991 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			991 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass converts selects to conditional jumps when profitable.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/BlockFrequencyInfo.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/ProfileSummaryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/CodeGen/TargetSchedule.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/ProfDataUtils.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/ScaledNumber.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Transforms/Utils/SizeOpts.h"
 | |
| #include <algorithm>
 | |
| #include <memory>
 | |
| #include <queue>
 | |
| #include <stack>
 | |
| #include <string>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "select-optimize"
 | |
| 
 | |
| STATISTIC(NumSelectOptAnalyzed,
 | |
|           "Number of select groups considered for conversion to branch");
 | |
| STATISTIC(NumSelectConvertedExpColdOperand,
 | |
|           "Number of select groups converted due to expensive cold operand");
 | |
| STATISTIC(NumSelectConvertedHighPred,
 | |
|           "Number of select groups converted due to high-predictability");
 | |
| STATISTIC(NumSelectUnPred,
 | |
|           "Number of select groups not converted due to unpredictability");
 | |
| STATISTIC(NumSelectColdBB,
 | |
|           "Number of select groups not converted due to cold basic block");
 | |
| STATISTIC(NumSelectConvertedLoop,
 | |
|           "Number of select groups converted due to loop-level analysis");
 | |
| STATISTIC(NumSelectsConverted, "Number of selects converted");
 | |
| 
 | |
| static cl::opt<unsigned> ColdOperandThreshold(
 | |
|     "cold-operand-threshold",
 | |
|     cl::desc("Maximum frequency of path for an operand to be considered cold."),
 | |
|     cl::init(20), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
 | |
|     "cold-operand-max-cost-multiplier",
 | |
|     cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
 | |
|              "slice of a cold operand to be considered inexpensive."),
 | |
|     cl::init(1), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
|     GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
 | |
|                           cl::desc("Gradient gain threshold (%)."),
 | |
|                           cl::init(25), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
|     GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
 | |
|                        cl::desc("Minimum gain per loop (in cycles) threshold."),
 | |
|                        cl::init(4), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned> GainRelativeThreshold(
 | |
|     "select-opti-loop-relative-gain-threshold",
 | |
|     cl::desc(
 | |
|         "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
 | |
|     cl::init(8), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned> MispredictDefaultRate(
 | |
|     "mispredict-default-rate", cl::Hidden, cl::init(25),
 | |
|     cl::desc("Default mispredict rate (initialized to 25%)."));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
 | |
|                                cl::init(false),
 | |
|                                cl::desc("Disable loop-level heuristics."));
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class SelectOptimize : public FunctionPass {
 | |
|   const TargetMachine *TM = nullptr;
 | |
|   const TargetSubtargetInfo *TSI;
 | |
|   const TargetLowering *TLI = nullptr;
 | |
|   const TargetTransformInfo *TTI = nullptr;
 | |
|   const LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
|   std::unique_ptr<BlockFrequencyInfo> BFI;
 | |
|   std::unique_ptr<BranchProbabilityInfo> BPI;
 | |
|   ProfileSummaryInfo *PSI;
 | |
|   OptimizationRemarkEmitter *ORE;
 | |
|   TargetSchedModel TSchedModel;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   SelectOptimize() : FunctionPass(ID) {
 | |
|     initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | |
|     AU.addRequired<TargetPassConfig>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // Select groups consist of consecutive select instructions with the same
 | |
|   // condition.
 | |
|   using SelectGroup = SmallVector<SelectInst *, 2>;
 | |
|   using SelectGroups = SmallVector<SelectGroup, 2>;
 | |
| 
 | |
|   using Scaled64 = ScaledNumber<uint64_t>;
 | |
| 
 | |
|   struct CostInfo {
 | |
|     /// Predicated cost (with selects as conditional moves).
 | |
|     Scaled64 PredCost;
 | |
|     /// Non-predicated cost (with selects converted to branches).
 | |
|     Scaled64 NonPredCost;
 | |
|   };
 | |
| 
 | |
|   // Converts select instructions of a function to conditional jumps when deemed
 | |
|   // profitable. Returns true if at least one select was converted.
 | |
|   bool optimizeSelects(Function &F);
 | |
| 
 | |
|   // Heuristics for determining which select instructions can be profitably
 | |
|   // conveted to branches. Separate heuristics for selects in inner-most loops
 | |
|   // and the rest of code regions (base heuristics for non-inner-most loop
 | |
|   // regions).
 | |
|   void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
 | |
|   void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
 | |
| 
 | |
|   // Converts to branches the select groups that were deemed
 | |
|   // profitable-to-convert.
 | |
|   void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
 | |
| 
 | |
|   // Splits selects of a given basic block into select groups.
 | |
|   void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
 | |
| 
 | |
|   // Determines for which select groups it is profitable converting to branches
 | |
|   // (base and inner-most-loop heuristics).
 | |
|   void findProfitableSIGroupsBase(SelectGroups &SIGroups,
 | |
|                                   SelectGroups &ProfSIGroups);
 | |
|   void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
 | |
|                                         SelectGroups &ProfSIGroups);
 | |
| 
 | |
|   // Determines if a select group should be converted to a branch (base
 | |
|   // heuristics).
 | |
|   bool isConvertToBranchProfitableBase(const SmallVector<SelectInst *, 2> &ASI);
 | |
| 
 | |
|   // Returns true if there are expensive instructions in the cold value
 | |
|   // operand's (if any) dependence slice of any of the selects of the given
 | |
|   // group.
 | |
|   bool hasExpensiveColdOperand(const SmallVector<SelectInst *, 2> &ASI);
 | |
| 
 | |
|   // For a given source instruction, collect its backwards dependence slice
 | |
|   // consisting of instructions exclusively computed for producing the operands
 | |
|   // of the source instruction.
 | |
|   void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
 | |
|                              bool ForSinking = false);
 | |
| 
 | |
|   // Returns true if the condition of the select is highly predictable.
 | |
|   bool isSelectHighlyPredictable(const SelectInst *SI);
 | |
| 
 | |
|   // Loop-level checks to determine if a non-predicated version (with branches)
 | |
|   // of the given loop is more profitable than its predicated version.
 | |
|   bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
 | |
| 
 | |
|   // Computes instruction and loop-critical-path costs for both the predicated
 | |
|   // and non-predicated version of the given loop.
 | |
|   bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
 | |
|                         DenseMap<const Instruction *, CostInfo> &InstCostMap,
 | |
|                         CostInfo *LoopCost);
 | |
| 
 | |
|   // Returns a set of all the select instructions in the given select groups.
 | |
|   SmallPtrSet<const Instruction *, 2> getSIset(const SelectGroups &SIGroups);
 | |
| 
 | |
|   // Returns the latency cost of a given instruction.
 | |
|   Optional<uint64_t> computeInstCost(const Instruction *I);
 | |
| 
 | |
|   // Returns the misprediction cost of a given select when converted to branch.
 | |
|   Scaled64 getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost);
 | |
| 
 | |
|   // Returns the cost of a branch when the prediction is correct.
 | |
|   Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
 | |
|                                 const SelectInst *SI);
 | |
| 
 | |
|   // Returns true if the target architecture supports lowering a given select.
 | |
|   bool isSelectKindSupported(SelectInst *SI);
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| char SelectOptimize::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
 | |
|                       false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
 | |
| INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
 | |
|                     false)
 | |
| 
 | |
| FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
 | |
| 
 | |
| bool SelectOptimize::runOnFunction(Function &F) {
 | |
|   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
 | |
|   TSI = TM->getSubtargetImpl(F);
 | |
|   TLI = TSI->getTargetLowering();
 | |
| 
 | |
|   // If none of the select types is supported then skip this pass.
 | |
|   // This is an optimization pass. Legality issues will be handled by
 | |
|   // instruction selection.
 | |
|   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
 | |
|       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
 | |
|       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
 | |
|     return false;
 | |
| 
 | |
|   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   BPI.reset(new BranchProbabilityInfo(F, *LI));
 | |
|   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
 | |
|   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | |
|   ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
 | |
|   TSchedModel.init(TSI);
 | |
| 
 | |
|   // When optimizing for size, selects are preferable over branches.
 | |
|   if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get()))
 | |
|     return false;
 | |
| 
 | |
|   return optimizeSelects(F);
 | |
| }
 | |
| 
 | |
| bool SelectOptimize::optimizeSelects(Function &F) {
 | |
|   // Determine for which select groups it is profitable converting to branches.
 | |
|   SelectGroups ProfSIGroups;
 | |
|   // Base heuristics apply only to non-loops and outer loops.
 | |
|   optimizeSelectsBase(F, ProfSIGroups);
 | |
|   // Separate heuristics for inner-most loops.
 | |
|   optimizeSelectsInnerLoops(F, ProfSIGroups);
 | |
| 
 | |
|   // Convert to branches the select groups that were deemed
 | |
|   // profitable-to-convert.
 | |
|   convertProfitableSIGroups(ProfSIGroups);
 | |
| 
 | |
|   // Code modified if at least one select group was converted.
 | |
|   return !ProfSIGroups.empty();
 | |
| }
 | |
| 
 | |
| void SelectOptimize::optimizeSelectsBase(Function &F,
 | |
|                                          SelectGroups &ProfSIGroups) {
 | |
|   // Collect all the select groups.
 | |
|   SelectGroups SIGroups;
 | |
|   for (BasicBlock &BB : F) {
 | |
|     // Base heuristics apply only to non-loops and outer loops.
 | |
|     Loop *L = LI->getLoopFor(&BB);
 | |
|     if (L && L->isInnermost())
 | |
|       continue;
 | |
|     collectSelectGroups(BB, SIGroups);
 | |
|   }
 | |
| 
 | |
|   // Determine for which select groups it is profitable converting to branches.
 | |
|   findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
 | |
| }
 | |
| 
 | |
| void SelectOptimize::optimizeSelectsInnerLoops(Function &F,
 | |
|                                                SelectGroups &ProfSIGroups) {
 | |
|   SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
 | |
|   // Need to check size on each iteration as we accumulate child loops.
 | |
|   for (unsigned long i = 0; i < Loops.size(); ++i)
 | |
|     for (Loop *ChildL : Loops[i]->getSubLoops())
 | |
|       Loops.push_back(ChildL);
 | |
| 
 | |
|   for (Loop *L : Loops) {
 | |
|     if (!L->isInnermost())
 | |
|       continue;
 | |
| 
 | |
|     SelectGroups SIGroups;
 | |
|     for (BasicBlock *BB : L->getBlocks())
 | |
|       collectSelectGroups(*BB, SIGroups);
 | |
| 
 | |
|     findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If \p isTrue is true, return the true value of \p SI, otherwise return
 | |
| /// false value of \p SI. If the true/false value of \p SI is defined by any
 | |
| /// select instructions in \p Selects, look through the defining select
 | |
| /// instruction until the true/false value is not defined in \p Selects.
 | |
| static Value *
 | |
| getTrueOrFalseValue(SelectInst *SI, bool isTrue,
 | |
|                     const SmallPtrSet<const Instruction *, 2> &Selects) {
 | |
|   Value *V = nullptr;
 | |
|   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
 | |
|        DefSI = dyn_cast<SelectInst>(V)) {
 | |
|     assert(DefSI->getCondition() == SI->getCondition() &&
 | |
|            "The condition of DefSI does not match with SI");
 | |
|     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
 | |
|   }
 | |
|   assert(V && "Failed to get select true/false value");
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
 | |
|   for (SelectGroup &ASI : ProfSIGroups) {
 | |
|     // The code transformation here is a modified version of the sinking
 | |
|     // transformation in CodeGenPrepare::optimizeSelectInst with a more
 | |
|     // aggressive strategy of which instructions to sink.
 | |
|     //
 | |
|     // TODO: eliminate the redundancy of logic transforming selects to branches
 | |
|     // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
 | |
|     // selects for all cases (with and without profile information).
 | |
| 
 | |
|     // Transform a sequence like this:
 | |
|     //    start:
 | |
|     //       %cmp = cmp uge i32 %a, %b
 | |
|     //       %sel = select i1 %cmp, i32 %c, i32 %d
 | |
|     //
 | |
|     // Into:
 | |
|     //    start:
 | |
|     //       %cmp = cmp uge i32 %a, %b
 | |
|     //       %cmp.frozen = freeze %cmp
 | |
|     //       br i1 %cmp.frozen, label %select.true, label %select.false
 | |
|     //    select.true:
 | |
|     //       br label %select.end
 | |
|     //    select.false:
 | |
|     //       br label %select.end
 | |
|     //    select.end:
 | |
|     //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
 | |
|     //
 | |
|     // %cmp should be frozen, otherwise it may introduce undefined behavior.
 | |
|     // In addition, we may sink instructions that produce %c or %d into the
 | |
|     // destination(s) of the new branch.
 | |
|     // If the true or false blocks do not contain a sunken instruction, that
 | |
|     // block and its branch may be optimized away. In that case, one side of the
 | |
|     // first branch will point directly to select.end, and the corresponding PHI
 | |
|     // predecessor block will be the start block.
 | |
| 
 | |
|     // Find all the instructions that can be soundly sunk to the true/false
 | |
|     // blocks. These are instructions that are computed solely for producing the
 | |
|     // operands of the select instructions in the group and can be sunk without
 | |
|     // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
 | |
|     // with side effects).
 | |
|     SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
 | |
|     typedef std::stack<Instruction *>::size_type StackSizeType;
 | |
|     StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
 | |
|     for (SelectInst *SI : ASI) {
 | |
|       // For each select, compute the sinkable dependence chains of the true and
 | |
|       // false operands.
 | |
|       if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue())) {
 | |
|         std::stack<Instruction *> TrueSlice;
 | |
|         getExclBackwardsSlice(TI, TrueSlice, true);
 | |
|         maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
 | |
|         TrueSlices.push_back(TrueSlice);
 | |
|       }
 | |
|       if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue())) {
 | |
|         std::stack<Instruction *> FalseSlice;
 | |
|         getExclBackwardsSlice(FI, FalseSlice, true);
 | |
|         maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
 | |
|         FalseSlices.push_back(FalseSlice);
 | |
|       }
 | |
|     }
 | |
|     // In the case of multiple select instructions in the same group, the order
 | |
|     // of non-dependent instructions (instructions of different dependence
 | |
|     // slices) in the true/false blocks appears to affect performance.
 | |
|     // Interleaving the slices seems to experimentally be the optimal approach.
 | |
|     // This interleaving scheduling allows for more ILP (with a natural downside
 | |
|     // of increasing a bit register pressure) compared to a simple ordering of
 | |
|     // one whole chain after another. One would expect that this ordering would
 | |
|     // not matter since the scheduling in the backend of the compiler  would
 | |
|     // take care of it, but apparently the scheduler fails to deliver optimal
 | |
|     // ILP with a naive ordering here.
 | |
|     SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
 | |
|     for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
 | |
|       for (auto &S : TrueSlices) {
 | |
|         if (!S.empty()) {
 | |
|           TrueSlicesInterleaved.push_back(S.top());
 | |
|           S.pop();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
 | |
|       for (auto &S : FalseSlices) {
 | |
|         if (!S.empty()) {
 | |
|           FalseSlicesInterleaved.push_back(S.top());
 | |
|           S.pop();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We split the block containing the select(s) into two blocks.
 | |
|     SelectInst *SI = ASI.front();
 | |
|     SelectInst *LastSI = ASI.back();
 | |
|     BasicBlock *StartBlock = SI->getParent();
 | |
|     BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
 | |
|     BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
 | |
|     BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
 | |
|     // Delete the unconditional branch that was just created by the split.
 | |
|     StartBlock->getTerminator()->eraseFromParent();
 | |
| 
 | |
|     // Move any debug/pseudo instructions that were in-between the select
 | |
|     // group to the newly-created end block.
 | |
|     SmallVector<Instruction *, 2> DebugPseudoINS;
 | |
|     auto DIt = SI->getIterator();
 | |
|     while (&*DIt != LastSI) {
 | |
|       if (DIt->isDebugOrPseudoInst())
 | |
|         DebugPseudoINS.push_back(&*DIt);
 | |
|       DIt++;
 | |
|     }
 | |
|     for (auto *DI : DebugPseudoINS) {
 | |
|       DI->moveBefore(&*EndBlock->getFirstInsertionPt());
 | |
|     }
 | |
| 
 | |
|     // These are the new basic blocks for the conditional branch.
 | |
|     // At least one will become an actual new basic block.
 | |
|     BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
 | |
|     BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
 | |
|     if (!TrueSlicesInterleaved.empty()) {
 | |
|       TrueBlock = BasicBlock::Create(LastSI->getContext(), "select.true.sink",
 | |
|                                      EndBlock->getParent(), EndBlock);
 | |
|       TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
 | |
|       TrueBranch->setDebugLoc(LastSI->getDebugLoc());
 | |
|       for (Instruction *TrueInst : TrueSlicesInterleaved)
 | |
|         TrueInst->moveBefore(TrueBranch);
 | |
|     }
 | |
|     if (!FalseSlicesInterleaved.empty()) {
 | |
|       FalseBlock = BasicBlock::Create(LastSI->getContext(), "select.false.sink",
 | |
|                                       EndBlock->getParent(), EndBlock);
 | |
|       FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
 | |
|       FalseBranch->setDebugLoc(LastSI->getDebugLoc());
 | |
|       for (Instruction *FalseInst : FalseSlicesInterleaved)
 | |
|         FalseInst->moveBefore(FalseBranch);
 | |
|     }
 | |
|     // If there was nothing to sink, then arbitrarily choose the 'false' side
 | |
|     // for a new input value to the PHI.
 | |
|     if (TrueBlock == FalseBlock) {
 | |
|       assert(TrueBlock == nullptr &&
 | |
|              "Unexpected basic block transform while optimizing select");
 | |
| 
 | |
|       FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
 | |
|                                       EndBlock->getParent(), EndBlock);
 | |
|       auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
 | |
|       FalseBranch->setDebugLoc(SI->getDebugLoc());
 | |
|     }
 | |
| 
 | |
|     // Insert the real conditional branch based on the original condition.
 | |
|     // If we did not create a new block for one of the 'true' or 'false' paths
 | |
|     // of the condition, it means that side of the branch goes to the end block
 | |
|     // directly and the path originates from the start block from the point of
 | |
|     // view of the new PHI.
 | |
|     BasicBlock *TT, *FT;
 | |
|     if (TrueBlock == nullptr) {
 | |
|       TT = EndBlock;
 | |
|       FT = FalseBlock;
 | |
|       TrueBlock = StartBlock;
 | |
|     } else if (FalseBlock == nullptr) {
 | |
|       TT = TrueBlock;
 | |
|       FT = EndBlock;
 | |
|       FalseBlock = StartBlock;
 | |
|     } else {
 | |
|       TT = TrueBlock;
 | |
|       FT = FalseBlock;
 | |
|     }
 | |
|     IRBuilder<> IB(SI);
 | |
|     auto *CondFr =
 | |
|         IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
 | |
|     IB.CreateCondBr(CondFr, TT, FT, SI);
 | |
| 
 | |
|     SmallPtrSet<const Instruction *, 2> INS;
 | |
|     INS.insert(ASI.begin(), ASI.end());
 | |
|     // Use reverse iterator because later select may use the value of the
 | |
|     // earlier select, and we need to propagate value through earlier select
 | |
|     // to get the PHI operand.
 | |
|     for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
 | |
|       SelectInst *SI = *It;
 | |
|       // The select itself is replaced with a PHI Node.
 | |
|       PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
 | |
|       PN->takeName(SI);
 | |
|       PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
 | |
|       PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
 | |
|       PN->setDebugLoc(SI->getDebugLoc());
 | |
| 
 | |
|       SI->replaceAllUsesWith(PN);
 | |
|       SI->eraseFromParent();
 | |
|       INS.erase(SI);
 | |
|       ++NumSelectsConverted;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectOptimize::collectSelectGroups(BasicBlock &BB,
 | |
|                                          SelectGroups &SIGroups) {
 | |
|   BasicBlock::iterator BBIt = BB.begin();
 | |
|   while (BBIt != BB.end()) {
 | |
|     Instruction *I = &*BBIt++;
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
 | |
|       SelectGroup SIGroup;
 | |
|       SIGroup.push_back(SI);
 | |
|       while (BBIt != BB.end()) {
 | |
|         Instruction *NI = &*BBIt;
 | |
|         SelectInst *NSI = dyn_cast<SelectInst>(NI);
 | |
|         if (NSI && SI->getCondition() == NSI->getCondition()) {
 | |
|           SIGroup.push_back(NSI);
 | |
|         } else if (!NI->isDebugOrPseudoInst()) {
 | |
|           // Debug/pseudo instructions should be skipped and not prevent the
 | |
|           // formation of a select group.
 | |
|           break;
 | |
|         }
 | |
|         ++BBIt;
 | |
|       }
 | |
| 
 | |
|       // If the select type is not supported, no point optimizing it.
 | |
|       // Instruction selection will take care of it.
 | |
|       if (!isSelectKindSupported(SI))
 | |
|         continue;
 | |
| 
 | |
|       SIGroups.push_back(SIGroup);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups,
 | |
|                                                 SelectGroups &ProfSIGroups) {
 | |
|   for (SelectGroup &ASI : SIGroups) {
 | |
|     ++NumSelectOptAnalyzed;
 | |
|     if (isConvertToBranchProfitableBase(ASI))
 | |
|       ProfSIGroups.push_back(ASI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectOptimize::findProfitableSIGroupsInnerLoops(
 | |
|     const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
 | |
|   NumSelectOptAnalyzed += SIGroups.size();
 | |
|   // For each select group in an inner-most loop,
 | |
|   // a branch is more preferable than a select/conditional-move if:
 | |
|   // i) conversion to branches for all the select groups of the loop satisfies
 | |
|   //    loop-level heuristics including reducing the loop's critical path by
 | |
|   //    some threshold (see SelectOptimize::checkLoopHeuristics); and
 | |
|   // ii) the total cost of the select group is cheaper with a branch compared
 | |
|   //     to its predicated version. The cost is in terms of latency and the cost
 | |
|   //     of a select group is the cost of its most expensive select instruction
 | |
|   //     (assuming infinite resources and thus fully leveraging available ILP).
 | |
| 
 | |
|   DenseMap<const Instruction *, CostInfo> InstCostMap;
 | |
|   CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
 | |
|                           {Scaled64::getZero(), Scaled64::getZero()}};
 | |
|   if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
 | |
|       !checkLoopHeuristics(L, LoopCost)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (SelectGroup &ASI : SIGroups) {
 | |
|     // Assuming infinite resources, the cost of a group of instructions is the
 | |
|     // cost of the most expensive instruction of the group.
 | |
|     Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
 | |
|     for (SelectInst *SI : ASI) {
 | |
|       SelectCost = std::max(SelectCost, InstCostMap[SI].PredCost);
 | |
|       BranchCost = std::max(BranchCost, InstCostMap[SI].NonPredCost);
 | |
|     }
 | |
|     if (BranchCost < SelectCost) {
 | |
|       OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front());
 | |
|       OR << "Profitable to convert to branch (loop analysis). BranchCost="
 | |
|          << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
 | |
|          << ". ";
 | |
|       ORE->emit(OR);
 | |
|       ++NumSelectConvertedLoop;
 | |
|       ProfSIGroups.push_back(ASI);
 | |
|     } else {
 | |
|       OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
 | |
|       ORmiss << "Select is more profitable (loop analysis). BranchCost="
 | |
|              << BranchCost.toString()
 | |
|              << ", SelectCost=" << SelectCost.toString() << ". ";
 | |
|       ORE->emit(ORmiss);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool SelectOptimize::isConvertToBranchProfitableBase(
 | |
|     const SmallVector<SelectInst *, 2> &ASI) {
 | |
|   SelectInst *SI = ASI.front();
 | |
|   OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI);
 | |
|   OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI);
 | |
| 
 | |
|   // Skip cold basic blocks. Better to optimize for size for cold blocks.
 | |
|   if (PSI->isColdBlock(SI->getParent(), BFI.get())) {
 | |
|     ++NumSelectColdBB;
 | |
|     ORmiss << "Not converted to branch because of cold basic block. ";
 | |
|     ORE->emit(ORmiss);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If unpredictable, branch form is less profitable.
 | |
|   if (SI->getMetadata(LLVMContext::MD_unpredictable)) {
 | |
|     ++NumSelectUnPred;
 | |
|     ORmiss << "Not converted to branch because of unpredictable branch. ";
 | |
|     ORE->emit(ORmiss);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If highly predictable, branch form is more profitable, unless a
 | |
|   // predictable select is inexpensive in the target architecture.
 | |
|   if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
 | |
|     ++NumSelectConvertedHighPred;
 | |
|     OR << "Converted to branch because of highly predictable branch. ";
 | |
|     ORE->emit(OR);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Look for expensive instructions in the cold operand's (if any) dependence
 | |
|   // slice of any of the selects in the group.
 | |
|   if (hasExpensiveColdOperand(ASI)) {
 | |
|     ++NumSelectConvertedExpColdOperand;
 | |
|     OR << "Converted to branch because of expensive cold operand.";
 | |
|     ORE->emit(OR);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   ORmiss << "Not profitable to convert to branch (base heuristic).";
 | |
|   ORE->emit(ORmiss);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static InstructionCost divideNearest(InstructionCost Numerator,
 | |
|                                      uint64_t Denominator) {
 | |
|   return (Numerator + (Denominator / 2)) / Denominator;
 | |
| }
 | |
| 
 | |
| bool SelectOptimize::hasExpensiveColdOperand(
 | |
|     const SmallVector<SelectInst *, 2> &ASI) {
 | |
|   bool ColdOperand = false;
 | |
|   uint64_t TrueWeight, FalseWeight, TotalWeight;
 | |
|   if (extractBranchWeights(*ASI.front(), TrueWeight, FalseWeight)) {
 | |
|     uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
 | |
|     TotalWeight = TrueWeight + FalseWeight;
 | |
|     // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
 | |
|     ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
 | |
|   } else if (PSI->hasProfileSummary()) {
 | |
|     OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
 | |
|     ORmiss << "Profile data available but missing branch-weights metadata for "
 | |
|               "select instruction. ";
 | |
|     ORE->emit(ORmiss);
 | |
|   }
 | |
|   if (!ColdOperand)
 | |
|     return false;
 | |
|   // Check if the cold path's dependence slice is expensive for any of the
 | |
|   // selects of the group.
 | |
|   for (SelectInst *SI : ASI) {
 | |
|     Instruction *ColdI = nullptr;
 | |
|     uint64_t HotWeight;
 | |
|     if (TrueWeight < FalseWeight) {
 | |
|       ColdI = dyn_cast<Instruction>(SI->getTrueValue());
 | |
|       HotWeight = FalseWeight;
 | |
|     } else {
 | |
|       ColdI = dyn_cast<Instruction>(SI->getFalseValue());
 | |
|       HotWeight = TrueWeight;
 | |
|     }
 | |
|     if (ColdI) {
 | |
|       std::stack<Instruction *> ColdSlice;
 | |
|       getExclBackwardsSlice(ColdI, ColdSlice);
 | |
|       InstructionCost SliceCost = 0;
 | |
|       while (!ColdSlice.empty()) {
 | |
|         SliceCost += TTI->getInstructionCost(ColdSlice.top(),
 | |
|                                              TargetTransformInfo::TCK_Latency);
 | |
|         ColdSlice.pop();
 | |
|       }
 | |
|       // The colder the cold value operand of the select is the more expensive
 | |
|       // the cmov becomes for computing the cold value operand every time. Thus,
 | |
|       // the colder the cold operand is the more its cost counts.
 | |
|       // Get nearest integer cost adjusted for coldness.
 | |
|       InstructionCost AdjSliceCost =
 | |
|           divideNearest(SliceCost * HotWeight, TotalWeight);
 | |
|       if (AdjSliceCost >=
 | |
|           ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // For a given source instruction, collect its backwards dependence slice
 | |
| // consisting of instructions exclusively computed for the purpose of producing
 | |
| // the operands of the source instruction. As an approximation
 | |
| // (sufficiently-accurate in practice), we populate this set with the
 | |
| // instructions of the backwards dependence slice that only have one-use and
 | |
| // form an one-use chain that leads to the source instruction.
 | |
| void SelectOptimize::getExclBackwardsSlice(Instruction *I,
 | |
|                                            std::stack<Instruction *> &Slice,
 | |
|                                            bool ForSinking) {
 | |
|   SmallPtrSet<Instruction *, 2> Visited;
 | |
|   std::queue<Instruction *> Worklist;
 | |
|   Worklist.push(I);
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *II = Worklist.front();
 | |
|     Worklist.pop();
 | |
| 
 | |
|     // Avoid cycles.
 | |
|     if (!Visited.insert(II).second)
 | |
|       continue;
 | |
| 
 | |
|     if (!II->hasOneUse())
 | |
|       continue;
 | |
| 
 | |
|     // Cannot soundly sink instructions with side-effects.
 | |
|     // Terminator or phi instructions cannot be sunk.
 | |
|     // Avoid sinking other select instructions (should be handled separetely).
 | |
|     if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
 | |
|                        isa<SelectInst>(II) || isa<PHINode>(II)))
 | |
|       continue;
 | |
| 
 | |
|     // Avoid considering instructions with less frequency than the source
 | |
|     // instruction (i.e., avoid colder code regions of the dependence slice).
 | |
|     if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
 | |
|       continue;
 | |
| 
 | |
|     // Eligible one-use instruction added to the dependence slice.
 | |
|     Slice.push(II);
 | |
| 
 | |
|     // Explore all the operands of the current instruction to expand the slice.
 | |
|     for (unsigned k = 0; k < II->getNumOperands(); ++k)
 | |
|       if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
 | |
|         Worklist.push(OpI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) {
 | |
|   uint64_t TrueWeight, FalseWeight;
 | |
|   if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
 | |
|     uint64_t Max = std::max(TrueWeight, FalseWeight);
 | |
|     uint64_t Sum = TrueWeight + FalseWeight;
 | |
|     if (Sum != 0) {
 | |
|       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
 | |
|       if (Probability > TTI->getPredictableBranchThreshold())
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SelectOptimize::checkLoopHeuristics(const Loop *L,
 | |
|                                          const CostInfo LoopCost[2]) {
 | |
|   // Loop-level checks to determine if a non-predicated version (with branches)
 | |
|   // of the loop is more profitable than its predicated version.
 | |
| 
 | |
|   if (DisableLoopLevelHeuristics)
 | |
|     return true;
 | |
| 
 | |
|   OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
 | |
|                                    L->getHeader()->getFirstNonPHI());
 | |
| 
 | |
|   if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
 | |
|       LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
 | |
|     ORmissL << "No select conversion in the loop due to no reduction of loop's "
 | |
|                "critical path. ";
 | |
|     ORE->emit(ORmissL);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
 | |
|                       LoopCost[1].PredCost - LoopCost[1].NonPredCost};
 | |
| 
 | |
|   // Profitably converting to branches need to reduce the loop's critical path
 | |
|   // by at least some threshold (absolute gain of GainCycleThreshold cycles and
 | |
|   // relative gain of 12.5%).
 | |
|   if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
 | |
|       Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
 | |
|     Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
 | |
|     ORmissL << "No select conversion in the loop due to small reduction of "
 | |
|                "loop's critical path. Gain="
 | |
|             << Gain[1].toString()
 | |
|             << ", RelativeGain=" << RelativeGain.toString() << "%. ";
 | |
|     ORE->emit(ORmissL);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the loop's critical path involves loop-carried dependences, the gradient
 | |
|   // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
 | |
|   // This check ensures that the latency reduction for the loop's critical path
 | |
|   // keeps decreasing with sufficient rate beyond the two analyzed loop
 | |
|   // iterations.
 | |
|   if (Gain[1] > Gain[0]) {
 | |
|     Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
 | |
|                             (LoopCost[1].PredCost - LoopCost[0].PredCost);
 | |
|     if (GradientGain < Scaled64::get(GainGradientThreshold)) {
 | |
|       ORmissL << "No select conversion in the loop due to small gradient gain. "
 | |
|                  "GradientGain="
 | |
|               << GradientGain.toString() << "%. ";
 | |
|       ORE->emit(ORmissL);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   // If the gain decreases it is not profitable to convert.
 | |
|   else if (Gain[1] < Gain[0]) {
 | |
|     ORmissL
 | |
|         << "No select conversion in the loop due to negative gradient gain. ";
 | |
|     ORE->emit(ORmissL);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Non-predicated version of the loop is more profitable than its
 | |
|   // predicated version.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Computes instruction and loop-critical-path costs for both the predicated
 | |
| // and non-predicated version of the given loop.
 | |
| // Returns false if unable to compute these costs due to invalid cost of loop
 | |
| // instruction(s).
 | |
| bool SelectOptimize::computeLoopCosts(
 | |
|     const Loop *L, const SelectGroups &SIGroups,
 | |
|     DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
 | |
|   const auto &SIset = getSIset(SIGroups);
 | |
|   // Compute instruction and loop-critical-path costs across two iterations for
 | |
|   // both predicated and non-predicated version.
 | |
|   const unsigned Iterations = 2;
 | |
|   for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
 | |
|     // Cost of the loop's critical path.
 | |
|     CostInfo &MaxCost = LoopCost[Iter];
 | |
|     for (BasicBlock *BB : L->getBlocks()) {
 | |
|       for (const Instruction &I : *BB) {
 | |
|         if (I.isDebugOrPseudoInst())
 | |
|           continue;
 | |
|         // Compute the predicated and non-predicated cost of the instruction.
 | |
|         Scaled64 IPredCost = Scaled64::getZero(),
 | |
|                  INonPredCost = Scaled64::getZero();
 | |
| 
 | |
|         // Assume infinite resources that allow to fully exploit the available
 | |
|         // instruction-level parallelism.
 | |
|         // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
 | |
|         for (const Use &U : I.operands()) {
 | |
|           auto UI = dyn_cast<Instruction>(U.get());
 | |
|           if (!UI)
 | |
|             continue;
 | |
|           if (InstCostMap.count(UI)) {
 | |
|             IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
 | |
|             INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
 | |
|           }
 | |
|         }
 | |
|         auto ILatency = computeInstCost(&I);
 | |
|         if (!ILatency) {
 | |
|           OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
 | |
|           ORmissL << "Invalid instruction cost preventing analysis and "
 | |
|                      "optimization of the inner-most loop containing this "
 | |
|                      "instruction. ";
 | |
|           ORE->emit(ORmissL);
 | |
|           return false;
 | |
|         }
 | |
|         IPredCost += Scaled64::get(ILatency.value());
 | |
|         INonPredCost += Scaled64::get(ILatency.value());
 | |
| 
 | |
|         // For a select that can be converted to branch,
 | |
|         // compute its cost as a branch (non-predicated cost).
 | |
|         //
 | |
|         // BranchCost = PredictedPathCost + MispredictCost
 | |
|         // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
 | |
|         // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
 | |
|         if (SIset.contains(&I)) {
 | |
|           auto SI = dyn_cast<SelectInst>(&I);
 | |
| 
 | |
|           Scaled64 TrueOpCost = Scaled64::getZero(),
 | |
|                    FalseOpCost = Scaled64::getZero();
 | |
|           if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue()))
 | |
|             if (InstCostMap.count(TI))
 | |
|               TrueOpCost = InstCostMap[TI].NonPredCost;
 | |
|           if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue()))
 | |
|             if (InstCostMap.count(FI))
 | |
|               FalseOpCost = InstCostMap[FI].NonPredCost;
 | |
|           Scaled64 PredictedPathCost =
 | |
|               getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
 | |
| 
 | |
|           Scaled64 CondCost = Scaled64::getZero();
 | |
|           if (auto *CI = dyn_cast<Instruction>(SI->getCondition()))
 | |
|             if (InstCostMap.count(CI))
 | |
|               CondCost = InstCostMap[CI].NonPredCost;
 | |
|           Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
 | |
| 
 | |
|           INonPredCost = PredictedPathCost + MispredictCost;
 | |
|         }
 | |
| 
 | |
|         InstCostMap[&I] = {IPredCost, INonPredCost};
 | |
|         MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
 | |
|         MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SmallPtrSet<const Instruction *, 2>
 | |
| SelectOptimize::getSIset(const SelectGroups &SIGroups) {
 | |
|   SmallPtrSet<const Instruction *, 2> SIset;
 | |
|   for (const SelectGroup &ASI : SIGroups)
 | |
|     for (const SelectInst *SI : ASI)
 | |
|       SIset.insert(SI);
 | |
|   return SIset;
 | |
| }
 | |
| 
 | |
| Optional<uint64_t> SelectOptimize::computeInstCost(const Instruction *I) {
 | |
|   InstructionCost ICost =
 | |
|       TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
 | |
|   if (auto OC = ICost.getValue())
 | |
|     return Optional<uint64_t>(*OC);
 | |
|   return Optional<uint64_t>();
 | |
| }
 | |
| 
 | |
| ScaledNumber<uint64_t>
 | |
| SelectOptimize::getMispredictionCost(const SelectInst *SI,
 | |
|                                      const Scaled64 CondCost) {
 | |
|   uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
 | |
| 
 | |
|   // Account for the default misprediction rate when using a branch
 | |
|   // (conservatively set to 25% by default).
 | |
|   uint64_t MispredictRate = MispredictDefaultRate;
 | |
|   // If the select condition is obviously predictable, then the misprediction
 | |
|   // rate is zero.
 | |
|   if (isSelectHighlyPredictable(SI))
 | |
|     MispredictRate = 0;
 | |
| 
 | |
|   // CondCost is included to account for cases where the computation of the
 | |
|   // condition is part of a long dependence chain (potentially loop-carried)
 | |
|   // that would delay detection of a misprediction and increase its cost.
 | |
|   Scaled64 MispredictCost =
 | |
|       std::max(Scaled64::get(MispredictPenalty), CondCost) *
 | |
|       Scaled64::get(MispredictRate);
 | |
|   MispredictCost /= Scaled64::get(100);
 | |
| 
 | |
|   return MispredictCost;
 | |
| }
 | |
| 
 | |
| // Returns the cost of a branch when the prediction is correct.
 | |
| // TrueCost * TrueProbability + FalseCost * FalseProbability.
 | |
| ScaledNumber<uint64_t>
 | |
| SelectOptimize::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
 | |
|                                      const SelectInst *SI) {
 | |
|   Scaled64 PredPathCost;
 | |
|   uint64_t TrueWeight, FalseWeight;
 | |
|   if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
 | |
|     uint64_t SumWeight = TrueWeight + FalseWeight;
 | |
|     if (SumWeight != 0) {
 | |
|       PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
 | |
|                      FalseCost * Scaled64::get(FalseWeight);
 | |
|       PredPathCost /= Scaled64::get(SumWeight);
 | |
|       return PredPathCost;
 | |
|     }
 | |
|   }
 | |
|   // Without branch weight metadata, we assume 75% for the one path and 25% for
 | |
|   // the other, and pick the result with the biggest cost.
 | |
|   PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
 | |
|                           FalseCost * Scaled64::get(3) + TrueCost);
 | |
|   PredPathCost /= Scaled64::get(4);
 | |
|   return PredPathCost;
 | |
| }
 | |
| 
 | |
| bool SelectOptimize::isSelectKindSupported(SelectInst *SI) {
 | |
|   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
 | |
|   if (VectorCond)
 | |
|     return false;
 | |
|   TargetLowering::SelectSupportKind SelectKind;
 | |
|   if (SI->getType()->isVectorTy())
 | |
|     SelectKind = TargetLowering::ScalarCondVectorVal;
 | |
|   else
 | |
|     SelectKind = TargetLowering::ScalarValSelect;
 | |
|   return TLI->isSelectSupported(SelectKind);
 | |
| }
 |