
|       }
 | |
| 
 | |
|       if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
 | |
|           MeetIfcvtSizeLimit(*FalseBBI.BB,
 | |
|                              FalseBBI.NonPredSize + FalseBBI.ExtraCost,
 | |
|                              FalseBBI.ExtraCost2, Prediction.getCompl()) &&
 | |
|           FeasibilityAnalysis(FalseBBI, RevCond)) {
 | |
|         Tokens.push_back(
 | |
|             std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
 | |
|         Enqueued = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     BBI.IsEnqueued = Enqueued;
 | |
|     BBI.IsBeingAnalyzed = false;
 | |
|     BBI.IsAnalyzed = true;
 | |
|     BBStack.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Analyze all blocks and find entries for all if-conversion candidates.
 | |
| void IfConverter::AnalyzeBlocks(
 | |
|     MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
 | |
|   for (MachineBasicBlock &MBB : MF)
 | |
|     AnalyzeBlock(MBB, Tokens);
 | |
| 
 | |
|   // Sort to favor more complex ifcvt scheme.
 | |
|   llvm::stable_sort(Tokens, IfcvtTokenCmp);
 | |
| }
 | |
| 
 | |
| /// Returns true either if ToMBB is the next block after MBB or that all the
 | |
| /// intervening blocks are empty (given MBB can fall through to its next block).
 | |
| static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
 | |
|   MachineFunction::iterator PI = MBB.getIterator();
 | |
|   MachineFunction::iterator I = std::next(PI);
 | |
|   MachineFunction::iterator TI = ToMBB.getIterator();
 | |
|   MachineFunction::iterator E = MBB.getParent()->end();
 | |
|   while (I != TI) {
 | |
|     // Check isSuccessor to avoid case where the next block is empty, but
 | |
|     // it's not a successor.
 | |
|     if (I == E || !I->empty() || !PI->isSuccessor(&*I))
 | |
|       return false;
 | |
|     PI = I++;
 | |
|   }
 | |
|   // Finally see if the last I is indeed a successor to PI.
 | |
|   return PI->isSuccessor(&*I);
 | |
| }
 | |
| 
 | |
| /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
 | |
| /// can be if-converted. If predecessor is already enqueued, dequeue it!
 | |
| void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
 | |
|   for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
 | |
|     BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
 | |
|     if (PBBI.IsDone || PBBI.BB == &MBB)
 | |
|       continue;
 | |
|     PBBI.IsAnalyzed = false;
 | |
|     PBBI.IsEnqueued = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Inserts an unconditional branch from \p MBB to \p ToMBB.
 | |
| static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
 | |
|                                const TargetInstrInfo *TII) {
 | |
|   DebugLoc dl;  // FIXME: this is nowhere
 | |
|   SmallVector<MachineOperand, 0> NoCond;
 | |
|   TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
 | |
| }
 | |
| 
 | |
| /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
 | |
| /// values defined in MI which are also live/used by MI.
 | |
| static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
 | |
|   const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
 | |
| 
 | |
|   // Before stepping forward past MI, remember which regs were live
 | |
|   // before MI. This is needed to set the Undef flag only when reg is
 | |
|   // dead.
 | |
|   SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
 | |
|   LiveBeforeMI.setUniverse(TRI->getNumRegs());
 | |
|   for (unsigned Reg : Redefs)
 | |
|     LiveBeforeMI.insert(Reg);
 | |
| 
 | |
|   SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
 | |
|   Redefs.stepForward(MI, Clobbers);
 | |
| 
 | |
|   // Now add the implicit uses for each of the clobbered values.
 | |
|   for (auto Clobber : Clobbers) {
 | |
|     // FIXME: Const cast here is nasty, but better than making StepForward
 | |
|     // take a mutable instruction instead of const.
 | |
|     unsigned Reg = Clobber.first;
 | |
|     MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
 | |
|     MachineInstr *OpMI = Op.getParent();
 | |
|     MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
 | |
|     if (Op.isRegMask()) {
 | |
|       // First handle regmasks.  They clobber any entries in the mask which
 | |
|       // means that we need a def for those registers.
 | |
|       if (LiveBeforeMI.count(Reg))
 | |
|         MIB.addReg(Reg, RegState::Implicit);
 | |
| 
 | |
|       // We also need to add an implicit def of this register for the later
 | |
|       // use to read from.
 | |
|       // For the register allocator to have allocated a register clobbered
 | |
|       // by the call which is used later, it must be the case that
 | |
|       // the call doesn't return.
 | |
|       MIB.addReg(Reg, RegState::Implicit | RegState::Define);
 | |
|       continue;
 | |
|     }
 | |
|     if (LiveBeforeMI.count(Reg))
 | |
|       MIB.addReg(Reg, RegState::Implicit);
 | |
|     else {
 | |
|       bool HasLiveSubReg = false;
 | |
|       for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
 | |
|         if (!LiveBeforeMI.count(*S))
 | |
|           continue;
 | |
|         HasLiveSubReg = true;
 | |
|         break;
 | |
|       }
 | |
|       if (HasLiveSubReg)
 | |
|         MIB.addReg(Reg, RegState::Implicit);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If convert a simple (split, no rejoin) sub-CFG.
 | |
| bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
 | |
|   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
 | |
|   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
 | |
|   BBInfo *CvtBBI = &TrueBBI;
 | |
|   BBInfo *NextBBI = &FalseBBI;
 | |
| 
 | |
|   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
 | |
|   if (Kind == ICSimpleFalse)
 | |
|     std::swap(CvtBBI, NextBBI);
 | |
| 
 | |
|   MachineBasicBlock &CvtMBB = *CvtBBI->BB;
 | |
|   MachineBasicBlock &NextMBB = *NextBBI->BB;
 | |
|   if (CvtBBI->IsDone ||
 | |
|       (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
 | |
|     // Something has changed. It's no longer safe to predicate this block.
 | |
|     BBI.IsAnalyzed = false;
 | |
|     CvtBBI->IsAnalyzed = false;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CvtMBB.hasAddressTaken())
 | |
|     // Conservatively abort if-conversion if BB's address is taken.
 | |
|     return false;
 | |
| 
 | |
|   if (Kind == ICSimpleFalse)
 | |
|     if (TII->reverseBranchCondition(Cond))
 | |
|       llvm_unreachable("Unable to reverse branch condition!");
 | |
| 
 | |
|   Redefs.init(*TRI);
 | |
| 
 | |
|   if (MRI->tracksLiveness()) {
 | |
|     // Initialize liveins to the first BB. These are potentially redefined by
 | |
|     // predicated instructions.
 | |
|     Redefs.addLiveInsNoPristines(CvtMBB);
 | |
|     Redefs.addLiveInsNoPristines(NextMBB);
 | |
|   }
 | |
| 
 | |
|   // Remove the branches from the entry so we can add the contents of the true
 | |
|   // block to it.
 | |
|   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
 | |
| 
 | |
|   if (CvtMBB.pred_size() > 1) {
 | |
|     // Copy instructions in the true block, predicate them, and add them to
 | |
|     // the entry block.
 | |
|     CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
 | |
| 
 | |
|     // Keep the CFG updated.
 | |
|     BBI.BB->removeSuccessor(&CvtMBB, true);
 | |
|   } else {
 | |
|     // Predicate the instructions in the true block.
 | |
|     PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
 | |
| 
 | |
|     // Merge converted block into entry block. The BB to Cvt edge is removed
 | |
|     // by MergeBlocks.
 | |
|     MergeBlocks(BBI, *CvtBBI);
 | |
|   }
 | |
| 
 | |
|   bool IterIfcvt = true;
 | |
|   if (!canFallThroughTo(*BBI.BB, NextMBB)) {
 | |
|     InsertUncondBranch(*BBI.BB, NextMBB, TII);
 | |
|     BBI.HasFallThrough = false;
 | |
|     // Now ifcvt'd block will look like this:
 | |
|     // BB:
 | |
|     // ...
 | |
|     // t, f = cmp
 | |
|     // if t op
 | |
|     // b BBf
 | |
|     //
 | |
|     // We cannot further ifcvt this block because the unconditional branch
 | |
|     // will have to be predicated on the new condition, that will not be
 | |
|     // available if cmp executes.
 | |
|     IterIfcvt = false;
 | |
|   }
 | |
| 
 | |
|   // Update block info. BB can be iteratively if-converted.
 | |
|   if (!IterIfcvt)
 | |
|     BBI.IsDone = true;
 | |
|   InvalidatePreds(*BBI.BB);
 | |
|   CvtBBI->IsDone = true;
 | |
| 
 | |
|   // FIXME: Must maintain LiveIns.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// If convert a triangle sub-CFG.
 | |
| bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
 | |
|   BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
 | |
|   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
 | |
|   BBInfo *CvtBBI = &TrueBBI;
 | |
|   BBInfo *NextBBI = &FalseBBI;
 | |
|   DebugLoc dl;  // FIXME: this is nowhere
 | |
| 
 | |
|   SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
 | |
|   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
 | |
|     std::swap(CvtBBI, NextBBI);
 | |
| 
 | |
|   MachineBasicBlock &CvtMBB = *CvtBBI->BB;
 | |
|   MachineBasicBlock &NextMBB = *NextBBI->BB;
 | |
|   if (CvtBBI->IsDone ||
 | |
|       (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
 | |
|     // Something has changed. It's no longer safe to predicate this block.
 | |
|     BBI.IsAnalyzed = false;
 | |
|     CvtBBI->IsAnalyzed = false;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CvtMBB.hasAddressTaken())
 | |
|     // Conservatively abort if-conversion if BB's address is taken.
 | |
|     return false;
 | |
| 
 | |
|   if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
 | |
|     if (TII->reverseBranchCondition(Cond))
 | |
|       llvm_unreachable("Unable to reverse branch condition!");
 | |
| 
 | |
|   if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
 | |
|     if (reverseBranchCondition(*CvtBBI)) {
 | |
|       // BB has been changed, modify its predecessors (except for this
 | |
|       // one) so they don't get ifcvt'ed based on bad intel.
 | |
|       for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
 | |
|         if (PBB == BBI.BB)
 | |
|           continue;
 | |
|         BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
 | |
|         if (PBBI.IsEnqueued) {
 | |
|           PBBI.IsAnalyzed = false;
 | |
|           PBBI.IsEnqueued = false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Initialize liveins to the first BB. These are potentially redefined by
 | |
|   // predicated instructions.
 | |
|   Redefs.init(*TRI);
 | |
|   if (MRI->tracksLiveness()) {
 | |
|     Redefs.addLiveInsNoPristines(CvtMBB);
 | |
|     Redefs.addLiveInsNoPristines(NextMBB);
 | |
|   }
 | |
| 
 | |
|   bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
 | |
|   BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
 | |
| 
 | |
|   if (HasEarlyExit) {
 | |
|     // Get probabilities before modifying CvtMBB and BBI.BB.
 | |
|     CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
 | |
|     CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
 | |
|     BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
 | |
|     BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
 | |
|   }
 | |
| 
 | |
|   // Remove the branches from the entry so we can add the contents of the true
 | |
|   // block to it.
 | |
|   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
 | |
| 
 | |
|   if (CvtMBB.pred_size() > 1) {
 | |
|     // Copy instructions in the true block, predicate them, and add them to
 | |
|     // the entry block.
 | |
|     CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
 | |
|   } else {
 | |
|     // Predicate the 'true' block after removing its branch.
 | |
|     CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
 | |
|     PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
 | |
| 
 | |
|     // Now merge the entry of the triangle with the true block.
 | |
|     MergeBlocks(BBI, *CvtBBI, false);
 | |
|   }
 | |
| 
 | |
|   // Keep the CFG updated.
 | |
|   BBI.BB->removeSuccessor(&CvtMBB, true);
 | |
| 
 | |
|   // If 'true' block has a 'false' successor, add an exit branch to it.
 | |
|   if (HasEarlyExit) {
 | |
|     SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
 | |
|                                            CvtBBI->BrCond.end());
 | |
|     if (TII->reverseBranchCondition(RevCond))
 | |
|       llvm_unreachable("Unable to reverse branch condition!");
 | |
| 
 | |
|     // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
 | |
|     // NewNext = New_Prob(BBI.BB, NextMBB) =
 | |
|     //   Prob(BBI.BB, NextMBB) +
 | |
|     //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
 | |
|     // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
 | |
|     //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
 | |
|     auto NewTrueBB = getNextBlock(*BBI.BB);
 | |
|     auto NewNext = BBNext + BBCvt * CvtNext;
 | |
|     auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
 | |
|     if (NewTrueBBIter != BBI.BB->succ_end())
 | |
|       BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
 | |
| 
 | |
|     auto NewFalse = BBCvt * CvtFalse;
 | |
|     TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
 | |
|     BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
 | |
|   }
 | |
| 
 | |
|   // Merge in the 'false' block if the 'false' block has no other
 | |
|   // predecessors. Otherwise, add an unconditional branch to 'false'.
 | |
|   bool FalseBBDead = false;
 | |
|   bool IterIfcvt = true;
 | |
|   bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
 | |
|   if (!isFallThrough) {
 | |
|     // Only merge them if the true block does not fallthrough to the false
 | |
|     // block. By not merging them, we make it possible to iteratively
 | |
|     // ifcvt the blocks.
 | |
|     if (!HasEarlyExit &&
 | |
|         NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
 | |
|         !NextMBB.hasAddressTaken()) {
 | |
|       MergeBlocks(BBI, *NextBBI);
 | |
|       FalseBBDead = true;
 | |
|     } else {
 | |
|       InsertUncondBranch(*BBI.BB, NextMBB, TII);
 | |
|       BBI.HasFallThrough = false;
 | |
|     }
 | |
|     // Mixed predicated and unpredicated code. This cannot be iteratively
 | |
|     // predicated.
 | |
|     IterIfcvt = false;
 | |
|   }
 | |
| 
 | |
|   // Update block info. BB can be iteratively if-converted.
 | |
|   if (!IterIfcvt)
 | |
|     BBI.IsDone = true;
 | |
|   InvalidatePreds(*BBI.BB);
 | |
|   CvtBBI->IsDone = true;
 | |
|   if (FalseBBDead)
 | |
|     NextBBI->IsDone = true;
 | |
| 
 | |
|   // FIXME: Must maintain LiveIns.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Common code shared between diamond conversions.
 | |
| /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
 | |
| /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
 | |
| ///               and FalseBBI
 | |
| /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
 | |
| ///               and \p FalseBBI
 | |
| /// \p RemoveBranch - Remove the common branch of the two blocks before
 | |
| ///                   predicating. Only false for unanalyzable fallthrough
 | |
| ///                   cases. The caller will replace the branch if necessary.
 | |
| /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
 | |
| ///                    unanalyzable fallthrough
 | |
| bool IfConverter::IfConvertDiamondCommon(
 | |
|     BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
 | |
|     unsigned NumDups1, unsigned NumDups2,
 | |
|     bool TClobbersPred, bool FClobbersPred,
 | |
|     bool RemoveBranch, bool MergeAddEdges) {
 | |
| 
 | |
|   if (TrueBBI.IsDone || FalseBBI.IsDone ||
 | |
|       TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
 | |
|     // Something has changed. It's no longer safe to predicate these blocks.
 | |
|     BBI.IsAnalyzed = false;
 | |
|     TrueBBI.IsAnalyzed = false;
 | |
|     FalseBBI.IsAnalyzed = false;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
 | |
|     // Conservatively abort if-conversion if either BB has its address taken.
 | |
|     return false;
 | |
| 
 | |
|   // Put the predicated instructions from the 'true' block before the
 | |
|   // instructions from the 'false' block, unless the true block would clobber
 | |
|   // the predicate, in which case, do the opposite.
 | |
|   BBInfo *BBI1 = &TrueBBI;
 | |
|   BBInfo *BBI2 = &FalseBBI;
 | |
|   SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
 | |
|   if (TII->reverseBranchCondition(RevCond))
 | |
|     llvm_unreachable("Unable to reverse branch condition!");
 | |
|   SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
 | |
|   SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
 | |
| 
 | |
|   // Figure out the more profitable ordering.
 | |
|   bool DoSwap = false;
 | |
|   if (TClobbersPred && !FClobbersPred)
 | |
|     DoSwap = true;
 | |
|   else if (!TClobbersPred && !FClobbersPred) {
 | |
|     if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
 | |
|       DoSwap = true;
 | |
|   } else if (TClobbersPred && FClobbersPred)
 | |
|     llvm_unreachable("Predicate info cannot be clobbered by both sides.");
 | |
|   if (DoSwap) {
 | |
|     std::swap(BBI1, BBI2);
 | |
|     std::swap(Cond1, Cond2);
 | |
|   }
 | |
| 
 | |
|   // Remove the conditional branch from entry to the blocks.
 | |
|   BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
 | |
| 
 | |
|   MachineBasicBlock &MBB1 = *BBI1->BB;
 | |
|   MachineBasicBlock &MBB2 = *BBI2->BB;
 | |
| 
 | |
|   // Initialize the Redefs:
 | |
|   // - BB2 live-in regs need implicit uses before being redefined by BB1
 | |
|   //   instructions.
 | |
|   // - BB1 live-out regs need implicit uses before being redefined by BB2
 | |
|   //   instructions. We start with BB1 live-ins so we have the live-out regs
 | |
|   //   after tracking the BB1 instructions.
 | |
|   Redefs.init(*TRI);
 | |
|   if (MRI->tracksLiveness()) {
 | |
|     Redefs.addLiveInsNoPristines(MBB1);
 | |
|     Redefs.addLiveInsNoPristines(MBB2);
 | |
|   }
 | |
| 
 | |
|   // Remove the duplicated instructions at the beginnings of both paths.
 | |
|   // Skip dbg_value instructions.
 | |
|   MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(false);
 | |
|   MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(false);
 | |
|   BBI1->NonPredSize -= NumDups1;
 | |
|   BBI2->NonPredSize -= NumDups1;
 | |
| 
 | |
|   // Skip past the dups on each side separately since there may be
 | |
|   // differing dbg_value entries. NumDups1 can include a "return"
 | |
|   // instruction, if it's not marked as "branch".
 | |
|   for (unsigned i = 0; i < NumDups1; ++DI1) {
 | |
|     if (DI1 == MBB1.end())
 | |
|       break;
 | |
|     if (!DI1->isDebugInstr())
 | |
|       ++i;
 | |
|   }
 | |
|   while (NumDups1 != 0) {
 | |
|     // Since this instruction is going to be deleted, update call
 | |
|     // site info state if the instruction is call instruction.
 | |
|     if (DI2->shouldUpdateCallSiteInfo())
 | |
|       MBB2.getParent()->eraseCallSiteInfo(&*DI2);
 | |
| 
 | |
|     ++DI2;
 | |
|     if (DI2 == MBB2.end())
 | |
|       break;
 | |
|     if (!DI2->isDebugInstr())
 | |
|       --NumDups1;
 | |
|   }
 | |
| 
 | |
|   if (MRI->tracksLiveness()) {
 | |
|     for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
 | |
|       SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
 | |
|       Redefs.stepForward(MI, Dummy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
 | |
|   MBB2.erase(MBB2.begin(), DI2);
 | |
| 
 | |
|   // The branches have been checked to match, so it is safe to remove the
 | |
|   // branch in BB1 and rely on the copy in BB2. The complication is that
 | |
|   // the blocks may end with a return instruction, which may or may not
 | |
|   // be marked as "branch". If it's not, then it could be included in
 | |
|   // "dups1", leaving the blocks potentially empty after moving the common
 | |
|   // duplicates.
 | |
| #ifndef NDEBUG
 | |
|   // Unanalyzable branches must match exactly. Check that now.
 | |
|   if (!BBI1->IsBrAnalyzable)
 | |
|     verifySameBranchInstructions(&MBB1, &MBB2);
 | |
| #endif
 | |
|   // Remove duplicated instructions from the tail of MBB1: any branch
 | |
|   // instructions, and the common instructions counted by NumDups2.
 | |
|   DI1 = MBB1.end();
 | |
|   while (DI1 != MBB1.begin()) {
 | |
|     MachineBasicBlock::iterator Prev = std::prev(DI1);
 | |
|     if (!Prev->isBranch() && !Prev->isDebugInstr())
 | |
|       break;
 | |
|     DI1 = Prev;
 | |
|   }
 | |
|   for (unsigned i = 0; i != NumDups2; ) {
 | |
|     // NumDups2 only counted non-dbg_value instructions, so this won't
 | |
|     // run off the head of the list.
 | |
|     assert(DI1 != MBB1.begin());
 | |
| 
 | |
|     --DI1;
 | |
| 
 | |
|     // Since this instruction is going to be deleted, update call
 | |
|     // site info state if the instruction is call instruction.
 | |
|     if (DI1->shouldUpdateCallSiteInfo())
 | |
|       MBB1.getParent()->eraseCallSiteInfo(&*DI1);
 | |
| 
 | |
|     // skip dbg_value instructions
 | |
|     if (!DI1->isDebugInstr())
 | |
|       ++i;
 | |
|   }
 | |
|   MBB1.erase(DI1, MBB1.end());
 | |
| 
 | |
|   DI2 = BBI2->BB->end();
 | |
|   // The branches have been checked to match. Skip over the branch in the false
 | |
|   // block so that we don't try to predicate it.
 | |
|   if (RemoveBranch)
 | |
|     BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
 | |
|   else {
 | |
|     // Make DI2 point to the end of the range where the common "tail"
 | |
|     // instructions could be found.
 | |
|     while (DI2 != MBB2.begin()) {
 | |
|       MachineBasicBlock::iterator Prev = std::prev(DI2);
 | |
|       if (!Prev->isBranch() && !Prev->isDebugInstr())
 | |
|         break;
 | |
|       DI2 = Prev;
 | |
|     }
 | |
|   }
 | |
|   while (NumDups2 != 0) {
 | |
|     // NumDups2 only counted non-dbg_value instructions, so this won't
 | |
|     // run off the head of the list.
 | |
|     assert(DI2 != MBB2.begin());
 | |
|     --DI2;
 | |
|     // skip dbg_value instructions
 | |
|     if (!DI2->isDebugInstr())
 | |
|       --NumDups2;
 | |
|   }
 | |
| 
 | |
|   // Remember which registers would later be defined by the false block.
 | |
|   // This allows us not to predicate instructions in the true block that would
 | |
|   // later be re-defined. That is, rather than
 | |
|   //   subeq  r0, r1, #1
 | |
|   //   addne  r0, r1, #1
 | |
|   // generate:
 | |
|   //   sub    r0, r1, #1
 | |
|   //   addne  r0, r1, #1
 | |
|   SmallSet<MCPhysReg, 4> RedefsByFalse;
 | |
|   SmallSet<MCPhysReg, 4> ExtUses;
 | |
|   if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
 | |
|     for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
 | |
|       if (FI.isDebugInstr())
 | |
|         continue;
 | |
|       SmallVector<MCPhysReg, 4> Defs;
 | |
|       for (const MachineOperand &MO : FI.operands()) {
 | |
|         if (!MO.isReg())
 | |
|           continue;
 | |
|         Register Reg = MO.getReg();
 | |
|         if (!Reg)
 | |
|           continue;
 | |
|         if (MO.isDef()) {
 | |
|           Defs.push_back(Reg);
 | |
|         } else if (!RedefsByFalse.count(Reg)) {
 | |
|           // These are defined before ctrl flow reach the 'false' instructions.
 | |
|           // They cannot be modified by the 'true' instructions.
 | |
|           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | |
|                SubRegs.isValid(); ++SubRegs)
 | |
|             ExtUses.insert(*SubRegs);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       for (MCPhysReg Reg : Defs) {
 | |
|         if (!ExtUses.count(Reg)) {
 | |
|           for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
 | |
|                SubRegs.isValid(); ++SubRegs)
 | |
|             RedefsByFalse.insert(*SubRegs);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Predicate the 'true' block.
 | |
|   PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
 | |
| 
 | |
|   // After predicating BBI1, if there is a predicated terminator in BBI1 and
 | |
|   // a non-predicated in BBI2, then we don't want to predicate the one from
 | |
|   // BBI2. The reason is that if we merged these blocks, we would end up with
 | |
|   // two predicated terminators in the same block.
 | |
|   // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
 | |
|   // predicate them either. They were checked to be identical, and so the
 | |
|   // same branch would happen regardless of which path was taken.
 | |
|   if (!MBB2.empty() && (DI2 == MBB2.end())) {
 | |
|     MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
 | |
|     MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
 | |
|     bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
 | |
|     bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
 | |
|     if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
 | |
|       --DI2;
 | |
|   }
 | |
| 
 | |
|   // Predicate the 'false' block.
 | |
|   PredicateBlock(*BBI2, DI2, *Cond2);
 | |
| 
 | |
|   // Merge the true block into the entry of the diamond.
 | |
|   MergeBlocks(BBI, *BBI1, MergeAddEdges);
 | |
|   MergeBlocks(BBI, *BBI2, MergeAddEdges);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// If convert an almost-diamond sub-CFG where the true
 | |
| /// and false blocks share a common tail.
 | |
| bool IfConverter::IfConvertForkedDiamond(
 | |
|     BBInfo &BBI, IfcvtKind Kind,
 | |
|     unsigned NumDups1, unsigned NumDups2,
 | |
|     bool TClobbersPred, bool FClobbersPred) {
 | |
|   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
 | |
|   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
 | |
| 
 | |
|   // Save the debug location for later.
 | |
|   DebugLoc dl;
 | |
|   MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
 | |
|   if (TIE != TrueBBI.BB->end())
 | |
|     dl = TIE->getDebugLoc();
 | |
|   // Removing branches from both blocks is safe, because we have already
 | |
|   // determined that both blocks have the same branch instructions. The branch
 | |
|   // will be added back at the end, unpredicated.
 | |
|   if (!IfConvertDiamondCommon(
 | |
|       BBI, TrueBBI, FalseBBI,
 | |
|       NumDups1, NumDups2,
 | |
|       TClobbersPred, FClobbersPred,
 | |
|       /* RemoveBranch */ true, /* MergeAddEdges */ true))
 | |
|     return false;
 | |
| 
 | |
|   // Add back the branch.
 | |
|   // Debug location saved above when removing the branch from BBI2
 | |
|   TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
 | |
|                     TrueBBI.BrCond, dl);
 | |
| 
 | |
|   // Update block info.
 | |
|   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
 | |
|   InvalidatePreds(*BBI.BB);
 | |
| 
 | |
|   // FIXME: Must maintain LiveIns.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// If convert a diamond sub-CFG.
 | |
| bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
 | |
|                                    unsigned NumDups1, unsigned NumDups2,
 | |
|                                    bool TClobbersPred, bool FClobbersPred) {
 | |
|   BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
 | |
|   BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
 | |
|   MachineBasicBlock *TailBB = TrueBBI.TrueBB;
 | |
| 
 | |
|   // True block must fall through or end with an unanalyzable terminator.
 | |
|   if (!TailBB) {
 | |
|     if (blockAlwaysFallThrough(TrueBBI))
 | |
|       TailBB = FalseBBI.TrueBB;
 | |
|     assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
 | |
|   }
 | |
| 
 | |
|   if (!IfConvertDiamondCommon(
 | |
|       BBI, TrueBBI, FalseBBI,
 | |
|       NumDups1, NumDups2,
 | |
|       TClobbersPred, FClobbersPred,
 | |
|       /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
 | |
|       /* MergeAddEdges */ TailBB == nullptr))
 | |
|     return false;
 | |
| 
 | |
|   // If the if-converted block falls through or unconditionally branches into
 | |
|   // the tail block, and the tail block does not have other predecessors, then
 | |
|   // fold the tail block in as well. Otherwise, unless it falls through to the
 | |
|   // tail, add a unconditional branch to it.
 | |
|   if (TailBB) {
 | |
|     // We need to remove the edges to the true and false blocks manually since
 | |
|     // we didn't let IfConvertDiamondCommon update the CFG.
 | |
|     BBI.BB->removeSuccessor(TrueBBI.BB);
 | |
|     BBI.BB->removeSuccessor(FalseBBI.BB, true);
 | |
| 
 | |
|     BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
 | |
|     bool CanMergeTail = !TailBBI.HasFallThrough &&
 | |
|       !TailBBI.BB->hasAddressTaken();
 | |
|     // The if-converted block can still have a predicated terminator
 | |
|     // (e.g. a predicated return). If that is the case, we cannot merge
 | |
|     // it with the tail block.
 | |
|     MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
 | |
|     if (TI != BBI.BB->end() && TII->isPredicated(*TI))
 | |
|       CanMergeTail = false;
 | |
|     // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
 | |
|     // check if there are any other predecessors besides those.
 | |
|     unsigned NumPreds = TailBB->pred_size();
 | |
|     if (NumPreds > 1)
 | |
|       CanMergeTail = false;
 | |
|     else if (NumPreds == 1 && CanMergeTail) {
 | |
|       MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
 | |
|       if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
 | |
|         CanMergeTail = false;
 | |
|     }
 | |
|     if (CanMergeTail) {
 | |
|       MergeBlocks(BBI, TailBBI);
 | |
|       TailBBI.IsDone = true;
 | |
|     } else {
 | |
|       BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
 | |
|       InsertUncondBranch(*BBI.BB, *TailBB, TII);
 | |
|       BBI.HasFallThrough = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update block info.
 | |
|   BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
 | |
|   InvalidatePreds(*BBI.BB);
 | |
| 
 | |
|   // FIXME: Must maintain LiveIns.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool MaySpeculate(const MachineInstr &MI,
 | |
|                          SmallSet<MCPhysReg, 4> &LaterRedefs) {
 | |
|   bool SawStore = true;
 | |
|   if (!MI.isSafeToMove(nullptr, SawStore))
 | |
|     return false;
 | |
| 
 | |
|   for (const MachineOperand &MO : MI.operands()) {
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     if (MO.isDef() && !LaterRedefs.count(Reg))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Predicate instructions from the start of the block to the specified end with
 | |
| /// the specified condition.
 | |
| void IfConverter::PredicateBlock(BBInfo &BBI,
 | |
|                                  MachineBasicBlock::iterator E,
 | |
|                                  SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                  SmallSet<MCPhysReg, 4> *LaterRedefs) {
 | |
|   bool AnyUnpred = false;
 | |
|   bool MaySpec = LaterRedefs != nullptr;
 | |
|   for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
 | |
|     if (I.isDebugInstr() || TII->isPredicated(I))
 | |
|       continue;
 | |
|     // It may be possible not to predicate an instruction if it's the 'true'
 | |
|     // side of a diamond and the 'false' side may re-define the instruction's
 | |
|     // defs.
 | |
|     if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
 | |
|       AnyUnpred = true;
 | |
|       continue;
 | |
|     }
 | |
|     // If any instruction is predicated, then every instruction after it must
 | |
|     // be predicated.
 | |
|     MaySpec = false;
 | |
|     if (!TII->PredicateInstruction(I, Cond)) {
 | |
| #ifndef NDEBUG
 | |
|       dbgs() << "Unable to predicate " << I << "!\n";
 | |
| #endif
 | |
|       llvm_unreachable(nullptr);
 | |
|     }
 | |
| 
 | |
|     // If the predicated instruction now redefines a register as the result of
 | |
|     // if-conversion, add an implicit kill.
 | |
|     UpdatePredRedefs(I, Redefs);
 | |
|   }
 | |
| 
 | |
|   BBI.Predicate.append(Cond.begin(), Cond.end());
 | |
| 
 | |
|   BBI.IsAnalyzed = false;
 | |
|   BBI.NonPredSize = 0;
 | |
| 
 | |
|   ++NumIfConvBBs;
 | |
|   if (AnyUnpred)
 | |
|     ++NumUnpred;
 | |
| }
 | |
| 
 | |
| /// Copy and predicate instructions from source BB to the destination block.
 | |
| /// Skip end of block branches if IgnoreBr is true.
 | |
| void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
 | |
|                                         SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                         bool IgnoreBr) {
 | |
|   MachineFunction &MF = *ToBBI.BB->getParent();
 | |
| 
 | |
|   MachineBasicBlock &FromMBB = *FromBBI.BB;
 | |
|   for (MachineInstr &I : FromMBB) {
 | |
|     // Do not copy the end of the block branches.
 | |
|     if (IgnoreBr && I.isBranch())
 | |
|       break;
 | |
| 
 | |
|     MachineInstr *MI = MF.CloneMachineInstr(&I);
 | |
|     // Make a copy of the call site info.
 | |
|     if (I.isCandidateForCallSiteEntry())
 | |
|       MF.copyCallSiteInfo(&I, MI);
 | |
| 
 | |
|     ToBBI.BB->insert(ToBBI.BB->end(), MI);
 | |
|     ToBBI.NonPredSize++;
 | |
|     unsigned ExtraPredCost = TII->getPredicationCost(I);
 | |
|     unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
 | |
|     if (NumCycles > 1)
 | |
|       ToBBI.ExtraCost += NumCycles-1;
 | |
|     ToBBI.ExtraCost2 += ExtraPredCost;
 | |
| 
 | |
|     if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
 | |
|       if (!TII->PredicateInstruction(*MI, Cond)) {
 | |
| #ifndef NDEBUG
 | |
|         dbgs() << "Unable to predicate " << I << "!\n";
 | |
| #endif
 | |
|         llvm_unreachable(nullptr);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the predicated instruction now redefines a register as the result of
 | |
|     // if-conversion, add an implicit kill.
 | |
|     UpdatePredRedefs(*MI, Redefs);
 | |
|   }
 | |
| 
 | |
|   if (!IgnoreBr) {
 | |
|     std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
 | |
|                                            FromMBB.succ_end());
 | |
|     MachineBasicBlock *NBB = getNextBlock(FromMBB);
 | |
|     MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
 | |
| 
 | |
|     for (MachineBasicBlock *Succ : Succs) {
 | |
|       // Fallthrough edge can't be transferred.
 | |
|       if (Succ == FallThrough)
 | |
|         continue;
 | |
|       ToBBI.BB->addSuccessor(Succ);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
 | |
|   ToBBI.Predicate.append(Cond.begin(), Cond.end());
 | |
| 
 | |
|   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
 | |
|   ToBBI.IsAnalyzed = false;
 | |
| 
 | |
|   ++NumDupBBs;
 | |
| }
 | |
| 
 | |
| /// Move all instructions from FromBB to the end of ToBB.  This will leave
 | |
| /// FromBB as an empty block, so remove all of its successor edges and move it
 | |
| /// to the end of the function.  If AddEdges is true, i.e., when FromBBI's
 | |
| /// branch is being moved, add those successor edges to ToBBI and remove the old
 | |
| /// edge from ToBBI to FromBBI.
 | |
| void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
 | |
|   MachineBasicBlock &FromMBB = *FromBBI.BB;
 | |
|   assert(!FromMBB.hasAddressTaken() &&
 | |
|          "Removing a BB whose address is taken!");
 | |
| 
 | |
|   // In case FromMBB contains terminators (e.g. return instruction),
 | |
|   // first move the non-terminator instructions, then the terminators.
 | |
|   MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
 | |
|   MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
 | |
|   ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
 | |
| 
 | |
|   // If FromBB has non-predicated terminator we should copy it at the end.
 | |
|   if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
 | |
|     ToTI = ToBBI.BB->end();
 | |
|   ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
 | |
| 
 | |
|   // Force normalizing the successors' probabilities of ToBBI.BB to convert all
 | |
|   // unknown probabilities into known ones.
 | |
|   // FIXME: This usage is too tricky and in the future we would like to
 | |
|   // eliminate all unknown probabilities in MBB.
 | |
|   if (ToBBI.IsBrAnalyzable)
 | |
|     ToBBI.BB->normalizeSuccProbs();
 | |
| 
 | |
|   SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.successors());
 | |
|   MachineBasicBlock *NBB = getNextBlock(FromMBB);
 | |
|   MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
 | |
|   // The edge probability from ToBBI.BB to FromMBB, which is only needed when
 | |
|   // AddEdges is true and FromMBB is a successor of ToBBI.BB.
 | |
|   auto To2FromProb = BranchProbability::getZero();
 | |
|   if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
 | |
|     // Remove the old edge but remember the edge probability so we can calculate
 | |
|     // the correct weights on the new edges being added further down.
 | |
|     To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
 | |
|     ToBBI.BB->removeSuccessor(&FromMBB);
 | |
|   }
 | |
| 
 | |
|   for (MachineBasicBlock *Succ : FromSuccs) {
 | |
|     // Fallthrough edge can't be transferred.
 | |
|     if (Succ == FallThrough) {
 | |
|       FromMBB.removeSuccessor(Succ);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto NewProb = BranchProbability::getZero();
 | |
|     if (AddEdges) {
 | |
|       // Calculate the edge probability for the edge from ToBBI.BB to Succ,
 | |
|       // which is a portion of the edge probability from FromMBB to Succ. The
 | |
|       // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
 | |
|       // FromBBI is a successor of ToBBI.BB. See comment below for exception).
 | |
|       NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
 | |
| 
 | |
|       // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
 | |
|       // only happens when if-converting a diamond CFG and FromMBB is the
 | |
|       // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
 | |
|       // could just use the probabilities on FromMBB's out-edges when adding
 | |
|       // new successors.
 | |
|       if (!To2FromProb.isZero())
 | |
|         NewProb *= To2FromProb;
 | |
|     }
 | |
| 
 | |
|     FromMBB.removeSuccessor(Succ);
 | |
| 
 | |
|     if (AddEdges) {
 | |
|       // If the edge from ToBBI.BB to Succ already exists, update the
 | |
|       // probability of this edge by adding NewProb to it. An example is shown
 | |
|       // below, in which A is ToBBI.BB and B is FromMBB. In this case we
 | |
|       // don't have to set C as A's successor as it already is. We only need to
 | |
|       // update the edge probability on A->C. Note that B will not be
 | |
|       // immediately removed from A's successors. It is possible that B->D is
 | |
|       // not removed either if D is a fallthrough of B. Later the edge A->D
 | |
|       // (generated here) and B->D will be combined into one edge. To maintain
 | |
|       // correct edge probability of this combined edge, we need to set the edge
 | |
|       // probability of A->B to zero, which is already done above. The edge
 | |
|       // probability on A->D is calculated by scaling the original probability
 | |
|       // on A->B by the probability of B->D.
 | |
|       //
 | |
|       // Before ifcvt:      After ifcvt (assume B->D is kept):
 | |
|       //
 | |
|       //       A                A
 | |
|       //      /|               /|\
 | |
|       //     / B              / B|
 | |
|       //    | /|             |  ||
 | |
|       //    |/ |             |  |/
 | |
|       //    C  D             C  D
 | |
|       //
 | |
|       if (ToBBI.BB->isSuccessor(Succ))
 | |
|         ToBBI.BB->setSuccProbability(
 | |
|             find(ToBBI.BB->successors(), Succ),
 | |
|             MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
 | |
|       else
 | |
|         ToBBI.BB->addSuccessor(Succ, NewProb);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Move the now empty FromMBB out of the way to the end of the function so
 | |
|   // it doesn't interfere with fallthrough checks done by canFallThroughTo().
 | |
|   MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
 | |
|   if (Last != &FromMBB)
 | |
|     FromMBB.moveAfter(Last);
 | |
| 
 | |
|   // Normalize the probabilities of ToBBI.BB's successors with all adjustment
 | |
|   // we've done above.
 | |
|   if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
 | |
|     ToBBI.BB->normalizeSuccProbs();
 | |
| 
 | |
|   ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
 | |
|   FromBBI.Predicate.clear();
 | |
| 
 | |
|   ToBBI.NonPredSize += FromBBI.NonPredSize;
 | |
|   ToBBI.ExtraCost += FromBBI.ExtraCost;
 | |
|   ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
 | |
|   FromBBI.NonPredSize = 0;
 | |
|   FromBBI.ExtraCost = 0;
 | |
|   FromBBI.ExtraCost2 = 0;
 | |
| 
 | |
|   ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
 | |
|   ToBBI.HasFallThrough = FromBBI.HasFallThrough;
 | |
|   ToBBI.IsAnalyzed = false;
 | |
|   FromBBI.IsAnalyzed = false;
 | |
| }
 | |
| 
 | |
| FunctionPass *
 | |
| llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
 | |
|   return new IfConverter(std::move(Ftor));
 | |
| }
 |