925 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			925 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs global common subexpression elimination on machine
 | |
| // instructions using a scoped hash table based value numbering scheme. It
 | |
| // must be run while the machine function is still in SSA form.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/ScopedHashTable.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/MC/MCRegister.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/RecyclingAllocator.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "machine-cse"
 | |
| 
 | |
| STATISTIC(NumCoalesces, "Number of copies coalesced");
 | |
| STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
 | |
| STATISTIC(NumPREs,      "Number of partial redundant expression"
 | |
|                         " transformed to fully redundant");
 | |
| STATISTIC(NumPhysCSEs,
 | |
|           "Number of physreg referencing common subexpr eliminated");
 | |
| STATISTIC(NumCrossBBCSEs,
 | |
|           "Number of cross-MBB physreg referencing CS eliminated");
 | |
| STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class MachineCSE : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     AliasAnalysis *AA;
 | |
|     MachineDominatorTree *DT;
 | |
|     MachineRegisterInfo *MRI;
 | |
|     MachineBlockFrequencyInfo *MBFI;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
| 
 | |
|     MachineCSE() : MachineFunctionPass(ID) {
 | |
|       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<AAResultsWrapperPass>();
 | |
|       AU.addPreservedID(MachineLoopInfoID);
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       AU.addRequired<MachineBlockFrequencyInfo>();
 | |
|       AU.addPreserved<MachineBlockFrequencyInfo>();
 | |
|     }
 | |
| 
 | |
|     MachineFunctionProperties getRequiredProperties() const override {
 | |
|       return MachineFunctionProperties()
 | |
|         .set(MachineFunctionProperties::Property::IsSSA);
 | |
|     }
 | |
| 
 | |
|     void releaseMemory() override {
 | |
|       ScopeMap.clear();
 | |
|       PREMap.clear();
 | |
|       Exps.clear();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
 | |
|                             ScopedHashTableVal<MachineInstr *, unsigned>>;
 | |
|     using ScopedHTType =
 | |
|         ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
 | |
|                         AllocatorTy>;
 | |
|     using ScopeType = ScopedHTType::ScopeTy;
 | |
|     using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
 | |
| 
 | |
|     unsigned LookAheadLimit = 0;
 | |
|     DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
 | |
|     DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
 | |
|         PREMap;
 | |
|     ScopedHTType VNT;
 | |
|     SmallVector<MachineInstr *, 64> Exps;
 | |
|     unsigned CurrVN = 0;
 | |
| 
 | |
|     bool PerformTrivialCopyPropagation(MachineInstr *MI,
 | |
|                                        MachineBasicBlock *MBB);
 | |
|     bool isPhysDefTriviallyDead(MCRegister Reg,
 | |
|                                 MachineBasicBlock::const_iterator I,
 | |
|                                 MachineBasicBlock::const_iterator E) const;
 | |
|     bool hasLivePhysRegDefUses(const MachineInstr *MI,
 | |
|                                const MachineBasicBlock *MBB,
 | |
|                                SmallSet<MCRegister, 8> &PhysRefs,
 | |
|                                PhysDefVector &PhysDefs, bool &PhysUseDef) const;
 | |
|     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
 | |
|                           SmallSet<MCRegister, 8> &PhysRefs,
 | |
|                           PhysDefVector &PhysDefs, bool &NonLocal) const;
 | |
|     bool isCSECandidate(MachineInstr *MI);
 | |
|     bool isProfitableToCSE(Register CSReg, Register Reg,
 | |
|                            MachineBasicBlock *CSBB, MachineInstr *MI);
 | |
|     void EnterScope(MachineBasicBlock *MBB);
 | |
|     void ExitScope(MachineBasicBlock *MBB);
 | |
|     bool ProcessBlockCSE(MachineBasicBlock *MBB);
 | |
|     void ExitScopeIfDone(MachineDomTreeNode *Node,
 | |
|                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
 | |
|     bool PerformCSE(MachineDomTreeNode *Node);
 | |
| 
 | |
|     bool isPRECandidate(MachineInstr *MI);
 | |
|     bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
 | |
|     bool PerformSimplePRE(MachineDominatorTree *DT);
 | |
|     /// Heuristics to see if it's profitable to move common computations of MBB
 | |
|     /// and MBB1 to CandidateBB.
 | |
|     bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
 | |
|                                  MachineBasicBlock *MBB,
 | |
|                                  MachineBasicBlock *MBB1);
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MachineCSE::ID = 0;
 | |
| 
 | |
| char &llvm::MachineCSEID = MachineCSE::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
 | |
|                       "Machine Common Subexpression Elimination", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
 | |
|                     "Machine Common Subexpression Elimination", false, false)
 | |
| 
 | |
| /// The source register of a COPY machine instruction can be propagated to all
 | |
| /// its users, and this propagation could increase the probability of finding
 | |
| /// common subexpressions. If the COPY has only one user, the COPY itself can
 | |
| /// be removed.
 | |
| bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
 | |
|                                                MachineBasicBlock *MBB) {
 | |
|   bool Changed = false;
 | |
|   for (MachineOperand &MO : MI->operands()) {
 | |
|     if (!MO.isReg() || !MO.isUse())
 | |
|       continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (!Register::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
 | |
|     MachineInstr *DefMI = MRI->getVRegDef(Reg);
 | |
|     if (!DefMI->isCopy())
 | |
|       continue;
 | |
|     Register SrcReg = DefMI->getOperand(1).getReg();
 | |
|     if (!Register::isVirtualRegister(SrcReg))
 | |
|       continue;
 | |
|     if (DefMI->getOperand(0).getSubReg())
 | |
|       continue;
 | |
|     // FIXME: We should trivially coalesce subregister copies to expose CSE
 | |
|     // opportunities on instructions with truncated operands (see
 | |
|     // cse-add-with-overflow.ll). This can be done here as follows:
 | |
|     // if (SrcSubReg)
 | |
|     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
 | |
|     //                                     SrcSubReg);
 | |
|     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
 | |
|     //
 | |
|     // The 2-addr pass has been updated to handle coalesced subregs. However,
 | |
|     // some machine-specific code still can't handle it.
 | |
|     // To handle it properly we also need a way find a constrained subregister
 | |
|     // class given a super-reg class and subreg index.
 | |
|     if (DefMI->getOperand(1).getSubReg())
 | |
|       continue;
 | |
|     if (!MRI->constrainRegAttrs(SrcReg, Reg))
 | |
|       continue;
 | |
|     LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
 | |
|     LLVM_DEBUG(dbgs() << "***     to: " << *MI);
 | |
| 
 | |
|     // Propagate SrcReg of copies to MI.
 | |
|     MO.setReg(SrcReg);
 | |
|     MRI->clearKillFlags(SrcReg);
 | |
|     // Coalesce single use copies.
 | |
|     if (OnlyOneUse) {
 | |
|       // If (and only if) we've eliminated all uses of the copy, also
 | |
|       // copy-propagate to any debug-users of MI, or they'll be left using
 | |
|       // an undefined value.
 | |
|       DefMI->changeDebugValuesDefReg(SrcReg);
 | |
| 
 | |
|       DefMI->eraseFromParent();
 | |
|       ++NumCoalesces;
 | |
|     }
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::isPhysDefTriviallyDead(
 | |
|     MCRegister Reg, MachineBasicBlock::const_iterator I,
 | |
|     MachineBasicBlock::const_iterator E) const {
 | |
|   unsigned LookAheadLeft = LookAheadLimit;
 | |
|   while (LookAheadLeft) {
 | |
|     // Skip over dbg_value's.
 | |
|     I = skipDebugInstructionsForward(I, E);
 | |
| 
 | |
|     if (I == E)
 | |
|       // Reached end of block, we don't know if register is dead or not.
 | |
|       return false;
 | |
| 
 | |
|     bool SeenDef = false;
 | |
|     for (const MachineOperand &MO : I->operands()) {
 | |
|       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
 | |
|         SeenDef = true;
 | |
|       if (!MO.isReg() || !MO.getReg())
 | |
|         continue;
 | |
|       if (!TRI->regsOverlap(MO.getReg(), Reg))
 | |
|         continue;
 | |
|       if (MO.isUse())
 | |
|         // Found a use!
 | |
|         return false;
 | |
|       SeenDef = true;
 | |
|     }
 | |
|     if (SeenDef)
 | |
|       // See a def of Reg (or an alias) before encountering any use, it's
 | |
|       // trivially dead.
 | |
|       return true;
 | |
| 
 | |
|     --LookAheadLeft;
 | |
|     ++I;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isCallerPreservedOrConstPhysReg(MCRegister Reg,
 | |
|                                             const MachineFunction &MF,
 | |
|                                             const TargetRegisterInfo &TRI) {
 | |
|   // MachineRegisterInfo::isConstantPhysReg directly called by
 | |
|   // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
 | |
|   // reserved registers to be frozen. That doesn't cause a problem  post-ISel as
 | |
|   // most (if not all) targets freeze reserved registers right after ISel.
 | |
|   //
 | |
|   // It does cause issues mid-GlobalISel, however, hence the additional
 | |
|   // reservedRegsFrozen check.
 | |
|   const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   return TRI.isCallerPreservedPhysReg(Reg, MF) ||
 | |
|          (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
 | |
| }
 | |
| 
 | |
| /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
 | |
| /// physical registers (except for dead defs of physical registers). It also
 | |
| /// returns the physical register def by reference if it's the only one and the
 | |
| /// instruction does not uses a physical register.
 | |
| bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
 | |
|                                        const MachineBasicBlock *MBB,
 | |
|                                        SmallSet<MCRegister, 8> &PhysRefs,
 | |
|                                        PhysDefVector &PhysDefs,
 | |
|                                        bool &PhysUseDef) const {
 | |
|   // First, add all uses to PhysRefs.
 | |
|   for (const MachineOperand &MO : MI->operands()) {
 | |
|     if (!MO.isReg() || MO.isDef())
 | |
|       continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     if (Register::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     // Reading either caller preserved or constant physregs is ok.
 | |
|     if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), *MI->getMF(), *TRI))
 | |
|       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
 | |
|         PhysRefs.insert(*AI);
 | |
|   }
 | |
| 
 | |
|   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
 | |
|   // (which currently contains only uses), set the PhysUseDef flag.
 | |
|   PhysUseDef = false;
 | |
|   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
 | |
|   for (const auto &MOP : llvm::enumerate(MI->operands())) {
 | |
|     const MachineOperand &MO = MOP.value();
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     if (Register::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     // Check against PhysRefs even if the def is "dead".
 | |
|     if (PhysRefs.count(Reg.asMCReg()))
 | |
|       PhysUseDef = true;
 | |
|     // If the def is dead, it's ok. But the def may not marked "dead". That's
 | |
|     // common since this pass is run before livevariables. We can scan
 | |
|     // forward a few instructions and check if it is obviously dead.
 | |
|     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end()))
 | |
|       PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
 | |
|   }
 | |
| 
 | |
|   // Finally, add all defs to PhysRefs as well.
 | |
|   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
 | |
|     for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
 | |
|          ++AI)
 | |
|       PhysRefs.insert(*AI);
 | |
| 
 | |
|   return !PhysRefs.empty();
 | |
| }
 | |
| 
 | |
| bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
 | |
|                                   SmallSet<MCRegister, 8> &PhysRefs,
 | |
|                                   PhysDefVector &PhysDefs,
 | |
|                                   bool &NonLocal) const {
 | |
|   // For now conservatively returns false if the common subexpression is
 | |
|   // not in the same basic block as the given instruction. The only exception
 | |
|   // is if the common subexpression is in the sole predecessor block.
 | |
|   const MachineBasicBlock *MBB = MI->getParent();
 | |
|   const MachineBasicBlock *CSMBB = CSMI->getParent();
 | |
| 
 | |
|   bool CrossMBB = false;
 | |
|   if (CSMBB != MBB) {
 | |
|     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
 | |
|       return false;
 | |
| 
 | |
|     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
 | |
|       if (MRI->isAllocatable(PhysDefs[i].second) ||
 | |
|           MRI->isReserved(PhysDefs[i].second))
 | |
|         // Avoid extending live range of physical registers if they are
 | |
|         //allocatable or reserved.
 | |
|         return false;
 | |
|     }
 | |
|     CrossMBB = true;
 | |
|   }
 | |
|   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
 | |
|   MachineBasicBlock::const_iterator E = MI;
 | |
|   MachineBasicBlock::const_iterator EE = CSMBB->end();
 | |
|   unsigned LookAheadLeft = LookAheadLimit;
 | |
|   while (LookAheadLeft) {
 | |
|     // Skip over dbg_value's.
 | |
|     while (I != E && I != EE && I->isDebugInstr())
 | |
|       ++I;
 | |
| 
 | |
|     if (I == EE) {
 | |
|       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
 | |
|       (void)CrossMBB;
 | |
|       CrossMBB = false;
 | |
|       NonLocal = true;
 | |
|       I = MBB->begin();
 | |
|       EE = MBB->end();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (I == E)
 | |
|       return true;
 | |
| 
 | |
|     for (const MachineOperand &MO : I->operands()) {
 | |
|       // RegMasks go on instructions like calls that clobber lots of physregs.
 | |
|       // Don't attempt to CSE across such an instruction.
 | |
|       if (MO.isRegMask())
 | |
|         return false;
 | |
|       if (!MO.isReg() || !MO.isDef())
 | |
|         continue;
 | |
|       Register MOReg = MO.getReg();
 | |
|       if (Register::isVirtualRegister(MOReg))
 | |
|         continue;
 | |
|       if (PhysRefs.count(MOReg.asMCReg()))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     --LookAheadLeft;
 | |
|     ++I;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::isCSECandidate(MachineInstr *MI) {
 | |
|   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
 | |
|       MI->isInlineAsm() || MI->isDebugInstr())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore copies.
 | |
|   if (MI->isCopyLike())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore stuff that we obviously can't move.
 | |
|   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
 | |
|       MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   if (MI->mayLoad()) {
 | |
|     // Okay, this instruction does a load. As a refinement, we allow the target
 | |
|     // to decide whether the loaded value is actually a constant. If so, we can
 | |
|     // actually use it as a load.
 | |
|     if (!MI->isDereferenceableInvariantLoad())
 | |
|       // FIXME: we should be able to hoist loads with no other side effects if
 | |
|       // there are no other instructions which can change memory in this loop.
 | |
|       // This is a trivial form of alias analysis.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Ignore stack guard loads, otherwise the register that holds CSEed value may
 | |
|   // be spilled and get loaded back with corrupted data.
 | |
|   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
 | |
| /// common expression that defines Reg. CSBB is basic block where CSReg is
 | |
| /// defined.
 | |
| bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg,
 | |
|                                    MachineBasicBlock *CSBB, MachineInstr *MI) {
 | |
|   // FIXME: Heuristics that works around the lack the live range splitting.
 | |
| 
 | |
|   // If CSReg is used at all uses of Reg, CSE should not increase register
 | |
|   // pressure of CSReg.
 | |
|   bool MayIncreasePressure = true;
 | |
|   if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) {
 | |
|     MayIncreasePressure = false;
 | |
|     SmallPtrSet<MachineInstr*, 8> CSUses;
 | |
|     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
 | |
|       CSUses.insert(&MI);
 | |
|     }
 | |
|     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
 | |
|       if (!CSUses.count(&MI)) {
 | |
|         MayIncreasePressure = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (!MayIncreasePressure) return true;
 | |
| 
 | |
|   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
 | |
|   // an immediate predecessor. We don't want to increase register pressure and
 | |
|   // end up causing other computation to be spilled.
 | |
|   if (TII->isAsCheapAsAMove(*MI)) {
 | |
|     MachineBasicBlock *BB = MI->getParent();
 | |
|     if (CSBB != BB && !CSBB->isSuccessor(BB))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Heuristics #2: If the expression doesn't not use a vr and the only use
 | |
|   // of the redundant computation are copies, do not cse.
 | |
|   bool HasVRegUse = false;
 | |
|   for (const MachineOperand &MO : MI->operands()) {
 | |
|     if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) {
 | |
|       HasVRegUse = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!HasVRegUse) {
 | |
|     bool HasNonCopyUse = false;
 | |
|     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
 | |
|       // Ignore copies.
 | |
|       if (!MI.isCopyLike()) {
 | |
|         HasNonCopyUse = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (!HasNonCopyUse)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
 | |
|   // it unless the defined value is already used in the BB of the new use.
 | |
|   bool HasPHI = false;
 | |
|   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
 | |
|     HasPHI |= UseMI.isPHI();
 | |
|     if (UseMI.getParent() == MI->getParent())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return !HasPHI;
 | |
| }
 | |
| 
 | |
| void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
 | |
|   LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
 | |
|   ScopeType *Scope = new ScopeType(VNT);
 | |
|   ScopeMap[MBB] = Scope;
 | |
| }
 | |
| 
 | |
| void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
 | |
|   LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
 | |
|   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
 | |
|   assert(SI != ScopeMap.end());
 | |
|   delete SI->second;
 | |
|   ScopeMap.erase(SI);
 | |
| }
 | |
| 
 | |
| bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
 | |
|   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
 | |
|   SmallVector<unsigned, 2> ImplicitDefs;
 | |
|   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
 | |
|     if (!isCSECandidate(&MI))
 | |
|       continue;
 | |
| 
 | |
|     bool FoundCSE = VNT.count(&MI);
 | |
|     if (!FoundCSE) {
 | |
|       // Using trivial copy propagation to find more CSE opportunities.
 | |
|       if (PerformTrivialCopyPropagation(&MI, MBB)) {
 | |
|         Changed = true;
 | |
| 
 | |
|         // After coalescing MI itself may become a copy.
 | |
|         if (MI.isCopyLike())
 | |
|           continue;
 | |
| 
 | |
|         // Try again to see if CSE is possible.
 | |
|         FoundCSE = VNT.count(&MI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Commute commutable instructions.
 | |
|     bool Commuted = false;
 | |
|     if (!FoundCSE && MI.isCommutable()) {
 | |
|       if (MachineInstr *NewMI = TII->commuteInstruction(MI)) {
 | |
|         Commuted = true;
 | |
|         FoundCSE = VNT.count(NewMI);
 | |
|         if (NewMI != &MI) {
 | |
|           // New instruction. It doesn't need to be kept.
 | |
|           NewMI->eraseFromParent();
 | |
|           Changed = true;
 | |
|         } else if (!FoundCSE)
 | |
|           // MI was changed but it didn't help, commute it back!
 | |
|           (void)TII->commuteInstruction(MI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the instruction defines physical registers and the values *may* be
 | |
|     // used, then it's not safe to replace it with a common subexpression.
 | |
|     // It's also not safe if the instruction uses physical registers.
 | |
|     bool CrossMBBPhysDef = false;
 | |
|     SmallSet<MCRegister, 8> PhysRefs;
 | |
|     PhysDefVector PhysDefs;
 | |
|     bool PhysUseDef = false;
 | |
|     if (FoundCSE &&
 | |
|         hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) {
 | |
|       FoundCSE = false;
 | |
| 
 | |
|       // ... Unless the CS is local or is in the sole predecessor block
 | |
|       // and it also defines the physical register which is not clobbered
 | |
|       // in between and the physical register uses were not clobbered.
 | |
|       // This can never be the case if the instruction both uses and
 | |
|       // defines the same physical register, which was detected above.
 | |
|       if (!PhysUseDef) {
 | |
|         unsigned CSVN = VNT.lookup(&MI);
 | |
|         MachineInstr *CSMI = Exps[CSVN];
 | |
|         if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
 | |
|           FoundCSE = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!FoundCSE) {
 | |
|       VNT.insert(&MI, CurrVN++);
 | |
|       Exps.push_back(&MI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Found a common subexpression, eliminate it.
 | |
|     unsigned CSVN = VNT.lookup(&MI);
 | |
|     MachineInstr *CSMI = Exps[CSVN];
 | |
|     LLVM_DEBUG(dbgs() << "Examining: " << MI);
 | |
|     LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
 | |
| 
 | |
|     // Prevent CSE-ing non-local convergent instructions.
 | |
|     // LLVM's current definition of `isConvergent` does not necessarily prove
 | |
|     // that non-local CSE is illegal. The following check extends the definition
 | |
|     // of `isConvergent` to assume a convergent instruction is dependent not
 | |
|     // only on additional conditions, but also on fewer conditions. LLVM does
 | |
|     // not have a MachineInstr attribute which expresses this extended
 | |
|     // definition, so it's necessary to use `isConvergent` to prevent illegally
 | |
|     // CSE-ing the subset of `isConvergent` instructions which do fall into this
 | |
|     // extended definition.
 | |
|     if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) {
 | |
|       LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in "
 | |
|                            "different BBs, avoid CSE!\n");
 | |
|       VNT.insert(&MI, CurrVN++);
 | |
|       Exps.push_back(&MI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check if it's profitable to perform this CSE.
 | |
|     bool DoCSE = true;
 | |
|     unsigned NumDefs = MI.getNumDefs();
 | |
| 
 | |
|     for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isDef())
 | |
|         continue;
 | |
|       Register OldReg = MO.getReg();
 | |
|       Register NewReg = CSMI->getOperand(i).getReg();
 | |
| 
 | |
|       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
 | |
|       // we should make sure it is not dead at CSMI.
 | |
|       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
 | |
|         ImplicitDefsToUpdate.push_back(i);
 | |
| 
 | |
|       // Keep track of implicit defs of CSMI and MI, to clear possibly
 | |
|       // made-redundant kill flags.
 | |
|       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
 | |
|         ImplicitDefs.push_back(OldReg);
 | |
| 
 | |
|       if (OldReg == NewReg) {
 | |
|         --NumDefs;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       assert(Register::isVirtualRegister(OldReg) &&
 | |
|              Register::isVirtualRegister(NewReg) &&
 | |
|              "Do not CSE physical register defs!");
 | |
| 
 | |
|       if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) {
 | |
|         LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
 | |
|         DoCSE = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Don't perform CSE if the result of the new instruction cannot exist
 | |
|       // within the constraints (register class, bank, or low-level type) of
 | |
|       // the old instruction.
 | |
|       if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
 | |
|         LLVM_DEBUG(
 | |
|             dbgs() << "*** Not the same register constraints, avoid CSE!\n");
 | |
|         DoCSE = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
 | |
|       --NumDefs;
 | |
|     }
 | |
| 
 | |
|     // Actually perform the elimination.
 | |
|     if (DoCSE) {
 | |
|       for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
 | |
|         unsigned OldReg = CSEPair.first;
 | |
|         unsigned NewReg = CSEPair.second;
 | |
|         // OldReg may have been unused but is used now, clear the Dead flag
 | |
|         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
 | |
|         assert(Def != nullptr && "CSEd register has no unique definition?");
 | |
|         Def->clearRegisterDeads(NewReg);
 | |
|         // Replace with NewReg and clear kill flags which may be wrong now.
 | |
|         MRI->replaceRegWith(OldReg, NewReg);
 | |
|         MRI->clearKillFlags(NewReg);
 | |
|       }
 | |
| 
 | |
|       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
 | |
|       // we should make sure it is not dead at CSMI.
 | |
|       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
 | |
|         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
 | |
|       for (const auto &PhysDef : PhysDefs)
 | |
|         if (!MI.getOperand(PhysDef.first).isDead())
 | |
|           CSMI->getOperand(PhysDef.first).setIsDead(false);
 | |
| 
 | |
|       // Go through implicit defs of CSMI and MI, and clear the kill flags on
 | |
|       // their uses in all the instructions between CSMI and MI.
 | |
|       // We might have made some of the kill flags redundant, consider:
 | |
|       //   subs  ... implicit-def %nzcv    <- CSMI
 | |
|       //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
 | |
|       //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
 | |
|       //   csinc ... implicit killed %nzcv
 | |
|       // Since we eliminated MI, and reused a register imp-def'd by CSMI
 | |
|       // (here %nzcv), that register, if it was killed before MI, should have
 | |
|       // that kill flag removed, because it's lifetime was extended.
 | |
|       if (CSMI->getParent() == MI.getParent()) {
 | |
|         for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II)
 | |
|           for (auto ImplicitDef : ImplicitDefs)
 | |
|             if (MachineOperand *MO = II->findRegisterUseOperand(
 | |
|                     ImplicitDef, /*isKill=*/true, TRI))
 | |
|               MO->setIsKill(false);
 | |
|       } else {
 | |
|         // If the instructions aren't in the same BB, bail out and clear the
 | |
|         // kill flag on all uses of the imp-def'd register.
 | |
|         for (auto ImplicitDef : ImplicitDefs)
 | |
|           MRI->clearKillFlags(ImplicitDef);
 | |
|       }
 | |
| 
 | |
|       if (CrossMBBPhysDef) {
 | |
|         // Add physical register defs now coming in from a predecessor to MBB
 | |
|         // livein list.
 | |
|         while (!PhysDefs.empty()) {
 | |
|           auto LiveIn = PhysDefs.pop_back_val();
 | |
|           if (!MBB->isLiveIn(LiveIn.second))
 | |
|             MBB->addLiveIn(LiveIn.second);
 | |
|         }
 | |
|         ++NumCrossBBCSEs;
 | |
|       }
 | |
| 
 | |
|       MI.eraseFromParent();
 | |
|       ++NumCSEs;
 | |
|       if (!PhysRefs.empty())
 | |
|         ++NumPhysCSEs;
 | |
|       if (Commuted)
 | |
|         ++NumCommutes;
 | |
|       Changed = true;
 | |
|     } else {
 | |
|       VNT.insert(&MI, CurrVN++);
 | |
|       Exps.push_back(&MI);
 | |
|     }
 | |
|     CSEPairs.clear();
 | |
|     ImplicitDefsToUpdate.clear();
 | |
|     ImplicitDefs.clear();
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
 | |
| /// dominator tree node if its a leaf or all of its children are done. Walk
 | |
| /// up the dominator tree to destroy ancestors which are now done.
 | |
| void
 | |
| MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
 | |
|                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
 | |
|   if (OpenChildren[Node])
 | |
|     return;
 | |
| 
 | |
|   // Pop scope.
 | |
|   ExitScope(Node->getBlock());
 | |
| 
 | |
|   // Now traverse upwards to pop ancestors whose offsprings are all done.
 | |
|   while (MachineDomTreeNode *Parent = Node->getIDom()) {
 | |
|     unsigned Left = --OpenChildren[Parent];
 | |
|     if (Left != 0)
 | |
|       break;
 | |
|     ExitScope(Parent->getBlock());
 | |
|     Node = Parent;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
 | |
|   SmallVector<MachineDomTreeNode*, 32> Scopes;
 | |
|   SmallVector<MachineDomTreeNode*, 8> WorkList;
 | |
|   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
 | |
| 
 | |
|   CurrVN = 0;
 | |
| 
 | |
|   // Perform a DFS walk to determine the order of visit.
 | |
|   WorkList.push_back(Node);
 | |
|   do {
 | |
|     Node = WorkList.pop_back_val();
 | |
|     Scopes.push_back(Node);
 | |
|     OpenChildren[Node] = Node->getNumChildren();
 | |
|     append_range(WorkList, Node->children());
 | |
|   } while (!WorkList.empty());
 | |
| 
 | |
|   // Now perform CSE.
 | |
|   bool Changed = false;
 | |
|   for (MachineDomTreeNode *Node : Scopes) {
 | |
|     MachineBasicBlock *MBB = Node->getBlock();
 | |
|     EnterScope(MBB);
 | |
|     Changed |= ProcessBlockCSE(MBB);
 | |
|     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
 | |
|     ExitScopeIfDone(Node, OpenChildren);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // We use stronger checks for PRE candidate rather than for CSE ones to embrace
 | |
| // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
 | |
| // to exclude instrs created by PRE that won't be CSEed later.
 | |
| bool MachineCSE::isPRECandidate(MachineInstr *MI) {
 | |
|   if (!isCSECandidate(MI) ||
 | |
|       MI->isNotDuplicable() ||
 | |
|       MI->mayLoad() ||
 | |
|       MI->isAsCheapAsAMove() ||
 | |
|       MI->getNumDefs() != 1 ||
 | |
|       MI->getNumExplicitDefs() != 1)
 | |
|     return false;
 | |
| 
 | |
|   for (const auto &def : MI->defs())
 | |
|     if (!Register::isVirtualRegister(def.getReg()))
 | |
|       return false;
 | |
| 
 | |
|   for (const auto &use : MI->uses())
 | |
|     if (use.isReg() && !Register::isVirtualRegister(use.getReg()))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
 | |
|                                  MachineBasicBlock *MBB) {
 | |
|   bool Changed = false;
 | |
|   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
 | |
|     if (!isPRECandidate(&MI))
 | |
|       continue;
 | |
| 
 | |
|     if (!PREMap.count(&MI)) {
 | |
|       PREMap[&MI] = MBB;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto MBB1 = PREMap[&MI];
 | |
|     assert(
 | |
|         !DT->properlyDominates(MBB, MBB1) &&
 | |
|         "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
 | |
|     auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
 | |
|     if (!CMBB->isLegalToHoistInto())
 | |
|       continue;
 | |
| 
 | |
|     if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
 | |
|       continue;
 | |
| 
 | |
|     // Two instrs are partial redundant if their basic blocks are reachable
 | |
|     // from one to another but one doesn't dominate another.
 | |
|     if (CMBB != MBB1) {
 | |
|       auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
 | |
|       if (BB != nullptr && BB1 != nullptr &&
 | |
|           (isPotentiallyReachable(BB1, BB) ||
 | |
|            isPotentiallyReachable(BB, BB1))) {
 | |
|         // The following check extends the definition of `isConvergent` to
 | |
|         // assume a convergent instruction is dependent not only on additional
 | |
|         // conditions, but also on fewer conditions. LLVM does not have a
 | |
|         // MachineInstr attribute which expresses this extended definition, so
 | |
|         // it's necessary to use `isConvergent` to prevent illegally PRE-ing the
 | |
|         // subset of `isConvergent` instructions which do fall into this
 | |
|         // extended definition.
 | |
|         if (MI.isConvergent() && CMBB != MBB)
 | |
|           continue;
 | |
| 
 | |
|         assert(MI.getOperand(0).isDef() &&
 | |
|                "First operand of instr with one explicit def must be this def");
 | |
|         Register VReg = MI.getOperand(0).getReg();
 | |
|         Register NewReg = MRI->cloneVirtualRegister(VReg);
 | |
|         if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI))
 | |
|           continue;
 | |
|         MachineInstr &NewMI =
 | |
|             TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI);
 | |
| 
 | |
|         // When hoisting, make sure we don't carry the debug location of
 | |
|         // the original instruction, as that's not correct and can cause
 | |
|         // unexpected jumps when debugging optimized code.
 | |
|         auto EmptyDL = DebugLoc();
 | |
|         NewMI.setDebugLoc(EmptyDL);
 | |
| 
 | |
|         NewMI.getOperand(0).setReg(NewReg);
 | |
| 
 | |
|         PREMap[&MI] = CMBB;
 | |
|         ++NumPREs;
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // This simple PRE (partial redundancy elimination) pass doesn't actually
 | |
| // eliminate partial redundancy but transforms it to full redundancy,
 | |
| // anticipating that the next CSE step will eliminate this created redundancy.
 | |
| // If CSE doesn't eliminate this, than created instruction will remain dead
 | |
| // and eliminated later by Remove Dead Machine Instructions pass.
 | |
| bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
 | |
|   SmallVector<MachineDomTreeNode *, 32> BBs;
 | |
| 
 | |
|   PREMap.clear();
 | |
|   bool Changed = false;
 | |
|   BBs.push_back(DT->getRootNode());
 | |
|   do {
 | |
|     auto Node = BBs.pop_back_val();
 | |
|     append_range(BBs, Node->children());
 | |
| 
 | |
|     MachineBasicBlock *MBB = Node->getBlock();
 | |
|     Changed |= ProcessBlockPRE(DT, MBB);
 | |
| 
 | |
|   } while (!BBs.empty());
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
 | |
|                                          MachineBasicBlock *MBB,
 | |
|                                          MachineBasicBlock *MBB1) {
 | |
|   if (CandidateBB->getParent()->getFunction().hasMinSize())
 | |
|     return true;
 | |
|   assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
 | |
|   assert(DT->dominates(CandidateBB, MBB1) &&
 | |
|          "CandidateBB should dominate MBB1");
 | |
|   return MBFI->getBlockFreq(CandidateBB) <=
 | |
|          MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
 | |
| }
 | |
| 
 | |
| bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipFunction(MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   TII = MF.getSubtarget().getInstrInfo();
 | |
|   TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   DT = &getAnalysis<MachineDominatorTree>();
 | |
|   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
 | |
|   LookAheadLimit = TII->getMachineCSELookAheadLimit();
 | |
|   bool ChangedPRE, ChangedCSE;
 | |
|   ChangedPRE = PerformSimplePRE(DT);
 | |
|   ChangedCSE = PerformCSE(DT->getRootNode());
 | |
|   return ChangedPRE || ChangedCSE;
 | |
| }
 |