1898 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1898 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass moves instructions into successor blocks when possible, so that
 | |
| // they aren't executed on paths where their results aren't needed.
 | |
| //
 | |
| // This pass is not intended to be a replacement or a complete alternative
 | |
| // for an LLVM-IR-level sinking pass. It is only designed to sink simple
 | |
| // constructs that are not exposed before lowering and instruction selection.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/PointerIntPair.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
 | |
| #include "llvm/CodeGen/MachineCycleAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachinePostDominators.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RegisterClassInfo.h"
 | |
| #include "llvm/CodeGen/RegisterPressure.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <map>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "machine-sink"
 | |
| 
 | |
| static cl::opt<bool>
 | |
| SplitEdges("machine-sink-split",
 | |
|            cl::desc("Split critical edges during machine sinking"),
 | |
|            cl::init(true), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UseBlockFreqInfo("machine-sink-bfi",
 | |
|            cl::desc("Use block frequency info to find successors to sink"),
 | |
|            cl::init(true), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
 | |
|     "machine-sink-split-probability-threshold",
 | |
|     cl::desc(
 | |
|         "Percentage threshold for splitting single-instruction critical edge. "
 | |
|         "If the branch threshold is higher than this threshold, we allow "
 | |
|         "speculative execution of up to 1 instruction to avoid branching to "
 | |
|         "splitted critical edge"),
 | |
|     cl::init(40), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold(
 | |
|     "machine-sink-load-instrs-threshold",
 | |
|     cl::desc("Do not try to find alias store for a load if there is a in-path "
 | |
|              "block whose instruction number is higher than this threshold."),
 | |
|     cl::init(2000), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned> SinkLoadBlocksThreshold(
 | |
|     "machine-sink-load-blocks-threshold",
 | |
|     cl::desc("Do not try to find alias store for a load if the block number in "
 | |
|              "the straight line is higher than this threshold."),
 | |
|     cl::init(20), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     SinkInstsIntoCycle("sink-insts-to-avoid-spills",
 | |
|                        cl::desc("Sink instructions into cycles to avoid "
 | |
|                                 "register spills"),
 | |
|                        cl::init(false), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned> SinkIntoCycleLimit(
 | |
|     "machine-sink-cycle-limit",
 | |
|     cl::desc("The maximum number of instructions considered for cycle sinking."),
 | |
|     cl::init(50), cl::Hidden);
 | |
| 
 | |
| STATISTIC(NumSunk,      "Number of machine instructions sunk");
 | |
| STATISTIC(NumCycleSunk,  "Number of machine instructions sunk into a cycle");
 | |
| STATISTIC(NumSplit,     "Number of critical edges split");
 | |
| STATISTIC(NumCoalesces, "Number of copies coalesced");
 | |
| STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class MachineSinking : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     MachineRegisterInfo  *MRI;     // Machine register information
 | |
|     MachineDominatorTree *DT;      // Machine dominator tree
 | |
|     MachinePostDominatorTree *PDT; // Machine post dominator tree
 | |
|     MachineCycleInfo *CI;
 | |
|     MachineBlockFrequencyInfo *MBFI;
 | |
|     const MachineBranchProbabilityInfo *MBPI;
 | |
|     AliasAnalysis *AA;
 | |
|     RegisterClassInfo RegClassInfo;
 | |
| 
 | |
|     // Remember which edges have been considered for breaking.
 | |
|     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
 | |
|     CEBCandidates;
 | |
|     // Remember which edges we are about to split.
 | |
|     // This is different from CEBCandidates since those edges
 | |
|     // will be split.
 | |
|     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
 | |
| 
 | |
|     DenseSet<Register> RegsToClearKillFlags;
 | |
| 
 | |
|     using AllSuccsCache =
 | |
|         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
 | |
| 
 | |
|     /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
 | |
|     /// post-dominated by another DBG_VALUE of the same variable location.
 | |
|     /// This is necessary to detect sequences such as:
 | |
|     ///     %0 = someinst
 | |
|     ///     DBG_VALUE %0, !123, !DIExpression()
 | |
|     ///     %1 = anotherinst
 | |
|     ///     DBG_VALUE %1, !123, !DIExpression()
 | |
|     /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
 | |
|     /// would re-order assignments.
 | |
|     using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
 | |
| 
 | |
|     /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
 | |
|     /// debug instructions to sink.
 | |
|     SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
 | |
| 
 | |
|     /// Record of debug variables that have had their locations set in the
 | |
|     /// current block.
 | |
|     DenseSet<DebugVariable> SeenDbgVars;
 | |
| 
 | |
|     std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool>
 | |
|         HasStoreCache;
 | |
|     std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>,
 | |
|              std::vector<MachineInstr *>>
 | |
|         StoreInstrCache;
 | |
| 
 | |
|     /// Cached BB's register pressure.
 | |
|     std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
| 
 | |
|     MachineSinking() : MachineFunctionPass(ID) {
 | |
|       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<AAResultsWrapperPass>();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addRequired<MachinePostDominatorTree>();
 | |
|       AU.addRequired<MachineCycleInfoWrapperPass>();
 | |
|       AU.addRequired<MachineBranchProbabilityInfo>();
 | |
|       AU.addPreserved<MachineCycleInfoWrapperPass>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       if (UseBlockFreqInfo)
 | |
|         AU.addRequired<MachineBlockFrequencyInfo>();
 | |
|     }
 | |
| 
 | |
|     void releaseMemory() override {
 | |
|       CEBCandidates.clear();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     bool ProcessBlock(MachineBasicBlock &MBB);
 | |
|     void ProcessDbgInst(MachineInstr &MI);
 | |
|     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
 | |
|                                      MachineBasicBlock *From,
 | |
|                                      MachineBasicBlock *To);
 | |
| 
 | |
|     bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To,
 | |
|                          MachineInstr &MI);
 | |
| 
 | |
|     /// Postpone the splitting of the given critical
 | |
|     /// edge (\p From, \p To).
 | |
|     ///
 | |
|     /// We do not split the edges on the fly. Indeed, this invalidates
 | |
|     /// the dominance information and thus triggers a lot of updates
 | |
|     /// of that information underneath.
 | |
|     /// Instead, we postpone all the splits after each iteration of
 | |
|     /// the main loop. That way, the information is at least valid
 | |
|     /// for the lifetime of an iteration.
 | |
|     ///
 | |
|     /// \return True if the edge is marked as toSplit, false otherwise.
 | |
|     /// False can be returned if, for instance, this is not profitable.
 | |
|     bool PostponeSplitCriticalEdge(MachineInstr &MI,
 | |
|                                    MachineBasicBlock *From,
 | |
|                                    MachineBasicBlock *To,
 | |
|                                    bool BreakPHIEdge);
 | |
|     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
 | |
|                          AllSuccsCache &AllSuccessors);
 | |
| 
 | |
|     /// If we sink a COPY inst, some debug users of it's destination may no
 | |
|     /// longer be dominated by the COPY, and will eventually be dropped.
 | |
|     /// This is easily rectified by forwarding the non-dominated debug uses
 | |
|     /// to the copy source.
 | |
|     void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
 | |
|                                        MachineBasicBlock *TargetBlock);
 | |
|     bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB,
 | |
|                                  MachineBasicBlock *DefMBB, bool &BreakPHIEdge,
 | |
|                                  bool &LocalUse) const;
 | |
|     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
 | |
|                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
 | |
| 
 | |
|     void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB,
 | |
|                                  SmallVectorImpl<MachineInstr *> &Candidates);
 | |
|     bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I);
 | |
| 
 | |
|     bool isProfitableToSinkTo(Register Reg, MachineInstr &MI,
 | |
|                               MachineBasicBlock *MBB,
 | |
|                               MachineBasicBlock *SuccToSinkTo,
 | |
|                               AllSuccsCache &AllSuccessors);
 | |
| 
 | |
|     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
 | |
|                                          MachineBasicBlock *MBB);
 | |
| 
 | |
|     SmallVector<MachineBasicBlock *, 4> &
 | |
|     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
 | |
|                            AllSuccsCache &AllSuccessors) const;
 | |
| 
 | |
|     std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB);
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MachineSinking::ID = 0;
 | |
| 
 | |
| char &llvm::MachineSinkingID = MachineSinking::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
 | |
|                       "Machine code sinking", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
 | |
|                     "Machine code sinking", false, false)
 | |
| 
 | |
| bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
 | |
|                                                      MachineBasicBlock *MBB) {
 | |
|   if (!MI.isCopy())
 | |
|     return false;
 | |
| 
 | |
|   Register SrcReg = MI.getOperand(1).getReg();
 | |
|   Register DstReg = MI.getOperand(0).getReg();
 | |
|   if (!Register::isVirtualRegister(SrcReg) ||
 | |
|       !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
 | |
|     return false;
 | |
| 
 | |
|   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
 | |
|   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
 | |
|   if (SRC != DRC)
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | |
|   if (DefMI->isCopyLike())
 | |
|     return false;
 | |
|   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
 | |
|   LLVM_DEBUG(dbgs() << "*** to: " << MI);
 | |
|   MRI->replaceRegWith(DstReg, SrcReg);
 | |
|   MI.eraseFromParent();
 | |
| 
 | |
|   // Conservatively, clear any kill flags, since it's possible that they are no
 | |
|   // longer correct.
 | |
|   MRI->clearKillFlags(SrcReg);
 | |
| 
 | |
|   ++NumCoalesces;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// AllUsesDominatedByBlock - Return true if all uses of the specified register
 | |
| /// occur in blocks dominated by the specified block. If any use is in the
 | |
| /// definition block, then return false since it is never legal to move def
 | |
| /// after uses.
 | |
| bool MachineSinking::AllUsesDominatedByBlock(Register Reg,
 | |
|                                              MachineBasicBlock *MBB,
 | |
|                                              MachineBasicBlock *DefMBB,
 | |
|                                              bool &BreakPHIEdge,
 | |
|                                              bool &LocalUse) const {
 | |
|   assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
 | |
| 
 | |
|   // Ignore debug uses because debug info doesn't affect the code.
 | |
|   if (MRI->use_nodbg_empty(Reg))
 | |
|     return true;
 | |
| 
 | |
|   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
 | |
|   // into and they are all PHI nodes. In this case, machine-sink must break
 | |
|   // the critical edge first. e.g.
 | |
|   //
 | |
|   // %bb.1:
 | |
|   //   Predecessors according to CFG: %bb.0
 | |
|   //     ...
 | |
|   //     %def = DEC64_32r %x, implicit-def dead %eflags
 | |
|   //     ...
 | |
|   //     JE_4 <%bb.37>, implicit %eflags
 | |
|   //   Successors according to CFG: %bb.37 %bb.2
 | |
|   //
 | |
|   // %bb.2:
 | |
|   //     %p = PHI %y, %bb.0, %def, %bb.1
 | |
|   if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
 | |
|         MachineInstr *UseInst = MO.getParent();
 | |
|         unsigned OpNo = UseInst->getOperandNo(&MO);
 | |
|         MachineBasicBlock *UseBlock = UseInst->getParent();
 | |
|         return UseBlock == MBB && UseInst->isPHI() &&
 | |
|                UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
 | |
|       })) {
 | |
|     BreakPHIEdge = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
 | |
|     // Determine the block of the use.
 | |
|     MachineInstr *UseInst = MO.getParent();
 | |
|     unsigned OpNo = &MO - &UseInst->getOperand(0);
 | |
|     MachineBasicBlock *UseBlock = UseInst->getParent();
 | |
|     if (UseInst->isPHI()) {
 | |
|       // PHI nodes use the operand in the predecessor block, not the block with
 | |
|       // the PHI.
 | |
|       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
 | |
|     } else if (UseBlock == DefMBB) {
 | |
|       LocalUse = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Check that it dominates.
 | |
|     if (!DT->dominates(MBB, UseBlock))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if this machine instruction loads from global offset table or
 | |
| /// constant pool.
 | |
| static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
 | |
|   assert(MI.mayLoad() && "Expected MI that loads!");
 | |
| 
 | |
|   // If we lost memory operands, conservatively assume that the instruction
 | |
|   // reads from everything..
 | |
|   if (MI.memoperands_empty())
 | |
|     return true;
 | |
| 
 | |
|   for (MachineMemOperand *MemOp : MI.memoperands())
 | |
|     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
 | |
|       if (PSV->isGOT() || PSV->isConstantPool())
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void MachineSinking::FindCycleSinkCandidates(
 | |
|     MachineCycle *Cycle, MachineBasicBlock *BB,
 | |
|     SmallVectorImpl<MachineInstr *> &Candidates) {
 | |
|   for (auto &MI : *BB) {
 | |
|     LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI);
 | |
|     if (!TII->shouldSink(MI)) {
 | |
|       LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this "
 | |
|                            "target\n");
 | |
|       continue;
 | |
|     }
 | |
|     if (!isCycleInvariant(Cycle, MI)) {
 | |
|       LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n");
 | |
|       continue;
 | |
|     }
 | |
|     bool DontMoveAcrossStore = true;
 | |
|     if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) {
 | |
|       LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n");
 | |
|       continue;
 | |
|     }
 | |
|     if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) {
 | |
|       LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n");
 | |
|       continue;
 | |
|     }
 | |
|     if (MI.isConvergent())
 | |
|       continue;
 | |
| 
 | |
|     const MachineOperand &MO = MI.getOperand(0);
 | |
|     if (!MO.isReg() || !MO.getReg() || !MO.isDef())
 | |
|       continue;
 | |
|     if (!MRI->hasOneDef(MO.getReg()))
 | |
|       continue;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n");
 | |
|     Candidates.push_back(&MI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipFunction(MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
 | |
| 
 | |
|   TII = MF.getSubtarget().getInstrInfo();
 | |
|   TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   DT = &getAnalysis<MachineDominatorTree>();
 | |
|   PDT = &getAnalysis<MachinePostDominatorTree>();
 | |
|   CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo();
 | |
|   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
 | |
|   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
 | |
|   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   RegClassInfo.runOnMachineFunction(MF);
 | |
| 
 | |
|   bool EverMadeChange = false;
 | |
| 
 | |
|   while (true) {
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     // Process all basic blocks.
 | |
|     CEBCandidates.clear();
 | |
|     ToSplit.clear();
 | |
|     for (auto &MBB: MF)
 | |
|       MadeChange |= ProcessBlock(MBB);
 | |
| 
 | |
|     // If we have anything we marked as toSplit, split it now.
 | |
|     for (const auto &Pair : ToSplit) {
 | |
|       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
 | |
|       if (NewSucc != nullptr) {
 | |
|         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
 | |
|                           << printMBBReference(*Pair.first) << " -- "
 | |
|                           << printMBBReference(*NewSucc) << " -- "
 | |
|                           << printMBBReference(*Pair.second) << '\n');
 | |
|         if (MBFI)
 | |
|           MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
 | |
| 
 | |
|         MadeChange = true;
 | |
|         ++NumSplit;
 | |
|       } else
 | |
|         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
 | |
|     }
 | |
|     // If this iteration over the code changed anything, keep iterating.
 | |
|     if (!MadeChange) break;
 | |
|     EverMadeChange = true;
 | |
|   }
 | |
| 
 | |
|   if (SinkInstsIntoCycle) {
 | |
|     SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(),
 | |
|                                           CI->toplevel_end());
 | |
|     for (auto *Cycle : Cycles) {
 | |
|       MachineBasicBlock *Preheader = Cycle->getCyclePreheader();
 | |
|       if (!Preheader) {
 | |
|         LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n");
 | |
|         continue;
 | |
|       }
 | |
|       SmallVector<MachineInstr *, 8> Candidates;
 | |
|       FindCycleSinkCandidates(Cycle, Preheader, Candidates);
 | |
| 
 | |
|       // Walk the candidates in reverse order so that we start with the use
 | |
|       // of a def-use chain, if there is any.
 | |
|       // TODO: Sort the candidates using a cost-model.
 | |
|       unsigned i = 0;
 | |
|       for (MachineInstr *I : llvm::reverse(Candidates)) {
 | |
|         if (i++ == SinkIntoCycleLimit) {
 | |
|           LLVM_DEBUG(dbgs() << "CycleSink:   Limit reached of instructions to "
 | |
|                                "be analysed.");
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         if (!SinkIntoCycle(Cycle, *I))
 | |
|           break;
 | |
|         EverMadeChange = true;
 | |
|         ++NumCycleSunk;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   HasStoreCache.clear();
 | |
|   StoreInstrCache.clear();
 | |
| 
 | |
|   // Now clear any kill flags for recorded registers.
 | |
|   for (auto I : RegsToClearKillFlags)
 | |
|     MRI->clearKillFlags(I);
 | |
|   RegsToClearKillFlags.clear();
 | |
| 
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
 | |
|   // Can't sink anything out of a block that has less than two successors.
 | |
|   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
 | |
| 
 | |
|   // Don't bother sinking code out of unreachable blocks. In addition to being
 | |
|   // unprofitable, it can also lead to infinite looping, because in an
 | |
|   // unreachable cycle there may be nowhere to stop.
 | |
|   if (!DT->isReachableFromEntry(&MBB)) return false;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Cache all successors, sorted by frequency info and cycle depth.
 | |
|   AllSuccsCache AllSuccessors;
 | |
| 
 | |
|   // Walk the basic block bottom-up.  Remember if we saw a store.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   --I;
 | |
|   bool ProcessedBegin, SawStore = false;
 | |
|   do {
 | |
|     MachineInstr &MI = *I;  // The instruction to sink.
 | |
| 
 | |
|     // Predecrement I (if it's not begin) so that it isn't invalidated by
 | |
|     // sinking.
 | |
|     ProcessedBegin = I == MBB.begin();
 | |
|     if (!ProcessedBegin)
 | |
|       --I;
 | |
| 
 | |
|     if (MI.isDebugOrPseudoInstr()) {
 | |
|       if (MI.isDebugValue())
 | |
|         ProcessDbgInst(MI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
 | |
|     if (Joined) {
 | |
|       MadeChange = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
 | |
|       ++NumSunk;
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     // If we just processed the first instruction in the block, we're done.
 | |
|   } while (!ProcessedBegin);
 | |
| 
 | |
|   SeenDbgUsers.clear();
 | |
|   SeenDbgVars.clear();
 | |
|   // recalculate the bb register pressure after sinking one BB.
 | |
|   CachedRegisterPressure.clear();
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
 | |
|   // When we see DBG_VALUEs for registers, record any vreg it reads, so that
 | |
|   // we know what to sink if the vreg def sinks.
 | |
|   assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
 | |
| 
 | |
|   DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
 | |
|                     MI.getDebugLoc()->getInlinedAt());
 | |
|   bool SeenBefore = SeenDbgVars.contains(Var);
 | |
| 
 | |
|   for (MachineOperand &MO : MI.debug_operands()) {
 | |
|     if (MO.isReg() && MO.getReg().isVirtual())
 | |
|       SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
 | |
|   }
 | |
| 
 | |
|   // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
 | |
|   SeenDbgVars.insert(Var);
 | |
| }
 | |
| 
 | |
| bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
 | |
|                                                  MachineBasicBlock *From,
 | |
|                                                  MachineBasicBlock *To) {
 | |
|   // FIXME: Need much better heuristics.
 | |
| 
 | |
|   // If the pass has already considered breaking this edge (during this pass
 | |
|   // through the function), then let's go ahead and break it. This means
 | |
|   // sinking multiple "cheap" instructions into the same block.
 | |
|   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
 | |
|     return true;
 | |
| 
 | |
|   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
 | |
|     return true;
 | |
| 
 | |
|   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
 | |
|       BranchProbability(SplitEdgeProbabilityThreshold, 100))
 | |
|     return true;
 | |
| 
 | |
|   // MI is cheap, we probably don't want to break the critical edge for it.
 | |
|   // However, if this would allow some definitions of its source operands
 | |
|   // to be sunk then it's probably worth it.
 | |
|   for (const MachineOperand &MO : MI.operands()) {
 | |
|     if (!MO.isReg() || !MO.isUse())
 | |
|       continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (Reg == 0)
 | |
|       continue;
 | |
| 
 | |
|     // We don't move live definitions of physical registers,
 | |
|     // so sinking their uses won't enable any opportunities.
 | |
|     if (Register::isPhysicalRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     // If this instruction is the only user of a virtual register,
 | |
|     // check if breaking the edge will enable sinking
 | |
|     // both this instruction and the defining instruction.
 | |
|     if (MRI->hasOneNonDBGUse(Reg)) {
 | |
|       // If the definition resides in same MBB,
 | |
|       // claim it's likely we can sink these together.
 | |
|       // If definition resides elsewhere, we aren't
 | |
|       // blocking it from being sunk so don't break the edge.
 | |
|       MachineInstr *DefMI = MRI->getVRegDef(Reg);
 | |
|       if (DefMI->getParent() == MI.getParent())
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
 | |
|                                                MachineBasicBlock *FromBB,
 | |
|                                                MachineBasicBlock *ToBB,
 | |
|                                                bool BreakPHIEdge) {
 | |
|   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
 | |
|     return false;
 | |
| 
 | |
|   // Avoid breaking back edge. From == To means backedge for single BB cycle.
 | |
|   if (!SplitEdges || FromBB == ToBB)
 | |
|     return false;
 | |
| 
 | |
|   MachineCycle *FromCycle = CI->getCycle(FromBB);
 | |
|   MachineCycle *ToCycle = CI->getCycle(ToBB);
 | |
| 
 | |
|   // Check for backedges of more "complex" cycles.
 | |
|   if (FromCycle == ToCycle && FromCycle &&
 | |
|       (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB))
 | |
|     return false;
 | |
| 
 | |
|   // It's not always legal to break critical edges and sink the computation
 | |
|   // to the edge.
 | |
|   //
 | |
|   // %bb.1:
 | |
|   // v1024
 | |
|   // Beq %bb.3
 | |
|   // <fallthrough>
 | |
|   // %bb.2:
 | |
|   // ... no uses of v1024
 | |
|   // <fallthrough>
 | |
|   // %bb.3:
 | |
|   // ...
 | |
|   //       = v1024
 | |
|   //
 | |
|   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
 | |
|   //
 | |
|   // %bb.1:
 | |
|   // ...
 | |
|   // Bne %bb.2
 | |
|   // %bb.4:
 | |
|   // v1024 =
 | |
|   // B %bb.3
 | |
|   // %bb.2:
 | |
|   // ... no uses of v1024
 | |
|   // <fallthrough>
 | |
|   // %bb.3:
 | |
|   // ...
 | |
|   //       = v1024
 | |
|   //
 | |
|   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
 | |
|   // flow. We need to ensure the new basic block where the computation is
 | |
|   // sunk to dominates all the uses.
 | |
|   // It's only legal to break critical edge and sink the computation to the
 | |
|   // new block if all the predecessors of "To", except for "From", are
 | |
|   // not dominated by "From". Given SSA property, this means these
 | |
|   // predecessors are dominated by "To".
 | |
|   //
 | |
|   // There is no need to do this check if all the uses are PHI nodes. PHI
 | |
|   // sources are only defined on the specific predecessor edges.
 | |
|   if (!BreakPHIEdge) {
 | |
|     for (MachineBasicBlock *Pred : ToBB->predecessors())
 | |
|       if (Pred != FromBB && !DT->dominates(ToBB, Pred))
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   ToSplit.insert(std::make_pair(FromBB, ToBB));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| std::vector<unsigned> &
 | |
| MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) {
 | |
|   // Currently to save compiling time, MBB's register pressure will not change
 | |
|   // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
 | |
|   // register pressure is changed after sinking any instructions into it.
 | |
|   // FIXME: need a accurate and cheap register pressure estiminate model here.
 | |
|   auto RP = CachedRegisterPressure.find(&MBB);
 | |
|   if (RP != CachedRegisterPressure.end())
 | |
|     return RP->second;
 | |
| 
 | |
|   RegionPressure Pressure;
 | |
|   RegPressureTracker RPTracker(Pressure);
 | |
| 
 | |
|   // Initialize the register pressure tracker.
 | |
|   RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(),
 | |
|                  /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
 | |
| 
 | |
|   for (MachineBasicBlock::iterator MII = MBB.instr_end(),
 | |
|                                    MIE = MBB.instr_begin();
 | |
|        MII != MIE; --MII) {
 | |
|     MachineInstr &MI = *std::prev(MII);
 | |
|     if (MI.isDebugInstr() || MI.isPseudoProbe())
 | |
|       continue;
 | |
|     RegisterOperands RegOpers;
 | |
|     RegOpers.collect(MI, *TRI, *MRI, false, false);
 | |
|     RPTracker.recedeSkipDebugValues();
 | |
|     assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
 | |
|     RPTracker.recede(RegOpers);
 | |
|   }
 | |
| 
 | |
|   RPTracker.closeRegion();
 | |
|   auto It = CachedRegisterPressure.insert(
 | |
|       std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure));
 | |
|   return It.first->second;
 | |
| }
 | |
| 
 | |
| /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
 | |
| bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI,
 | |
|                                           MachineBasicBlock *MBB,
 | |
|                                           MachineBasicBlock *SuccToSinkTo,
 | |
|                                           AllSuccsCache &AllSuccessors) {
 | |
|   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
 | |
| 
 | |
|   if (MBB == SuccToSinkTo)
 | |
|     return false;
 | |
| 
 | |
|   // It is profitable if SuccToSinkTo does not post dominate current block.
 | |
|   if (!PDT->dominates(SuccToSinkTo, MBB))
 | |
|     return true;
 | |
| 
 | |
|   // It is profitable to sink an instruction from a deeper cycle to a shallower
 | |
|   // cycle, even if the latter post-dominates the former (PR21115).
 | |
|   if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo))
 | |
|     return true;
 | |
| 
 | |
|   // Check if only use in post dominated block is PHI instruction.
 | |
|   bool NonPHIUse = false;
 | |
|   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
 | |
|     MachineBasicBlock *UseBlock = UseInst.getParent();
 | |
|     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
 | |
|       NonPHIUse = true;
 | |
|   }
 | |
|   if (!NonPHIUse)
 | |
|     return true;
 | |
| 
 | |
|   // If SuccToSinkTo post dominates then also it may be profitable if MI
 | |
|   // can further profitably sinked into another block in next round.
 | |
|   bool BreakPHIEdge = false;
 | |
|   // FIXME - If finding successor is compile time expensive then cache results.
 | |
|   if (MachineBasicBlock *MBB2 =
 | |
|           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
 | |
|     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
 | |
| 
 | |
|   MachineCycle *MCycle = CI->getCycle(MBB);
 | |
| 
 | |
|   // If the instruction is not inside a cycle, it is not profitable to sink MI to
 | |
|   // a post dominate block SuccToSinkTo.
 | |
|   if (!MCycle)
 | |
|     return false;
 | |
| 
 | |
|   auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) {
 | |
|     unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
 | |
|     const int *PS = TRI->getRegClassPressureSets(RC);
 | |
|     // Get register pressure for block SuccToSinkTo.
 | |
|     std::vector<unsigned> BBRegisterPressure =
 | |
|         getBBRegisterPressure(*SuccToSinkTo);
 | |
|     for (; *PS != -1; PS++)
 | |
|       // check if any register pressure set exceeds limit in block SuccToSinkTo
 | |
|       // after sinking.
 | |
|       if (Weight + BBRegisterPressure[*PS] >=
 | |
|           TRI->getRegPressureSetLimit(*MBB->getParent(), *PS))
 | |
|         return true;
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // If this instruction is inside a Cycle and sinking this instruction can make
 | |
|   // more registers live range shorten, it is still prifitable.
 | |
|   for (const MachineOperand &MO : MI.operands()) {
 | |
|     // Ignore non-register operands.
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (Reg == 0)
 | |
|       continue;
 | |
| 
 | |
|     if (Register::isPhysicalRegister(Reg)) {
 | |
|       if (MO.isUse() &&
 | |
|           (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO)))
 | |
|         continue;
 | |
| 
 | |
|       // Don't handle non-constant and non-ignorable physical register.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Users for the defs are all dominated by SuccToSinkTo.
 | |
|     if (MO.isDef()) {
 | |
|       // This def register's live range is shortened after sinking.
 | |
|       bool LocalUse = false;
 | |
|       if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
 | |
|                                    LocalUse))
 | |
|         return false;
 | |
|     } else {
 | |
|       MachineInstr *DefMI = MRI->getVRegDef(Reg);
 | |
|       if (!DefMI)
 | |
|         continue;
 | |
|       MachineCycle *Cycle = CI->getCycle(DefMI->getParent());
 | |
|       // DefMI is defined outside of cycle. There should be no live range
 | |
|       // impact for this operand. Defination outside of cycle means:
 | |
|       // 1: defination is outside of cycle.
 | |
|       // 2: defination is in this cycle, but it is a PHI in the cycle header.
 | |
|       if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() &&
 | |
|                               Cycle->getHeader() == DefMI->getParent()))
 | |
|         continue;
 | |
|       // The DefMI is defined inside the cycle.
 | |
|       // If sinking this operand makes some register pressure set exceed limit,
 | |
|       // it is not profitable.
 | |
|       if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) {
 | |
|         LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If MI is in cycle and all its operands are alive across the whole cycle or
 | |
|   // if no operand sinking make register pressure set exceed limit, it is
 | |
|   // profitable to sink MI.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
 | |
| /// computing it if it was not already cached.
 | |
| SmallVector<MachineBasicBlock *, 4> &
 | |
| MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
 | |
|                                        AllSuccsCache &AllSuccessors) const {
 | |
|   // Do we have the sorted successors in cache ?
 | |
|   auto Succs = AllSuccessors.find(MBB);
 | |
|   if (Succs != AllSuccessors.end())
 | |
|     return Succs->second;
 | |
| 
 | |
|   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors());
 | |
| 
 | |
|   // Handle cases where sinking can happen but where the sink point isn't a
 | |
|   // successor. For example:
 | |
|   //
 | |
|   //   x = computation
 | |
|   //   if () {} else {}
 | |
|   //   use x
 | |
|   //
 | |
|   for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
 | |
|     // DomTree children of MBB that have MBB as immediate dominator are added.
 | |
|     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
 | |
|         // Skip MBBs already added to the AllSuccs vector above.
 | |
|         !MBB->isSuccessor(DTChild->getBlock()))
 | |
|       AllSuccs.push_back(DTChild->getBlock());
 | |
|   }
 | |
| 
 | |
|   // Sort Successors according to their cycle depth or block frequency info.
 | |
|   llvm::stable_sort(
 | |
|       AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
 | |
|         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
 | |
|         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
 | |
|         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
 | |
|         return HasBlockFreq ? LHSFreq < RHSFreq
 | |
|                             : CI->getCycleDepth(L) < CI->getCycleDepth(R);
 | |
|       });
 | |
| 
 | |
|   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
 | |
| 
 | |
|   return it.first->second;
 | |
| }
 | |
| 
 | |
| /// FindSuccToSinkTo - Find a successor to sink this instruction to.
 | |
| MachineBasicBlock *
 | |
| MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
 | |
|                                  bool &BreakPHIEdge,
 | |
|                                  AllSuccsCache &AllSuccessors) {
 | |
|   assert (MBB && "Invalid MachineBasicBlock!");
 | |
| 
 | |
|   // loop over all the operands of the specified instruction.  If there is
 | |
|   // anything we can't handle, bail out.
 | |
| 
 | |
|   // SuccToSinkTo - This is the successor to sink this instruction to, once we
 | |
|   // decide.
 | |
|   MachineBasicBlock *SuccToSinkTo = nullptr;
 | |
|   for (const MachineOperand &MO : MI.operands()) {
 | |
|     if (!MO.isReg()) continue;  // Ignore non-register operands.
 | |
| 
 | |
|     Register Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
| 
 | |
|     if (Register::isPhysicalRegister(Reg)) {
 | |
|       if (MO.isUse()) {
 | |
|         // If the physreg has no defs anywhere, it's just an ambient register
 | |
|         // and we can freely move its uses. Alternatively, if it's allocatable,
 | |
|         // it could get allocated to something with a def during allocation.
 | |
|         if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO))
 | |
|           return nullptr;
 | |
|       } else if (!MO.isDead()) {
 | |
|         // A def that isn't dead. We can't move it.
 | |
|         return nullptr;
 | |
|       }
 | |
|     } else {
 | |
|       // Virtual register uses are always safe to sink.
 | |
|       if (MO.isUse()) continue;
 | |
| 
 | |
|       // If it's not safe to move defs of the register class, then abort.
 | |
|       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
 | |
|         return nullptr;
 | |
| 
 | |
|       // Virtual register defs can only be sunk if all their uses are in blocks
 | |
|       // dominated by one of the successors.
 | |
|       if (SuccToSinkTo) {
 | |
|         // If a previous operand picked a block to sink to, then this operand
 | |
|         // must be sinkable to the same block.
 | |
|         bool LocalUse = false;
 | |
|         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
 | |
|                                      BreakPHIEdge, LocalUse))
 | |
|           return nullptr;
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, we should look at all the successors and decide which one
 | |
|       // we should sink to. If we have reliable block frequency information
 | |
|       // (frequency != 0) available, give successors with smaller frequencies
 | |
|       // higher priority, otherwise prioritize smaller cycle depths.
 | |
|       for (MachineBasicBlock *SuccBlock :
 | |
|            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
 | |
|         bool LocalUse = false;
 | |
|         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
 | |
|                                     BreakPHIEdge, LocalUse)) {
 | |
|           SuccToSinkTo = SuccBlock;
 | |
|           break;
 | |
|         }
 | |
|         if (LocalUse)
 | |
|           // Def is used locally, it's never safe to move this def.
 | |
|           return nullptr;
 | |
|       }
 | |
| 
 | |
|       // If we couldn't find a block to sink to, ignore this instruction.
 | |
|       if (!SuccToSinkTo)
 | |
|         return nullptr;
 | |
|       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // It is not possible to sink an instruction into its own block.  This can
 | |
|   // happen with cycles.
 | |
|   if (MBB == SuccToSinkTo)
 | |
|     return nullptr;
 | |
| 
 | |
|   // It's not safe to sink instructions to EH landing pad. Control flow into
 | |
|   // landing pad is implicitly defined.
 | |
|   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
 | |
|     return nullptr;
 | |
| 
 | |
|   // It ought to be okay to sink instructions into an INLINEASM_BR target, but
 | |
|   // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
 | |
|   // the source block (which this code does not yet do). So for now, forbid
 | |
|   // doing so.
 | |
|   if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
 | |
|     return nullptr;
 | |
| 
 | |
|   return SuccToSinkTo;
 | |
| }
 | |
| 
 | |
| /// Return true if MI is likely to be usable as a memory operation by the
 | |
| /// implicit null check optimization.
 | |
| ///
 | |
| /// This is a "best effort" heuristic, and should not be relied upon for
 | |
| /// correctness.  This returning true does not guarantee that the implicit null
 | |
| /// check optimization is legal over MI, and this returning false does not
 | |
| /// guarantee MI cannot possibly be used to do a null check.
 | |
| static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
 | |
|                                              const TargetInstrInfo *TII,
 | |
|                                              const TargetRegisterInfo *TRI) {
 | |
|   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
 | |
| 
 | |
|   auto *MBB = MI.getParent();
 | |
|   if (MBB->pred_size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   auto *PredMBB = *MBB->pred_begin();
 | |
|   auto *PredBB = PredMBB->getBasicBlock();
 | |
| 
 | |
|   // Frontends that don't use implicit null checks have no reason to emit
 | |
|   // branches with make.implicit metadata, and this function should always
 | |
|   // return false for them.
 | |
|   if (!PredBB ||
 | |
|       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
 | |
|     return false;
 | |
| 
 | |
|   const MachineOperand *BaseOp;
 | |
|   int64_t Offset;
 | |
|   bool OffsetIsScalable;
 | |
|   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
 | |
|     return false;
 | |
| 
 | |
|   if (!BaseOp->isReg())
 | |
|     return false;
 | |
| 
 | |
|   if (!(MI.mayLoad() && !MI.isPredicable()))
 | |
|     return false;
 | |
| 
 | |
|   MachineBranchPredicate MBP;
 | |
|   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
 | |
|     return false;
 | |
| 
 | |
|   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
 | |
|          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
 | |
|           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
 | |
|          MBP.LHS.getReg() == BaseOp->getReg();
 | |
| }
 | |
| 
 | |
| /// If the sunk instruction is a copy, try to forward the copy instead of
 | |
| /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
 | |
| /// there's any subregister weirdness involved. Returns true if copy
 | |
| /// propagation occurred.
 | |
| static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI,
 | |
|                                  Register Reg) {
 | |
|   const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
 | |
|   const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
 | |
| 
 | |
|   // Copy DBG_VALUE operand and set the original to undef. We then check to
 | |
|   // see whether this is something that can be copy-forwarded. If it isn't,
 | |
|   // continue around the loop.
 | |
| 
 | |
|   const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
 | |
|   auto CopyOperands = TII.isCopyInstr(SinkInst);
 | |
|   if (!CopyOperands)
 | |
|     return false;
 | |
|   SrcMO = CopyOperands->Source;
 | |
|   DstMO = CopyOperands->Destination;
 | |
| 
 | |
|   // Check validity of forwarding this copy.
 | |
|   bool PostRA = MRI.getNumVirtRegs() == 0;
 | |
| 
 | |
|   // Trying to forward between physical and virtual registers is too hard.
 | |
|   if (Reg.isVirtual() != SrcMO->getReg().isVirtual())
 | |
|     return false;
 | |
| 
 | |
|   // Only try virtual register copy-forwarding before regalloc, and physical
 | |
|   // register copy-forwarding after regalloc.
 | |
|   bool arePhysRegs = !Reg.isVirtual();
 | |
|   if (arePhysRegs != PostRA)
 | |
|     return false;
 | |
| 
 | |
|   // Pre-regalloc, only forward if all subregisters agree (or there are no
 | |
|   // subregs at all). More analysis might recover some forwardable copies.
 | |
|   if (!PostRA)
 | |
|     for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg))
 | |
|       if (DbgMO.getSubReg() != SrcMO->getSubReg() ||
 | |
|           DbgMO.getSubReg() != DstMO->getSubReg())
 | |
|         return false;
 | |
| 
 | |
|   // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
 | |
|   // of this copy. Only forward the copy if the DBG_VALUE operand exactly
 | |
|   // matches the copy destination.
 | |
|   if (PostRA && Reg != DstMO->getReg())
 | |
|     return false;
 | |
| 
 | |
|   for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) {
 | |
|     DbgMO.setReg(SrcMO->getReg());
 | |
|     DbgMO.setSubReg(SrcMO->getSubReg());
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>;
 | |
| /// Sink an instruction and its associated debug instructions.
 | |
| static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
 | |
|                         MachineBasicBlock::iterator InsertPos,
 | |
|                         ArrayRef<MIRegs> DbgValuesToSink) {
 | |
|   // If we cannot find a location to use (merge with), then we erase the debug
 | |
|   // location to prevent debug-info driven tools from potentially reporting
 | |
|   // wrong location information.
 | |
|   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
 | |
|     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
 | |
|                                                  InsertPos->getDebugLoc()));
 | |
|   else
 | |
|     MI.setDebugLoc(DebugLoc());
 | |
| 
 | |
|   // Move the instruction.
 | |
|   MachineBasicBlock *ParentBlock = MI.getParent();
 | |
|   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
 | |
|                       ++MachineBasicBlock::iterator(MI));
 | |
| 
 | |
|   // Sink a copy of debug users to the insert position. Mark the original
 | |
|   // DBG_VALUE location as 'undef', indicating that any earlier variable
 | |
|   // location should be terminated as we've optimised away the value at this
 | |
|   // point.
 | |
|   for (const auto &DbgValueToSink : DbgValuesToSink) {
 | |
|     MachineInstr *DbgMI = DbgValueToSink.first;
 | |
|     MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI);
 | |
|     SuccToSinkTo.insert(InsertPos, NewDbgMI);
 | |
| 
 | |
|     bool PropagatedAllSunkOps = true;
 | |
|     for (unsigned Reg : DbgValueToSink.second) {
 | |
|       if (DbgMI->hasDebugOperandForReg(Reg)) {
 | |
|         if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) {
 | |
|           PropagatedAllSunkOps = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (!PropagatedAllSunkOps)
 | |
|       DbgMI->setDebugValueUndef();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hasStoreBetween - check if there is store betweeen straight line blocks From
 | |
| /// and To.
 | |
| bool MachineSinking::hasStoreBetween(MachineBasicBlock *From,
 | |
|                                      MachineBasicBlock *To, MachineInstr &MI) {
 | |
|   // Make sure From and To are in straight line which means From dominates To
 | |
|   // and To post dominates From.
 | |
|   if (!DT->dominates(From, To) || !PDT->dominates(To, From))
 | |
|     return true;
 | |
| 
 | |
|   auto BlockPair = std::make_pair(From, To);
 | |
| 
 | |
|   // Does these two blocks pair be queried before and have a definite cached
 | |
|   // result?
 | |
|   if (HasStoreCache.find(BlockPair) != HasStoreCache.end())
 | |
|     return HasStoreCache[BlockPair];
 | |
| 
 | |
|   if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end())
 | |
|     return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) {
 | |
|       return I->mayAlias(AA, MI, false);
 | |
|     });
 | |
| 
 | |
|   bool SawStore = false;
 | |
|   bool HasAliasedStore = false;
 | |
|   DenseSet<MachineBasicBlock *> HandledBlocks;
 | |
|   DenseSet<MachineBasicBlock *> HandledDomBlocks;
 | |
|   // Go through all reachable blocks from From.
 | |
|   for (MachineBasicBlock *BB : depth_first(From)) {
 | |
|     // We insert the instruction at the start of block To, so no need to worry
 | |
|     // about stores inside To.
 | |
|     // Store in block From should be already considered when just enter function
 | |
|     // SinkInstruction.
 | |
|     if (BB == To || BB == From)
 | |
|       continue;
 | |
| 
 | |
|     // We already handle this BB in previous iteration.
 | |
|     if (HandledBlocks.count(BB))
 | |
|       continue;
 | |
| 
 | |
|     HandledBlocks.insert(BB);
 | |
|     // To post dominates BB, it must be a path from block From.
 | |
|     if (PDT->dominates(To, BB)) {
 | |
|       if (!HandledDomBlocks.count(BB))
 | |
|         HandledDomBlocks.insert(BB);
 | |
| 
 | |
|       // If this BB is too big or the block number in straight line between From
 | |
|       // and To is too big, stop searching to save compiling time.
 | |
|       if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) ||
 | |
|           HandledDomBlocks.size() > SinkLoadBlocksThreshold) {
 | |
|         for (auto *DomBB : HandledDomBlocks) {
 | |
|           if (DomBB != BB && DT->dominates(DomBB, BB))
 | |
|             HasStoreCache[std::make_pair(DomBB, To)] = true;
 | |
|           else if(DomBB != BB && DT->dominates(BB, DomBB))
 | |
|             HasStoreCache[std::make_pair(From, DomBB)] = true;
 | |
|         }
 | |
|         HasStoreCache[BlockPair] = true;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       for (MachineInstr &I : *BB) {
 | |
|         // Treat as alias conservatively for a call or an ordered memory
 | |
|         // operation.
 | |
|         if (I.isCall() || I.hasOrderedMemoryRef()) {
 | |
|           for (auto *DomBB : HandledDomBlocks) {
 | |
|             if (DomBB != BB && DT->dominates(DomBB, BB))
 | |
|               HasStoreCache[std::make_pair(DomBB, To)] = true;
 | |
|             else if(DomBB != BB && DT->dominates(BB, DomBB))
 | |
|               HasStoreCache[std::make_pair(From, DomBB)] = true;
 | |
|           }
 | |
|           HasStoreCache[BlockPair] = true;
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         if (I.mayStore()) {
 | |
|           SawStore = true;
 | |
|           // We still have chance to sink MI if all stores between are not
 | |
|           // aliased to MI.
 | |
|           // Cache all store instructions, so that we don't need to go through
 | |
|           // all From reachable blocks for next load instruction.
 | |
|           if (I.mayAlias(AA, MI, false))
 | |
|             HasAliasedStore = true;
 | |
|           StoreInstrCache[BlockPair].push_back(&I);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // If there is no store at all, cache the result.
 | |
|   if (!SawStore)
 | |
|     HasStoreCache[BlockPair] = false;
 | |
|   return HasAliasedStore;
 | |
| }
 | |
| 
 | |
| /// Sink instructions into cycles if profitable. This especially tries to
 | |
| /// prevent register spills caused by register pressure if there is little to no
 | |
| /// overhead moving instructions into cycles.
 | |
| bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) {
 | |
|   LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I);
 | |
|   MachineBasicBlock *Preheader = Cycle->getCyclePreheader();
 | |
|   assert(Preheader && "Cycle sink needs a preheader block");
 | |
|   MachineBasicBlock *SinkBlock = nullptr;
 | |
|   bool CanSink = true;
 | |
|   const MachineOperand &MO = I.getOperand(0);
 | |
| 
 | |
|   for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
 | |
|     LLVM_DEBUG(dbgs() << "CycleSink:   Analysing use: " << MI);
 | |
|     if (!Cycle->contains(MI.getParent())) {
 | |
|       LLVM_DEBUG(dbgs() << "CycleSink:   Use not in cycle, can't sink.\n");
 | |
|       CanSink = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // FIXME: Come up with a proper cost model that estimates whether sinking
 | |
|     // the instruction (and thus possibly executing it on every cycle
 | |
|     // iteration) is more expensive than a register.
 | |
|     // For now assumes that copies are cheap and thus almost always worth it.
 | |
|     if (!MI.isCopy()) {
 | |
|       LLVM_DEBUG(dbgs() << "CycleSink:   Use is not a copy\n");
 | |
|       CanSink = false;
 | |
|       break;
 | |
|     }
 | |
|     if (!SinkBlock) {
 | |
|       SinkBlock = MI.getParent();
 | |
|       LLVM_DEBUG(dbgs() << "CycleSink:   Setting sink block to: "
 | |
|                         << printMBBReference(*SinkBlock) << "\n");
 | |
|       continue;
 | |
|     }
 | |
|     SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent());
 | |
|     if (!SinkBlock) {
 | |
|       LLVM_DEBUG(dbgs() << "CycleSink:   Can't find nearest dominator\n");
 | |
|       CanSink = false;
 | |
|       break;
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "CycleSink:   Setting nearest common dom block: " <<
 | |
|                printMBBReference(*SinkBlock) << "\n");
 | |
|   }
 | |
| 
 | |
|   if (!CanSink) {
 | |
|     LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n");
 | |
|     return false;
 | |
|   }
 | |
|   if (!SinkBlock) {
 | |
|     LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n");
 | |
|     return false;
 | |
|   }
 | |
|   if (SinkBlock == Preheader) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "CycleSink: Not sinking, sink block is the preheader\n");
 | |
|     return false;
 | |
|   }
 | |
|   if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n");
 | |
|   SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader,
 | |
|                     I);
 | |
| 
 | |
|   // Conservatively clear any kill flags on uses of sunk instruction
 | |
|   for (MachineOperand &MO : I.operands()) {
 | |
|     if (MO.isReg() && MO.readsReg())
 | |
|       RegsToClearKillFlags.insert(MO.getReg());
 | |
|   }
 | |
| 
 | |
|   // The instruction is moved from its basic block, so do not retain the
 | |
|   // debug information.
 | |
|   assert(!I.isDebugInstr() && "Should not sink debug inst");
 | |
|   I.setDebugLoc(DebugLoc());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if a target defined block prologue instruction interferes
 | |
| /// with a sink candidate.
 | |
| static bool blockPrologueInterferes(MachineBasicBlock *BB,
 | |
|                                     MachineBasicBlock::iterator End,
 | |
|                                     MachineInstr &MI,
 | |
|                                     const TargetRegisterInfo *TRI,
 | |
|                                     const TargetInstrInfo *TII,
 | |
|                                     const MachineRegisterInfo *MRI) {
 | |
|   if (BB->begin() == End)
 | |
|     return false; // no prologue
 | |
|   for (MachineBasicBlock::iterator PI = BB->getFirstNonPHI(); PI != End; ++PI) {
 | |
|     // Only check target defined prologue instructions
 | |
|     if (!TII->isBasicBlockPrologue(*PI))
 | |
|       continue;
 | |
|     for (auto &MO : MI.operands()) {
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       Register Reg = MO.getReg();
 | |
|       if (!Reg)
 | |
|         continue;
 | |
|       if (MO.isUse()) {
 | |
|         if (Register::isPhysicalRegister(Reg) &&
 | |
|             (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg))))
 | |
|           continue;
 | |
|         if (PI->modifiesRegister(Reg, TRI))
 | |
|           return true;
 | |
|       } else {
 | |
|         if (PI->readsRegister(Reg, TRI))
 | |
|           return true;
 | |
|         // Check for interference with non-dead defs
 | |
|         auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI);
 | |
|         if (DefOp && !DefOp->isDead())
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SinkInstruction - Determine whether it is safe to sink the specified machine
 | |
| /// instruction out of its current block into a successor.
 | |
| bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
 | |
|                                      AllSuccsCache &AllSuccessors) {
 | |
|   // Don't sink instructions that the target prefers not to sink.
 | |
|   if (!TII->shouldSink(MI))
 | |
|     return false;
 | |
| 
 | |
|   // Check if it's safe to move the instruction.
 | |
|   if (!MI.isSafeToMove(AA, SawStore))
 | |
|     return false;
 | |
| 
 | |
|   // Convergent operations may not be made control-dependent on additional
 | |
|   // values.
 | |
|   if (MI.isConvergent())
 | |
|     return false;
 | |
| 
 | |
|   // Don't break implicit null checks.  This is a performance heuristic, and not
 | |
|   // required for correctness.
 | |
|   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: This should include support for sinking instructions within the
 | |
|   // block they are currently in to shorten the live ranges.  We often get
 | |
|   // instructions sunk into the top of a large block, but it would be better to
 | |
|   // also sink them down before their first use in the block.  This xform has to
 | |
|   // be careful not to *increase* register pressure though, e.g. sinking
 | |
|   // "x = y + z" down if it kills y and z would increase the live ranges of y
 | |
|   // and z and only shrink the live range of x.
 | |
| 
 | |
|   bool BreakPHIEdge = false;
 | |
|   MachineBasicBlock *ParentBlock = MI.getParent();
 | |
|   MachineBasicBlock *SuccToSinkTo =
 | |
|       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
 | |
| 
 | |
|   // If there are no outputs, it must have side-effects.
 | |
|   if (!SuccToSinkTo)
 | |
|     return false;
 | |
| 
 | |
|   // If the instruction to move defines a dead physical register which is live
 | |
|   // when leaving the basic block, don't move it because it could turn into a
 | |
|   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
 | |
|   for (const MachineOperand &MO : MI.operands()) {
 | |
|     if (!MO.isReg() || MO.isUse())
 | |
|       continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (Reg == 0 || !Register::isPhysicalRegister(Reg))
 | |
|       continue;
 | |
|     if (SuccToSinkTo->isLiveIn(Reg))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
 | |
| 
 | |
|   // If the block has multiple predecessors, this is a critical edge.
 | |
|   // Decide if we can sink along it or need to break the edge.
 | |
|   if (SuccToSinkTo->pred_size() > 1) {
 | |
|     // We cannot sink a load across a critical edge - there may be stores in
 | |
|     // other code paths.
 | |
|     bool TryBreak = false;
 | |
|     bool Store =
 | |
|         MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true;
 | |
|     if (!MI.isSafeToMove(AA, Store)) {
 | |
|       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
 | |
|       TryBreak = true;
 | |
|     }
 | |
| 
 | |
|     // We don't want to sink across a critical edge if we don't dominate the
 | |
|     // successor. We could be introducing calculations to new code paths.
 | |
|     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
 | |
|       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
 | |
|       TryBreak = true;
 | |
|     }
 | |
| 
 | |
|     // Don't sink instructions into a cycle.
 | |
|     if (!TryBreak && CI->getCycle(SuccToSinkTo) &&
 | |
|         (!CI->getCycle(SuccToSinkTo)->isReducible() ||
 | |
|          CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) {
 | |
|       LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n");
 | |
|       TryBreak = true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise we are OK with sinking along a critical edge.
 | |
|     if (!TryBreak)
 | |
|       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
 | |
|     else {
 | |
|       // Mark this edge as to be split.
 | |
|       // If the edge can actually be split, the next iteration of the main loop
 | |
|       // will sink MI in the newly created block.
 | |
|       bool Status =
 | |
|         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
 | |
|       if (!Status)
 | |
|         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
 | |
|                              "break critical edge\n");
 | |
|       // The instruction will not be sunk this time.
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BreakPHIEdge) {
 | |
|     // BreakPHIEdge is true if all the uses are in the successor MBB being
 | |
|     // sunken into and they are all PHI nodes. In this case, machine-sink must
 | |
|     // break the critical edge first.
 | |
|     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
 | |
|                                             SuccToSinkTo, BreakPHIEdge);
 | |
|     if (!Status)
 | |
|       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
 | |
|                            "break critical edge\n");
 | |
|     // The instruction will not be sunk this time.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Determine where to insert into. Skip phi nodes.
 | |
|   MachineBasicBlock::iterator InsertPos =
 | |
|       SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin());
 | |
|   if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) {
 | |
|     LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Collect debug users of any vreg that this inst defines.
 | |
|   SmallVector<MIRegs, 4> DbgUsersToSink;
 | |
|   for (auto &MO : MI.operands()) {
 | |
|     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
 | |
|       continue;
 | |
|     if (!SeenDbgUsers.count(MO.getReg()))
 | |
|       continue;
 | |
| 
 | |
|     // Sink any users that don't pass any other DBG_VALUEs for this variable.
 | |
|     auto &Users = SeenDbgUsers[MO.getReg()];
 | |
|     for (auto &User : Users) {
 | |
|       MachineInstr *DbgMI = User.getPointer();
 | |
|       if (User.getInt()) {
 | |
|         // This DBG_VALUE would re-order assignments. If we can't copy-propagate
 | |
|         // it, it can't be recovered. Set it undef.
 | |
|         if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg()))
 | |
|           DbgMI->setDebugValueUndef();
 | |
|       } else {
 | |
|         DbgUsersToSink.push_back(
 | |
|             {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())});
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // After sinking, some debug users may not be dominated any more. If possible,
 | |
|   // copy-propagate their operands. As it's expensive, don't do this if there's
 | |
|   // no debuginfo in the program.
 | |
|   if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
 | |
|     SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
 | |
| 
 | |
|   performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
 | |
| 
 | |
|   // Conservatively, clear any kill flags, since it's possible that they are no
 | |
|   // longer correct.
 | |
|   // Note that we have to clear the kill flags for any register this instruction
 | |
|   // uses as we may sink over another instruction which currently kills the
 | |
|   // used registers.
 | |
|   for (MachineOperand &MO : MI.operands()) {
 | |
|     if (MO.isReg() && MO.isUse())
 | |
|       RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags.
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
 | |
|     MachineInstr &MI, MachineBasicBlock *TargetBlock) {
 | |
|   assert(MI.isCopy());
 | |
|   assert(MI.getOperand(1).isReg());
 | |
| 
 | |
|   // Enumerate all users of vreg operands that are def'd. Skip those that will
 | |
|   // be sunk. For the rest, if they are not dominated by the block we will sink
 | |
|   // MI into, propagate the copy source to them.
 | |
|   SmallVector<MachineInstr *, 4> DbgDefUsers;
 | |
|   SmallVector<Register, 4> DbgUseRegs;
 | |
|   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
 | |
|   for (auto &MO : MI.operands()) {
 | |
|     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
 | |
|       continue;
 | |
|     DbgUseRegs.push_back(MO.getReg());
 | |
|     for (auto &User : MRI.use_instructions(MO.getReg())) {
 | |
|       if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
 | |
|         continue;
 | |
| 
 | |
|       // If is in same block, will either sink or be use-before-def.
 | |
|       if (User.getParent() == MI.getParent())
 | |
|         continue;
 | |
| 
 | |
|       assert(User.hasDebugOperandForReg(MO.getReg()) &&
 | |
|              "DBG_VALUE user of vreg, but has no operand for it?");
 | |
|       DbgDefUsers.push_back(&User);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Point the users of this copy that are no longer dominated, at the source
 | |
|   // of the copy.
 | |
|   for (auto *User : DbgDefUsers) {
 | |
|     for (auto &Reg : DbgUseRegs) {
 | |
|       for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) {
 | |
|         DbgOp.setReg(MI.getOperand(1).getReg());
 | |
|         DbgOp.setSubReg(MI.getOperand(1).getSubReg());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // This pass is not intended to be a replacement or a complete alternative
 | |
| // for the pre-ra machine sink pass. It is only designed to sink COPY
 | |
| // instructions which should be handled after RA.
 | |
| //
 | |
| // This pass sinks COPY instructions into a successor block, if the COPY is not
 | |
| // used in the current block and the COPY is live-in to a single successor
 | |
| // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
 | |
| // copy on paths where their results aren't needed.  This also exposes
 | |
| // additional opportunites for dead copy elimination and shrink wrapping.
 | |
| //
 | |
| // These copies were either not handled by or are inserted after the MachineSink
 | |
| // pass. As an example of the former case, the MachineSink pass cannot sink
 | |
| // COPY instructions with allocatable source registers; for AArch64 these type
 | |
| // of copy instructions are frequently used to move function parameters (PhyReg)
 | |
| // into virtual registers in the entry block.
 | |
| //
 | |
| // For the machine IR below, this pass will sink %w19 in the entry into its
 | |
| // successor (%bb.1) because %w19 is only live-in in %bb.1.
 | |
| // %bb.0:
 | |
| //   %wzr = SUBSWri %w1, 1
 | |
| //   %w19 = COPY %w0
 | |
| //   Bcc 11, %bb.2
 | |
| // %bb.1:
 | |
| //   Live Ins: %w19
 | |
| //   BL @fun
 | |
| //   %w0 = ADDWrr %w0, %w19
 | |
| //   RET %w0
 | |
| // %bb.2:
 | |
| //   %w0 = COPY %wzr
 | |
| //   RET %w0
 | |
| // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
 | |
| // able to see %bb.0 as a candidate.
 | |
| //===----------------------------------------------------------------------===//
 | |
| namespace {
 | |
| 
 | |
| class PostRAMachineSinking : public MachineFunctionPass {
 | |
| public:
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   static char ID;
 | |
|   PostRAMachineSinking() : MachineFunctionPass(ID) {}
 | |
|   StringRef getPassName() const override { return "PostRA Machine Sink"; }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   MachineFunctionProperties getRequiredProperties() const override {
 | |
|     return MachineFunctionProperties().set(
 | |
|         MachineFunctionProperties::Property::NoVRegs);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Track which register units have been modified and used.
 | |
|   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
 | |
| 
 | |
|   /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
 | |
|   /// entry in this map for each unit it touches. The DBG_VALUE's entry
 | |
|   /// consists of a pointer to the instruction itself, and a vector of registers
 | |
|   /// referred to by the instruction that overlap the key register unit.
 | |
|   DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs;
 | |
| 
 | |
|   /// Sink Copy instructions unused in the same block close to their uses in
 | |
|   /// successors.
 | |
|   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
 | |
|                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| char PostRAMachineSinking::ID = 0;
 | |
| char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
 | |
| 
 | |
| INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
 | |
|                 "PostRA Machine Sink", false, false)
 | |
| 
 | |
| static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
 | |
|                                   const TargetRegisterInfo *TRI) {
 | |
|   LiveRegUnits LiveInRegUnits(*TRI);
 | |
|   LiveInRegUnits.addLiveIns(MBB);
 | |
|   return !LiveInRegUnits.available(Reg);
 | |
| }
 | |
| 
 | |
| static MachineBasicBlock *
 | |
| getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
 | |
|                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
 | |
|                       unsigned Reg, const TargetRegisterInfo *TRI) {
 | |
|   // Try to find a single sinkable successor in which Reg is live-in.
 | |
|   MachineBasicBlock *BB = nullptr;
 | |
|   for (auto *SI : SinkableBBs) {
 | |
|     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
 | |
|       // If BB is set here, Reg is live-in to at least two sinkable successors,
 | |
|       // so quit.
 | |
|       if (BB)
 | |
|         return nullptr;
 | |
|       BB = SI;
 | |
|     }
 | |
|   }
 | |
|   // Reg is not live-in to any sinkable successors.
 | |
|   if (!BB)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check if any register aliased with Reg is live-in in other successors.
 | |
|   for (auto *SI : CurBB.successors()) {
 | |
|     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
 | |
|       return nullptr;
 | |
|   }
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| static MachineBasicBlock *
 | |
| getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
 | |
|                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
 | |
|                       ArrayRef<unsigned> DefedRegsInCopy,
 | |
|                       const TargetRegisterInfo *TRI) {
 | |
|   MachineBasicBlock *SingleBB = nullptr;
 | |
|   for (auto DefReg : DefedRegsInCopy) {
 | |
|     MachineBasicBlock *BB =
 | |
|         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
 | |
|     if (!BB || (SingleBB && SingleBB != BB))
 | |
|       return nullptr;
 | |
|     SingleBB = BB;
 | |
|   }
 | |
|   return SingleBB;
 | |
| }
 | |
| 
 | |
| static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
 | |
|                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
 | |
|                            LiveRegUnits &UsedRegUnits,
 | |
|                            const TargetRegisterInfo *TRI) {
 | |
|   for (auto U : UsedOpsInCopy) {
 | |
|     MachineOperand &MO = MI->getOperand(U);
 | |
|     Register SrcReg = MO.getReg();
 | |
|     if (!UsedRegUnits.available(SrcReg)) {
 | |
|       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
 | |
|       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
 | |
|         if (UI.killsRegister(SrcReg, TRI)) {
 | |
|           UI.clearRegisterKills(SrcReg, TRI);
 | |
|           MO.setIsKill(true);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
 | |
|                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
 | |
|                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
 | |
|   MachineFunction &MF = *SuccBB->getParent();
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   for (unsigned DefReg : DefedRegsInCopy)
 | |
|     for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
 | |
|       SuccBB->removeLiveIn(*S);
 | |
|   for (auto U : UsedOpsInCopy) {
 | |
|     Register SrcReg = MI->getOperand(U).getReg();
 | |
|     LaneBitmask Mask;
 | |
|     for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
 | |
|       Mask |= (*S).second;
 | |
|     }
 | |
|     SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
 | |
|   }
 | |
|   SuccBB->sortUniqueLiveIns();
 | |
| }
 | |
| 
 | |
| static bool hasRegisterDependency(MachineInstr *MI,
 | |
|                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
 | |
|                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
 | |
|                                   LiveRegUnits &ModifiedRegUnits,
 | |
|                                   LiveRegUnits &UsedRegUnits) {
 | |
|   bool HasRegDependency = false;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     if (MO.isDef()) {
 | |
|       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
 | |
|         HasRegDependency = true;
 | |
|         break;
 | |
|       }
 | |
|       DefedRegsInCopy.push_back(Reg);
 | |
| 
 | |
|       // FIXME: instead of isUse(), readsReg() would be a better fix here,
 | |
|       // For example, we can ignore modifications in reg with undef. However,
 | |
|       // it's not perfectly clear if skipping the internal read is safe in all
 | |
|       // other targets.
 | |
|     } else if (MO.isUse()) {
 | |
|       if (!ModifiedRegUnits.available(Reg)) {
 | |
|         HasRegDependency = true;
 | |
|         break;
 | |
|       }
 | |
|       UsedOpsInCopy.push_back(i);
 | |
|     }
 | |
|   }
 | |
|   return HasRegDependency;
 | |
| }
 | |
| 
 | |
| bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
 | |
|                                          MachineFunction &MF,
 | |
|                                          const TargetRegisterInfo *TRI,
 | |
|                                          const TargetInstrInfo *TII) {
 | |
|   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
 | |
|   // FIXME: For now, we sink only to a successor which has a single predecessor
 | |
|   // so that we can directly sink COPY instructions to the successor without
 | |
|   // adding any new block or branch instruction.
 | |
|   for (MachineBasicBlock *SI : CurBB.successors())
 | |
|     if (!SI->livein_empty() && SI->pred_size() == 1)
 | |
|       SinkableBBs.insert(SI);
 | |
| 
 | |
|   if (SinkableBBs.empty())
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Track which registers have been modified and used between the end of the
 | |
|   // block and the current instruction.
 | |
|   ModifiedRegUnits.clear();
 | |
|   UsedRegUnits.clear();
 | |
|   SeenDbgInstrs.clear();
 | |
| 
 | |
|   for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) {
 | |
|     // Track the operand index for use in Copy.
 | |
|     SmallVector<unsigned, 2> UsedOpsInCopy;
 | |
|     // Track the register number defed in Copy.
 | |
|     SmallVector<unsigned, 2> DefedRegsInCopy;
 | |
| 
 | |
|     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
 | |
|     // for DBG_VALUEs later, record them when they're encountered.
 | |
|     if (MI.isDebugValue()) {
 | |
|       SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits;
 | |
|       bool IsValid = true;
 | |
|       for (MachineOperand &MO : MI.debug_operands()) {
 | |
|         if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
 | |
|           // Bail if we can already tell the sink would be rejected, rather
 | |
|           // than needlessly accumulating lots of DBG_VALUEs.
 | |
|           if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
 | |
|                                     ModifiedRegUnits, UsedRegUnits)) {
 | |
|             IsValid = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // Record debug use of each reg unit.
 | |
|           for (auto RI = MCRegUnitIterator(MO.getReg(), TRI); RI.isValid();
 | |
|                ++RI)
 | |
|             MIUnits[*RI].push_back(MO.getReg());
 | |
|         }
 | |
|       }
 | |
|       if (IsValid) {
 | |
|         for (auto &RegOps : MIUnits)
 | |
|           SeenDbgInstrs[RegOps.first].emplace_back(&MI,
 | |
|                                                    std::move(RegOps.second));
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (MI.isDebugOrPseudoInstr())
 | |
|       continue;
 | |
| 
 | |
|     // Do not move any instruction across function call.
 | |
|     if (MI.isCall())
 | |
|       return false;
 | |
| 
 | |
|     if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) {
 | |
|       LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
 | |
|                                         TRI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Don't sink the COPY if it would violate a register dependency.
 | |
|     if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
 | |
|                               ModifiedRegUnits, UsedRegUnits)) {
 | |
|       LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
 | |
|                                         TRI);
 | |
|       continue;
 | |
|     }
 | |
|     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
 | |
|            "Unexpect SrcReg or DefReg");
 | |
|     MachineBasicBlock *SuccBB =
 | |
|         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
 | |
|     // Don't sink if we cannot find a single sinkable successor in which Reg
 | |
|     // is live-in.
 | |
|     if (!SuccBB) {
 | |
|       LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
 | |
|                                         TRI);
 | |
|       continue;
 | |
|     }
 | |
|     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
 | |
|            "Unexpected predecessor");
 | |
| 
 | |
|     // Collect DBG_VALUEs that must sink with this copy. We've previously
 | |
|     // recorded which reg units that DBG_VALUEs read, if this instruction
 | |
|     // writes any of those units then the corresponding DBG_VALUEs must sink.
 | |
|     MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap;
 | |
|     for (auto &MO : MI.operands()) {
 | |
|       if (!MO.isReg() || !MO.isDef())
 | |
|         continue;
 | |
| 
 | |
|       for (auto RI = MCRegUnitIterator(MO.getReg(), TRI); RI.isValid(); ++RI) {
 | |
|         for (const auto &MIRegs : SeenDbgInstrs.lookup(*RI)) {
 | |
|           auto &Regs = DbgValsToSinkMap[MIRegs.first];
 | |
|           for (unsigned Reg : MIRegs.second)
 | |
|             Regs.push_back(Reg);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     auto DbgValsToSink = DbgValsToSinkMap.takeVector();
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB);
 | |
| 
 | |
|     MachineBasicBlock::iterator InsertPos =
 | |
|         SuccBB->SkipPHIsAndLabels(SuccBB->begin());
 | |
|     if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) {
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << " *** Not sinking: prologue interference\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Clear the kill flag if SrcReg is killed between MI and the end of the
 | |
|     // block.
 | |
|     clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
 | |
|     performSink(MI, *SuccBB, InsertPos, DbgValsToSink);
 | |
|     updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
 | |
| 
 | |
|     Changed = true;
 | |
|     ++NumPostRACopySink;
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipFunction(MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
 | |
| 
 | |
|   ModifiedRegUnits.init(*TRI);
 | |
|   UsedRegUnits.init(*TRI);
 | |
|   for (auto &BB : MF)
 | |
|     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
 | |
| 
 | |
|   return Changed;
 | |
| }
 |