2351 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2351 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Methods common to all machine instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineInstrBundle.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/ModuleSlotTracker.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Support/LowLevelTypeImpl.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
 | |
|   if (const MachineBasicBlock *MBB = MI.getParent())
 | |
|     if (const MachineFunction *MF = MBB->getParent())
 | |
|       return MF;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
 | |
| // it.
 | |
| static void tryToGetTargetInfo(const MachineInstr &MI,
 | |
|                                const TargetRegisterInfo *&TRI,
 | |
|                                const MachineRegisterInfo *&MRI,
 | |
|                                const TargetIntrinsicInfo *&IntrinsicInfo,
 | |
|                                const TargetInstrInfo *&TII) {
 | |
| 
 | |
|   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
 | |
|     TRI = MF->getSubtarget().getRegisterInfo();
 | |
|     MRI = &MF->getRegInfo();
 | |
|     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
 | |
|     TII = MF->getSubtarget().getInstrInfo();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
 | |
|   if (MCID->ImplicitDefs)
 | |
|     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
 | |
|            ++ImpDefs)
 | |
|       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
 | |
|   if (MCID->ImplicitUses)
 | |
|     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
 | |
|            ++ImpUses)
 | |
|       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
 | |
| }
 | |
| 
 | |
| /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
 | |
| /// implicit operands. It reserves space for the number of operands specified by
 | |
| /// the MCInstrDesc.
 | |
| MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
 | |
|                            DebugLoc DL, bool NoImp)
 | |
|     : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
 | |
|   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
 | |
| 
 | |
|   // Reserve space for the expected number of operands.
 | |
|   if (unsigned NumOps = MCID->getNumOperands() +
 | |
|     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
 | |
|     CapOperands = OperandCapacity::get(NumOps);
 | |
|     Operands = MF.allocateOperandArray(CapOperands);
 | |
|   }
 | |
| 
 | |
|   if (!NoImp)
 | |
|     addImplicitDefUseOperands(MF);
 | |
| }
 | |
| 
 | |
| /// MachineInstr ctor - Copies MachineInstr arg exactly.
 | |
| /// Does not copy the number from debug instruction numbering, to preserve
 | |
| /// uniqueness.
 | |
| MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
 | |
|     : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
 | |
|       DebugInstrNum(0) {
 | |
|   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
 | |
| 
 | |
|   CapOperands = OperandCapacity::get(MI.getNumOperands());
 | |
|   Operands = MF.allocateOperandArray(CapOperands);
 | |
| 
 | |
|   // Copy operands.
 | |
|   for (const MachineOperand &MO : MI.operands())
 | |
|     addOperand(MF, MO);
 | |
| 
 | |
|   // Copy all the sensible flags.
 | |
|   setFlags(MI.Flags);
 | |
| }
 | |
| 
 | |
| void MachineInstr::moveBefore(MachineInstr *MovePos) {
 | |
|   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
 | |
| }
 | |
| 
 | |
| /// getRegInfo - If this instruction is embedded into a MachineFunction,
 | |
| /// return the MachineRegisterInfo object for the current function, otherwise
 | |
| /// return null.
 | |
| MachineRegisterInfo *MachineInstr::getRegInfo() {
 | |
|   if (MachineBasicBlock *MBB = getParent())
 | |
|     return &MBB->getParent()->getRegInfo();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
 | |
|   for (MachineOperand &MO : operands())
 | |
|     if (MO.isReg())
 | |
|       MRI.removeRegOperandFromUseList(&MO);
 | |
| }
 | |
| 
 | |
| void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
 | |
|   for (MachineOperand &MO : operands())
 | |
|     if (MO.isReg())
 | |
|       MRI.addRegOperandToUseList(&MO);
 | |
| }
 | |
| 
 | |
| void MachineInstr::addOperand(const MachineOperand &Op) {
 | |
|   MachineBasicBlock *MBB = getParent();
 | |
|   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
 | |
|   addOperand(*MF, Op);
 | |
| }
 | |
| 
 | |
| /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
 | |
| /// ranges. If MRI is non-null also update use-def chains.
 | |
| static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
 | |
|                          unsigned NumOps, MachineRegisterInfo *MRI) {
 | |
|   if (MRI)
 | |
|     return MRI->moveOperands(Dst, Src, NumOps);
 | |
|   // MachineOperand is a trivially copyable type so we can just use memmove.
 | |
|   assert(Dst && Src && "Unknown operands");
 | |
|   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
 | |
| }
 | |
| 
 | |
| /// addOperand - Add the specified operand to the instruction.  If it is an
 | |
| /// implicit operand, it is added to the end of the operand list.  If it is
 | |
| /// an explicit operand it is added at the end of the explicit operand list
 | |
| /// (before the first implicit operand).
 | |
| void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
 | |
|   assert(MCID && "Cannot add operands before providing an instr descriptor");
 | |
| 
 | |
|   // Check if we're adding one of our existing operands.
 | |
|   if (&Op >= Operands && &Op < Operands + NumOperands) {
 | |
|     // This is unusual: MI->addOperand(MI->getOperand(i)).
 | |
|     // If adding Op requires reallocating or moving existing operands around,
 | |
|     // the Op reference could go stale. Support it by copying Op.
 | |
|     MachineOperand CopyOp(Op);
 | |
|     return addOperand(MF, CopyOp);
 | |
|   }
 | |
| 
 | |
|   // Find the insert location for the new operand.  Implicit registers go at
 | |
|   // the end, everything else goes before the implicit regs.
 | |
|   //
 | |
|   // FIXME: Allow mixed explicit and implicit operands on inline asm.
 | |
|   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
 | |
|   // implicit-defs, but they must not be moved around.  See the FIXME in
 | |
|   // InstrEmitter.cpp.
 | |
|   unsigned OpNo = getNumOperands();
 | |
|   bool isImpReg = Op.isReg() && Op.isImplicit();
 | |
|   if (!isImpReg && !isInlineAsm()) {
 | |
|     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
 | |
|       --OpNo;
 | |
|       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // OpNo now points as the desired insertion point.  Unless this is a variadic
 | |
|   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
 | |
|   // RegMask operands go between the explicit and implicit operands.
 | |
|   assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
 | |
|           Op.isValidExcessOperand()) &&
 | |
|          "Trying to add an operand to a machine instr that is already done!");
 | |
| 
 | |
|   MachineRegisterInfo *MRI = getRegInfo();
 | |
| 
 | |
|   // Determine if the Operands array needs to be reallocated.
 | |
|   // Save the old capacity and operand array.
 | |
|   OperandCapacity OldCap = CapOperands;
 | |
|   MachineOperand *OldOperands = Operands;
 | |
|   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
 | |
|     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
 | |
|     Operands = MF.allocateOperandArray(CapOperands);
 | |
|     // Move the operands before the insertion point.
 | |
|     if (OpNo)
 | |
|       moveOperands(Operands, OldOperands, OpNo, MRI);
 | |
|   }
 | |
| 
 | |
|   // Move the operands following the insertion point.
 | |
|   if (OpNo != NumOperands)
 | |
|     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
 | |
|                  MRI);
 | |
|   ++NumOperands;
 | |
| 
 | |
|   // Deallocate the old operand array.
 | |
|   if (OldOperands != Operands && OldOperands)
 | |
|     MF.deallocateOperandArray(OldCap, OldOperands);
 | |
| 
 | |
|   // Copy Op into place. It still needs to be inserted into the MRI use lists.
 | |
|   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
 | |
|   NewMO->ParentMI = this;
 | |
| 
 | |
|   // When adding a register operand, tell MRI about it.
 | |
|   if (NewMO->isReg()) {
 | |
|     // Ensure isOnRegUseList() returns false, regardless of Op's status.
 | |
|     NewMO->Contents.Reg.Prev = nullptr;
 | |
|     // Ignore existing ties. This is not a property that can be copied.
 | |
|     NewMO->TiedTo = 0;
 | |
|     // Add the new operand to MRI, but only for instructions in an MBB.
 | |
|     if (MRI)
 | |
|       MRI->addRegOperandToUseList(NewMO);
 | |
|     // The MCID operand information isn't accurate until we start adding
 | |
|     // explicit operands. The implicit operands are added first, then the
 | |
|     // explicits are inserted before them.
 | |
|     if (!isImpReg) {
 | |
|       // Tie uses to defs as indicated in MCInstrDesc.
 | |
|       if (NewMO->isUse()) {
 | |
|         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
 | |
|         if (DefIdx != -1)
 | |
|           tieOperands(DefIdx, OpNo);
 | |
|       }
 | |
|       // If the register operand is flagged as early, mark the operand as such.
 | |
|       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
 | |
|         NewMO->setIsEarlyClobber(true);
 | |
|     }
 | |
|     // Ensure debug instructions set debug flag on register uses.
 | |
|     if (NewMO->isUse() && isDebugInstr())
 | |
|       NewMO->setIsDebug();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineInstr::removeOperand(unsigned OpNo) {
 | |
|   assert(OpNo < getNumOperands() && "Invalid operand number");
 | |
|   untieRegOperand(OpNo);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Moving tied operands would break the ties.
 | |
|   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
 | |
|     if (Operands[i].isReg())
 | |
|       assert(!Operands[i].isTied() && "Cannot move tied operands");
 | |
| #endif
 | |
| 
 | |
|   MachineRegisterInfo *MRI = getRegInfo();
 | |
|   if (MRI && Operands[OpNo].isReg())
 | |
|     MRI->removeRegOperandFromUseList(Operands + OpNo);
 | |
| 
 | |
|   // Don't call the MachineOperand destructor. A lot of this code depends on
 | |
|   // MachineOperand having a trivial destructor anyway, and adding a call here
 | |
|   // wouldn't make it 'destructor-correct'.
 | |
| 
 | |
|   if (unsigned N = NumOperands - 1 - OpNo)
 | |
|     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
 | |
|   --NumOperands;
 | |
| }
 | |
| 
 | |
| void MachineInstr::setExtraInfo(MachineFunction &MF,
 | |
|                                 ArrayRef<MachineMemOperand *> MMOs,
 | |
|                                 MCSymbol *PreInstrSymbol,
 | |
|                                 MCSymbol *PostInstrSymbol,
 | |
|                                 MDNode *HeapAllocMarker, uint32_t CFIType) {
 | |
|   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
 | |
|   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
 | |
|   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
 | |
|   bool HasCFIType = CFIType != 0;
 | |
|   int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
 | |
|                     HasHeapAllocMarker + HasCFIType;
 | |
| 
 | |
|   // Drop all extra info if there is none.
 | |
|   if (NumPointers <= 0) {
 | |
|     Info.clear();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If more than one pointer, then store out of line. Store heap alloc markers
 | |
|   // out of line because PointerSumType cannot hold more than 4 tag types with
 | |
|   // 32-bit pointers.
 | |
|   // FIXME: Maybe we should make the symbols in the extra info mutable?
 | |
|   else if (NumPointers > 1 || HasHeapAllocMarker || HasCFIType) {
 | |
|     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
 | |
|         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker, CFIType));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise store the single pointer inline.
 | |
|   if (HasPreInstrSymbol)
 | |
|     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
 | |
|   else if (HasPostInstrSymbol)
 | |
|     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
 | |
|   else
 | |
|     Info.set<EIIK_MMO>(MMOs[0]);
 | |
| }
 | |
| 
 | |
| void MachineInstr::dropMemRefs(MachineFunction &MF) {
 | |
|   if (memoperands_empty())
 | |
|     return;
 | |
| 
 | |
|   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
 | |
|                getHeapAllocMarker(), getCFIType());
 | |
| }
 | |
| 
 | |
| void MachineInstr::setMemRefs(MachineFunction &MF,
 | |
|                               ArrayRef<MachineMemOperand *> MMOs) {
 | |
|   if (MMOs.empty()) {
 | |
|     dropMemRefs(MF);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
 | |
|                getHeapAllocMarker(), getCFIType());
 | |
| }
 | |
| 
 | |
| void MachineInstr::addMemOperand(MachineFunction &MF,
 | |
|                                  MachineMemOperand *MO) {
 | |
|   SmallVector<MachineMemOperand *, 2> MMOs;
 | |
|   MMOs.append(memoperands_begin(), memoperands_end());
 | |
|   MMOs.push_back(MO);
 | |
|   setMemRefs(MF, MMOs);
 | |
| }
 | |
| 
 | |
| void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
 | |
|   if (this == &MI)
 | |
|     // Nothing to do for a self-clone!
 | |
|     return;
 | |
| 
 | |
|   assert(&MF == MI.getMF() &&
 | |
|          "Invalid machine functions when cloning memory refrences!");
 | |
|   // See if we can just steal the extra info already allocated for the
 | |
|   // instruction. We can do this whenever the pre- and post-instruction symbols
 | |
|   // are the same (including null).
 | |
|   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
 | |
|       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
 | |
|       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
 | |
|     Info = MI.Info;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, fall back on a copy-based clone.
 | |
|   setMemRefs(MF, MI.memoperands());
 | |
| }
 | |
| 
 | |
| /// Check to see if the MMOs pointed to by the two MemRefs arrays are
 | |
| /// identical.
 | |
| static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
 | |
|                              ArrayRef<MachineMemOperand *> RHS) {
 | |
|   if (LHS.size() != RHS.size())
 | |
|     return false;
 | |
| 
 | |
|   auto LHSPointees = make_pointee_range(LHS);
 | |
|   auto RHSPointees = make_pointee_range(RHS);
 | |
|   return std::equal(LHSPointees.begin(), LHSPointees.end(),
 | |
|                     RHSPointees.begin());
 | |
| }
 | |
| 
 | |
| void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
 | |
|                                       ArrayRef<const MachineInstr *> MIs) {
 | |
|   // Try handling easy numbers of MIs with simpler mechanisms.
 | |
|   if (MIs.empty()) {
 | |
|     dropMemRefs(MF);
 | |
|     return;
 | |
|   }
 | |
|   if (MIs.size() == 1) {
 | |
|     cloneMemRefs(MF, *MIs[0]);
 | |
|     return;
 | |
|   }
 | |
|   // Because an empty memoperands list provides *no* information and must be
 | |
|   // handled conservatively (assuming the instruction can do anything), the only
 | |
|   // way to merge with it is to drop all other memoperands.
 | |
|   if (MIs[0]->memoperands_empty()) {
 | |
|     dropMemRefs(MF);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle the general case.
 | |
|   SmallVector<MachineMemOperand *, 2> MergedMMOs;
 | |
|   // Start with the first instruction.
 | |
|   assert(&MF == MIs[0]->getMF() &&
 | |
|          "Invalid machine functions when cloning memory references!");
 | |
|   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
 | |
|   // Now walk all the other instructions and accumulate any different MMOs.
 | |
|   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
 | |
|     assert(&MF == MI.getMF() &&
 | |
|            "Invalid machine functions when cloning memory references!");
 | |
| 
 | |
|     // Skip MIs with identical operands to the first. This is a somewhat
 | |
|     // arbitrary hack but will catch common cases without being quadratic.
 | |
|     // TODO: We could fully implement merge semantics here if needed.
 | |
|     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
 | |
|       continue;
 | |
| 
 | |
|     // Because an empty memoperands list provides *no* information and must be
 | |
|     // handled conservatively (assuming the instruction can do anything), the
 | |
|     // only way to merge with it is to drop all other memoperands.
 | |
|     if (MI.memoperands_empty()) {
 | |
|       dropMemRefs(MF);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise accumulate these into our temporary buffer of the merged state.
 | |
|     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
 | |
|   }
 | |
| 
 | |
|   setMemRefs(MF, MergedMMOs);
 | |
| }
 | |
| 
 | |
| void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
 | |
|   // Do nothing if old and new symbols are the same.
 | |
|   if (Symbol == getPreInstrSymbol())
 | |
|     return;
 | |
| 
 | |
|   // If there was only one symbol and we're removing it, just clear info.
 | |
|   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
 | |
|     Info.clear();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
 | |
|                getHeapAllocMarker(), getCFIType());
 | |
| }
 | |
| 
 | |
| void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
 | |
|   // Do nothing if old and new symbols are the same.
 | |
|   if (Symbol == getPostInstrSymbol())
 | |
|     return;
 | |
| 
 | |
|   // If there was only one symbol and we're removing it, just clear info.
 | |
|   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
 | |
|     Info.clear();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
 | |
|                getHeapAllocMarker(), getCFIType());
 | |
| }
 | |
| 
 | |
| void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
 | |
|   // Do nothing if old and new symbols are the same.
 | |
|   if (Marker == getHeapAllocMarker())
 | |
|     return;
 | |
| 
 | |
|   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
 | |
|                Marker, getCFIType());
 | |
| }
 | |
| 
 | |
| void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
 | |
|   // Do nothing if old and new types are the same.
 | |
|   if (Type == getCFIType())
 | |
|     return;
 | |
| 
 | |
|   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
 | |
|                getHeapAllocMarker(), Type);
 | |
| }
 | |
| 
 | |
| void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
 | |
|                                      const MachineInstr &MI) {
 | |
|   if (this == &MI)
 | |
|     // Nothing to do for a self-clone!
 | |
|     return;
 | |
| 
 | |
|   assert(&MF == MI.getMF() &&
 | |
|          "Invalid machine functions when cloning instruction symbols!");
 | |
| 
 | |
|   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
 | |
|   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
 | |
|   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
 | |
| }
 | |
| 
 | |
| uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
 | |
|   // For now, the just return the union of the flags. If the flags get more
 | |
|   // complicated over time, we might need more logic here.
 | |
|   return getFlags() | Other.getFlags();
 | |
| }
 | |
| 
 | |
| uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
 | |
|   uint16_t MIFlags = 0;
 | |
|   // Copy the wrapping flags.
 | |
|   if (const OverflowingBinaryOperator *OB =
 | |
|           dyn_cast<OverflowingBinaryOperator>(&I)) {
 | |
|     if (OB->hasNoSignedWrap())
 | |
|       MIFlags |= MachineInstr::MIFlag::NoSWrap;
 | |
|     if (OB->hasNoUnsignedWrap())
 | |
|       MIFlags |= MachineInstr::MIFlag::NoUWrap;
 | |
|   }
 | |
| 
 | |
|   // Copy the exact flag.
 | |
|   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
 | |
|     if (PE->isExact())
 | |
|       MIFlags |= MachineInstr::MIFlag::IsExact;
 | |
| 
 | |
|   // Copy the fast-math flags.
 | |
|   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
 | |
|     const FastMathFlags Flags = FP->getFastMathFlags();
 | |
|     if (Flags.noNaNs())
 | |
|       MIFlags |= MachineInstr::MIFlag::FmNoNans;
 | |
|     if (Flags.noInfs())
 | |
|       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
 | |
|     if (Flags.noSignedZeros())
 | |
|       MIFlags |= MachineInstr::MIFlag::FmNsz;
 | |
|     if (Flags.allowReciprocal())
 | |
|       MIFlags |= MachineInstr::MIFlag::FmArcp;
 | |
|     if (Flags.allowContract())
 | |
|       MIFlags |= MachineInstr::MIFlag::FmContract;
 | |
|     if (Flags.approxFunc())
 | |
|       MIFlags |= MachineInstr::MIFlag::FmAfn;
 | |
|     if (Flags.allowReassoc())
 | |
|       MIFlags |= MachineInstr::MIFlag::FmReassoc;
 | |
|   }
 | |
| 
 | |
|   return MIFlags;
 | |
| }
 | |
| 
 | |
| void MachineInstr::copyIRFlags(const Instruction &I) {
 | |
|   Flags = copyFlagsFromInstruction(I);
 | |
| }
 | |
| 
 | |
| bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
 | |
|   assert(!isBundledWithPred() && "Must be called on bundle header");
 | |
|   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
 | |
|     if (MII->getDesc().getFlags() & Mask) {
 | |
|       if (Type == AnyInBundle)
 | |
|         return true;
 | |
|     } else {
 | |
|       if (Type == AllInBundle && !MII->isBundle())
 | |
|         return false;
 | |
|     }
 | |
|     // This was the last instruction in the bundle.
 | |
|     if (!MII->isBundledWithSucc())
 | |
|       return Type == AllInBundle;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
 | |
|                                  MICheckType Check) const {
 | |
|   // If opcodes or number of operands are not the same then the two
 | |
|   // instructions are obviously not identical.
 | |
|   if (Other.getOpcode() != getOpcode() ||
 | |
|       Other.getNumOperands() != getNumOperands())
 | |
|     return false;
 | |
| 
 | |
|   if (isBundle()) {
 | |
|     // We have passed the test above that both instructions have the same
 | |
|     // opcode, so we know that both instructions are bundles here. Let's compare
 | |
|     // MIs inside the bundle.
 | |
|     assert(Other.isBundle() && "Expected that both instructions are bundles.");
 | |
|     MachineBasicBlock::const_instr_iterator I1 = getIterator();
 | |
|     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
 | |
|     // Loop until we analysed the last intruction inside at least one of the
 | |
|     // bundles.
 | |
|     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
 | |
|       ++I1;
 | |
|       ++I2;
 | |
|       if (!I1->isIdenticalTo(*I2, Check))
 | |
|         return false;
 | |
|     }
 | |
|     // If we've reached the end of just one of the two bundles, but not both,
 | |
|     // the instructions are not identical.
 | |
|     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check operands to make sure they match.
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = getOperand(i);
 | |
|     const MachineOperand &OMO = Other.getOperand(i);
 | |
|     if (!MO.isReg()) {
 | |
|       if (!MO.isIdenticalTo(OMO))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Clients may or may not want to ignore defs when testing for equality.
 | |
|     // For example, machine CSE pass only cares about finding common
 | |
|     // subexpressions, so it's safe to ignore virtual register defs.
 | |
|     if (MO.isDef()) {
 | |
|       if (Check == IgnoreDefs)
 | |
|         continue;
 | |
|       else if (Check == IgnoreVRegDefs) {
 | |
|         if (!Register::isVirtualRegister(MO.getReg()) ||
 | |
|             !Register::isVirtualRegister(OMO.getReg()))
 | |
|           if (!MO.isIdenticalTo(OMO))
 | |
|             return false;
 | |
|       } else {
 | |
|         if (!MO.isIdenticalTo(OMO))
 | |
|           return false;
 | |
|         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
 | |
|           return false;
 | |
|       }
 | |
|     } else {
 | |
|       if (!MO.isIdenticalTo(OMO))
 | |
|         return false;
 | |
|       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   // If DebugLoc does not match then two debug instructions are not identical.
 | |
|   if (isDebugInstr())
 | |
|     if (getDebugLoc() && Other.getDebugLoc() &&
 | |
|         getDebugLoc() != Other.getDebugLoc())
 | |
|       return false;
 | |
|   // If pre- or post-instruction symbols do not match then the two instructions
 | |
|   // are not identical.
 | |
|   if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
 | |
|       getPostInstrSymbol() != Other.getPostInstrSymbol())
 | |
|     return false;
 | |
|   // Call instructions with different CFI types are not identical.
 | |
|   if (isCall() && getCFIType() != Other.getCFIType())
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| const MachineFunction *MachineInstr::getMF() const {
 | |
|   return getParent()->getParent();
 | |
| }
 | |
| 
 | |
| MachineInstr *MachineInstr::removeFromParent() {
 | |
|   assert(getParent() && "Not embedded in a basic block!");
 | |
|   return getParent()->remove(this);
 | |
| }
 | |
| 
 | |
| MachineInstr *MachineInstr::removeFromBundle() {
 | |
|   assert(getParent() && "Not embedded in a basic block!");
 | |
|   return getParent()->remove_instr(this);
 | |
| }
 | |
| 
 | |
| void MachineInstr::eraseFromParent() {
 | |
|   assert(getParent() && "Not embedded in a basic block!");
 | |
|   getParent()->erase(this);
 | |
| }
 | |
| 
 | |
| void MachineInstr::eraseFromBundle() {
 | |
|   assert(getParent() && "Not embedded in a basic block!");
 | |
|   getParent()->erase_instr(this);
 | |
| }
 | |
| 
 | |
| bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
 | |
|   if (!isCall(Type))
 | |
|     return false;
 | |
|   switch (getOpcode()) {
 | |
|   case TargetOpcode::PATCHPOINT:
 | |
|   case TargetOpcode::STACKMAP:
 | |
|   case TargetOpcode::STATEPOINT:
 | |
|   case TargetOpcode::FENTRY_CALL:
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MachineInstr::shouldUpdateCallSiteInfo() const {
 | |
|   if (isBundle())
 | |
|     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
 | |
|   return isCandidateForCallSiteEntry();
 | |
| }
 | |
| 
 | |
| unsigned MachineInstr::getNumExplicitOperands() const {
 | |
|   unsigned NumOperands = MCID->getNumOperands();
 | |
|   if (!MCID->isVariadic())
 | |
|     return NumOperands;
 | |
| 
 | |
|   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
 | |
|     const MachineOperand &MO = getOperand(I);
 | |
|     // The operands must always be in the following order:
 | |
|     // - explicit reg defs,
 | |
|     // - other explicit operands (reg uses, immediates, etc.),
 | |
|     // - implicit reg defs
 | |
|     // - implicit reg uses
 | |
|     if (MO.isReg() && MO.isImplicit())
 | |
|       break;
 | |
|     ++NumOperands;
 | |
|   }
 | |
|   return NumOperands;
 | |
| }
 | |
| 
 | |
| unsigned MachineInstr::getNumExplicitDefs() const {
 | |
|   unsigned NumDefs = MCID->getNumDefs();
 | |
|   if (!MCID->isVariadic())
 | |
|     return NumDefs;
 | |
| 
 | |
|   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
 | |
|     const MachineOperand &MO = getOperand(I);
 | |
|     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
 | |
|       break;
 | |
|     ++NumDefs;
 | |
|   }
 | |
|   return NumDefs;
 | |
| }
 | |
| 
 | |
| void MachineInstr::bundleWithPred() {
 | |
|   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
 | |
|   setFlag(BundledPred);
 | |
|   MachineBasicBlock::instr_iterator Pred = getIterator();
 | |
|   --Pred;
 | |
|   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
 | |
|   Pred->setFlag(BundledSucc);
 | |
| }
 | |
| 
 | |
| void MachineInstr::bundleWithSucc() {
 | |
|   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
 | |
|   setFlag(BundledSucc);
 | |
|   MachineBasicBlock::instr_iterator Succ = getIterator();
 | |
|   ++Succ;
 | |
|   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
 | |
|   Succ->setFlag(BundledPred);
 | |
| }
 | |
| 
 | |
| void MachineInstr::unbundleFromPred() {
 | |
|   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
 | |
|   clearFlag(BundledPred);
 | |
|   MachineBasicBlock::instr_iterator Pred = getIterator();
 | |
|   --Pred;
 | |
|   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
 | |
|   Pred->clearFlag(BundledSucc);
 | |
| }
 | |
| 
 | |
| void MachineInstr::unbundleFromSucc() {
 | |
|   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
 | |
|   clearFlag(BundledSucc);
 | |
|   MachineBasicBlock::instr_iterator Succ = getIterator();
 | |
|   ++Succ;
 | |
|   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
 | |
|   Succ->clearFlag(BundledPred);
 | |
| }
 | |
| 
 | |
| bool MachineInstr::isStackAligningInlineAsm() const {
 | |
|   if (isInlineAsm()) {
 | |
|     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 | |
|     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
 | |
|   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
 | |
|   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 | |
|   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
 | |
| }
 | |
| 
 | |
| int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
 | |
|                                        unsigned *GroupNo) const {
 | |
|   assert(isInlineAsm() && "Expected an inline asm instruction");
 | |
|   assert(OpIdx < getNumOperands() && "OpIdx out of range");
 | |
| 
 | |
|   // Ignore queries about the initial operands.
 | |
|   if (OpIdx < InlineAsm::MIOp_FirstOperand)
 | |
|     return -1;
 | |
| 
 | |
|   unsigned Group = 0;
 | |
|   unsigned NumOps;
 | |
|   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
 | |
|        i += NumOps) {
 | |
|     const MachineOperand &FlagMO = getOperand(i);
 | |
|     // If we reach the implicit register operands, stop looking.
 | |
|     if (!FlagMO.isImm())
 | |
|       return -1;
 | |
|     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
 | |
|     if (i + NumOps > OpIdx) {
 | |
|       if (GroupNo)
 | |
|         *GroupNo = Group;
 | |
|       return i;
 | |
|     }
 | |
|     ++Group;
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| const DILabel *MachineInstr::getDebugLabel() const {
 | |
|   assert(isDebugLabel() && "not a DBG_LABEL");
 | |
|   return cast<DILabel>(getOperand(0).getMetadata());
 | |
| }
 | |
| 
 | |
| const MachineOperand &MachineInstr::getDebugVariableOp() const {
 | |
|   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
 | |
|   unsigned VariableOp = isDebugValueList() ? 0 : 2;
 | |
|   return getOperand(VariableOp);
 | |
| }
 | |
| 
 | |
| MachineOperand &MachineInstr::getDebugVariableOp() {
 | |
|   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
 | |
|   unsigned VariableOp = isDebugValueList() ? 0 : 2;
 | |
|   return getOperand(VariableOp);
 | |
| }
 | |
| 
 | |
| const DILocalVariable *MachineInstr::getDebugVariable() const {
 | |
|   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
 | |
| }
 | |
| 
 | |
| const MachineOperand &MachineInstr::getDebugExpressionOp() const {
 | |
|   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
 | |
|   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
 | |
|   return getOperand(ExpressionOp);
 | |
| }
 | |
| 
 | |
| MachineOperand &MachineInstr::getDebugExpressionOp() {
 | |
|   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
 | |
|   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
 | |
|   return getOperand(ExpressionOp);
 | |
| }
 | |
| 
 | |
| const DIExpression *MachineInstr::getDebugExpression() const {
 | |
|   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
 | |
| }
 | |
| 
 | |
| bool MachineInstr::isDebugEntryValue() const {
 | |
|   return isDebugValue() && getDebugExpression()->isEntryValue();
 | |
| }
 | |
| 
 | |
| const TargetRegisterClass*
 | |
| MachineInstr::getRegClassConstraint(unsigned OpIdx,
 | |
|                                     const TargetInstrInfo *TII,
 | |
|                                     const TargetRegisterInfo *TRI) const {
 | |
|   assert(getParent() && "Can't have an MBB reference here!");
 | |
|   assert(getMF() && "Can't have an MF reference here!");
 | |
|   const MachineFunction &MF = *getMF();
 | |
| 
 | |
|   // Most opcodes have fixed constraints in their MCInstrDesc.
 | |
|   if (!isInlineAsm())
 | |
|     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
 | |
| 
 | |
|   if (!getOperand(OpIdx).isReg())
 | |
|     return nullptr;
 | |
| 
 | |
|   // For tied uses on inline asm, get the constraint from the def.
 | |
|   unsigned DefIdx;
 | |
|   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
 | |
|     OpIdx = DefIdx;
 | |
| 
 | |
|   // Inline asm stores register class constraints in the flag word.
 | |
|   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
 | |
|   if (FlagIdx < 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned Flag = getOperand(FlagIdx).getImm();
 | |
|   unsigned RCID;
 | |
|   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
 | |
|        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
 | |
|        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
 | |
|       InlineAsm::hasRegClassConstraint(Flag, RCID))
 | |
|     return TRI->getRegClass(RCID);
 | |
| 
 | |
|   // Assume that all registers in a memory operand are pointers.
 | |
|   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
 | |
|     return TRI->getPointerRegClass(MF);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
 | |
|     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
 | |
|     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
 | |
|   // Check every operands inside the bundle if we have
 | |
|   // been asked to.
 | |
|   if (ExploreBundle)
 | |
|     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
 | |
|          ++OpndIt)
 | |
|       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
 | |
|           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
 | |
|   else
 | |
|     // Otherwise, just check the current operands.
 | |
|     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
 | |
|       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
 | |
|   return CurRC;
 | |
| }
 | |
| 
 | |
| const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
 | |
|     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
 | |
|     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
 | |
|   assert(CurRC && "Invalid initial register class");
 | |
|   // Check if Reg is constrained by some of its use/def from MI.
 | |
|   const MachineOperand &MO = getOperand(OpIdx);
 | |
|   if (!MO.isReg() || MO.getReg() != Reg)
 | |
|     return CurRC;
 | |
|   // If yes, accumulate the constraints through the operand.
 | |
|   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
 | |
| }
 | |
| 
 | |
| const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
 | |
|     unsigned OpIdx, const TargetRegisterClass *CurRC,
 | |
|     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
 | |
|   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
 | |
|   const MachineOperand &MO = getOperand(OpIdx);
 | |
|   assert(MO.isReg() &&
 | |
|          "Cannot get register constraints for non-register operand");
 | |
|   assert(CurRC && "Invalid initial register class");
 | |
|   if (unsigned SubIdx = MO.getSubReg()) {
 | |
|     if (OpRC)
 | |
|       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
 | |
|     else
 | |
|       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
 | |
|   } else if (OpRC)
 | |
|     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
 | |
|   return CurRC;
 | |
| }
 | |
| 
 | |
| /// Return the number of instructions inside the MI bundle, not counting the
 | |
| /// header instruction.
 | |
| unsigned MachineInstr::getBundleSize() const {
 | |
|   MachineBasicBlock::const_instr_iterator I = getIterator();
 | |
|   unsigned Size = 0;
 | |
|   while (I->isBundledWithSucc()) {
 | |
|     ++Size;
 | |
|     ++I;
 | |
|   }
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// Returns true if the MachineInstr has an implicit-use operand of exactly
 | |
| /// the given register (not considering sub/super-registers).
 | |
| bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = getOperand(i);
 | |
|     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
 | |
| /// the specific register or -1 if it is not found. It further tightens
 | |
| /// the search criteria to a use that kills the register if isKill is true.
 | |
| int MachineInstr::findRegisterUseOperandIdx(
 | |
|     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse())
 | |
|       continue;
 | |
|     Register MOReg = MO.getReg();
 | |
|     if (!MOReg)
 | |
|       continue;
 | |
|     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
 | |
|       if (!isKill || MO.isKill())
 | |
|         return i;
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
 | |
| /// indicating if this instruction reads or writes Reg. This also considers
 | |
| /// partial defines.
 | |
| std::pair<bool,bool>
 | |
| MachineInstr::readsWritesVirtualRegister(Register Reg,
 | |
|                                          SmallVectorImpl<unsigned> *Ops) const {
 | |
|   bool PartDef = false; // Partial redefine.
 | |
|   bool FullDef = false; // Full define.
 | |
|   bool Use = false;
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = getOperand(i);
 | |
|     if (!MO.isReg() || MO.getReg() != Reg)
 | |
|       continue;
 | |
|     if (Ops)
 | |
|       Ops->push_back(i);
 | |
|     if (MO.isUse())
 | |
|       Use |= !MO.isUndef();
 | |
|     else if (MO.getSubReg() && !MO.isUndef())
 | |
|       // A partial def undef doesn't count as reading the register.
 | |
|       PartDef = true;
 | |
|     else
 | |
|       FullDef = true;
 | |
|   }
 | |
|   // A partial redefine uses Reg unless there is also a full define.
 | |
|   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
 | |
| }
 | |
| 
 | |
| /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
 | |
| /// the specified register or -1 if it is not found. If isDead is true, defs
 | |
| /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
 | |
| /// also checks if there is a def of a super-register.
 | |
| int
 | |
| MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
 | |
|                                         const TargetRegisterInfo *TRI) const {
 | |
|   bool isPhys = Register::isPhysicalRegister(Reg);
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = getOperand(i);
 | |
|     // Accept regmask operands when Overlap is set.
 | |
|     // Ignore them when looking for a specific def operand (Overlap == false).
 | |
|     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
 | |
|       return i;
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       continue;
 | |
|     Register MOReg = MO.getReg();
 | |
|     bool Found = (MOReg == Reg);
 | |
|     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
 | |
|       if (Overlap)
 | |
|         Found = TRI->regsOverlap(MOReg, Reg);
 | |
|       else
 | |
|         Found = TRI->isSubRegister(MOReg, Reg);
 | |
|     }
 | |
|     if (Found && (!isDead || MO.isDead()))
 | |
|       return i;
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /// findFirstPredOperandIdx() - Find the index of the first operand in the
 | |
| /// operand list that is used to represent the predicate. It returns -1 if
 | |
| /// none is found.
 | |
| int MachineInstr::findFirstPredOperandIdx() const {
 | |
|   // Don't call MCID.findFirstPredOperandIdx() because this variant
 | |
|   // is sometimes called on an instruction that's not yet complete, and
 | |
|   // so the number of operands is less than the MCID indicates. In
 | |
|   // particular, the PTX target does this.
 | |
|   const MCInstrDesc &MCID = getDesc();
 | |
|   if (MCID.isPredicable()) {
 | |
|     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|       if (MCID.OpInfo[i].isPredicate())
 | |
|         return i;
 | |
|   }
 | |
| 
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| // MachineOperand::TiedTo is 4 bits wide.
 | |
| const unsigned TiedMax = 15;
 | |
| 
 | |
| /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
 | |
| ///
 | |
| /// Use and def operands can be tied together, indicated by a non-zero TiedTo
 | |
| /// field. TiedTo can have these values:
 | |
| ///
 | |
| /// 0:              Operand is not tied to anything.
 | |
| /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
 | |
| /// TiedMax:        Tied to an operand >= TiedMax-1.
 | |
| ///
 | |
| /// The tied def must be one of the first TiedMax operands on a normal
 | |
| /// instruction. INLINEASM instructions allow more tied defs.
 | |
| ///
 | |
| void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
 | |
|   MachineOperand &DefMO = getOperand(DefIdx);
 | |
|   MachineOperand &UseMO = getOperand(UseIdx);
 | |
|   assert(DefMO.isDef() && "DefIdx must be a def operand");
 | |
|   assert(UseMO.isUse() && "UseIdx must be a use operand");
 | |
|   assert(!DefMO.isTied() && "Def is already tied to another use");
 | |
|   assert(!UseMO.isTied() && "Use is already tied to another def");
 | |
| 
 | |
|   if (DefIdx < TiedMax)
 | |
|     UseMO.TiedTo = DefIdx + 1;
 | |
|   else {
 | |
|     // Inline asm can use the group descriptors to find tied operands,
 | |
|     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
 | |
|     // but on normal instruction, the tied def must be within the first TiedMax
 | |
|     // operands.
 | |
|     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
 | |
|            "DefIdx out of range");
 | |
|     UseMO.TiedTo = TiedMax;
 | |
|   }
 | |
| 
 | |
|   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
 | |
|   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
 | |
| }
 | |
| 
 | |
| /// Given the index of a tied register operand, find the operand it is tied to.
 | |
| /// Defs are tied to uses and vice versa. Returns the index of the tied operand
 | |
| /// which must exist.
 | |
| unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
 | |
|   const MachineOperand &MO = getOperand(OpIdx);
 | |
|   assert(MO.isTied() && "Operand isn't tied");
 | |
| 
 | |
|   // Normally TiedTo is in range.
 | |
|   if (MO.TiedTo < TiedMax)
 | |
|     return MO.TiedTo - 1;
 | |
| 
 | |
|   // Uses on normal instructions can be out of range.
 | |
|   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
 | |
|     // Normal tied defs must be in the 0..TiedMax-1 range.
 | |
|     if (MO.isUse())
 | |
|       return TiedMax - 1;
 | |
|     // MO is a def. Search for the tied use.
 | |
|     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &UseMO = getOperand(i);
 | |
|       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
 | |
|         return i;
 | |
|     }
 | |
|     llvm_unreachable("Can't find tied use");
 | |
|   }
 | |
| 
 | |
|   if (getOpcode() == TargetOpcode::STATEPOINT) {
 | |
|     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
 | |
|     // on registers.
 | |
|     StatepointOpers SO(this);
 | |
|     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
 | |
|     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
 | |
|     unsigned NumDefs = getNumDefs();
 | |
|     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
 | |
|       while (!getOperand(CurUseIdx).isReg())
 | |
|         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
 | |
|       if (OpIdx == CurDefIdx)
 | |
|         return CurUseIdx;
 | |
|       if (OpIdx == CurUseIdx)
 | |
|         return CurDefIdx;
 | |
|       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
 | |
|     }
 | |
|     llvm_unreachable("Can't find tied use");
 | |
|   }
 | |
| 
 | |
|   // Now deal with inline asm by parsing the operand group descriptor flags.
 | |
|   // Find the beginning of each operand group.
 | |
|   SmallVector<unsigned, 8> GroupIdx;
 | |
|   unsigned OpIdxGroup = ~0u;
 | |
|   unsigned NumOps;
 | |
|   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
 | |
|        i += NumOps) {
 | |
|     const MachineOperand &FlagMO = getOperand(i);
 | |
|     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
 | |
|     unsigned CurGroup = GroupIdx.size();
 | |
|     GroupIdx.push_back(i);
 | |
|     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
 | |
|     // OpIdx belongs to this operand group.
 | |
|     if (OpIdx > i && OpIdx < i + NumOps)
 | |
|       OpIdxGroup = CurGroup;
 | |
|     unsigned TiedGroup;
 | |
|     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
 | |
|       continue;
 | |
|     // Operands in this group are tied to operands in TiedGroup which must be
 | |
|     // earlier. Find the number of operands between the two groups.
 | |
|     unsigned Delta = i - GroupIdx[TiedGroup];
 | |
| 
 | |
|     // OpIdx is a use tied to TiedGroup.
 | |
|     if (OpIdxGroup == CurGroup)
 | |
|       return OpIdx - Delta;
 | |
| 
 | |
|     // OpIdx is a def tied to this use group.
 | |
|     if (OpIdxGroup == TiedGroup)
 | |
|       return OpIdx + Delta;
 | |
|   }
 | |
|   llvm_unreachable("Invalid tied operand on inline asm");
 | |
| }
 | |
| 
 | |
| /// clearKillInfo - Clears kill flags on all operands.
 | |
| ///
 | |
| void MachineInstr::clearKillInfo() {
 | |
|   for (MachineOperand &MO : operands()) {
 | |
|     if (MO.isReg() && MO.isUse())
 | |
|       MO.setIsKill(false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
 | |
|                                       unsigned SubIdx,
 | |
|                                       const TargetRegisterInfo &RegInfo) {
 | |
|   if (Register::isPhysicalRegister(ToReg)) {
 | |
|     if (SubIdx)
 | |
|       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
 | |
|     for (MachineOperand &MO : operands()) {
 | |
|       if (!MO.isReg() || MO.getReg() != FromReg)
 | |
|         continue;
 | |
|       MO.substPhysReg(ToReg, RegInfo);
 | |
|     }
 | |
|   } else {
 | |
|     for (MachineOperand &MO : operands()) {
 | |
|       if (!MO.isReg() || MO.getReg() != FromReg)
 | |
|         continue;
 | |
|       MO.substVirtReg(ToReg, SubIdx, RegInfo);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isSafeToMove - Return true if it is safe to move this instruction. If
 | |
| /// SawStore is set to true, it means that there is a store (or call) between
 | |
| /// the instruction's location and its intended destination.
 | |
| bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
 | |
|   // Ignore stuff that we obviously can't move.
 | |
|   //
 | |
|   // Treat volatile loads as stores. This is not strictly necessary for
 | |
|   // volatiles, but it is required for atomic loads. It is not allowed to move
 | |
|   // a load across an atomic load with Ordering > Monotonic.
 | |
|   if (mayStore() || isCall() || isPHI() ||
 | |
|       (mayLoad() && hasOrderedMemoryRef())) {
 | |
|     SawStore = true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (isPosition() || isDebugInstr() || isTerminator() ||
 | |
|       mayRaiseFPException() || hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   // See if this instruction does a load.  If so, we have to guarantee that the
 | |
|   // loaded value doesn't change between the load and the its intended
 | |
|   // destination. The check for isInvariantLoad gives the target the chance to
 | |
|   // classify the load as always returning a constant, e.g. a constant pool
 | |
|   // load.
 | |
|   if (mayLoad() && !isDereferenceableInvariantLoad())
 | |
|     // Otherwise, this is a real load.  If there is a store between the load and
 | |
|     // end of block, we can't move it.
 | |
|     return !SawStore;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
 | |
|                                  bool UseTBAA, const MachineMemOperand *MMOa,
 | |
|                                  const MachineMemOperand *MMOb) {
 | |
|   // The following interface to AA is fashioned after DAGCombiner::isAlias and
 | |
|   // operates with MachineMemOperand offset with some important assumptions:
 | |
|   //   - LLVM fundamentally assumes flat address spaces.
 | |
|   //   - MachineOperand offset can *only* result from legalization and cannot
 | |
|   //     affect queries other than the trivial case of overlap checking.
 | |
|   //   - These offsets never wrap and never step outside of allocated objects.
 | |
|   //   - There should never be any negative offsets here.
 | |
|   //
 | |
|   // FIXME: Modify API to hide this math from "user"
 | |
|   // Even before we go to AA we can reason locally about some memory objects. It
 | |
|   // can save compile time, and possibly catch some corner cases not currently
 | |
|   // covered.
 | |
| 
 | |
|   int64_t OffsetA = MMOa->getOffset();
 | |
|   int64_t OffsetB = MMOb->getOffset();
 | |
|   int64_t MinOffset = std::min(OffsetA, OffsetB);
 | |
| 
 | |
|   uint64_t WidthA = MMOa->getSize();
 | |
|   uint64_t WidthB = MMOb->getSize();
 | |
|   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
 | |
|   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
 | |
| 
 | |
|   const Value *ValA = MMOa->getValue();
 | |
|   const Value *ValB = MMOb->getValue();
 | |
|   bool SameVal = (ValA && ValB && (ValA == ValB));
 | |
|   if (!SameVal) {
 | |
|     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
 | |
|     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
 | |
|     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
 | |
|       return false;
 | |
|     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
 | |
|       return false;
 | |
|     if (PSVa && PSVb && (PSVa == PSVb))
 | |
|       SameVal = true;
 | |
|   }
 | |
| 
 | |
|   if (SameVal) {
 | |
|     if (!KnownWidthA || !KnownWidthB)
 | |
|       return true;
 | |
|     int64_t MaxOffset = std::max(OffsetA, OffsetB);
 | |
|     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
 | |
|     return (MinOffset + LowWidth > MaxOffset);
 | |
|   }
 | |
| 
 | |
|   if (!AA)
 | |
|     return true;
 | |
| 
 | |
|   if (!ValA || !ValB)
 | |
|     return true;
 | |
| 
 | |
|   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
 | |
|   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
 | |
| 
 | |
|   int64_t OverlapA =
 | |
|       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
 | |
|   int64_t OverlapB =
 | |
|       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
 | |
| 
 | |
|   return !AA->isNoAlias(
 | |
|       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
 | |
|       MemoryLocation(ValB, OverlapB,
 | |
|                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
 | |
| }
 | |
| 
 | |
| bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
 | |
|                             bool UseTBAA) const {
 | |
|   const MachineFunction *MF = getMF();
 | |
|   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | |
|   const MachineFrameInfo &MFI = MF->getFrameInfo();
 | |
| 
 | |
|   // Exclude call instruction which may alter the memory but can not be handled
 | |
|   // by this function.
 | |
|   if (isCall() || Other.isCall())
 | |
|     return true;
 | |
| 
 | |
|   // If neither instruction stores to memory, they can't alias in any
 | |
|   // meaningful way, even if they read from the same address.
 | |
|   if (!mayStore() && !Other.mayStore())
 | |
|     return false;
 | |
| 
 | |
|   // Both instructions must be memory operations to be able to alias.
 | |
|   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
 | |
|     return false;
 | |
| 
 | |
|   // Let the target decide if memory accesses cannot possibly overlap.
 | |
|   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
 | |
|     return false;
 | |
| 
 | |
|   // Memory operations without memory operands may access anything. Be
 | |
|   // conservative and assume `MayAlias`.
 | |
|   if (memoperands_empty() || Other.memoperands_empty())
 | |
|     return true;
 | |
| 
 | |
|   // Skip if there are too many memory operands.
 | |
|   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
 | |
|   if (NumChecks > TII->getMemOperandAACheckLimit())
 | |
|     return true;
 | |
| 
 | |
|   // Check each pair of memory operands from both instructions, which can't
 | |
|   // alias only if all pairs won't alias.
 | |
|   for (auto *MMOa : memoperands())
 | |
|     for (auto *MMOb : Other.memoperands())
 | |
|       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
 | |
| /// or volatile memory reference, or if the information describing the memory
 | |
| /// reference is not available. Return false if it is known to have no ordered
 | |
| /// memory references.
 | |
| bool MachineInstr::hasOrderedMemoryRef() const {
 | |
|   // An instruction known never to access memory won't have a volatile access.
 | |
|   if (!mayStore() &&
 | |
|       !mayLoad() &&
 | |
|       !isCall() &&
 | |
|       !hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, if the instruction has no memory reference information,
 | |
|   // conservatively assume it wasn't preserved.
 | |
|   if (memoperands_empty())
 | |
|     return true;
 | |
| 
 | |
|   // Check if any of our memory operands are ordered.
 | |
|   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
 | |
|     return !MMO->isUnordered();
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// isDereferenceableInvariantLoad - Return true if this instruction will never
 | |
| /// trap and is loading from a location whose value is invariant across a run of
 | |
| /// this function.
 | |
| bool MachineInstr::isDereferenceableInvariantLoad() const {
 | |
|   // If the instruction doesn't load at all, it isn't an invariant load.
 | |
|   if (!mayLoad())
 | |
|     return false;
 | |
| 
 | |
|   // If the instruction has lost its memoperands, conservatively assume that
 | |
|   // it may not be an invariant load.
 | |
|   if (memoperands_empty())
 | |
|     return false;
 | |
| 
 | |
|   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
 | |
| 
 | |
|   for (MachineMemOperand *MMO : memoperands()) {
 | |
|     if (!MMO->isUnordered())
 | |
|       // If the memory operand has ordering side effects, we can't move the
 | |
|       // instruction.  Such an instruction is technically an invariant load,
 | |
|       // but the caller code would need updated to expect that.
 | |
|       return false;
 | |
|     if (MMO->isStore()) return false;
 | |
|     if (MMO->isInvariant() && MMO->isDereferenceable())
 | |
|       continue;
 | |
| 
 | |
|     // A load from a constant PseudoSourceValue is invariant.
 | |
|     if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
 | |
|       if (PSV->isConstant(&MFI))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise assume conservatively.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Everything checks out.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isConstantValuePHI - If the specified instruction is a PHI that always
 | |
| /// merges together the same virtual register, return the register, otherwise
 | |
| /// return 0.
 | |
| unsigned MachineInstr::isConstantValuePHI() const {
 | |
|   if (!isPHI())
 | |
|     return 0;
 | |
|   assert(getNumOperands() >= 3 &&
 | |
|          "It's illegal to have a PHI without source operands");
 | |
| 
 | |
|   Register Reg = getOperand(1).getReg();
 | |
|   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
 | |
|     if (getOperand(i).getReg() != Reg)
 | |
|       return 0;
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| bool MachineInstr::hasUnmodeledSideEffects() const {
 | |
|   if (hasProperty(MCID::UnmodeledSideEffects))
 | |
|     return true;
 | |
|   if (isInlineAsm()) {
 | |
|     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 | |
|     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MachineInstr::isLoadFoldBarrier() const {
 | |
|   return mayStore() || isCall() ||
 | |
|          (hasUnmodeledSideEffects() && !isPseudoProbe());
 | |
| }
 | |
| 
 | |
| /// allDefsAreDead - Return true if all the defs of this instruction are dead.
 | |
| ///
 | |
| bool MachineInstr::allDefsAreDead() const {
 | |
|   for (const MachineOperand &MO : operands()) {
 | |
|     if (!MO.isReg() || MO.isUse())
 | |
|       continue;
 | |
|     if (!MO.isDead())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// copyImplicitOps - Copy implicit register operands from specified
 | |
| /// instruction to this instruction.
 | |
| void MachineInstr::copyImplicitOps(MachineFunction &MF,
 | |
|                                    const MachineInstr &MI) {
 | |
|   for (const MachineOperand &MO :
 | |
|        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
 | |
|     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
 | |
|       addOperand(MF, MO);
 | |
| }
 | |
| 
 | |
| bool MachineInstr::hasComplexRegisterTies() const {
 | |
|   const MCInstrDesc &MCID = getDesc();
 | |
|   if (MCID.Opcode == TargetOpcode::STATEPOINT)
 | |
|     return true;
 | |
|   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
 | |
|     const auto &Operand = getOperand(I);
 | |
|     if (!Operand.isReg() || Operand.isDef())
 | |
|       // Ignore the defined registers as MCID marks only the uses as tied.
 | |
|       continue;
 | |
|     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
 | |
|     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
 | |
|     if (ExpectedTiedIdx != TiedIdx)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
 | |
|                                  const MachineRegisterInfo &MRI) const {
 | |
|   const MachineOperand &Op = getOperand(OpIdx);
 | |
|   if (!Op.isReg())
 | |
|     return LLT{};
 | |
| 
 | |
|   if (isVariadic() || OpIdx >= getNumExplicitOperands())
 | |
|     return MRI.getType(Op.getReg());
 | |
| 
 | |
|   auto &OpInfo = getDesc().OpInfo[OpIdx];
 | |
|   if (!OpInfo.isGenericType())
 | |
|     return MRI.getType(Op.getReg());
 | |
| 
 | |
|   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
 | |
|     return LLT{};
 | |
| 
 | |
|   LLT TypeToPrint = MRI.getType(Op.getReg());
 | |
|   // Don't mark the type index printed if it wasn't actually printed: maybe
 | |
|   // another operand with the same type index has an actual type attached:
 | |
|   if (TypeToPrint.isValid())
 | |
|     PrintedTypes.set(OpInfo.getGenericTypeIndex());
 | |
|   return TypeToPrint;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void MachineInstr::dump() const {
 | |
|   dbgs() << "  ";
 | |
|   print(dbgs());
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
 | |
|     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
 | |
|     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
 | |
|   if (Depth >= MaxDepth)
 | |
|     return;
 | |
|   if (!AlreadySeenInstrs.insert(this).second)
 | |
|     return;
 | |
|   // PadToColumn always inserts at least one space.
 | |
|   // Don't mess up the alignment if we don't want any space.
 | |
|   if (Depth)
 | |
|     fdbgs().PadToColumn(Depth * 2);
 | |
|   print(fdbgs());
 | |
|   for (const MachineOperand &MO : operands()) {
 | |
|     if (!MO.isReg() || MO.isDef())
 | |
|       continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (Reg.isPhysical())
 | |
|       continue;
 | |
|     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
 | |
|     if (NewMI == nullptr)
 | |
|       continue;
 | |
|     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
 | |
|   }
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
 | |
|                                           unsigned MaxDepth) const {
 | |
|   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
 | |
|   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
 | |
|                          bool SkipDebugLoc, bool AddNewLine,
 | |
|                          const TargetInstrInfo *TII) const {
 | |
|   const Module *M = nullptr;
 | |
|   const Function *F = nullptr;
 | |
|   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
 | |
|     F = &MF->getFunction();
 | |
|     M = F->getParent();
 | |
|     if (!TII)
 | |
|       TII = MF->getSubtarget().getInstrInfo();
 | |
|   }
 | |
| 
 | |
|   ModuleSlotTracker MST(M);
 | |
|   if (F)
 | |
|     MST.incorporateFunction(*F);
 | |
|   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
 | |
| }
 | |
| 
 | |
| void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
 | |
|                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
 | |
|                          bool AddNewLine, const TargetInstrInfo *TII) const {
 | |
|   // We can be a bit tidier if we know the MachineFunction.
 | |
|   const TargetRegisterInfo *TRI = nullptr;
 | |
|   const MachineRegisterInfo *MRI = nullptr;
 | |
|   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
 | |
|   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
 | |
| 
 | |
|   if (isCFIInstruction())
 | |
|     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
 | |
| 
 | |
|   SmallBitVector PrintedTypes(8);
 | |
|   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
 | |
|   auto getTiedOperandIdx = [&](unsigned OpIdx) {
 | |
|     if (!ShouldPrintRegisterTies)
 | |
|       return 0U;
 | |
|     const MachineOperand &MO = getOperand(OpIdx);
 | |
|     if (MO.isReg() && MO.isTied() && !MO.isDef())
 | |
|       return findTiedOperandIdx(OpIdx);
 | |
|     return 0U;
 | |
|   };
 | |
|   unsigned StartOp = 0;
 | |
|   unsigned e = getNumOperands();
 | |
| 
 | |
|   // Print explicitly defined operands on the left of an assignment syntax.
 | |
|   while (StartOp < e) {
 | |
|     const MachineOperand &MO = getOperand(StartOp);
 | |
|     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
 | |
|       break;
 | |
| 
 | |
|     if (StartOp != 0)
 | |
|       OS << ", ";
 | |
| 
 | |
|     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
 | |
|     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
 | |
|     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
 | |
|              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
 | |
|     ++StartOp;
 | |
|   }
 | |
| 
 | |
|   if (StartOp != 0)
 | |
|     OS << " = ";
 | |
| 
 | |
|   if (getFlag(MachineInstr::FrameSetup))
 | |
|     OS << "frame-setup ";
 | |
|   if (getFlag(MachineInstr::FrameDestroy))
 | |
|     OS << "frame-destroy ";
 | |
|   if (getFlag(MachineInstr::FmNoNans))
 | |
|     OS << "nnan ";
 | |
|   if (getFlag(MachineInstr::FmNoInfs))
 | |
|     OS << "ninf ";
 | |
|   if (getFlag(MachineInstr::FmNsz))
 | |
|     OS << "nsz ";
 | |
|   if (getFlag(MachineInstr::FmArcp))
 | |
|     OS << "arcp ";
 | |
|   if (getFlag(MachineInstr::FmContract))
 | |
|     OS << "contract ";
 | |
|   if (getFlag(MachineInstr::FmAfn))
 | |
|     OS << "afn ";
 | |
|   if (getFlag(MachineInstr::FmReassoc))
 | |
|     OS << "reassoc ";
 | |
|   if (getFlag(MachineInstr::NoUWrap))
 | |
|     OS << "nuw ";
 | |
|   if (getFlag(MachineInstr::NoSWrap))
 | |
|     OS << "nsw ";
 | |
|   if (getFlag(MachineInstr::IsExact))
 | |
|     OS << "exact ";
 | |
|   if (getFlag(MachineInstr::NoFPExcept))
 | |
|     OS << "nofpexcept ";
 | |
|   if (getFlag(MachineInstr::NoMerge))
 | |
|     OS << "nomerge ";
 | |
| 
 | |
|   // Print the opcode name.
 | |
|   if (TII)
 | |
|     OS << TII->getName(getOpcode());
 | |
|   else
 | |
|     OS << "UNKNOWN";
 | |
| 
 | |
|   if (SkipOpers)
 | |
|     return;
 | |
| 
 | |
|   // Print the rest of the operands.
 | |
|   bool FirstOp = true;
 | |
|   unsigned AsmDescOp = ~0u;
 | |
|   unsigned AsmOpCount = 0;
 | |
| 
 | |
|   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
 | |
|     // Print asm string.
 | |
|     OS << " ";
 | |
|     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
 | |
|     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
 | |
|     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
 | |
|     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
 | |
|                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
 | |
|                             IntrinsicInfo);
 | |
| 
 | |
|     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
 | |
|     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
 | |
|     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
 | |
|       OS << " [sideeffect]";
 | |
|     if (ExtraInfo & InlineAsm::Extra_MayLoad)
 | |
|       OS << " [mayload]";
 | |
|     if (ExtraInfo & InlineAsm::Extra_MayStore)
 | |
|       OS << " [maystore]";
 | |
|     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
 | |
|       OS << " [isconvergent]";
 | |
|     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
 | |
|       OS << " [alignstack]";
 | |
|     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
 | |
|       OS << " [attdialect]";
 | |
|     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
 | |
|       OS << " [inteldialect]";
 | |
| 
 | |
|     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
 | |
|     FirstOp = false;
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = getOperand(i);
 | |
| 
 | |
|     if (FirstOp) FirstOp = false; else OS << ",";
 | |
|     OS << " ";
 | |
| 
 | |
|     if (isDebugValue() && MO.isMetadata()) {
 | |
|       // Pretty print DBG_VALUE* instructions.
 | |
|       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
 | |
|       if (DIV && !DIV->getName().empty())
 | |
|         OS << "!\"" << DIV->getName() << '\"';
 | |
|       else {
 | |
|         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
 | |
|         unsigned TiedOperandIdx = getTiedOperandIdx(i);
 | |
|         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
 | |
|                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
 | |
|       }
 | |
|     } else if (isDebugLabel() && MO.isMetadata()) {
 | |
|       // Pretty print DBG_LABEL instructions.
 | |
|       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
 | |
|       if (DIL && !DIL->getName().empty())
 | |
|         OS << "\"" << DIL->getName() << '\"';
 | |
|       else {
 | |
|         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
 | |
|         unsigned TiedOperandIdx = getTiedOperandIdx(i);
 | |
|         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
 | |
|                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
 | |
|       }
 | |
|     } else if (i == AsmDescOp && MO.isImm()) {
 | |
|       // Pretty print the inline asm operand descriptor.
 | |
|       OS << '$' << AsmOpCount++;
 | |
|       unsigned Flag = MO.getImm();
 | |
|       OS << ":[";
 | |
|       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
 | |
| 
 | |
|       unsigned RCID = 0;
 | |
|       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
 | |
|           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
 | |
|         if (TRI) {
 | |
|           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
 | |
|         } else
 | |
|           OS << ":RC" << RCID;
 | |
|       }
 | |
| 
 | |
|       if (InlineAsm::isMemKind(Flag)) {
 | |
|         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
 | |
|         OS << ":" << InlineAsm::getMemConstraintName(MCID);
 | |
|       }
 | |
| 
 | |
|       unsigned TiedTo = 0;
 | |
|       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
 | |
|         OS << " tiedto:$" << TiedTo;
 | |
| 
 | |
|       OS << ']';
 | |
| 
 | |
|       // Compute the index of the next operand descriptor.
 | |
|       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
 | |
|     } else {
 | |
|       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
 | |
|       unsigned TiedOperandIdx = getTiedOperandIdx(i);
 | |
|       if (MO.isImm() && isOperandSubregIdx(i))
 | |
|         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
 | |
|       else
 | |
|         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
 | |
|                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Print any optional symbols attached to this instruction as-if they were
 | |
|   // operands.
 | |
|   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
 | |
|     if (!FirstOp) {
 | |
|       FirstOp = false;
 | |
|       OS << ',';
 | |
|     }
 | |
|     OS << " pre-instr-symbol ";
 | |
|     MachineOperand::printSymbol(OS, *PreInstrSymbol);
 | |
|   }
 | |
|   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
 | |
|     if (!FirstOp) {
 | |
|       FirstOp = false;
 | |
|       OS << ',';
 | |
|     }
 | |
|     OS << " post-instr-symbol ";
 | |
|     MachineOperand::printSymbol(OS, *PostInstrSymbol);
 | |
|   }
 | |
|   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
 | |
|     if (!FirstOp) {
 | |
|       FirstOp = false;
 | |
|       OS << ',';
 | |
|     }
 | |
|     OS << " heap-alloc-marker ";
 | |
|     HeapAllocMarker->printAsOperand(OS, MST);
 | |
|   }
 | |
|   if (uint32_t CFIType = getCFIType()) {
 | |
|     if (!FirstOp)
 | |
|       OS << ',';
 | |
|     OS << " cfi-type " << CFIType;
 | |
|   }
 | |
| 
 | |
|   if (DebugInstrNum) {
 | |
|     if (!FirstOp)
 | |
|       OS << ",";
 | |
|     OS << " debug-instr-number " << DebugInstrNum;
 | |
|   }
 | |
| 
 | |
|   if (!SkipDebugLoc) {
 | |
|     if (const DebugLoc &DL = getDebugLoc()) {
 | |
|       if (!FirstOp)
 | |
|         OS << ',';
 | |
|       OS << " debug-location ";
 | |
|       DL->printAsOperand(OS, MST);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!memoperands_empty()) {
 | |
|     SmallVector<StringRef, 0> SSNs;
 | |
|     const LLVMContext *Context = nullptr;
 | |
|     std::unique_ptr<LLVMContext> CtxPtr;
 | |
|     const MachineFrameInfo *MFI = nullptr;
 | |
|     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
 | |
|       MFI = &MF->getFrameInfo();
 | |
|       Context = &MF->getFunction().getContext();
 | |
|     } else {
 | |
|       CtxPtr = std::make_unique<LLVMContext>();
 | |
|       Context = CtxPtr.get();
 | |
|     }
 | |
| 
 | |
|     OS << " :: ";
 | |
|     bool NeedComma = false;
 | |
|     for (const MachineMemOperand *Op : memoperands()) {
 | |
|       if (NeedComma)
 | |
|         OS << ", ";
 | |
|       Op->print(OS, MST, SSNs, *Context, MFI, TII);
 | |
|       NeedComma = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (SkipDebugLoc)
 | |
|     return;
 | |
| 
 | |
|   bool HaveSemi = false;
 | |
| 
 | |
|   // Print debug location information.
 | |
|   if (const DebugLoc &DL = getDebugLoc()) {
 | |
|     if (!HaveSemi) {
 | |
|       OS << ';';
 | |
|       HaveSemi = true;
 | |
|     }
 | |
|     OS << ' ';
 | |
|     DL.print(OS);
 | |
|   }
 | |
| 
 | |
|   // Print extra comments for DEBUG_VALUE.
 | |
|   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
 | |
|     if (!HaveSemi) {
 | |
|       OS << ";";
 | |
|       HaveSemi = true;
 | |
|     }
 | |
|     auto *DV = getDebugVariable();
 | |
|     OS << " line no:" <<  DV->getLine();
 | |
|     if (isIndirectDebugValue())
 | |
|       OS << " indirect";
 | |
|   }
 | |
|   // TODO: DBG_LABEL
 | |
| 
 | |
|   if (AddNewLine)
 | |
|     OS << '\n';
 | |
| }
 | |
| 
 | |
| bool MachineInstr::addRegisterKilled(Register IncomingReg,
 | |
|                                      const TargetRegisterInfo *RegInfo,
 | |
|                                      bool AddIfNotFound) {
 | |
|   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
 | |
|   bool hasAliases = isPhysReg &&
 | |
|     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
 | |
|   bool Found = false;
 | |
|   SmallVector<unsigned,4> DeadOps;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
 | |
|       continue;
 | |
| 
 | |
|     // DEBUG_VALUE nodes do not contribute to code generation and should
 | |
|     // always be ignored. Failure to do so may result in trying to modify
 | |
|     // KILL flags on DEBUG_VALUE nodes.
 | |
|     if (MO.isDebug())
 | |
|       continue;
 | |
| 
 | |
|     Register Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
| 
 | |
|     if (Reg == IncomingReg) {
 | |
|       if (!Found) {
 | |
|         if (MO.isKill())
 | |
|           // The register is already marked kill.
 | |
|           return true;
 | |
|         if (isPhysReg && isRegTiedToDefOperand(i))
 | |
|           // Two-address uses of physregs must not be marked kill.
 | |
|           return true;
 | |
|         MO.setIsKill();
 | |
|         Found = true;
 | |
|       }
 | |
|     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
 | |
|       // A super-register kill already exists.
 | |
|       if (RegInfo->isSuperRegister(IncomingReg, Reg))
 | |
|         return true;
 | |
|       if (RegInfo->isSubRegister(IncomingReg, Reg))
 | |
|         DeadOps.push_back(i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Trim unneeded kill operands.
 | |
|   while (!DeadOps.empty()) {
 | |
|     unsigned OpIdx = DeadOps.back();
 | |
|     if (getOperand(OpIdx).isImplicit() &&
 | |
|         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
 | |
|       removeOperand(OpIdx);
 | |
|     else
 | |
|       getOperand(OpIdx).setIsKill(false);
 | |
|     DeadOps.pop_back();
 | |
|   }
 | |
| 
 | |
|   // If not found, this means an alias of one of the operands is killed. Add a
 | |
|   // new implicit operand if required.
 | |
|   if (!Found && AddIfNotFound) {
 | |
|     addOperand(MachineOperand::CreateReg(IncomingReg,
 | |
|                                          false /*IsDef*/,
 | |
|                                          true  /*IsImp*/,
 | |
|                                          true  /*IsKill*/));
 | |
|     return true;
 | |
|   }
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| void MachineInstr::clearRegisterKills(Register Reg,
 | |
|                                       const TargetRegisterInfo *RegInfo) {
 | |
|   if (!Register::isPhysicalRegister(Reg))
 | |
|     RegInfo = nullptr;
 | |
|   for (MachineOperand &MO : operands()) {
 | |
|     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
 | |
|       continue;
 | |
|     Register OpReg = MO.getReg();
 | |
|     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
 | |
|       MO.setIsKill(false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MachineInstr::addRegisterDead(Register Reg,
 | |
|                                    const TargetRegisterInfo *RegInfo,
 | |
|                                    bool AddIfNotFound) {
 | |
|   bool isPhysReg = Register::isPhysicalRegister(Reg);
 | |
|   bool hasAliases = isPhysReg &&
 | |
|     MCRegAliasIterator(Reg, RegInfo, false).isValid();
 | |
|   bool Found = false;
 | |
|   SmallVector<unsigned,4> DeadOps;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       continue;
 | |
|     Register MOReg = MO.getReg();
 | |
|     if (!MOReg)
 | |
|       continue;
 | |
| 
 | |
|     if (MOReg == Reg) {
 | |
|       MO.setIsDead();
 | |
|       Found = true;
 | |
|     } else if (hasAliases && MO.isDead() &&
 | |
|                Register::isPhysicalRegister(MOReg)) {
 | |
|       // There exists a super-register that's marked dead.
 | |
|       if (RegInfo->isSuperRegister(Reg, MOReg))
 | |
|         return true;
 | |
|       if (RegInfo->isSubRegister(Reg, MOReg))
 | |
|         DeadOps.push_back(i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Trim unneeded dead operands.
 | |
|   while (!DeadOps.empty()) {
 | |
|     unsigned OpIdx = DeadOps.back();
 | |
|     if (getOperand(OpIdx).isImplicit() &&
 | |
|         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
 | |
|       removeOperand(OpIdx);
 | |
|     else
 | |
|       getOperand(OpIdx).setIsDead(false);
 | |
|     DeadOps.pop_back();
 | |
|   }
 | |
| 
 | |
|   // If not found, this means an alias of one of the operands is dead. Add a
 | |
|   // new implicit operand if required.
 | |
|   if (Found || !AddIfNotFound)
 | |
|     return Found;
 | |
| 
 | |
|   addOperand(MachineOperand::CreateReg(Reg,
 | |
|                                        true  /*IsDef*/,
 | |
|                                        true  /*IsImp*/,
 | |
|                                        false /*IsKill*/,
 | |
|                                        true  /*IsDead*/));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void MachineInstr::clearRegisterDeads(Register Reg) {
 | |
|   for (MachineOperand &MO : operands()) {
 | |
|     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
 | |
|       continue;
 | |
|     MO.setIsDead(false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
 | |
|   for (MachineOperand &MO : operands()) {
 | |
|     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
 | |
|       continue;
 | |
|     MO.setIsUndef(IsUndef);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineInstr::addRegisterDefined(Register Reg,
 | |
|                                       const TargetRegisterInfo *RegInfo) {
 | |
|   if (Register::isPhysicalRegister(Reg)) {
 | |
|     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
 | |
|     if (MO)
 | |
|       return;
 | |
|   } else {
 | |
|     for (const MachineOperand &MO : operands()) {
 | |
|       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
 | |
|           MO.getSubReg() == 0)
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
|   addOperand(MachineOperand::CreateReg(Reg,
 | |
|                                        true  /*IsDef*/,
 | |
|                                        true  /*IsImp*/));
 | |
| }
 | |
| 
 | |
| void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
 | |
|                                          const TargetRegisterInfo &TRI) {
 | |
|   bool HasRegMask = false;
 | |
|   for (MachineOperand &MO : operands()) {
 | |
|     if (MO.isRegMask()) {
 | |
|       HasRegMask = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (!MO.isReg() || !MO.isDef()) continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (!Reg.isPhysical())
 | |
|       continue;
 | |
|     // If there are no uses, including partial uses, the def is dead.
 | |
|     if (llvm::none_of(UsedRegs,
 | |
|                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
 | |
|       MO.setIsDead();
 | |
|   }
 | |
| 
 | |
|   // This is a call with a register mask operand.
 | |
|   // Mask clobbers are always dead, so add defs for the non-dead defines.
 | |
|   if (HasRegMask)
 | |
|     for (const Register &UsedReg : UsedRegs)
 | |
|       addRegisterDefined(UsedReg, &TRI);
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
 | |
|   // Build up a buffer of hash code components.
 | |
|   SmallVector<size_t, 16> HashComponents;
 | |
|   HashComponents.reserve(MI->getNumOperands() + 1);
 | |
|   HashComponents.push_back(MI->getOpcode());
 | |
|   for (const MachineOperand &MO : MI->operands()) {
 | |
|     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
 | |
|       continue;  // Skip virtual register defs.
 | |
| 
 | |
|     HashComponents.push_back(hash_value(MO));
 | |
|   }
 | |
|   return hash_combine_range(HashComponents.begin(), HashComponents.end());
 | |
| }
 | |
| 
 | |
| void MachineInstr::emitError(StringRef Msg) const {
 | |
|   // Find the source location cookie.
 | |
|   uint64_t LocCookie = 0;
 | |
|   const MDNode *LocMD = nullptr;
 | |
|   for (unsigned i = getNumOperands(); i != 0; --i) {
 | |
|     if (getOperand(i-1).isMetadata() &&
 | |
|         (LocMD = getOperand(i-1).getMetadata()) &&
 | |
|         LocMD->getNumOperands() != 0) {
 | |
|       if (const ConstantInt *CI =
 | |
|               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
 | |
|         LocCookie = CI->getZExtValue();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const MachineBasicBlock *MBB = getParent())
 | |
|     if (const MachineFunction *MF = MBB->getParent())
 | |
|       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
 | |
|   report_fatal_error(Msg);
 | |
| }
 | |
| 
 | |
| MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
 | |
|                                   const MCInstrDesc &MCID, bool IsIndirect,
 | |
|                                   Register Reg, const MDNode *Variable,
 | |
|                                   const MDNode *Expr) {
 | |
|   assert(isa<DILocalVariable>(Variable) && "not a variable");
 | |
|   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
 | |
|   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
|   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
 | |
|   if (IsIndirect)
 | |
|     MIB.addImm(0U);
 | |
|   else
 | |
|     MIB.addReg(0U);
 | |
|   return MIB.addMetadata(Variable).addMetadata(Expr);
 | |
| }
 | |
| 
 | |
| MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
 | |
|                                   const MCInstrDesc &MCID, bool IsIndirect,
 | |
|                                   const MachineOperand &MO,
 | |
|                                   const MDNode *Variable, const MDNode *Expr) {
 | |
|   assert(isa<DILocalVariable>(Variable) && "not a variable");
 | |
|   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
 | |
|   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
|   if (MO.isReg())
 | |
|     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
 | |
| 
 | |
|   auto MIB = BuildMI(MF, DL, MCID).add(MO);
 | |
|   if (IsIndirect)
 | |
|     MIB.addImm(0U);
 | |
|   else
 | |
|     MIB.addReg(0U);
 | |
|   return MIB.addMetadata(Variable).addMetadata(Expr);
 | |
| }
 | |
| 
 | |
| MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
 | |
|                                   const MCInstrDesc &MCID, bool IsIndirect,
 | |
|                                   ArrayRef<MachineOperand> MOs,
 | |
|                                   const MDNode *Variable, const MDNode *Expr) {
 | |
|   assert(isa<DILocalVariable>(Variable) && "not a variable");
 | |
|   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
 | |
|   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
|   if (MCID.Opcode == TargetOpcode::DBG_VALUE)
 | |
|     return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
 | |
| 
 | |
|   auto MIB = BuildMI(MF, DL, MCID);
 | |
|   MIB.addMetadata(Variable).addMetadata(Expr);
 | |
|   for (const MachineOperand &MO : MOs)
 | |
|     if (MO.isReg())
 | |
|       MIB.addReg(MO.getReg());
 | |
|     else
 | |
|       MIB.add(MO);
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
 | |
|                                   MachineBasicBlock::iterator I,
 | |
|                                   const DebugLoc &DL, const MCInstrDesc &MCID,
 | |
|                                   bool IsIndirect, Register Reg,
 | |
|                                   const MDNode *Variable, const MDNode *Expr) {
 | |
|   MachineFunction &MF = *BB.getParent();
 | |
|   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
 | |
|   BB.insert(I, MI);
 | |
|   return MachineInstrBuilder(MF, MI);
 | |
| }
 | |
| 
 | |
| MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
 | |
|                                   MachineBasicBlock::iterator I,
 | |
|                                   const DebugLoc &DL, const MCInstrDesc &MCID,
 | |
|                                   bool IsIndirect, MachineOperand &MO,
 | |
|                                   const MDNode *Variable, const MDNode *Expr) {
 | |
|   MachineFunction &MF = *BB.getParent();
 | |
|   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
 | |
|   BB.insert(I, MI);
 | |
|   return MachineInstrBuilder(MF, *MI);
 | |
| }
 | |
| 
 | |
| MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
 | |
|                                   MachineBasicBlock::iterator I,
 | |
|                                   const DebugLoc &DL, const MCInstrDesc &MCID,
 | |
|                                   bool IsIndirect, ArrayRef<MachineOperand> MOs,
 | |
|                                   const MDNode *Variable, const MDNode *Expr) {
 | |
|   MachineFunction &MF = *BB.getParent();
 | |
|   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
 | |
|   BB.insert(I, MI);
 | |
|   return MachineInstrBuilder(MF, *MI);
 | |
| }
 | |
| 
 | |
| /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
 | |
| /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
 | |
| static const DIExpression *
 | |
| computeExprForSpill(const MachineInstr &MI,
 | |
|                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
 | |
|   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
| 
 | |
|   const DIExpression *Expr = MI.getDebugExpression();
 | |
|   if (MI.isIndirectDebugValue()) {
 | |
|     assert(MI.getDebugOffset().getImm() == 0 &&
 | |
|            "DBG_VALUE with nonzero offset");
 | |
|     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
 | |
|   } else if (MI.isDebugValueList()) {
 | |
|     // We will replace the spilled register with a frame index, so
 | |
|     // immediately deref all references to the spilled register.
 | |
|     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
 | |
|     for (const MachineOperand *Op : SpilledOperands) {
 | |
|       unsigned OpIdx = MI.getDebugOperandIndex(Op);
 | |
|       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
 | |
|     }
 | |
|   }
 | |
|   return Expr;
 | |
| }
 | |
| static const DIExpression *computeExprForSpill(const MachineInstr &MI,
 | |
|                                                Register SpillReg) {
 | |
|   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
 | |
|   SmallVector<const MachineOperand *> SpillOperands;
 | |
|   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
 | |
|     SpillOperands.push_back(&Op);
 | |
|   return computeExprForSpill(MI, SpillOperands);
 | |
| }
 | |
| 
 | |
| MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
 | |
|                                           MachineBasicBlock::iterator I,
 | |
|                                           const MachineInstr &Orig,
 | |
|                                           int FrameIndex, Register SpillReg) {
 | |
|   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
 | |
|   MachineInstrBuilder NewMI =
 | |
|       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
 | |
|   // Non-Variadic Operands: Location, Offset, Variable, Expression
 | |
|   // Variadic Operands:     Variable, Expression, Locations...
 | |
|   if (Orig.isNonListDebugValue())
 | |
|     NewMI.addFrameIndex(FrameIndex).addImm(0U);
 | |
|   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
 | |
|   if (Orig.isDebugValueList()) {
 | |
|     for (const MachineOperand &Op : Orig.debug_operands())
 | |
|       if (Op.isReg() && Op.getReg() == SpillReg)
 | |
|         NewMI.addFrameIndex(FrameIndex);
 | |
|       else
 | |
|         NewMI.add(MachineOperand(Op));
 | |
|   }
 | |
|   return NewMI;
 | |
| }
 | |
| MachineInstr *llvm::buildDbgValueForSpill(
 | |
|     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
 | |
|     const MachineInstr &Orig, int FrameIndex,
 | |
|     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
 | |
|   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
 | |
|   MachineInstrBuilder NewMI =
 | |
|       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
 | |
|   // Non-Variadic Operands: Location, Offset, Variable, Expression
 | |
|   // Variadic Operands:     Variable, Expression, Locations...
 | |
|   if (Orig.isNonListDebugValue())
 | |
|     NewMI.addFrameIndex(FrameIndex).addImm(0U);
 | |
|   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
 | |
|   if (Orig.isDebugValueList()) {
 | |
|     for (const MachineOperand &Op : Orig.debug_operands())
 | |
|       if (is_contained(SpilledOperands, &Op))
 | |
|         NewMI.addFrameIndex(FrameIndex);
 | |
|       else
 | |
|         NewMI.add(MachineOperand(Op));
 | |
|   }
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
 | |
|                                   Register Reg) {
 | |
|   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
 | |
|   if (Orig.isNonListDebugValue())
 | |
|     Orig.getDebugOffset().ChangeToImmediate(0U);
 | |
|   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
 | |
|     Op.ChangeToFrameIndex(FrameIndex);
 | |
|   Orig.getDebugExpressionOp().setMetadata(Expr);
 | |
| }
 | |
| 
 | |
| void MachineInstr::collectDebugValues(
 | |
|                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
 | |
|   MachineInstr &MI = *this;
 | |
|   if (!MI.getOperand(0).isReg())
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock::iterator DI = MI; ++DI;
 | |
|   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
 | |
|        DI != DE; ++DI) {
 | |
|     if (!DI->isDebugValue())
 | |
|       return;
 | |
|     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
 | |
|       DbgValues.push_back(&*DI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineInstr::changeDebugValuesDefReg(Register Reg) {
 | |
|   // Collect matching debug values.
 | |
|   SmallVector<MachineInstr *, 2> DbgValues;
 | |
| 
 | |
|   if (!getOperand(0).isReg())
 | |
|     return;
 | |
| 
 | |
|   Register DefReg = getOperand(0).getReg();
 | |
|   auto *MRI = getRegInfo();
 | |
|   for (auto &MO : MRI->use_operands(DefReg)) {
 | |
|     auto *DI = MO.getParent();
 | |
|     if (!DI->isDebugValue())
 | |
|       continue;
 | |
|     if (DI->hasDebugOperandForReg(DefReg)) {
 | |
|       DbgValues.push_back(DI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Propagate Reg to debug value instructions.
 | |
|   for (auto *DBI : DbgValues)
 | |
|     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
 | |
|       Op.setReg(Reg);
 | |
| }
 | |
| 
 | |
| using MMOList = SmallVector<const MachineMemOperand *, 2>;
 | |
| 
 | |
| static unsigned getSpillSlotSize(const MMOList &Accesses,
 | |
|                                  const MachineFrameInfo &MFI) {
 | |
|   unsigned Size = 0;
 | |
|   for (const auto *A : Accesses)
 | |
|     if (MFI.isSpillSlotObjectIndex(
 | |
|             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
 | |
|                 ->getFrameIndex()))
 | |
|       Size += A->getSize();
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| Optional<unsigned>
 | |
| MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
 | |
|   int FI;
 | |
|   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
 | |
|     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
 | |
|     if (MFI.isSpillSlotObjectIndex(FI))
 | |
|       return (*memoperands_begin())->getSize();
 | |
|   }
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Optional<unsigned>
 | |
| MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
 | |
|   MMOList Accesses;
 | |
|   if (TII->hasStoreToStackSlot(*this, Accesses))
 | |
|     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Optional<unsigned>
 | |
| MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
 | |
|   int FI;
 | |
|   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
 | |
|     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
 | |
|     if (MFI.isSpillSlotObjectIndex(FI))
 | |
|       return (*memoperands_begin())->getSize();
 | |
|   }
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Optional<unsigned>
 | |
| MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
 | |
|   MMOList Accesses;
 | |
|   if (TII->hasLoadFromStackSlot(*this, Accesses))
 | |
|     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| unsigned MachineInstr::getDebugInstrNum() {
 | |
|   if (DebugInstrNum == 0)
 | |
|     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
 | |
|   return DebugInstrNum;
 | |
| }
 | |
| 
 | |
| unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
 | |
|   if (DebugInstrNum == 0)
 | |
|     DebugInstrNum = MF.getNewDebugInstrNum();
 | |
|   return DebugInstrNum;
 | |
| }
 |