1379 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1379 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- StackColoring.cpp --------------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass implements the stack-coloring optimization that looks for
 | 
						|
// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
 | 
						|
// which represent the possible lifetime of stack slots. It attempts to
 | 
						|
// merge disjoint stack slots and reduce the used stack space.
 | 
						|
// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
 | 
						|
//
 | 
						|
// TODO: In the future we plan to improve stack coloring in the following ways:
 | 
						|
// 1. Allow merging multiple small slots into a single larger slot at different
 | 
						|
//    offsets.
 | 
						|
// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
 | 
						|
//    spill slots.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/CodeGen/LiveInterval.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/SlotIndexes.h"
 | 
						|
#include "llvm/CodeGen/TargetOpcodes.h"
 | 
						|
#include "llvm/CodeGen/WinEHFuncInfo.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <limits>
 | 
						|
#include <memory>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "stack-coloring"
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
DisableColoring("no-stack-coloring",
 | 
						|
        cl::init(false), cl::Hidden,
 | 
						|
        cl::desc("Disable stack coloring"));
 | 
						|
 | 
						|
/// The user may write code that uses allocas outside of the declared lifetime
 | 
						|
/// zone. This can happen when the user returns a reference to a local
 | 
						|
/// data-structure. We can detect these cases and decide not to optimize the
 | 
						|
/// code. If this flag is enabled, we try to save the user. This option
 | 
						|
/// is treated as overriding LifetimeStartOnFirstUse below.
 | 
						|
static cl::opt<bool>
 | 
						|
ProtectFromEscapedAllocas("protect-from-escaped-allocas",
 | 
						|
                          cl::init(false), cl::Hidden,
 | 
						|
                          cl::desc("Do not optimize lifetime zones that "
 | 
						|
                                   "are broken"));
 | 
						|
 | 
						|
/// Enable enhanced dataflow scheme for lifetime analysis (treat first
 | 
						|
/// use of stack slot as start of slot lifetime, as opposed to looking
 | 
						|
/// for LIFETIME_START marker). See "Implementation notes" below for
 | 
						|
/// more info.
 | 
						|
static cl::opt<bool>
 | 
						|
LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
 | 
						|
        cl::init(true), cl::Hidden,
 | 
						|
        cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
 | 
						|
 | 
						|
 | 
						|
STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
 | 
						|
STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
 | 
						|
STATISTIC(StackSlotMerged, "Number of stack slot merged.");
 | 
						|
STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           StackColoring Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Stack Coloring reduces stack usage by merging stack slots when they
 | 
						|
// can't be used together. For example, consider the following C program:
 | 
						|
//
 | 
						|
//     void bar(char *, int);
 | 
						|
//     void foo(bool var) {
 | 
						|
//         A: {
 | 
						|
//             char z[4096];
 | 
						|
//             bar(z, 0);
 | 
						|
//         }
 | 
						|
//
 | 
						|
//         char *p;
 | 
						|
//         char x[4096];
 | 
						|
//         char y[4096];
 | 
						|
//         if (var) {
 | 
						|
//             p = x;
 | 
						|
//         } else {
 | 
						|
//             bar(y, 1);
 | 
						|
//             p = y + 1024;
 | 
						|
//         }
 | 
						|
//     B:
 | 
						|
//         bar(p, 2);
 | 
						|
//     }
 | 
						|
//
 | 
						|
// Naively-compiled, this program would use 12k of stack space. However, the
 | 
						|
// stack slot corresponding to `z` is always destroyed before either of the
 | 
						|
// stack slots for `x` or `y` are used, and then `x` is only used if `var`
 | 
						|
// is true, while `y` is only used if `var` is false. So in no time are 2
 | 
						|
// of the stack slots used together, and therefore we can merge them,
 | 
						|
// compiling the function using only a single 4k alloca:
 | 
						|
//
 | 
						|
//     void foo(bool var) { // equivalent
 | 
						|
//         char x[4096];
 | 
						|
//         char *p;
 | 
						|
//         bar(x, 0);
 | 
						|
//         if (var) {
 | 
						|
//             p = x;
 | 
						|
//         } else {
 | 
						|
//             bar(x, 1);
 | 
						|
//             p = x + 1024;
 | 
						|
//         }
 | 
						|
//         bar(p, 2);
 | 
						|
//     }
 | 
						|
//
 | 
						|
// This is an important optimization if we want stack space to be under
 | 
						|
// control in large functions, both open-coded ones and ones created by
 | 
						|
// inlining.
 | 
						|
//
 | 
						|
// Implementation Notes:
 | 
						|
// ---------------------
 | 
						|
//
 | 
						|
// An important part of the above reasoning is that `z` can't be accessed
 | 
						|
// while the latter 2 calls to `bar` are running. This is justified because
 | 
						|
// `z`'s lifetime is over after we exit from block `A:`, so any further
 | 
						|
// accesses to it would be UB. The way we represent this information
 | 
						|
// in LLVM is by having frontends delimit blocks with `lifetime.start`
 | 
						|
// and `lifetime.end` intrinsics.
 | 
						|
//
 | 
						|
// The effect of these intrinsics seems to be as follows (maybe I should
 | 
						|
// specify this in the reference?):
 | 
						|
//
 | 
						|
//   L1) at start, each stack-slot is marked as *out-of-scope*, unless no
 | 
						|
//   lifetime intrinsic refers to that stack slot, in which case
 | 
						|
//   it is marked as *in-scope*.
 | 
						|
//   L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
 | 
						|
//   the stack slot is overwritten with `undef`.
 | 
						|
//   L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
 | 
						|
//   L4) on function exit, all stack slots are marked as *out-of-scope*.
 | 
						|
//   L5) `lifetime.end` is a no-op when called on a slot that is already
 | 
						|
//   *out-of-scope*.
 | 
						|
//   L6) memory accesses to *out-of-scope* stack slots are UB.
 | 
						|
//   L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
 | 
						|
//   are invalidated, unless the slot is "degenerate". This is used to
 | 
						|
//   justify not marking slots as in-use until the pointer to them is
 | 
						|
//   used, but feels a bit hacky in the presence of things like LICM. See
 | 
						|
//   the "Degenerate Slots" section for more details.
 | 
						|
//
 | 
						|
// Now, let's ground stack coloring on these rules. We'll define a slot
 | 
						|
// as *in-use* at a (dynamic) point in execution if it either can be
 | 
						|
// written to at that point, or if it has a live and non-undef content
 | 
						|
// at that point.
 | 
						|
//
 | 
						|
// Obviously, slots that are never *in-use* together can be merged, and
 | 
						|
// in our example `foo`, the slots for `x`, `y` and `z` are never
 | 
						|
// in-use together (of course, sometimes slots that *are* in-use together
 | 
						|
// might still be mergable, but we don't care about that here).
 | 
						|
//
 | 
						|
// In this implementation, we successively merge pairs of slots that are
 | 
						|
// not *in-use* together. We could be smarter - for example, we could merge
 | 
						|
// a single large slot with 2 small slots, or we could construct the
 | 
						|
// interference graph and run a "smart" graph coloring algorithm, but with
 | 
						|
// that aside, how do we find out whether a pair of slots might be *in-use*
 | 
						|
// together?
 | 
						|
//
 | 
						|
// From our rules, we see that *out-of-scope* slots are never *in-use*,
 | 
						|
// and from (L7) we see that "non-degenerate" slots remain non-*in-use*
 | 
						|
// until their address is taken. Therefore, we can approximate slot activity
 | 
						|
// using dataflow.
 | 
						|
//
 | 
						|
// A subtle point: naively, we might try to figure out which pairs of
 | 
						|
// stack-slots interfere by propagating `S in-use` through the CFG for every
 | 
						|
// stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
 | 
						|
// which they are both *in-use*.
 | 
						|
//
 | 
						|
// That is sound, but overly conservative in some cases: in our (artificial)
 | 
						|
// example `foo`, either `x` or `y` might be in use at the label `B:`, but
 | 
						|
// as `x` is only in use if we came in from the `var` edge and `y` only
 | 
						|
// if we came from the `!var` edge, they still can't be in use together.
 | 
						|
// See PR32488 for an important real-life case.
 | 
						|
//
 | 
						|
// If we wanted to find all points of interference precisely, we could
 | 
						|
// propagate `S in-use` and `S&T in-use` predicates through the CFG. That
 | 
						|
// would be precise, but requires propagating `O(n^2)` dataflow facts.
 | 
						|
//
 | 
						|
// However, we aren't interested in the *set* of points of interference
 | 
						|
// between 2 stack slots, only *whether* there *is* such a point. So we
 | 
						|
// can rely on a little trick: for `S` and `T` to be in-use together,
 | 
						|
// one of them needs to become in-use while the other is in-use (or
 | 
						|
// they might both become in use simultaneously). We can check this
 | 
						|
// by also keeping track of the points at which a stack slot might *start*
 | 
						|
// being in-use.
 | 
						|
//
 | 
						|
// Exact first use:
 | 
						|
// ----------------
 | 
						|
//
 | 
						|
// Consider the following motivating example:
 | 
						|
//
 | 
						|
//     int foo() {
 | 
						|
//       char b1[1024], b2[1024];
 | 
						|
//       if (...) {
 | 
						|
//         char b3[1024];
 | 
						|
//         <uses of b1, b3>;
 | 
						|
//         return x;
 | 
						|
//       } else {
 | 
						|
//         char b4[1024], b5[1024];
 | 
						|
//         <uses of b2, b4, b5>;
 | 
						|
//         return y;
 | 
						|
//       }
 | 
						|
//     }
 | 
						|
//
 | 
						|
// In the code above, "b3" and "b4" are declared in distinct lexical
 | 
						|
// scopes, meaning that it is easy to prove that they can share the
 | 
						|
// same stack slot. Variables "b1" and "b2" are declared in the same
 | 
						|
// scope, meaning that from a lexical point of view, their lifetimes
 | 
						|
// overlap. From a control flow pointer of view, however, the two
 | 
						|
// variables are accessed in disjoint regions of the CFG, thus it
 | 
						|
// should be possible for them to share the same stack slot. An ideal
 | 
						|
// stack allocation for the function above would look like:
 | 
						|
//
 | 
						|
//     slot 0: b1, b2
 | 
						|
//     slot 1: b3, b4
 | 
						|
//     slot 2: b5
 | 
						|
//
 | 
						|
// Achieving this allocation is tricky, however, due to the way
 | 
						|
// lifetime markers are inserted. Here is a simplified view of the
 | 
						|
// control flow graph for the code above:
 | 
						|
//
 | 
						|
//                +------  block 0 -------+
 | 
						|
//               0| LIFETIME_START b1, b2 |
 | 
						|
//               1| <test 'if' condition> |
 | 
						|
//                +-----------------------+
 | 
						|
//                   ./              \.
 | 
						|
//   +------  block 1 -------+   +------  block 2 -------+
 | 
						|
//  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
 | 
						|
//  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
 | 
						|
//  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
 | 
						|
//   +-----------------------+   +-----------------------+
 | 
						|
//                   \.              /.
 | 
						|
//                +------  block 3 -------+
 | 
						|
//               8| <cleanupcode>         |
 | 
						|
//               9| LIFETIME_END b1, b2   |
 | 
						|
//              10| return                |
 | 
						|
//                +-----------------------+
 | 
						|
//
 | 
						|
// If we create live intervals for the variables above strictly based
 | 
						|
// on the lifetime markers, we'll get the set of intervals on the
 | 
						|
// left. If we ignore the lifetime start markers and instead treat a
 | 
						|
// variable's lifetime as beginning with the first reference to the
 | 
						|
// var, then we get the intervals on the right.
 | 
						|
//
 | 
						|
//            LIFETIME_START      First Use
 | 
						|
//     b1:    [0,9]               [3,4] [8,9]
 | 
						|
//     b2:    [0,9]               [6,9]
 | 
						|
//     b3:    [2,4]               [3,4]
 | 
						|
//     b4:    [5,7]               [6,7]
 | 
						|
//     b5:    [5,7]               [6,7]
 | 
						|
//
 | 
						|
// For the intervals on the left, the best we can do is overlap two
 | 
						|
// variables (b3 and b4, for example); this gives us a stack size of
 | 
						|
// 4*1024 bytes, not ideal. When treating first-use as the start of a
 | 
						|
// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
 | 
						|
// byte stack (better).
 | 
						|
//
 | 
						|
// Degenerate Slots:
 | 
						|
// -----------------
 | 
						|
//
 | 
						|
// Relying entirely on first-use of stack slots is problematic,
 | 
						|
// however, due to the fact that optimizations can sometimes migrate
 | 
						|
// uses of a variable outside of its lifetime start/end region. Here
 | 
						|
// is an example:
 | 
						|
//
 | 
						|
//     int bar() {
 | 
						|
//       char b1[1024], b2[1024];
 | 
						|
//       if (...) {
 | 
						|
//         <uses of b2>
 | 
						|
//         return y;
 | 
						|
//       } else {
 | 
						|
//         <uses of b1>
 | 
						|
//         while (...) {
 | 
						|
//           char b3[1024];
 | 
						|
//           <uses of b3>
 | 
						|
//         }
 | 
						|
//       }
 | 
						|
//     }
 | 
						|
//
 | 
						|
// Before optimization, the control flow graph for the code above
 | 
						|
// might look like the following:
 | 
						|
//
 | 
						|
//                +------  block 0 -------+
 | 
						|
//               0| LIFETIME_START b1, b2 |
 | 
						|
//               1| <test 'if' condition> |
 | 
						|
//                +-----------------------+
 | 
						|
//                   ./              \.
 | 
						|
//   +------  block 1 -------+    +------- block 2 -------+
 | 
						|
//  2| <uses of b2>          |   3| <uses of b1>          |
 | 
						|
//   +-----------------------+    +-----------------------+
 | 
						|
//              |                            |
 | 
						|
//              |                 +------- block 3 -------+ <-\.
 | 
						|
//              |                4| <while condition>     |    |
 | 
						|
//              |                 +-----------------------+    |
 | 
						|
//              |               /          |                   |
 | 
						|
//              |              /  +------- block 4 -------+
 | 
						|
//              \             /  5| LIFETIME_START b3     |    |
 | 
						|
//               \           /   6| <uses of b3>          |    |
 | 
						|
//                \         /    7| LIFETIME_END b3       |    |
 | 
						|
//                 \        |    +------------------------+    |
 | 
						|
//                  \       |                 \                /
 | 
						|
//                +------  block 5 -----+      \---------------
 | 
						|
//               8| <cleanupcode>       |
 | 
						|
//               9| LIFETIME_END b1, b2 |
 | 
						|
//              10| return              |
 | 
						|
//                +---------------------+
 | 
						|
//
 | 
						|
// During optimization, however, it can happen that an instruction
 | 
						|
// computing an address in "b3" (for example, a loop-invariant GEP) is
 | 
						|
// hoisted up out of the loop from block 4 to block 2.  [Note that
 | 
						|
// this is not an actual load from the stack, only an instruction that
 | 
						|
// computes the address to be loaded]. If this happens, there is now a
 | 
						|
// path leading from the first use of b3 to the return instruction
 | 
						|
// that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
 | 
						|
// now larger than if we were computing live intervals strictly based
 | 
						|
// on lifetime markers. In the example above, this lengthened lifetime
 | 
						|
// would mean that it would appear illegal to overlap b3 with b2.
 | 
						|
//
 | 
						|
// To deal with this such cases, the code in ::collectMarkers() below
 | 
						|
// tries to identify "degenerate" slots -- those slots where on a single
 | 
						|
// forward pass through the CFG we encounter a first reference to slot
 | 
						|
// K before we hit the slot K lifetime start marker. For such slots,
 | 
						|
// we fall back on using the lifetime start marker as the beginning of
 | 
						|
// the variable's lifetime.  NB: with this implementation, slots can
 | 
						|
// appear degenerate in cases where there is unstructured control flow:
 | 
						|
//
 | 
						|
//    if (q) goto mid;
 | 
						|
//    if (x > 9) {
 | 
						|
//         int b[100];
 | 
						|
//         memcpy(&b[0], ...);
 | 
						|
//    mid: b[k] = ...;
 | 
						|
//         abc(&b);
 | 
						|
//    }
 | 
						|
//
 | 
						|
// If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
 | 
						|
// before visiting the memcpy block (which will contain the lifetime start
 | 
						|
// for "b" then it will appear that 'b' has a degenerate lifetime.
 | 
						|
//
 | 
						|
// Handle Windows Exception with LifetimeStartOnFirstUse:
 | 
						|
// -----------------
 | 
						|
//
 | 
						|
// There was a bug for using LifetimeStartOnFirstUse in win32.
 | 
						|
// class Type1 {
 | 
						|
// ...
 | 
						|
// ~Type1(){ write memory;}
 | 
						|
// }
 | 
						|
// ...
 | 
						|
// try{
 | 
						|
// Type1 V
 | 
						|
// ...
 | 
						|
// } catch (Type2 X){
 | 
						|
// ...
 | 
						|
// }
 | 
						|
// For variable X in catch(X), we put point pX=&(&X) into ConservativeSlots
 | 
						|
// to prevent using LifetimeStartOnFirstUse. Because pX may merged with
 | 
						|
// object V which may call destructor after implicitly writing pX. All these
 | 
						|
// are done in C++ EH runtime libs (through CxxThrowException), and can't
 | 
						|
// obviously check it in IR level.
 | 
						|
//
 | 
						|
// The loader of pX, without obvious writing IR, is usually the first LOAD MI
 | 
						|
// in EHPad, Some like:
 | 
						|
// bb.x.catch.i (landing-pad, ehfunclet-entry):
 | 
						|
// ; predecessors: %bb...
 | 
						|
//   successors: %bb...
 | 
						|
//  %n:gr32 = MOV32rm %stack.pX ...
 | 
						|
//  ...
 | 
						|
// The Type2** %stack.pX will only be written in EH runtime libs, so we
 | 
						|
// check the StoreSlots to screen it out.
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// StackColoring - A machine pass for merging disjoint stack allocations,
 | 
						|
/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
 | 
						|
class StackColoring : public MachineFunctionPass {
 | 
						|
  MachineFrameInfo *MFI;
 | 
						|
  MachineFunction *MF;
 | 
						|
 | 
						|
  /// A class representing liveness information for a single basic block.
 | 
						|
  /// Each bit in the BitVector represents the liveness property
 | 
						|
  /// for a different stack slot.
 | 
						|
  struct BlockLifetimeInfo {
 | 
						|
    /// Which slots BEGINs in each basic block.
 | 
						|
    BitVector Begin;
 | 
						|
 | 
						|
    /// Which slots ENDs in each basic block.
 | 
						|
    BitVector End;
 | 
						|
 | 
						|
    /// Which slots are marked as LIVE_IN, coming into each basic block.
 | 
						|
    BitVector LiveIn;
 | 
						|
 | 
						|
    /// Which slots are marked as LIVE_OUT, coming out of each basic block.
 | 
						|
    BitVector LiveOut;
 | 
						|
  };
 | 
						|
 | 
						|
  /// Maps active slots (per bit) for each basic block.
 | 
						|
  using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
 | 
						|
  LivenessMap BlockLiveness;
 | 
						|
 | 
						|
  /// Maps serial numbers to basic blocks.
 | 
						|
  DenseMap<const MachineBasicBlock *, int> BasicBlocks;
 | 
						|
 | 
						|
  /// Maps basic blocks to a serial number.
 | 
						|
  SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
 | 
						|
 | 
						|
  /// Maps slots to their use interval. Outside of this interval, slots
 | 
						|
  /// values are either dead or `undef` and they will not be written to.
 | 
						|
  SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
 | 
						|
 | 
						|
  /// Maps slots to the points where they can become in-use.
 | 
						|
  SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
 | 
						|
 | 
						|
  /// VNInfo is used for the construction of LiveIntervals.
 | 
						|
  VNInfo::Allocator VNInfoAllocator;
 | 
						|
 | 
						|
  /// SlotIndex analysis object.
 | 
						|
  SlotIndexes *Indexes;
 | 
						|
 | 
						|
  /// The list of lifetime markers found. These markers are to be removed
 | 
						|
  /// once the coloring is done.
 | 
						|
  SmallVector<MachineInstr*, 8> Markers;
 | 
						|
 | 
						|
  /// Record the FI slots for which we have seen some sort of
 | 
						|
  /// lifetime marker (either start or end).
 | 
						|
  BitVector InterestingSlots;
 | 
						|
 | 
						|
  /// FI slots that need to be handled conservatively (for these
 | 
						|
  /// slots lifetime-start-on-first-use is disabled).
 | 
						|
  BitVector ConservativeSlots;
 | 
						|
 | 
						|
  /// Record the FI slots referenced by a 'may write to memory'.
 | 
						|
  BitVector StoreSlots;
 | 
						|
 | 
						|
  /// Number of iterations taken during data flow analysis.
 | 
						|
  unsigned NumIterations;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  StackColoring() : MachineFunctionPass(ID) {
 | 
						|
    initializeStackColoringPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
  bool runOnMachineFunction(MachineFunction &Func) override;
 | 
						|
 | 
						|
private:
 | 
						|
  /// Used in collectMarkers
 | 
						|
  using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
 | 
						|
 | 
						|
  /// Debug.
 | 
						|
  void dump() const;
 | 
						|
  void dumpIntervals() const;
 | 
						|
  void dumpBB(MachineBasicBlock *MBB) const;
 | 
						|
  void dumpBV(const char *tag, const BitVector &BV) const;
 | 
						|
 | 
						|
  /// Removes all of the lifetime marker instructions from the function.
 | 
						|
  /// \returns true if any markers were removed.
 | 
						|
  bool removeAllMarkers();
 | 
						|
 | 
						|
  /// Scan the machine function and find all of the lifetime markers.
 | 
						|
  /// Record the findings in the BEGIN and END vectors.
 | 
						|
  /// \returns the number of markers found.
 | 
						|
  unsigned collectMarkers(unsigned NumSlot);
 | 
						|
 | 
						|
  /// Perform the dataflow calculation and calculate the lifetime for each of
 | 
						|
  /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
 | 
						|
  /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
 | 
						|
  /// in and out blocks.
 | 
						|
  void calculateLocalLiveness();
 | 
						|
 | 
						|
  /// Returns TRUE if we're using the first-use-begins-lifetime method for
 | 
						|
  /// this slot (if FALSE, then the start marker is treated as start of lifetime).
 | 
						|
  bool applyFirstUse(int Slot) {
 | 
						|
    if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
 | 
						|
      return false;
 | 
						|
    if (ConservativeSlots.test(Slot))
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Examines the specified instruction and returns TRUE if the instruction
 | 
						|
  /// represents the start or end of an interesting lifetime. The slot or slots
 | 
						|
  /// starting or ending are added to the vector "slots" and "isStart" is set
 | 
						|
  /// accordingly.
 | 
						|
  /// \returns True if inst contains a lifetime start or end
 | 
						|
  bool isLifetimeStartOrEnd(const MachineInstr &MI,
 | 
						|
                            SmallVector<int, 4> &slots,
 | 
						|
                            bool &isStart);
 | 
						|
 | 
						|
  /// Construct the LiveIntervals for the slots.
 | 
						|
  void calculateLiveIntervals(unsigned NumSlots);
 | 
						|
 | 
						|
  /// Go over the machine function and change instructions which use stack
 | 
						|
  /// slots to use the joint slots.
 | 
						|
  void remapInstructions(DenseMap<int, int> &SlotRemap);
 | 
						|
 | 
						|
  /// The input program may contain instructions which are not inside lifetime
 | 
						|
  /// markers. This can happen due to a bug in the compiler or due to a bug in
 | 
						|
  /// user code (for example, returning a reference to a local variable).
 | 
						|
  /// This procedure checks all of the instructions in the function and
 | 
						|
  /// invalidates lifetime ranges which do not contain all of the instructions
 | 
						|
  /// which access that frame slot.
 | 
						|
  void removeInvalidSlotRanges();
 | 
						|
 | 
						|
  /// Map entries which point to other entries to their destination.
 | 
						|
  ///   A->B->C becomes A->C.
 | 
						|
  void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char StackColoring::ID = 0;
 | 
						|
 | 
						|
char &llvm::StackColoringID = StackColoring::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
 | 
						|
                      "Merge disjoint stack slots", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | 
						|
INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
 | 
						|
                    "Merge disjoint stack slots", false, false)
 | 
						|
 | 
						|
void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<SlotIndexes>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
 | 
						|
                                            const BitVector &BV) const {
 | 
						|
  dbgs() << tag << " : { ";
 | 
						|
  for (unsigned I = 0, E = BV.size(); I != E; ++I)
 | 
						|
    dbgs() << BV.test(I) << " ";
 | 
						|
  dbgs() << "}\n";
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
 | 
						|
  LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
 | 
						|
  assert(BI != BlockLiveness.end() && "Block not found");
 | 
						|
  const BlockLifetimeInfo &BlockInfo = BI->second;
 | 
						|
 | 
						|
  dumpBV("BEGIN", BlockInfo.Begin);
 | 
						|
  dumpBV("END", BlockInfo.End);
 | 
						|
  dumpBV("LIVE_IN", BlockInfo.LiveIn);
 | 
						|
  dumpBV("LIVE_OUT", BlockInfo.LiveOut);
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void StackColoring::dump() const {
 | 
						|
  for (MachineBasicBlock *MBB : depth_first(MF)) {
 | 
						|
    dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
 | 
						|
           << MBB->getName() << "]\n";
 | 
						|
    dumpBB(MBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
 | 
						|
  for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
 | 
						|
    dbgs() << "Interval[" << I << "]:\n";
 | 
						|
    Intervals[I]->dump();
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static inline int getStartOrEndSlot(const MachineInstr &MI)
 | 
						|
{
 | 
						|
  assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
 | 
						|
          MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
 | 
						|
         "Expected LIFETIME_START or LIFETIME_END op");
 | 
						|
  const MachineOperand &MO = MI.getOperand(0);
 | 
						|
  int Slot = MO.getIndex();
 | 
						|
  if (Slot >= 0)
 | 
						|
    return Slot;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
// At the moment the only way to end a variable lifetime is with
 | 
						|
// a VARIABLE_LIFETIME op (which can't contain a start). If things
 | 
						|
// change and the IR allows for a single inst that both begins
 | 
						|
// and ends lifetime(s), this interface will need to be reworked.
 | 
						|
bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
 | 
						|
                                         SmallVector<int, 4> &slots,
 | 
						|
                                         bool &isStart) {
 | 
						|
  if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
 | 
						|
      MI.getOpcode() == TargetOpcode::LIFETIME_END) {
 | 
						|
    int Slot = getStartOrEndSlot(MI);
 | 
						|
    if (Slot < 0)
 | 
						|
      return false;
 | 
						|
    if (!InterestingSlots.test(Slot))
 | 
						|
      return false;
 | 
						|
    slots.push_back(Slot);
 | 
						|
    if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
 | 
						|
      isStart = false;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (!applyFirstUse(Slot)) {
 | 
						|
      isStart = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
 | 
						|
    if (!MI.isDebugInstr()) {
 | 
						|
      bool found = false;
 | 
						|
      for (const MachineOperand &MO : MI.operands()) {
 | 
						|
        if (!MO.isFI())
 | 
						|
          continue;
 | 
						|
        int Slot = MO.getIndex();
 | 
						|
        if (Slot<0)
 | 
						|
          continue;
 | 
						|
        if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
 | 
						|
          slots.push_back(Slot);
 | 
						|
          found = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (found) {
 | 
						|
        isStart = true;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned StackColoring::collectMarkers(unsigned NumSlot) {
 | 
						|
  unsigned MarkersFound = 0;
 | 
						|
  BlockBitVecMap SeenStartMap;
 | 
						|
  InterestingSlots.clear();
 | 
						|
  InterestingSlots.resize(NumSlot);
 | 
						|
  ConservativeSlots.clear();
 | 
						|
  ConservativeSlots.resize(NumSlot);
 | 
						|
  StoreSlots.clear();
 | 
						|
  StoreSlots.resize(NumSlot);
 | 
						|
 | 
						|
  // number of start and end lifetime ops for each slot
 | 
						|
  SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
 | 
						|
  SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
 | 
						|
  SmallVector<int, 8> NumLoadInCatchPad(NumSlot, 0);
 | 
						|
 | 
						|
  // Step 1: collect markers and populate the "InterestingSlots"
 | 
						|
  // and "ConservativeSlots" sets.
 | 
						|
  for (MachineBasicBlock *MBB : depth_first(MF)) {
 | 
						|
    // Compute the set of slots for which we've seen a START marker but have
 | 
						|
    // not yet seen an END marker at this point in the walk (e.g. on entry
 | 
						|
    // to this bb).
 | 
						|
    BitVector BetweenStartEnd;
 | 
						|
    BetweenStartEnd.resize(NumSlot);
 | 
						|
    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
 | 
						|
      BlockBitVecMap::const_iterator I = SeenStartMap.find(Pred);
 | 
						|
      if (I != SeenStartMap.end()) {
 | 
						|
        BetweenStartEnd |= I->second;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Walk the instructions in the block to look for start/end ops.
 | 
						|
    for (MachineInstr &MI : *MBB) {
 | 
						|
      if (MI.isDebugInstr())
 | 
						|
        continue;
 | 
						|
      if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
 | 
						|
          MI.getOpcode() == TargetOpcode::LIFETIME_END) {
 | 
						|
        int Slot = getStartOrEndSlot(MI);
 | 
						|
        if (Slot < 0)
 | 
						|
          continue;
 | 
						|
        InterestingSlots.set(Slot);
 | 
						|
        if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
 | 
						|
          BetweenStartEnd.set(Slot);
 | 
						|
          NumStartLifetimes[Slot] += 1;
 | 
						|
        } else {
 | 
						|
          BetweenStartEnd.reset(Slot);
 | 
						|
          NumEndLifetimes[Slot] += 1;
 | 
						|
        }
 | 
						|
        const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
 | 
						|
        if (Allocation) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Found a lifetime ");
 | 
						|
          LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
 | 
						|
                                    ? "start"
 | 
						|
                                    : "end"));
 | 
						|
          LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
 | 
						|
          LLVM_DEBUG(dbgs()
 | 
						|
                     << " with allocation: " << Allocation->getName() << "\n");
 | 
						|
        }
 | 
						|
        Markers.push_back(&MI);
 | 
						|
        MarkersFound += 1;
 | 
						|
      } else {
 | 
						|
        for (const MachineOperand &MO : MI.operands()) {
 | 
						|
          if (!MO.isFI())
 | 
						|
            continue;
 | 
						|
          int Slot = MO.getIndex();
 | 
						|
          if (Slot < 0)
 | 
						|
            continue;
 | 
						|
          if (! BetweenStartEnd.test(Slot)) {
 | 
						|
            ConservativeSlots.set(Slot);
 | 
						|
          }
 | 
						|
          // Here we check the StoreSlots to screen catch point out. For more
 | 
						|
          // information, please refer "Handle Windows Exception with
 | 
						|
          // LifetimeStartOnFirstUse" at the head of this file.
 | 
						|
          if (MI.mayStore())
 | 
						|
            StoreSlots.set(Slot);
 | 
						|
          if (MF->getWinEHFuncInfo() && MBB->isEHPad() && MI.mayLoad())
 | 
						|
            NumLoadInCatchPad[Slot] += 1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    BitVector &SeenStart = SeenStartMap[MBB];
 | 
						|
    SeenStart |= BetweenStartEnd;
 | 
						|
  }
 | 
						|
  if (!MarkersFound) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // 1) PR27903: slots with multiple start or end lifetime ops are not
 | 
						|
  // safe to enable for "lifetime-start-on-first-use".
 | 
						|
  // 2) And also not safe for variable X in catch(X) in windows.
 | 
						|
  for (unsigned slot = 0; slot < NumSlot; ++slot) {
 | 
						|
    if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1 ||
 | 
						|
        (NumLoadInCatchPad[slot] > 1 && !StoreSlots.test(slot)))
 | 
						|
      ConservativeSlots.set(slot);
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
 | 
						|
 | 
						|
  // Step 2: compute begin/end sets for each block
 | 
						|
 | 
						|
  // NOTE: We use a depth-first iteration to ensure that we obtain a
 | 
						|
  // deterministic numbering.
 | 
						|
  for (MachineBasicBlock *MBB : depth_first(MF)) {
 | 
						|
    // Assign a serial number to this basic block.
 | 
						|
    BasicBlocks[MBB] = BasicBlockNumbering.size();
 | 
						|
    BasicBlockNumbering.push_back(MBB);
 | 
						|
 | 
						|
    // Keep a reference to avoid repeated lookups.
 | 
						|
    BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
 | 
						|
 | 
						|
    BlockInfo.Begin.resize(NumSlot);
 | 
						|
    BlockInfo.End.resize(NumSlot);
 | 
						|
 | 
						|
    SmallVector<int, 4> slots;
 | 
						|
    for (MachineInstr &MI : *MBB) {
 | 
						|
      bool isStart = false;
 | 
						|
      slots.clear();
 | 
						|
      if (isLifetimeStartOrEnd(MI, slots, isStart)) {
 | 
						|
        if (!isStart) {
 | 
						|
          assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
 | 
						|
          int Slot = slots[0];
 | 
						|
          if (BlockInfo.Begin.test(Slot)) {
 | 
						|
            BlockInfo.Begin.reset(Slot);
 | 
						|
          }
 | 
						|
          BlockInfo.End.set(Slot);
 | 
						|
        } else {
 | 
						|
          for (auto Slot : slots) {
 | 
						|
            LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
 | 
						|
            LLVM_DEBUG(dbgs()
 | 
						|
                       << " at " << printMBBReference(*MBB) << " index ");
 | 
						|
            LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
 | 
						|
            const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
 | 
						|
            if (Allocation) {
 | 
						|
              LLVM_DEBUG(dbgs()
 | 
						|
                         << " with allocation: " << Allocation->getName());
 | 
						|
            }
 | 
						|
            LLVM_DEBUG(dbgs() << "\n");
 | 
						|
            if (BlockInfo.End.test(Slot)) {
 | 
						|
              BlockInfo.End.reset(Slot);
 | 
						|
            }
 | 
						|
            BlockInfo.Begin.set(Slot);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update statistics.
 | 
						|
  NumMarkerSeen += MarkersFound;
 | 
						|
  return MarkersFound;
 | 
						|
}
 | 
						|
 | 
						|
void StackColoring::calculateLocalLiveness() {
 | 
						|
  unsigned NumIters = 0;
 | 
						|
  bool changed = true;
 | 
						|
  while (changed) {
 | 
						|
    changed = false;
 | 
						|
    ++NumIters;
 | 
						|
 | 
						|
    for (const MachineBasicBlock *BB : BasicBlockNumbering) {
 | 
						|
      // Use an iterator to avoid repeated lookups.
 | 
						|
      LivenessMap::iterator BI = BlockLiveness.find(BB);
 | 
						|
      assert(BI != BlockLiveness.end() && "Block not found");
 | 
						|
      BlockLifetimeInfo &BlockInfo = BI->second;
 | 
						|
 | 
						|
      // Compute LiveIn by unioning together the LiveOut sets of all preds.
 | 
						|
      BitVector LocalLiveIn;
 | 
						|
      for (MachineBasicBlock *Pred : BB->predecessors()) {
 | 
						|
        LivenessMap::const_iterator I = BlockLiveness.find(Pred);
 | 
						|
        // PR37130: transformations prior to stack coloring can
 | 
						|
        // sometimes leave behind statically unreachable blocks; these
 | 
						|
        // can be safely skipped here.
 | 
						|
        if (I != BlockLiveness.end())
 | 
						|
          LocalLiveIn |= I->second.LiveOut;
 | 
						|
      }
 | 
						|
 | 
						|
      // Compute LiveOut by subtracting out lifetimes that end in this
 | 
						|
      // block, then adding in lifetimes that begin in this block.  If
 | 
						|
      // we have both BEGIN and END markers in the same basic block
 | 
						|
      // then we know that the BEGIN marker comes after the END,
 | 
						|
      // because we already handle the case where the BEGIN comes
 | 
						|
      // before the END when collecting the markers (and building the
 | 
						|
      // BEGIN/END vectors).
 | 
						|
      BitVector LocalLiveOut = LocalLiveIn;
 | 
						|
      LocalLiveOut.reset(BlockInfo.End);
 | 
						|
      LocalLiveOut |= BlockInfo.Begin;
 | 
						|
 | 
						|
      // Update block LiveIn set, noting whether it has changed.
 | 
						|
      if (LocalLiveIn.test(BlockInfo.LiveIn)) {
 | 
						|
        changed = true;
 | 
						|
        BlockInfo.LiveIn |= LocalLiveIn;
 | 
						|
      }
 | 
						|
 | 
						|
      // Update block LiveOut set, noting whether it has changed.
 | 
						|
      if (LocalLiveOut.test(BlockInfo.LiveOut)) {
 | 
						|
        changed = true;
 | 
						|
        BlockInfo.LiveOut |= LocalLiveOut;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } // while changed.
 | 
						|
 | 
						|
  NumIterations = NumIters;
 | 
						|
}
 | 
						|
 | 
						|
void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
 | 
						|
  SmallVector<SlotIndex, 16> Starts;
 | 
						|
  SmallVector<bool, 16> DefinitelyInUse;
 | 
						|
 | 
						|
  // For each block, find which slots are active within this block
 | 
						|
  // and update the live intervals.
 | 
						|
  for (const MachineBasicBlock &MBB : *MF) {
 | 
						|
    Starts.clear();
 | 
						|
    Starts.resize(NumSlots);
 | 
						|
    DefinitelyInUse.clear();
 | 
						|
    DefinitelyInUse.resize(NumSlots);
 | 
						|
 | 
						|
    // Start the interval of the slots that we previously found to be 'in-use'.
 | 
						|
    BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
 | 
						|
    for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
 | 
						|
         pos = MBBLiveness.LiveIn.find_next(pos)) {
 | 
						|
      Starts[pos] = Indexes->getMBBStartIdx(&MBB);
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the interval for the basic blocks containing lifetime begin/end.
 | 
						|
    for (const MachineInstr &MI : MBB) {
 | 
						|
      SmallVector<int, 4> slots;
 | 
						|
      bool IsStart = false;
 | 
						|
      if (!isLifetimeStartOrEnd(MI, slots, IsStart))
 | 
						|
        continue;
 | 
						|
      SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
 | 
						|
      for (auto Slot : slots) {
 | 
						|
        if (IsStart) {
 | 
						|
          // If a slot is already definitely in use, we don't have to emit
 | 
						|
          // a new start marker because there is already a pre-existing
 | 
						|
          // one.
 | 
						|
          if (!DefinitelyInUse[Slot]) {
 | 
						|
            LiveStarts[Slot].push_back(ThisIndex);
 | 
						|
            DefinitelyInUse[Slot] = true;
 | 
						|
          }
 | 
						|
          if (!Starts[Slot].isValid())
 | 
						|
            Starts[Slot] = ThisIndex;
 | 
						|
        } else {
 | 
						|
          if (Starts[Slot].isValid()) {
 | 
						|
            VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
 | 
						|
            Intervals[Slot]->addSegment(
 | 
						|
                LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
 | 
						|
            Starts[Slot] = SlotIndex(); // Invalidate the start index
 | 
						|
            DefinitelyInUse[Slot] = false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finish up started segments
 | 
						|
    for (unsigned i = 0; i < NumSlots; ++i) {
 | 
						|
      if (!Starts[i].isValid())
 | 
						|
        continue;
 | 
						|
 | 
						|
      SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
 | 
						|
      VNInfo *VNI = Intervals[i]->getValNumInfo(0);
 | 
						|
      Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool StackColoring::removeAllMarkers() {
 | 
						|
  unsigned Count = 0;
 | 
						|
  for (MachineInstr *MI : Markers) {
 | 
						|
    MI->eraseFromParent();
 | 
						|
    Count++;
 | 
						|
  }
 | 
						|
  Markers.clear();
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
 | 
						|
  unsigned FixedInstr = 0;
 | 
						|
  unsigned FixedMemOp = 0;
 | 
						|
  unsigned FixedDbg = 0;
 | 
						|
 | 
						|
  // Remap debug information that refers to stack slots.
 | 
						|
  for (auto &VI : MF->getVariableDbgInfo()) {
 | 
						|
    if (!VI.Var)
 | 
						|
      continue;
 | 
						|
    if (SlotRemap.count(VI.Slot)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Remapping debug info for ["
 | 
						|
                        << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
 | 
						|
      VI.Slot = SlotRemap[VI.Slot];
 | 
						|
      FixedDbg++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Keep a list of *allocas* which need to be remapped.
 | 
						|
  DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
 | 
						|
 | 
						|
  // Keep a list of allocas which has been affected by the remap.
 | 
						|
  SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
 | 
						|
 | 
						|
  for (const std::pair<int, int> &SI : SlotRemap) {
 | 
						|
    const AllocaInst *From = MFI->getObjectAllocation(SI.first);
 | 
						|
    const AllocaInst *To = MFI->getObjectAllocation(SI.second);
 | 
						|
    assert(To && From && "Invalid allocation object");
 | 
						|
    Allocas[From] = To;
 | 
						|
 | 
						|
    // If From is before wo, its possible that there is a use of From between
 | 
						|
    // them.
 | 
						|
    if (From->comesBefore(To))
 | 
						|
      const_cast<AllocaInst*>(To)->moveBefore(const_cast<AllocaInst*>(From));
 | 
						|
 | 
						|
    // AA might be used later for instruction scheduling, and we need it to be
 | 
						|
    // able to deduce the correct aliasing releationships between pointers
 | 
						|
    // derived from the alloca being remapped and the target of that remapping.
 | 
						|
    // The only safe way, without directly informing AA about the remapping
 | 
						|
    // somehow, is to directly update the IR to reflect the change being made
 | 
						|
    // here.
 | 
						|
    Instruction *Inst = const_cast<AllocaInst *>(To);
 | 
						|
    if (From->getType() != To->getType()) {
 | 
						|
      BitCastInst *Cast = new BitCastInst(Inst, From->getType());
 | 
						|
      Cast->insertAfter(Inst);
 | 
						|
      Inst = Cast;
 | 
						|
    }
 | 
						|
 | 
						|
    // We keep both slots to maintain AliasAnalysis metadata later.
 | 
						|
    MergedAllocas.insert(From);
 | 
						|
    MergedAllocas.insert(To);
 | 
						|
 | 
						|
    // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
 | 
						|
    // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
 | 
						|
    // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
 | 
						|
    MachineFrameInfo::SSPLayoutKind FromKind
 | 
						|
        = MFI->getObjectSSPLayout(SI.first);
 | 
						|
    MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
 | 
						|
    if (FromKind != MachineFrameInfo::SSPLK_None &&
 | 
						|
        (ToKind == MachineFrameInfo::SSPLK_None ||
 | 
						|
         (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
 | 
						|
          FromKind != MachineFrameInfo::SSPLK_AddrOf)))
 | 
						|
      MFI->setObjectSSPLayout(SI.second, FromKind);
 | 
						|
 | 
						|
    // The new alloca might not be valid in a llvm.dbg.declare for this
 | 
						|
    // variable, so undef out the use to make the verifier happy.
 | 
						|
    AllocaInst *FromAI = const_cast<AllocaInst *>(From);
 | 
						|
    if (FromAI->isUsedByMetadata())
 | 
						|
      ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
 | 
						|
    for (auto &Use : FromAI->uses()) {
 | 
						|
      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
 | 
						|
        if (BCI->isUsedByMetadata())
 | 
						|
          ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
 | 
						|
    }
 | 
						|
 | 
						|
    // Note that this will not replace uses in MMOs (which we'll update below),
 | 
						|
    // or anywhere else (which is why we won't delete the original
 | 
						|
    // instruction).
 | 
						|
    FromAI->replaceAllUsesWith(Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remap all instructions to the new stack slots.
 | 
						|
  std::vector<std::vector<MachineMemOperand *>> SSRefs(
 | 
						|
      MFI->getObjectIndexEnd());
 | 
						|
  for (MachineBasicBlock &BB : *MF)
 | 
						|
    for (MachineInstr &I : BB) {
 | 
						|
      // Skip lifetime markers. We'll remove them soon.
 | 
						|
      if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
 | 
						|
          I.getOpcode() == TargetOpcode::LIFETIME_END)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Update the MachineMemOperand to use the new alloca.
 | 
						|
      for (MachineMemOperand *MMO : I.memoperands()) {
 | 
						|
        // We've replaced IR-level uses of the remapped allocas, so we only
 | 
						|
        // need to replace direct uses here.
 | 
						|
        const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
 | 
						|
        if (!AI)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (!Allocas.count(AI))
 | 
						|
          continue;
 | 
						|
 | 
						|
        MMO->setValue(Allocas[AI]);
 | 
						|
        FixedMemOp++;
 | 
						|
      }
 | 
						|
 | 
						|
      // Update all of the machine instruction operands.
 | 
						|
      for (MachineOperand &MO : I.operands()) {
 | 
						|
        if (!MO.isFI())
 | 
						|
          continue;
 | 
						|
        int FromSlot = MO.getIndex();
 | 
						|
 | 
						|
        // Don't touch arguments.
 | 
						|
        if (FromSlot<0)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Only look at mapped slots.
 | 
						|
        if (!SlotRemap.count(FromSlot))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // In a debug build, check that the instruction that we are modifying is
 | 
						|
        // inside the expected live range. If the instruction is not inside
 | 
						|
        // the calculated range then it means that the alloca usage moved
 | 
						|
        // outside of the lifetime markers, or that the user has a bug.
 | 
						|
        // NOTE: Alloca address calculations which happen outside the lifetime
 | 
						|
        // zone are okay, despite the fact that we don't have a good way
 | 
						|
        // for validating all of the usages of the calculation.
 | 
						|
#ifndef NDEBUG
 | 
						|
        bool TouchesMemory = I.mayLoadOrStore();
 | 
						|
        // If we *don't* protect the user from escaped allocas, don't bother
 | 
						|
        // validating the instructions.
 | 
						|
        if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
 | 
						|
          SlotIndex Index = Indexes->getInstructionIndex(I);
 | 
						|
          const LiveInterval *Interval = &*Intervals[FromSlot];
 | 
						|
          assert(Interval->find(Index) != Interval->end() &&
 | 
						|
                 "Found instruction usage outside of live range.");
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
        // Fix the machine instructions.
 | 
						|
        int ToSlot = SlotRemap[FromSlot];
 | 
						|
        MO.setIndex(ToSlot);
 | 
						|
        FixedInstr++;
 | 
						|
      }
 | 
						|
 | 
						|
      // We adjust AliasAnalysis information for merged stack slots.
 | 
						|
      SmallVector<MachineMemOperand *, 2> NewMMOs;
 | 
						|
      bool ReplaceMemOps = false;
 | 
						|
      for (MachineMemOperand *MMO : I.memoperands()) {
 | 
						|
        // Collect MachineMemOperands which reference
 | 
						|
        // FixedStackPseudoSourceValues with old frame indices.
 | 
						|
        if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>(
 | 
						|
                MMO->getPseudoValue())) {
 | 
						|
          int FI = FSV->getFrameIndex();
 | 
						|
          auto To = SlotRemap.find(FI);
 | 
						|
          if (To != SlotRemap.end())
 | 
						|
            SSRefs[FI].push_back(MMO);
 | 
						|
        }
 | 
						|
 | 
						|
        // If this memory location can be a slot remapped here,
 | 
						|
        // we remove AA information.
 | 
						|
        bool MayHaveConflictingAAMD = false;
 | 
						|
        if (MMO->getAAInfo()) {
 | 
						|
          if (const Value *MMOV = MMO->getValue()) {
 | 
						|
            SmallVector<Value *, 4> Objs;
 | 
						|
            getUnderlyingObjectsForCodeGen(MMOV, Objs);
 | 
						|
 | 
						|
            if (Objs.empty())
 | 
						|
              MayHaveConflictingAAMD = true;
 | 
						|
            else
 | 
						|
              for (Value *V : Objs) {
 | 
						|
                // If this memory location comes from a known stack slot
 | 
						|
                // that is not remapped, we continue checking.
 | 
						|
                // Otherwise, we need to invalidate AA infomation.
 | 
						|
                const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
 | 
						|
                if (AI && MergedAllocas.count(AI)) {
 | 
						|
                  MayHaveConflictingAAMD = true;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
              }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (MayHaveConflictingAAMD) {
 | 
						|
          NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
 | 
						|
          ReplaceMemOps = true;
 | 
						|
        } else {
 | 
						|
          NewMMOs.push_back(MMO);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If any memory operand is updated, set memory references of
 | 
						|
      // this instruction.
 | 
						|
      if (ReplaceMemOps)
 | 
						|
        I.setMemRefs(*MF, NewMMOs);
 | 
						|
    }
 | 
						|
 | 
						|
  // Rewrite MachineMemOperands that reference old frame indices.
 | 
						|
  for (auto E : enumerate(SSRefs))
 | 
						|
    if (!E.value().empty()) {
 | 
						|
      const PseudoSourceValue *NewSV =
 | 
						|
          MF->getPSVManager().getFixedStack(SlotRemap.find(E.index())->second);
 | 
						|
      for (MachineMemOperand *Ref : E.value())
 | 
						|
        Ref->setValue(NewSV);
 | 
						|
    }
 | 
						|
 | 
						|
  // Update the location of C++ catch objects for the MSVC personality routine.
 | 
						|
  if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
 | 
						|
    for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
 | 
						|
      for (WinEHHandlerType &H : TBME.HandlerArray)
 | 
						|
        if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
 | 
						|
            SlotRemap.count(H.CatchObj.FrameIndex))
 | 
						|
          H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
 | 
						|
  LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
 | 
						|
  LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
 | 
						|
  (void) FixedMemOp;
 | 
						|
  (void) FixedDbg;
 | 
						|
  (void) FixedInstr;
 | 
						|
}
 | 
						|
 | 
						|
void StackColoring::removeInvalidSlotRanges() {
 | 
						|
  for (MachineBasicBlock &BB : *MF)
 | 
						|
    for (MachineInstr &I : BB) {
 | 
						|
      if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
 | 
						|
          I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Some intervals are suspicious! In some cases we find address
 | 
						|
      // calculations outside of the lifetime zone, but not actual memory
 | 
						|
      // read or write. Memory accesses outside of the lifetime zone are a clear
 | 
						|
      // violation, but address calculations are okay. This can happen when
 | 
						|
      // GEPs are hoisted outside of the lifetime zone.
 | 
						|
      // So, in here we only check instructions which can read or write memory.
 | 
						|
      if (!I.mayLoad() && !I.mayStore())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Check all of the machine operands.
 | 
						|
      for (const MachineOperand &MO : I.operands()) {
 | 
						|
        if (!MO.isFI())
 | 
						|
          continue;
 | 
						|
 | 
						|
        int Slot = MO.getIndex();
 | 
						|
 | 
						|
        if (Slot<0)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (Intervals[Slot]->empty())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Check that the used slot is inside the calculated lifetime range.
 | 
						|
        // If it is not, warn about it and invalidate the range.
 | 
						|
        LiveInterval *Interval = &*Intervals[Slot];
 | 
						|
        SlotIndex Index = Indexes->getInstructionIndex(I);
 | 
						|
        if (Interval->find(Index) == Interval->end()) {
 | 
						|
          Interval->clear();
 | 
						|
          LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
 | 
						|
          EscapedAllocas++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
 | 
						|
                                   unsigned NumSlots) {
 | 
						|
  // Expunge slot remap map.
 | 
						|
  for (unsigned i=0; i < NumSlots; ++i) {
 | 
						|
    // If we are remapping i
 | 
						|
    if (SlotRemap.count(i)) {
 | 
						|
      int Target = SlotRemap[i];
 | 
						|
      // As long as our target is mapped to something else, follow it.
 | 
						|
      while (SlotRemap.count(Target)) {
 | 
						|
        Target = SlotRemap[Target];
 | 
						|
        SlotRemap[i] = Target;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
 | 
						|
  LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
 | 
						|
                    << "********** Function: " << Func.getName() << '\n');
 | 
						|
  MF = &Func;
 | 
						|
  MFI = &MF->getFrameInfo();
 | 
						|
  Indexes = &getAnalysis<SlotIndexes>();
 | 
						|
  BlockLiveness.clear();
 | 
						|
  BasicBlocks.clear();
 | 
						|
  BasicBlockNumbering.clear();
 | 
						|
  Markers.clear();
 | 
						|
  Intervals.clear();
 | 
						|
  LiveStarts.clear();
 | 
						|
  VNInfoAllocator.Reset();
 | 
						|
 | 
						|
  unsigned NumSlots = MFI->getObjectIndexEnd();
 | 
						|
 | 
						|
  // If there are no stack slots then there are no markers to remove.
 | 
						|
  if (!NumSlots)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<int, 8> SortedSlots;
 | 
						|
  SortedSlots.reserve(NumSlots);
 | 
						|
  Intervals.reserve(NumSlots);
 | 
						|
  LiveStarts.resize(NumSlots);
 | 
						|
 | 
						|
  unsigned NumMarkers = collectMarkers(NumSlots);
 | 
						|
 | 
						|
  unsigned TotalSize = 0;
 | 
						|
  LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
 | 
						|
                    << " slots\n");
 | 
						|
  LLVM_DEBUG(dbgs() << "Slot structure:\n");
 | 
						|
 | 
						|
  for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
 | 
						|
                      << " bytes.\n");
 | 
						|
    TotalSize += MFI->getObjectSize(i);
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
 | 
						|
 | 
						|
  // Don't continue because there are not enough lifetime markers, or the
 | 
						|
  // stack is too small, or we are told not to optimize the slots.
 | 
						|
  if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
 | 
						|
      skipFunction(Func.getFunction())) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
 | 
						|
    return removeAllMarkers();
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i=0; i < NumSlots; ++i) {
 | 
						|
    std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
 | 
						|
    LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
 | 
						|
    Intervals.push_back(std::move(LI));
 | 
						|
    SortedSlots.push_back(i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate the liveness of each block.
 | 
						|
  calculateLocalLiveness();
 | 
						|
  LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
 | 
						|
  LLVM_DEBUG(dump());
 | 
						|
 | 
						|
  // Propagate the liveness information.
 | 
						|
  calculateLiveIntervals(NumSlots);
 | 
						|
  LLVM_DEBUG(dumpIntervals());
 | 
						|
 | 
						|
  // Search for allocas which are used outside of the declared lifetime
 | 
						|
  // markers.
 | 
						|
  if (ProtectFromEscapedAllocas)
 | 
						|
    removeInvalidSlotRanges();
 | 
						|
 | 
						|
  // Maps old slots to new slots.
 | 
						|
  DenseMap<int, int> SlotRemap;
 | 
						|
  unsigned RemovedSlots = 0;
 | 
						|
  unsigned ReducedSize = 0;
 | 
						|
 | 
						|
  // Do not bother looking at empty intervals.
 | 
						|
  for (unsigned I = 0; I < NumSlots; ++I) {
 | 
						|
    if (Intervals[SortedSlots[I]]->empty())
 | 
						|
      SortedSlots[I] = -1;
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a simple greedy algorithm for merging allocas. First, sort the
 | 
						|
  // slots, placing the largest slots first. Next, perform an n^2 scan and look
 | 
						|
  // for disjoint slots. When you find disjoint slots, merge the smaller one
 | 
						|
  // into the bigger one and update the live interval. Remove the small alloca
 | 
						|
  // and continue.
 | 
						|
 | 
						|
  // Sort the slots according to their size. Place unused slots at the end.
 | 
						|
  // Use stable sort to guarantee deterministic code generation.
 | 
						|
  llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
 | 
						|
    // We use -1 to denote a uninteresting slot. Place these slots at the end.
 | 
						|
    if (LHS == -1)
 | 
						|
      return false;
 | 
						|
    if (RHS == -1)
 | 
						|
      return true;
 | 
						|
    // Sort according to size.
 | 
						|
    return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
 | 
						|
  });
 | 
						|
 | 
						|
  for (auto &s : LiveStarts)
 | 
						|
    llvm::sort(s);
 | 
						|
 | 
						|
  bool Changed = true;
 | 
						|
  while (Changed) {
 | 
						|
    Changed = false;
 | 
						|
    for (unsigned I = 0; I < NumSlots; ++I) {
 | 
						|
      if (SortedSlots[I] == -1)
 | 
						|
        continue;
 | 
						|
 | 
						|
      for (unsigned J=I+1; J < NumSlots; ++J) {
 | 
						|
        if (SortedSlots[J] == -1)
 | 
						|
          continue;
 | 
						|
 | 
						|
        int FirstSlot = SortedSlots[I];
 | 
						|
        int SecondSlot = SortedSlots[J];
 | 
						|
 | 
						|
        // Objects with different stack IDs cannot be merged.
 | 
						|
        if (MFI->getStackID(FirstSlot) != MFI->getStackID(SecondSlot))
 | 
						|
          continue;
 | 
						|
 | 
						|
        LiveInterval *First = &*Intervals[FirstSlot];
 | 
						|
        LiveInterval *Second = &*Intervals[SecondSlot];
 | 
						|
        auto &FirstS = LiveStarts[FirstSlot];
 | 
						|
        auto &SecondS = LiveStarts[SecondSlot];
 | 
						|
        assert(!First->empty() && !Second->empty() && "Found an empty range");
 | 
						|
 | 
						|
        // Merge disjoint slots. This is a little bit tricky - see the
 | 
						|
        // Implementation Notes section for an explanation.
 | 
						|
        if (!First->isLiveAtIndexes(SecondS) &&
 | 
						|
            !Second->isLiveAtIndexes(FirstS)) {
 | 
						|
          Changed = true;
 | 
						|
          First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
 | 
						|
 | 
						|
          int OldSize = FirstS.size();
 | 
						|
          FirstS.append(SecondS.begin(), SecondS.end());
 | 
						|
          auto Mid = FirstS.begin() + OldSize;
 | 
						|
          std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
 | 
						|
 | 
						|
          SlotRemap[SecondSlot] = FirstSlot;
 | 
						|
          SortedSlots[J] = -1;
 | 
						|
          LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
 | 
						|
                            << SecondSlot << " together.\n");
 | 
						|
          Align MaxAlignment = std::max(MFI->getObjectAlign(FirstSlot),
 | 
						|
                                        MFI->getObjectAlign(SecondSlot));
 | 
						|
 | 
						|
          assert(MFI->getObjectSize(FirstSlot) >=
 | 
						|
                 MFI->getObjectSize(SecondSlot) &&
 | 
						|
                 "Merging a small object into a larger one");
 | 
						|
 | 
						|
          RemovedSlots+=1;
 | 
						|
          ReducedSize += MFI->getObjectSize(SecondSlot);
 | 
						|
          MFI->setObjectAlignment(FirstSlot, MaxAlignment);
 | 
						|
          MFI->RemoveStackObject(SecondSlot);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }// While changed.
 | 
						|
 | 
						|
  // Record statistics.
 | 
						|
  StackSpaceSaved += ReducedSize;
 | 
						|
  StackSlotMerged += RemovedSlots;
 | 
						|
  LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
 | 
						|
                    << ReducedSize << " bytes\n");
 | 
						|
 | 
						|
  // Scan the entire function and update all machine operands that use frame
 | 
						|
  // indices to use the remapped frame index.
 | 
						|
  expungeSlotMap(SlotRemap, NumSlots);
 | 
						|
  remapInstructions(SlotRemap);
 | 
						|
 | 
						|
  return removeAllMarkers();
 | 
						|
}
 |