1966 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1966 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the TwoAddress instruction pass which is used
 | |
| // by most register allocators. Two-Address instructions are rewritten
 | |
| // from:
 | |
| //
 | |
| //     A = B op C
 | |
| //
 | |
| // to:
 | |
| //
 | |
| //     A = B
 | |
| //     A op= C
 | |
| //
 | |
| // Note that if a register allocator chooses to use this pass, that it
 | |
| // has to be capable of handling the non-SSA nature of these rewritten
 | |
| // virtual registers.
 | |
| //
 | |
| // It is also worth noting that the duplicate operand of the two
 | |
| // address instruction is removed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CodeGen.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "twoaddressinstruction"
 | |
| 
 | |
| STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
 | |
| STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
 | |
| STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
 | |
| STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
 | |
| STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
 | |
| STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
 | |
| 
 | |
| // Temporary flag to disable rescheduling.
 | |
| static cl::opt<bool>
 | |
| EnableRescheduling("twoaddr-reschedule",
 | |
|                    cl::desc("Coalesce copies by rescheduling (default=true)"),
 | |
|                    cl::init(true), cl::Hidden);
 | |
| 
 | |
| // Limit the number of dataflow edges to traverse when evaluating the benefit
 | |
| // of commuting operands.
 | |
| static cl::opt<unsigned> MaxDataFlowEdge(
 | |
|     "dataflow-edge-limit", cl::Hidden, cl::init(3),
 | |
|     cl::desc("Maximum number of dataflow edges to traverse when evaluating "
 | |
|              "the benefit of commuting operands"));
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class TwoAddressInstructionPass : public MachineFunctionPass {
 | |
|   MachineFunction *MF;
 | |
|   const TargetInstrInfo *TII;
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   const InstrItineraryData *InstrItins;
 | |
|   MachineRegisterInfo *MRI;
 | |
|   LiveVariables *LV;
 | |
|   LiveIntervals *LIS;
 | |
|   AliasAnalysis *AA;
 | |
|   CodeGenOpt::Level OptLevel;
 | |
| 
 | |
|   // The current basic block being processed.
 | |
|   MachineBasicBlock *MBB;
 | |
| 
 | |
|   // Keep track the distance of a MI from the start of the current basic block.
 | |
|   DenseMap<MachineInstr*, unsigned> DistanceMap;
 | |
| 
 | |
|   // Set of already processed instructions in the current block.
 | |
|   SmallPtrSet<MachineInstr*, 8> Processed;
 | |
| 
 | |
|   // A map from virtual registers to physical registers which are likely targets
 | |
|   // to be coalesced to due to copies from physical registers to virtual
 | |
|   // registers. e.g. v1024 = move r0.
 | |
|   DenseMap<Register, Register> SrcRegMap;
 | |
| 
 | |
|   // A map from virtual registers to physical registers which are likely targets
 | |
|   // to be coalesced to due to copies to physical registers from virtual
 | |
|   // registers. e.g. r1 = move v1024.
 | |
|   DenseMap<Register, Register> DstRegMap;
 | |
| 
 | |
|   void removeClobberedSrcRegMap(MachineInstr *MI);
 | |
| 
 | |
|   bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen);
 | |
| 
 | |
|   bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef);
 | |
| 
 | |
|   bool isProfitableToCommute(Register RegA, Register RegB, Register RegC,
 | |
|                              MachineInstr *MI, unsigned Dist);
 | |
| 
 | |
|   bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
 | |
|                           unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
 | |
| 
 | |
|   bool isProfitableToConv3Addr(Register RegA, Register RegB);
 | |
| 
 | |
|   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
 | |
|                           MachineBasicBlock::iterator &nmi, Register RegA,
 | |
|                           Register RegB, unsigned &Dist);
 | |
| 
 | |
|   bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI);
 | |
| 
 | |
|   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
 | |
|                              MachineBasicBlock::iterator &nmi, Register Reg);
 | |
|   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
 | |
|                              MachineBasicBlock::iterator &nmi, Register Reg);
 | |
| 
 | |
|   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
 | |
|                                MachineBasicBlock::iterator &nmi,
 | |
|                                unsigned SrcIdx, unsigned DstIdx,
 | |
|                                unsigned &Dist, bool shouldOnlyCommute);
 | |
| 
 | |
|   bool tryInstructionCommute(MachineInstr *MI,
 | |
|                              unsigned DstOpIdx,
 | |
|                              unsigned BaseOpIdx,
 | |
|                              bool BaseOpKilled,
 | |
|                              unsigned Dist);
 | |
|   void scanUses(Register DstReg);
 | |
| 
 | |
|   void processCopy(MachineInstr *MI);
 | |
| 
 | |
|   using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
 | |
|   using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
 | |
| 
 | |
|   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
 | |
|   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
 | |
|   void eliminateRegSequence(MachineBasicBlock::iterator&);
 | |
|   bool processStatepoint(MachineInstr *MI, TiedOperandMap &TiedOperands);
 | |
| 
 | |
| public:
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
| 
 | |
|   TwoAddressInstructionPass() : MachineFunctionPass(ID) {
 | |
|     initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     AU.addUsedIfAvailable<AAResultsWrapperPass>();
 | |
|     AU.addUsedIfAvailable<LiveVariables>();
 | |
|     AU.addPreserved<LiveVariables>();
 | |
|     AU.addPreserved<SlotIndexes>();
 | |
|     AU.addPreserved<LiveIntervals>();
 | |
|     AU.addPreservedID(MachineLoopInfoID);
 | |
|     AU.addPreservedID(MachineDominatorsID);
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   /// Pass entry point.
 | |
|   bool runOnMachineFunction(MachineFunction&) override;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char TwoAddressInstructionPass::ID = 0;
 | |
| 
 | |
| char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
 | |
|                 "Two-Address instruction pass", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
 | |
|                 "Two-Address instruction pass", false, false)
 | |
| 
 | |
| static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS);
 | |
| 
 | |
| /// Return the MachineInstr* if it is the single def of the Reg in current BB.
 | |
| static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB,
 | |
|                                   const MachineRegisterInfo *MRI) {
 | |
|   MachineInstr *Ret = nullptr;
 | |
|   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
 | |
|     if (DefMI.getParent() != BB || DefMI.isDebugValue())
 | |
|       continue;
 | |
|     if (!Ret)
 | |
|       Ret = &DefMI;
 | |
|     else if (Ret != &DefMI)
 | |
|       return nullptr;
 | |
|   }
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| /// Check if there is a reversed copy chain from FromReg to ToReg:
 | |
| /// %Tmp1 = copy %Tmp2;
 | |
| /// %FromReg = copy %Tmp1;
 | |
| /// %ToReg = add %FromReg ...
 | |
| /// %Tmp2 = copy %ToReg;
 | |
| /// MaxLen specifies the maximum length of the copy chain the func
 | |
| /// can walk through.
 | |
| bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg,
 | |
|                                                int Maxlen) {
 | |
|   Register TmpReg = FromReg;
 | |
|   for (int i = 0; i < Maxlen; i++) {
 | |
|     MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
 | |
|     if (!Def || !Def->isCopy())
 | |
|       return false;
 | |
| 
 | |
|     TmpReg = Def->getOperand(1).getReg();
 | |
| 
 | |
|     if (TmpReg == ToReg)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if there are no intervening uses between the last instruction
 | |
| /// in the MBB that defines the specified register and the two-address
 | |
| /// instruction which is being processed. It also returns the last def location
 | |
| /// by reference.
 | |
| bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist,
 | |
|                                                   unsigned &LastDef) {
 | |
|   LastDef = 0;
 | |
|   unsigned LastUse = Dist;
 | |
|   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     if (MI->getParent() != MBB || MI->isDebugValue())
 | |
|       continue;
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
 | |
|     if (DI == DistanceMap.end())
 | |
|       continue;
 | |
|     if (MO.isUse() && DI->second < LastUse)
 | |
|       LastUse = DI->second;
 | |
|     if (MO.isDef() && DI->second > LastDef)
 | |
|       LastDef = DI->second;
 | |
|   }
 | |
| 
 | |
|   return !(LastUse > LastDef && LastUse < Dist);
 | |
| }
 | |
| 
 | |
| /// Return true if the specified MI is a copy instruction or an extract_subreg
 | |
| /// instruction. It also returns the source and destination registers and
 | |
| /// whether they are physical registers by reference.
 | |
| static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
 | |
|                         Register &SrcReg, Register &DstReg, bool &IsSrcPhys,
 | |
|                         bool &IsDstPhys) {
 | |
|   SrcReg = 0;
 | |
|   DstReg = 0;
 | |
|   if (MI.isCopy()) {
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     SrcReg = MI.getOperand(2).getReg();
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   IsSrcPhys = SrcReg.isPhysical();
 | |
|   IsDstPhys = DstReg.isPhysical();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Test if the given register value, which is used by the
 | |
| /// given instruction, is killed by the given instruction.
 | |
| static bool isPlainlyKilled(MachineInstr *MI, Register Reg,
 | |
|                             LiveIntervals *LIS) {
 | |
|   if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) {
 | |
|     // FIXME: Sometimes tryInstructionTransform() will add instructions and
 | |
|     // test whether they can be folded before keeping them. In this case it
 | |
|     // sets a kill before recursively calling tryInstructionTransform() again.
 | |
|     // If there is no interval available, we assume that this instruction is
 | |
|     // one of those. A kill flag is manually inserted on the operand so the
 | |
|     // check below will handle it.
 | |
|     LiveInterval &LI = LIS->getInterval(Reg);
 | |
|     // This is to match the kill flag version where undefs don't have kill
 | |
|     // flags.
 | |
|     if (!LI.hasAtLeastOneValue())
 | |
|       return false;
 | |
| 
 | |
|     SlotIndex useIdx = LIS->getInstructionIndex(*MI);
 | |
|     LiveInterval::const_iterator I = LI.find(useIdx);
 | |
|     assert(I != LI.end() && "Reg must be live-in to use.");
 | |
|     return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
 | |
|   }
 | |
| 
 | |
|   return MI->killsRegister(Reg);
 | |
| }
 | |
| 
 | |
| /// Test if the given register value, which is used by the given
 | |
| /// instruction, is killed by the given instruction. This looks through
 | |
| /// coalescable copies to see if the original value is potentially not killed.
 | |
| ///
 | |
| /// For example, in this code:
 | |
| ///
 | |
| ///   %reg1034 = copy %reg1024
 | |
| ///   %reg1035 = copy killed %reg1025
 | |
| ///   %reg1036 = add killed %reg1034, killed %reg1035
 | |
| ///
 | |
| /// %reg1034 is not considered to be killed, since it is copied from a
 | |
| /// register which is not killed. Treating it as not killed lets the
 | |
| /// normal heuristics commute the (two-address) add, which lets
 | |
| /// coalescing eliminate the extra copy.
 | |
| ///
 | |
| /// If allowFalsePositives is true then likely kills are treated as kills even
 | |
| /// if it can't be proven that they are kills.
 | |
| static bool isKilled(MachineInstr &MI, Register Reg,
 | |
|                      const MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
 | |
|                      LiveIntervals *LIS, bool allowFalsePositives) {
 | |
|   MachineInstr *DefMI = &MI;
 | |
|   while (true) {
 | |
|     // All uses of physical registers are likely to be kills.
 | |
|     if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg)))
 | |
|       return true;
 | |
|     if (!isPlainlyKilled(DefMI, Reg, LIS))
 | |
|       return false;
 | |
|     if (Reg.isPhysical())
 | |
|       return true;
 | |
|     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
 | |
|     // If there are multiple defs, we can't do a simple analysis, so just
 | |
|     // go with what the kill flag says.
 | |
|     if (std::next(Begin) != MRI->def_end())
 | |
|       return true;
 | |
|     DefMI = Begin->getParent();
 | |
|     bool IsSrcPhys, IsDstPhys;
 | |
|     Register SrcReg, DstReg;
 | |
|     // If the def is something other than a copy, then it isn't going to
 | |
|     // be coalesced, so follow the kill flag.
 | |
|     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
 | |
|       return true;
 | |
|     Reg = SrcReg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if the specified MI uses the specified register as a two-address
 | |
| /// use. If so, return the destination register by reference.
 | |
| static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) {
 | |
|   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
 | |
|       continue;
 | |
|     unsigned ti;
 | |
|     if (MI.isRegTiedToDefOperand(i, &ti)) {
 | |
|       DstReg = MI.getOperand(ti).getReg();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Given a register, if all its uses are in the same basic block, return the
 | |
| /// last use instruction if it's a copy or a two-address use.
 | |
| static MachineInstr *
 | |
| findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB,
 | |
|                        MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
 | |
|                        bool &IsCopy, Register &DstReg, bool &IsDstPhys,
 | |
|                        LiveIntervals *LIS) {
 | |
|   MachineOperand *UseOp = nullptr;
 | |
|   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     if (MI->getParent() != MBB)
 | |
|       return nullptr;
 | |
|     if (isPlainlyKilled(MI, Reg, LIS))
 | |
|       UseOp = &MO;
 | |
|   }
 | |
|   if (!UseOp)
 | |
|     return nullptr;
 | |
|   MachineInstr &UseMI = *UseOp->getParent();
 | |
| 
 | |
|   Register SrcReg;
 | |
|   bool IsSrcPhys;
 | |
|   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
 | |
|     IsCopy = true;
 | |
|     return &UseMI;
 | |
|   }
 | |
|   IsDstPhys = false;
 | |
|   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
 | |
|     IsDstPhys = DstReg.isPhysical();
 | |
|     return &UseMI;
 | |
|   }
 | |
|   if (UseMI.isCommutable()) {
 | |
|     unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex;
 | |
|     unsigned Src2 = UseMI.getOperandNo(UseOp);
 | |
|     if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) {
 | |
|       MachineOperand &MO = UseMI.getOperand(Src1);
 | |
|       if (MO.isReg() && MO.isUse() &&
 | |
|           isTwoAddrUse(UseMI, MO.getReg(), DstReg)) {
 | |
|         IsDstPhys = DstReg.isPhysical();
 | |
|         return &UseMI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return the physical register the specified virtual register might be mapped
 | |
| /// to.
 | |
| static MCRegister getMappedReg(Register Reg,
 | |
|                                DenseMap<Register, Register> &RegMap) {
 | |
|   while (Reg.isVirtual()) {
 | |
|     DenseMap<Register, Register>::iterator SI = RegMap.find(Reg);
 | |
|     if (SI == RegMap.end())
 | |
|       return 0;
 | |
|     Reg = SI->second;
 | |
|   }
 | |
|   if (Reg.isPhysical())
 | |
|     return Reg;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Return true if the two registers are equal or aliased.
 | |
| static bool regsAreCompatible(Register RegA, Register RegB,
 | |
|                               const TargetRegisterInfo *TRI) {
 | |
|   if (RegA == RegB)
 | |
|     return true;
 | |
|   if (!RegA || !RegB)
 | |
|     return false;
 | |
|   return TRI->regsOverlap(RegA, RegB);
 | |
| }
 | |
| 
 | |
| /// From RegMap remove entries mapped to a physical register which overlaps MO.
 | |
| static void removeMapRegEntry(const MachineOperand &MO,
 | |
|                               DenseMap<Register, Register> &RegMap,
 | |
|                               const TargetRegisterInfo *TRI) {
 | |
|   assert(
 | |
|       (MO.isReg() || MO.isRegMask()) &&
 | |
|       "removeMapRegEntry must be called with a register or regmask operand.");
 | |
| 
 | |
|   SmallVector<Register, 2> Srcs;
 | |
|   for (auto SI : RegMap) {
 | |
|     Register ToReg = SI.second;
 | |
|     if (ToReg.isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     if (MO.isReg()) {
 | |
|       Register Reg = MO.getReg();
 | |
|       if (TRI->regsOverlap(ToReg, Reg))
 | |
|         Srcs.push_back(SI.first);
 | |
|     } else if (MO.clobbersPhysReg(ToReg))
 | |
|       Srcs.push_back(SI.first);
 | |
|   }
 | |
| 
 | |
|   for (auto SrcReg : Srcs)
 | |
|     RegMap.erase(SrcReg);
 | |
| }
 | |
| 
 | |
| /// If a physical register is clobbered, old entries mapped to it should be
 | |
| /// deleted. For example
 | |
| ///
 | |
| ///     %2:gr64 = COPY killed $rdx
 | |
| ///     MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx
 | |
| ///
 | |
| /// After the MUL instruction, $rdx contains different value than in the COPY
 | |
| /// instruction. So %2 should not map to $rdx after MUL.
 | |
| void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) {
 | |
|   if (MI->isCopy()) {
 | |
|     // If a virtual register is copied to its mapped physical register, it
 | |
|     // doesn't change the potential coalescing between them, so we don't remove
 | |
|     // entries mapped to the physical register. For example
 | |
|     //
 | |
|     // %100 = COPY $r8
 | |
|     //     ...
 | |
|     // $r8  = COPY %100
 | |
|     //
 | |
|     // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't
 | |
|     // destroy the content of $r8, and should not impact SrcRegMap.
 | |
|     Register Dst = MI->getOperand(0).getReg();
 | |
|     if (!Dst || Dst.isVirtual())
 | |
|       return;
 | |
| 
 | |
|     Register Src = MI->getOperand(1).getReg();
 | |
|     if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI))
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   for (const MachineOperand &MO : MI->operands()) {
 | |
|     if (MO.isRegMask()) {
 | |
|       removeMapRegEntry(MO, SrcRegMap, TRI);
 | |
|       continue;
 | |
|     }
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       continue;
 | |
|     Register Reg = MO.getReg();
 | |
|     if (!Reg || Reg.isVirtual())
 | |
|       continue;
 | |
|     removeMapRegEntry(MO, SrcRegMap, TRI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns true if Reg is equal or aliased to at least one register in Set.
 | |
| static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg,
 | |
|                            const TargetRegisterInfo *TRI) {
 | |
|   for (unsigned R : Set)
 | |
|     if (TRI->regsOverlap(R, Reg))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if it's potentially profitable to commute the two-address
 | |
| /// instruction that's being processed.
 | |
| bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA,
 | |
|                                                       Register RegB,
 | |
|                                                       Register RegC,
 | |
|                                                       MachineInstr *MI,
 | |
|                                                       unsigned Dist) {
 | |
|   if (OptLevel == CodeGenOpt::None)
 | |
|     return false;
 | |
| 
 | |
|   // Determine if it's profitable to commute this two address instruction. In
 | |
|   // general, we want no uses between this instruction and the definition of
 | |
|   // the two-address register.
 | |
|   // e.g.
 | |
|   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
 | |
|   // %reg1029 = COPY %reg1028
 | |
|   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
 | |
|   // insert => %reg1030 = COPY %reg1028
 | |
|   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
 | |
|   // In this case, it might not be possible to coalesce the second COPY
 | |
|   // instruction if the first one is coalesced. So it would be profitable to
 | |
|   // commute it:
 | |
|   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
 | |
|   // %reg1029 = COPY %reg1028
 | |
|   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
 | |
|   // insert => %reg1030 = COPY %reg1029
 | |
|   // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
 | |
| 
 | |
|   if (!isPlainlyKilled(MI, RegC, LIS))
 | |
|     return false;
 | |
| 
 | |
|   // Ok, we have something like:
 | |
|   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
 | |
|   // let's see if it's worth commuting it.
 | |
| 
 | |
|   // Look for situations like this:
 | |
|   // %reg1024 = MOV r1
 | |
|   // %reg1025 = MOV r0
 | |
|   // %reg1026 = ADD %reg1024, %reg1025
 | |
|   // r0            = MOV %reg1026
 | |
|   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
 | |
|   MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
 | |
|   if (ToRegA) {
 | |
|     MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
 | |
|     MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
 | |
|     bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
 | |
|     bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
 | |
| 
 | |
|     // Compute if any of the following are true:
 | |
|     // -RegB is not tied to a register and RegC is compatible with RegA.
 | |
|     // -RegB is tied to the wrong physical register, but RegC is.
 | |
|     // -RegB is tied to the wrong physical register, and RegC isn't tied.
 | |
|     if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
 | |
|       return true;
 | |
|     // Don't compute if any of the following are true:
 | |
|     // -RegC is not tied to a register and RegB is compatible with RegA.
 | |
|     // -RegC is tied to the wrong physical register, but RegB is.
 | |
|     // -RegC is tied to the wrong physical register, and RegB isn't tied.
 | |
|     if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If there is a use of RegC between its last def (could be livein) and this
 | |
|   // instruction, then bail.
 | |
|   unsigned LastDefC = 0;
 | |
|   if (!noUseAfterLastDef(RegC, Dist, LastDefC))
 | |
|     return false;
 | |
| 
 | |
|   // If there is a use of RegB between its last def (could be livein) and this
 | |
|   // instruction, then go ahead and make this transformation.
 | |
|   unsigned LastDefB = 0;
 | |
|   if (!noUseAfterLastDef(RegB, Dist, LastDefB))
 | |
|     return true;
 | |
| 
 | |
|   // Look for situation like this:
 | |
|   // %reg101 = MOV %reg100
 | |
|   // %reg102 = ...
 | |
|   // %reg103 = ADD %reg102, %reg101
 | |
|   // ... = %reg103 ...
 | |
|   // %reg100 = MOV %reg103
 | |
|   // If there is a reversed copy chain from reg101 to reg103, commute the ADD
 | |
|   // to eliminate an otherwise unavoidable copy.
 | |
|   // FIXME:
 | |
|   // We can extend the logic further: If an pair of operands in an insn has
 | |
|   // been merged, the insn could be regarded as a virtual copy, and the virtual
 | |
|   // copy could also be used to construct a copy chain.
 | |
|   // To more generally minimize register copies, ideally the logic of two addr
 | |
|   // instruction pass should be integrated with register allocation pass where
 | |
|   // interference graph is available.
 | |
|   if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge))
 | |
|     return true;
 | |
| 
 | |
|   if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge))
 | |
|     return false;
 | |
| 
 | |
|   // Look for other target specific commute preference.
 | |
|   bool Commute;
 | |
|   if (TII->hasCommutePreference(*MI, Commute))
 | |
|     return Commute;
 | |
| 
 | |
|   // Since there are no intervening uses for both registers, then commute
 | |
|   // if the def of RegC is closer. Its live interval is shorter.
 | |
|   return LastDefB && LastDefC && LastDefC > LastDefB;
 | |
| }
 | |
| 
 | |
| /// Commute a two-address instruction and update the basic block, distance map,
 | |
| /// and live variables if needed. Return true if it is successful.
 | |
| bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
 | |
|                                                    unsigned DstIdx,
 | |
|                                                    unsigned RegBIdx,
 | |
|                                                    unsigned RegCIdx,
 | |
|                                                    unsigned Dist) {
 | |
|   Register RegC = MI->getOperand(RegCIdx).getReg();
 | |
|   LLVM_DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
 | |
|   MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
 | |
| 
 | |
|   if (NewMI == nullptr) {
 | |
|     LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
 | |
|   assert(NewMI == MI &&
 | |
|          "TargetInstrInfo::commuteInstruction() should not return a new "
 | |
|          "instruction unless it was requested.");
 | |
| 
 | |
|   // Update source register map.
 | |
|   MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
 | |
|   if (FromRegC) {
 | |
|     Register RegA = MI->getOperand(DstIdx).getReg();
 | |
|     SrcRegMap[RegA] = FromRegC;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if it is profitable to convert the given 2-address instruction
 | |
| /// to a 3-address one.
 | |
| bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA,
 | |
|                                                         Register RegB) {
 | |
|   // Look for situations like this:
 | |
|   // %reg1024 = MOV r1
 | |
|   // %reg1025 = MOV r0
 | |
|   // %reg1026 = ADD %reg1024, %reg1025
 | |
|   // r2            = MOV %reg1026
 | |
|   // Turn ADD into a 3-address instruction to avoid a copy.
 | |
|   MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
 | |
|   if (!FromRegB)
 | |
|     return false;
 | |
|   MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
 | |
|   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
 | |
| }
 | |
| 
 | |
| /// Convert the specified two-address instruction into a three address one.
 | |
| /// Return true if this transformation was successful.
 | |
| bool TwoAddressInstructionPass::convertInstTo3Addr(
 | |
|     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
 | |
|     Register RegA, Register RegB, unsigned &Dist) {
 | |
|   MachineInstrSpan MIS(mi, MBB);
 | |
|   MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS);
 | |
|   if (!NewMI)
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
 | |
|   LLVM_DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
 | |
| 
 | |
|   // If the old instruction is debug value tracked, an update is required.
 | |
|   if (auto OldInstrNum = mi->peekDebugInstrNum()) {
 | |
|     assert(mi->getNumExplicitDefs() == 1);
 | |
|     assert(NewMI->getNumExplicitDefs() == 1);
 | |
| 
 | |
|     // Find the old and new def location.
 | |
|     auto OldIt = mi->defs().begin();
 | |
|     auto NewIt = NewMI->defs().begin();
 | |
|     unsigned OldIdx = mi->getOperandNo(OldIt);
 | |
|     unsigned NewIdx = NewMI->getOperandNo(NewIt);
 | |
| 
 | |
|     // Record that one def has been replaced by the other.
 | |
|     unsigned NewInstrNum = NewMI->getDebugInstrNum();
 | |
|     MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx),
 | |
|                                    std::make_pair(NewInstrNum, NewIdx));
 | |
|   }
 | |
| 
 | |
|   MBB->erase(mi); // Nuke the old inst.
 | |
| 
 | |
|   for (MachineInstr &MI : MIS)
 | |
|     DistanceMap.insert(std::make_pair(&MI, Dist++));
 | |
|   Dist--;
 | |
|   mi = NewMI;
 | |
|   nmi = std::next(mi);
 | |
| 
 | |
|   // Update source and destination register maps.
 | |
|   SrcRegMap.erase(RegA);
 | |
|   DstRegMap.erase(RegB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Scan forward recursively for only uses, update maps if the use is a copy or
 | |
| /// a two-address instruction.
 | |
| void TwoAddressInstructionPass::scanUses(Register DstReg) {
 | |
|   SmallVector<Register, 4> VirtRegPairs;
 | |
|   bool IsDstPhys;
 | |
|   bool IsCopy = false;
 | |
|   Register NewReg;
 | |
|   Register Reg = DstReg;
 | |
|   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
 | |
|                                                       NewReg, IsDstPhys, LIS)) {
 | |
|     if (IsCopy && !Processed.insert(UseMI).second)
 | |
|       break;
 | |
| 
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
 | |
|     if (DI != DistanceMap.end())
 | |
|       // Earlier in the same MBB.Reached via a back edge.
 | |
|       break;
 | |
| 
 | |
|     if (IsDstPhys) {
 | |
|       VirtRegPairs.push_back(NewReg);
 | |
|       break;
 | |
|     }
 | |
|     SrcRegMap[NewReg] = Reg;
 | |
|     VirtRegPairs.push_back(NewReg);
 | |
|     Reg = NewReg;
 | |
|   }
 | |
| 
 | |
|   if (!VirtRegPairs.empty()) {
 | |
|     unsigned ToReg = VirtRegPairs.back();
 | |
|     VirtRegPairs.pop_back();
 | |
|     while (!VirtRegPairs.empty()) {
 | |
|       unsigned FromReg = VirtRegPairs.pop_back_val();
 | |
|       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
 | |
|       if (!isNew)
 | |
|         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
 | |
|       ToReg = FromReg;
 | |
|     }
 | |
|     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
 | |
|     if (!isNew)
 | |
|       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If the specified instruction is not yet processed, process it if it's a
 | |
| /// copy. For a copy instruction, we find the physical registers the
 | |
| /// source and destination registers might be mapped to. These are kept in
 | |
| /// point-to maps used to determine future optimizations. e.g.
 | |
| /// v1024 = mov r0
 | |
| /// v1025 = mov r1
 | |
| /// v1026 = add v1024, v1025
 | |
| /// r1    = mov r1026
 | |
| /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
 | |
| /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
 | |
| /// potentially joined with r1 on the output side. It's worthwhile to commute
 | |
| /// 'add' to eliminate a copy.
 | |
| void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
 | |
|   if (Processed.count(MI))
 | |
|     return;
 | |
| 
 | |
|   bool IsSrcPhys, IsDstPhys;
 | |
|   Register SrcReg, DstReg;
 | |
|   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
 | |
|     return;
 | |
| 
 | |
|   if (IsDstPhys && !IsSrcPhys) {
 | |
|     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
 | |
|   } else if (!IsDstPhys && IsSrcPhys) {
 | |
|     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
 | |
|     if (!isNew)
 | |
|       assert(SrcRegMap[DstReg] == SrcReg &&
 | |
|              "Can't map to two src physical registers!");
 | |
| 
 | |
|     scanUses(DstReg);
 | |
|   }
 | |
| 
 | |
|   Processed.insert(MI);
 | |
| }
 | |
| 
 | |
| /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
 | |
| /// consider moving the instruction below the kill instruction in order to
 | |
| /// eliminate the need for the copy.
 | |
| bool TwoAddressInstructionPass::rescheduleMIBelowKill(
 | |
|     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
 | |
|     Register Reg) {
 | |
|   // Bail immediately if we don't have LV or LIS available. We use them to find
 | |
|   // kills efficiently.
 | |
|   if (!LV && !LIS)
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *MI = &*mi;
 | |
|   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
 | |
|   if (DI == DistanceMap.end())
 | |
|     // Must be created from unfolded load. Don't waste time trying this.
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *KillMI = nullptr;
 | |
|   if (LIS) {
 | |
|     LiveInterval &LI = LIS->getInterval(Reg);
 | |
|     assert(LI.end() != LI.begin() &&
 | |
|            "Reg should not have empty live interval.");
 | |
| 
 | |
|     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
 | |
|     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
 | |
|     if (I != LI.end() && I->start < MBBEndIdx)
 | |
|       return false;
 | |
| 
 | |
|     --I;
 | |
|     KillMI = LIS->getInstructionFromIndex(I->end);
 | |
|   } else {
 | |
|     KillMI = LV->getVarInfo(Reg).findKill(MBB);
 | |
|   }
 | |
|   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
 | |
|     // Don't mess with copies, they may be coalesced later.
 | |
|     return false;
 | |
| 
 | |
|   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
 | |
|       KillMI->isBranch() || KillMI->isTerminator())
 | |
|     // Don't move pass calls, etc.
 | |
|     return false;
 | |
| 
 | |
|   Register DstReg;
 | |
|   if (isTwoAddrUse(*KillMI, Reg, DstReg))
 | |
|     return false;
 | |
| 
 | |
|   bool SeenStore = true;
 | |
|   if (!MI->isSafeToMove(AA, SeenStore))
 | |
|     return false;
 | |
| 
 | |
|   if (TII->getInstrLatency(InstrItins, *MI) > 1)
 | |
|     // FIXME: Needs more sophisticated heuristics.
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<Register, 2> Uses;
 | |
|   SmallVector<Register, 2> Kills;
 | |
|   SmallVector<Register, 2> Defs;
 | |
|   for (const MachineOperand &MO : MI->operands()) {
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     Register MOReg = MO.getReg();
 | |
|     if (!MOReg)
 | |
|       continue;
 | |
|     if (MO.isDef())
 | |
|       Defs.push_back(MOReg);
 | |
|     else {
 | |
|       Uses.push_back(MOReg);
 | |
|       if (MOReg != Reg && (MO.isKill() ||
 | |
|                            (LIS && isPlainlyKilled(MI, MOReg, LIS))))
 | |
|         Kills.push_back(MOReg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Move the copies connected to MI down as well.
 | |
|   MachineBasicBlock::iterator Begin = MI;
 | |
|   MachineBasicBlock::iterator AfterMI = std::next(Begin);
 | |
|   MachineBasicBlock::iterator End = AfterMI;
 | |
|   while (End != MBB->end()) {
 | |
|     End = skipDebugInstructionsForward(End, MBB->end());
 | |
|     if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
 | |
|       Defs.push_back(End->getOperand(0).getReg());
 | |
|     else
 | |
|       break;
 | |
|     ++End;
 | |
|   }
 | |
| 
 | |
|   // Check if the reschedule will not break dependencies.
 | |
|   unsigned NumVisited = 0;
 | |
|   MachineBasicBlock::iterator KillPos = KillMI;
 | |
|   ++KillPos;
 | |
|   for (MachineInstr &OtherMI : make_range(End, KillPos)) {
 | |
|     // Debug or pseudo instructions cannot be counted against the limit.
 | |
|     if (OtherMI.isDebugOrPseudoInstr())
 | |
|       continue;
 | |
|     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
 | |
|       return false;
 | |
|     ++NumVisited;
 | |
|     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
 | |
|         OtherMI.isBranch() || OtherMI.isTerminator())
 | |
|       // Don't move pass calls, etc.
 | |
|       return false;
 | |
|     for (const MachineOperand &MO : OtherMI.operands()) {
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       Register MOReg = MO.getReg();
 | |
|       if (!MOReg)
 | |
|         continue;
 | |
|       if (MO.isDef()) {
 | |
|         if (regOverlapsSet(Uses, MOReg, TRI))
 | |
|           // Physical register use would be clobbered.
 | |
|           return false;
 | |
|         if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
 | |
|           // May clobber a physical register def.
 | |
|           // FIXME: This may be too conservative. It's ok if the instruction
 | |
|           // is sunken completely below the use.
 | |
|           return false;
 | |
|       } else {
 | |
|         if (regOverlapsSet(Defs, MOReg, TRI))
 | |
|           return false;
 | |
|         bool isKill =
 | |
|             MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
 | |
|         if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
 | |
|                              regOverlapsSet(Kills, MOReg, TRI)))
 | |
|           // Don't want to extend other live ranges and update kills.
 | |
|           return false;
 | |
|         if (MOReg == Reg && !isKill)
 | |
|           // We can't schedule across a use of the register in question.
 | |
|           return false;
 | |
|         // Ensure that if this is register in question, its the kill we expect.
 | |
|         assert((MOReg != Reg || &OtherMI == KillMI) &&
 | |
|                "Found multiple kills of a register in a basic block");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Move debug info as well.
 | |
|   while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
 | |
|     --Begin;
 | |
| 
 | |
|   nmi = End;
 | |
|   MachineBasicBlock::iterator InsertPos = KillPos;
 | |
|   if (LIS) {
 | |
|     // We have to move the copies (and any interleaved debug instructions)
 | |
|     // first so that the MBB is still well-formed when calling handleMove().
 | |
|     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
 | |
|       auto CopyMI = MBBI++;
 | |
|       MBB->splice(InsertPos, MBB, CopyMI);
 | |
|       if (!CopyMI->isDebugOrPseudoInstr())
 | |
|         LIS->handleMove(*CopyMI);
 | |
|       InsertPos = CopyMI;
 | |
|     }
 | |
|     End = std::next(MachineBasicBlock::iterator(MI));
 | |
|   }
 | |
| 
 | |
|   // Copies following MI may have been moved as well.
 | |
|   MBB->splice(InsertPos, MBB, Begin, End);
 | |
|   DistanceMap.erase(DI);
 | |
| 
 | |
|   // Update live variables
 | |
|   if (LIS) {
 | |
|     LIS->handleMove(*MI);
 | |
|   } else {
 | |
|     LV->removeVirtualRegisterKilled(Reg, *KillMI);
 | |
|     LV->addVirtualRegisterKilled(Reg, *MI);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if the re-scheduling will put the given instruction too close
 | |
| /// to the defs of its register dependencies.
 | |
| bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist,
 | |
|                                               MachineInstr *MI) {
 | |
|   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
 | |
|     if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
 | |
|       continue;
 | |
|     if (&DefMI == MI)
 | |
|       return true; // MI is defining something KillMI uses
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
 | |
|     if (DDI == DistanceMap.end())
 | |
|       return true;  // Below MI
 | |
|     unsigned DefDist = DDI->second;
 | |
|     assert(Dist > DefDist && "Visited def already?");
 | |
|     if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
 | |
| /// consider moving the kill instruction above the current two-address
 | |
| /// instruction in order to eliminate the need for the copy.
 | |
| bool TwoAddressInstructionPass::rescheduleKillAboveMI(
 | |
|     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
 | |
|     Register Reg) {
 | |
|   // Bail immediately if we don't have LV or LIS available. We use them to find
 | |
|   // kills efficiently.
 | |
|   if (!LV && !LIS)
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *MI = &*mi;
 | |
|   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
 | |
|   if (DI == DistanceMap.end())
 | |
|     // Must be created from unfolded load. Don't waste time trying this.
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *KillMI = nullptr;
 | |
|   if (LIS) {
 | |
|     LiveInterval &LI = LIS->getInterval(Reg);
 | |
|     assert(LI.end() != LI.begin() &&
 | |
|            "Reg should not have empty live interval.");
 | |
| 
 | |
|     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
 | |
|     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
 | |
|     if (I != LI.end() && I->start < MBBEndIdx)
 | |
|       return false;
 | |
| 
 | |
|     --I;
 | |
|     KillMI = LIS->getInstructionFromIndex(I->end);
 | |
|   } else {
 | |
|     KillMI = LV->getVarInfo(Reg).findKill(MBB);
 | |
|   }
 | |
|   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
 | |
|     // Don't mess with copies, they may be coalesced later.
 | |
|     return false;
 | |
| 
 | |
|   Register DstReg;
 | |
|   if (isTwoAddrUse(*KillMI, Reg, DstReg))
 | |
|     return false;
 | |
| 
 | |
|   bool SeenStore = true;
 | |
|   if (!KillMI->isSafeToMove(AA, SeenStore))
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<Register, 2> Uses;
 | |
|   SmallVector<Register, 2> Kills;
 | |
|   SmallVector<Register, 2> Defs;
 | |
|   SmallVector<Register, 2> LiveDefs;
 | |
|   for (const MachineOperand &MO : KillMI->operands()) {
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     Register MOReg = MO.getReg();
 | |
|     if (MO.isUse()) {
 | |
|       if (!MOReg)
 | |
|         continue;
 | |
|       if (isDefTooClose(MOReg, DI->second, MI))
 | |
|         return false;
 | |
|       bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
 | |
|       if (MOReg == Reg && !isKill)
 | |
|         return false;
 | |
|       Uses.push_back(MOReg);
 | |
|       if (isKill && MOReg != Reg)
 | |
|         Kills.push_back(MOReg);
 | |
|     } else if (MOReg.isPhysical()) {
 | |
|       Defs.push_back(MOReg);
 | |
|       if (!MO.isDead())
 | |
|         LiveDefs.push_back(MOReg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check if the reschedule will not break depedencies.
 | |
|   unsigned NumVisited = 0;
 | |
|   for (MachineInstr &OtherMI :
 | |
|        make_range(mi, MachineBasicBlock::iterator(KillMI))) {
 | |
|     // Debug or pseudo instructions cannot be counted against the limit.
 | |
|     if (OtherMI.isDebugOrPseudoInstr())
 | |
|       continue;
 | |
|     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
 | |
|       return false;
 | |
|     ++NumVisited;
 | |
|     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
 | |
|         OtherMI.isBranch() || OtherMI.isTerminator())
 | |
|       // Don't move pass calls, etc.
 | |
|       return false;
 | |
|     SmallVector<Register, 2> OtherDefs;
 | |
|     for (const MachineOperand &MO : OtherMI.operands()) {
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       Register MOReg = MO.getReg();
 | |
|       if (!MOReg)
 | |
|         continue;
 | |
|       if (MO.isUse()) {
 | |
|         if (regOverlapsSet(Defs, MOReg, TRI))
 | |
|           // Moving KillMI can clobber the physical register if the def has
 | |
|           // not been seen.
 | |
|           return false;
 | |
|         if (regOverlapsSet(Kills, MOReg, TRI))
 | |
|           // Don't want to extend other live ranges and update kills.
 | |
|           return false;
 | |
|         if (&OtherMI != MI && MOReg == Reg &&
 | |
|             !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
 | |
|           // We can't schedule across a use of the register in question.
 | |
|           return false;
 | |
|       } else {
 | |
|         OtherDefs.push_back(MOReg);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
 | |
|       Register MOReg = OtherDefs[i];
 | |
|       if (regOverlapsSet(Uses, MOReg, TRI))
 | |
|         return false;
 | |
|       if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI))
 | |
|         return false;
 | |
|       // Physical register def is seen.
 | |
|       llvm::erase_value(Defs, MOReg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Move the old kill above MI, don't forget to move debug info as well.
 | |
|   MachineBasicBlock::iterator InsertPos = mi;
 | |
|   while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
 | |
|     --InsertPos;
 | |
|   MachineBasicBlock::iterator From = KillMI;
 | |
|   MachineBasicBlock::iterator To = std::next(From);
 | |
|   while (std::prev(From)->isDebugInstr())
 | |
|     --From;
 | |
|   MBB->splice(InsertPos, MBB, From, To);
 | |
| 
 | |
|   nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
 | |
|   DistanceMap.erase(DI);
 | |
| 
 | |
|   // Update live variables
 | |
|   if (LIS) {
 | |
|     LIS->handleMove(*KillMI);
 | |
|   } else {
 | |
|     LV->removeVirtualRegisterKilled(Reg, *KillMI);
 | |
|     LV->addVirtualRegisterKilled(Reg, *MI);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
 | |
| /// given machine instruction to improve opportunities for coalescing and
 | |
| /// elimination of a register to register copy.
 | |
| ///
 | |
| /// 'DstOpIdx' specifies the index of MI def operand.
 | |
| /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
 | |
| /// operand is killed by the given instruction.
 | |
| /// The 'Dist' arguments provides the distance of MI from the start of the
 | |
| /// current basic block and it is used to determine if it is profitable
 | |
| /// to commute operands in the instruction.
 | |
| ///
 | |
| /// Returns true if the transformation happened. Otherwise, returns false.
 | |
| bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
 | |
|                                                       unsigned DstOpIdx,
 | |
|                                                       unsigned BaseOpIdx,
 | |
|                                                       bool BaseOpKilled,
 | |
|                                                       unsigned Dist) {
 | |
|   if (!MI->isCommutable())
 | |
|     return false;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
 | |
|   Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
 | |
|   unsigned OpsNum = MI->getDesc().getNumOperands();
 | |
|   unsigned OtherOpIdx = MI->getDesc().getNumDefs();
 | |
|   for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
 | |
|     // The call of findCommutedOpIndices below only checks if BaseOpIdx
 | |
|     // and OtherOpIdx are commutable, it does not really search for
 | |
|     // other commutable operands and does not change the values of passed
 | |
|     // variables.
 | |
|     if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
 | |
|         !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
 | |
|       continue;
 | |
| 
 | |
|     Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
 | |
|     bool AggressiveCommute = false;
 | |
| 
 | |
|     // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
 | |
|     // operands. This makes the live ranges of DstOp and OtherOp joinable.
 | |
|     bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
 | |
|     bool DoCommute = !BaseOpKilled && OtherOpKilled;
 | |
| 
 | |
|     if (!DoCommute &&
 | |
|         isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
 | |
|       DoCommute = true;
 | |
|       AggressiveCommute = true;
 | |
|     }
 | |
| 
 | |
|     // If it's profitable to commute, try to do so.
 | |
|     if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
 | |
|                                         Dist)) {
 | |
|       MadeChange = true;
 | |
|       ++NumCommuted;
 | |
|       if (AggressiveCommute)
 | |
|         ++NumAggrCommuted;
 | |
| 
 | |
|       // There might be more than two commutable operands, update BaseOp and
 | |
|       // continue scanning.
 | |
|       // FIXME: This assumes that the new instruction's operands are in the
 | |
|       // same positions and were simply swapped.
 | |
|       BaseOpReg = OtherOpReg;
 | |
|       BaseOpKilled = OtherOpKilled;
 | |
|       // Resamples OpsNum in case the number of operands was reduced. This
 | |
|       // happens with X86.
 | |
|       OpsNum = MI->getDesc().getNumOperands();
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// For the case where an instruction has a single pair of tied register
 | |
| /// operands, attempt some transformations that may either eliminate the tied
 | |
| /// operands or improve the opportunities for coalescing away the register copy.
 | |
| /// Returns true if no copy needs to be inserted to untie mi's operands
 | |
| /// (either because they were untied, or because mi was rescheduled, and will
 | |
| /// be visited again later). If the shouldOnlyCommute flag is true, only
 | |
| /// instruction commutation is attempted.
 | |
| bool TwoAddressInstructionPass::
 | |
| tryInstructionTransform(MachineBasicBlock::iterator &mi,
 | |
|                         MachineBasicBlock::iterator &nmi,
 | |
|                         unsigned SrcIdx, unsigned DstIdx,
 | |
|                         unsigned &Dist, bool shouldOnlyCommute) {
 | |
|   if (OptLevel == CodeGenOpt::None)
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr &MI = *mi;
 | |
|   Register regA = MI.getOperand(DstIdx).getReg();
 | |
|   Register regB = MI.getOperand(SrcIdx).getReg();
 | |
| 
 | |
|   assert(regB.isVirtual() && "cannot make instruction into two-address form");
 | |
|   bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
 | |
| 
 | |
|   if (regA.isVirtual())
 | |
|     scanUses(regA);
 | |
| 
 | |
|   bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
 | |
| 
 | |
|   // If the instruction is convertible to 3 Addr, instead
 | |
|   // of returning try 3 Addr transformation aggressively and
 | |
|   // use this variable to check later. Because it might be better.
 | |
|   // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
 | |
|   // instead of the following code.
 | |
|   //   addl     %esi, %edi
 | |
|   //   movl     %edi, %eax
 | |
|   //   ret
 | |
|   if (Commuted && !MI.isConvertibleTo3Addr())
 | |
|     return false;
 | |
| 
 | |
|   if (shouldOnlyCommute)
 | |
|     return false;
 | |
| 
 | |
|   // If there is one more use of regB later in the same MBB, consider
 | |
|   // re-schedule this MI below it.
 | |
|   if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
 | |
|     ++NumReSchedDowns;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If we commuted, regB may have changed so we should re-sample it to avoid
 | |
|   // confusing the three address conversion below.
 | |
|   if (Commuted) {
 | |
|     regB = MI.getOperand(SrcIdx).getReg();
 | |
|     regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
 | |
|   }
 | |
| 
 | |
|   if (MI.isConvertibleTo3Addr()) {
 | |
|     // This instruction is potentially convertible to a true
 | |
|     // three-address instruction.  Check if it is profitable.
 | |
|     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
 | |
|       // Try to convert it.
 | |
|       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
 | |
|         ++NumConvertedTo3Addr;
 | |
|         return true; // Done with this instruction.
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Return if it is commuted but 3 addr conversion is failed.
 | |
|   if (Commuted)
 | |
|     return false;
 | |
| 
 | |
|   // If there is one more use of regB later in the same MBB, consider
 | |
|   // re-schedule it before this MI if it's legal.
 | |
|   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
 | |
|     ++NumReSchedUps;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If this is an instruction with a load folded into it, try unfolding
 | |
|   // the load, e.g. avoid this:
 | |
|   //   movq %rdx, %rcx
 | |
|   //   addq (%rax), %rcx
 | |
|   // in favor of this:
 | |
|   //   movq (%rax), %rcx
 | |
|   //   addq %rdx, %rcx
 | |
|   // because it's preferable to schedule a load than a register copy.
 | |
|   if (MI.mayLoad() && !regBKilled) {
 | |
|     // Determine if a load can be unfolded.
 | |
|     unsigned LoadRegIndex;
 | |
|     unsigned NewOpc =
 | |
|       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
 | |
|                                       /*UnfoldLoad=*/true,
 | |
|                                       /*UnfoldStore=*/false,
 | |
|                                       &LoadRegIndex);
 | |
|     if (NewOpc != 0) {
 | |
|       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
 | |
|       if (UnfoldMCID.getNumDefs() == 1) {
 | |
|         // Unfold the load.
 | |
|         LLVM_DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
 | |
|         const TargetRegisterClass *RC =
 | |
|           TRI->getAllocatableClass(
 | |
|             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
 | |
|         Register Reg = MRI->createVirtualRegister(RC);
 | |
|         SmallVector<MachineInstr *, 2> NewMIs;
 | |
|         if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
 | |
|                                       /*UnfoldLoad=*/true,
 | |
|                                       /*UnfoldStore=*/false, NewMIs)) {
 | |
|           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
 | |
|           return false;
 | |
|         }
 | |
|         assert(NewMIs.size() == 2 &&
 | |
|                "Unfolded a load into multiple instructions!");
 | |
|         // The load was previously folded, so this is the only use.
 | |
|         NewMIs[1]->addRegisterKilled(Reg, TRI);
 | |
| 
 | |
|         // Tentatively insert the instructions into the block so that they
 | |
|         // look "normal" to the transformation logic.
 | |
|         MBB->insert(mi, NewMIs[0]);
 | |
|         MBB->insert(mi, NewMIs[1]);
 | |
|         DistanceMap.insert(std::make_pair(NewMIs[0], Dist++));
 | |
|         DistanceMap.insert(std::make_pair(NewMIs[1], Dist));
 | |
| 
 | |
|         LLVM_DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
 | |
|                           << "2addr:    NEW INST: " << *NewMIs[1]);
 | |
| 
 | |
|         // Transform the instruction, now that it no longer has a load.
 | |
|         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
 | |
|         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
 | |
|         MachineBasicBlock::iterator NewMI = NewMIs[1];
 | |
|         bool TransformResult =
 | |
|           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
 | |
|         (void)TransformResult;
 | |
|         assert(!TransformResult &&
 | |
|                "tryInstructionTransform() should return false.");
 | |
|         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
 | |
|           // Success, or at least we made an improvement. Keep the unfolded
 | |
|           // instructions and discard the original.
 | |
|           if (LV) {
 | |
|             for (const MachineOperand &MO : MI.operands()) {
 | |
|               if (MO.isReg() && MO.getReg().isVirtual()) {
 | |
|                 if (MO.isUse()) {
 | |
|                   if (MO.isKill()) {
 | |
|                     if (NewMIs[0]->killsRegister(MO.getReg()))
 | |
|                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
 | |
|                     else {
 | |
|                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
 | |
|                              "Kill missing after load unfold!");
 | |
|                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
 | |
|                     }
 | |
|                   }
 | |
|                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
 | |
|                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
 | |
|                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
 | |
|                   else {
 | |
|                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
 | |
|                            "Dead flag missing after load unfold!");
 | |
|                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|             LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
 | |
|           }
 | |
| 
 | |
|           SmallVector<Register, 4> OrigRegs;
 | |
|           if (LIS) {
 | |
|             for (const MachineOperand &MO : MI.operands()) {
 | |
|               if (MO.isReg())
 | |
|                 OrigRegs.push_back(MO.getReg());
 | |
|             }
 | |
| 
 | |
|             LIS->RemoveMachineInstrFromMaps(MI);
 | |
|           }
 | |
| 
 | |
|           MI.eraseFromParent();
 | |
|           DistanceMap.erase(&MI);
 | |
| 
 | |
|           // Update LiveIntervals.
 | |
|           if (LIS) {
 | |
|             MachineBasicBlock::iterator Begin(NewMIs[0]);
 | |
|             MachineBasicBlock::iterator End(NewMIs[1]);
 | |
|             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
 | |
|           }
 | |
| 
 | |
|           mi = NewMIs[1];
 | |
|         } else {
 | |
|           // Transforming didn't eliminate the tie and didn't lead to an
 | |
|           // improvement. Clean up the unfolded instructions and keep the
 | |
|           // original.
 | |
|           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
 | |
|           NewMIs[0]->eraseFromParent();
 | |
|           NewMIs[1]->eraseFromParent();
 | |
|           DistanceMap.erase(NewMIs[0]);
 | |
|           DistanceMap.erase(NewMIs[1]);
 | |
|           Dist--;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Collect tied operands of MI that need to be handled.
 | |
| // Rewrite trivial cases immediately.
 | |
| // Return true if any tied operands where found, including the trivial ones.
 | |
| bool TwoAddressInstructionPass::
 | |
| collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
 | |
|   bool AnyOps = false;
 | |
|   unsigned NumOps = MI->getNumOperands();
 | |
| 
 | |
|   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
 | |
|     unsigned DstIdx = 0;
 | |
|     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
 | |
|       continue;
 | |
|     AnyOps = true;
 | |
|     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
 | |
|     MachineOperand &DstMO = MI->getOperand(DstIdx);
 | |
|     Register SrcReg = SrcMO.getReg();
 | |
|     Register DstReg = DstMO.getReg();
 | |
|     // Tied constraint already satisfied?
 | |
|     if (SrcReg == DstReg)
 | |
|       continue;
 | |
| 
 | |
|     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
 | |
| 
 | |
|     // Deal with undef uses immediately - simply rewrite the src operand.
 | |
|     if (SrcMO.isUndef() && !DstMO.getSubReg()) {
 | |
|       // Constrain the DstReg register class if required.
 | |
|       if (DstReg.isVirtual()) {
 | |
|         const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
 | |
|         MRI->constrainRegClass(DstReg, RC);
 | |
|       }
 | |
|       SrcMO.setReg(DstReg);
 | |
|       SrcMO.setSubReg(0);
 | |
|       LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
 | |
|       continue;
 | |
|     }
 | |
|     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
 | |
|   }
 | |
|   return AnyOps;
 | |
| }
 | |
| 
 | |
| // Process a list of tied MI operands that all use the same source register.
 | |
| // The tied pairs are of the form (SrcIdx, DstIdx).
 | |
| void
 | |
| TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
 | |
|                                             TiedPairList &TiedPairs,
 | |
|                                             unsigned &Dist) {
 | |
|   bool IsEarlyClobber = llvm::any_of(TiedPairs, [MI](auto const &TP) {
 | |
|     return MI->getOperand(TP.second).isEarlyClobber();
 | |
|   });
 | |
| 
 | |
|   bool RemovedKillFlag = false;
 | |
|   bool AllUsesCopied = true;
 | |
|   unsigned LastCopiedReg = 0;
 | |
|   SlotIndex LastCopyIdx;
 | |
|   Register RegB = 0;
 | |
|   unsigned SubRegB = 0;
 | |
|   for (auto &TP : TiedPairs) {
 | |
|     unsigned SrcIdx = TP.first;
 | |
|     unsigned DstIdx = TP.second;
 | |
| 
 | |
|     const MachineOperand &DstMO = MI->getOperand(DstIdx);
 | |
|     Register RegA = DstMO.getReg();
 | |
| 
 | |
|     // Grab RegB from the instruction because it may have changed if the
 | |
|     // instruction was commuted.
 | |
|     RegB = MI->getOperand(SrcIdx).getReg();
 | |
|     SubRegB = MI->getOperand(SrcIdx).getSubReg();
 | |
| 
 | |
|     if (RegA == RegB) {
 | |
|       // The register is tied to multiple destinations (or else we would
 | |
|       // not have continued this far), but this use of the register
 | |
|       // already matches the tied destination.  Leave it.
 | |
|       AllUsesCopied = false;
 | |
|       continue;
 | |
|     }
 | |
|     LastCopiedReg = RegA;
 | |
| 
 | |
|     assert(RegB.isVirtual() && "cannot make instruction into two-address form");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     // First, verify that we don't have a use of "a" in the instruction
 | |
|     // (a = b + a for example) because our transformation will not
 | |
|     // work. This should never occur because we are in SSA form.
 | |
|     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
 | |
|       assert(i == DstIdx ||
 | |
|              !MI->getOperand(i).isReg() ||
 | |
|              MI->getOperand(i).getReg() != RegA);
 | |
| #endif
 | |
| 
 | |
|     // Emit a copy.
 | |
|     MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
 | |
|                                       TII->get(TargetOpcode::COPY), RegA);
 | |
|     // If this operand is folding a truncation, the truncation now moves to the
 | |
|     // copy so that the register classes remain valid for the operands.
 | |
|     MIB.addReg(RegB, 0, SubRegB);
 | |
|     const TargetRegisterClass *RC = MRI->getRegClass(RegB);
 | |
|     if (SubRegB) {
 | |
|       if (RegA.isVirtual()) {
 | |
|         assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
 | |
|                                              SubRegB) &&
 | |
|                "tied subregister must be a truncation");
 | |
|         // The superreg class will not be used to constrain the subreg class.
 | |
|         RC = nullptr;
 | |
|       } else {
 | |
|         assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
 | |
|                && "tied subregister must be a truncation");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Update DistanceMap.
 | |
|     MachineBasicBlock::iterator PrevMI = MI;
 | |
|     --PrevMI;
 | |
|     DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
 | |
|     DistanceMap[MI] = ++Dist;
 | |
| 
 | |
|     if (LIS) {
 | |
|       LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
 | |
| 
 | |
|       SlotIndex endIdx =
 | |
|           LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
 | |
|       if (RegA.isVirtual()) {
 | |
|         LiveInterval &LI = LIS->getInterval(RegA);
 | |
|         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
 | |
|         LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
 | |
|         for (auto &S : LI.subranges()) {
 | |
|           VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
 | |
|           S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
 | |
|         }
 | |
|       } else {
 | |
|         for (MCRegUnitIterator Unit(RegA, TRI); Unit.isValid(); ++Unit) {
 | |
|           if (LiveRange *LR = LIS->getCachedRegUnit(*Unit)) {
 | |
|             VNInfo *VNI =
 | |
|                 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
 | |
|             LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
 | |
| 
 | |
|     MachineOperand &MO = MI->getOperand(SrcIdx);
 | |
|     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
 | |
|            "inconsistent operand info for 2-reg pass");
 | |
|     if (MO.isKill()) {
 | |
|       MO.setIsKill(false);
 | |
|       RemovedKillFlag = true;
 | |
|     }
 | |
| 
 | |
|     // Make sure regA is a legal regclass for the SrcIdx operand.
 | |
|     if (RegA.isVirtual() && RegB.isVirtual())
 | |
|       MRI->constrainRegClass(RegA, RC);
 | |
|     MO.setReg(RegA);
 | |
|     // The getMatchingSuper asserts guarantee that the register class projected
 | |
|     // by SubRegB is compatible with RegA with no subregister. So regardless of
 | |
|     // whether the dest oper writes a subreg, the source oper should not.
 | |
|     MO.setSubReg(0);
 | |
|   }
 | |
| 
 | |
|   if (AllUsesCopied) {
 | |
|     LaneBitmask RemainingUses = LaneBitmask::getNone();
 | |
|     // Replace other (un-tied) uses of regB with LastCopiedReg.
 | |
|     for (MachineOperand &MO : MI->operands()) {
 | |
|       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
 | |
|         if (MO.getSubReg() == SubRegB && !IsEarlyClobber) {
 | |
|           if (MO.isKill()) {
 | |
|             MO.setIsKill(false);
 | |
|             RemovedKillFlag = true;
 | |
|           }
 | |
|           MO.setReg(LastCopiedReg);
 | |
|           MO.setSubReg(0);
 | |
|         } else {
 | |
|           RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Update live variables for regB.
 | |
|     if (RemovedKillFlag && RemainingUses.none() && LV &&
 | |
|         LV->getVarInfo(RegB).removeKill(*MI)) {
 | |
|       MachineBasicBlock::iterator PrevMI = MI;
 | |
|       --PrevMI;
 | |
|       LV->addVirtualRegisterKilled(RegB, *PrevMI);
 | |
|     }
 | |
| 
 | |
|     if (RemovedKillFlag && RemainingUses.none())
 | |
|       SrcRegMap[LastCopiedReg] = RegB;
 | |
| 
 | |
|     // Update LiveIntervals.
 | |
|     if (LIS) {
 | |
|       SlotIndex UseIdx = LIS->getInstructionIndex(*MI);
 | |
|       auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) {
 | |
|         LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx);
 | |
|         if (!S)
 | |
|           return true;
 | |
|         if ((LaneMask & RemainingUses).any())
 | |
|           return false;
 | |
|         if (S->end.getBaseIndex() != UseIdx)
 | |
|           return false;
 | |
|         S->end = LastCopyIdx;
 | |
|         return true;
 | |
|       };
 | |
| 
 | |
|       LiveInterval &LI = LIS->getInterval(RegB);
 | |
|       bool ShrinkLI = true;
 | |
|       for (auto &S : LI.subranges())
 | |
|         ShrinkLI &= Shrink(S, S.LaneMask);
 | |
|       if (ShrinkLI)
 | |
|         Shrink(LI, LaneBitmask::getAll());
 | |
|     }
 | |
|   } else if (RemovedKillFlag) {
 | |
|     // Some tied uses of regB matched their destination registers, so
 | |
|     // regB is still used in this instruction, but a kill flag was
 | |
|     // removed from a different tied use of regB, so now we need to add
 | |
|     // a kill flag to one of the remaining uses of regB.
 | |
|     for (MachineOperand &MO : MI->operands()) {
 | |
|       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
 | |
|         MO.setIsKill(true);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // For every tied operand pair this function transforms statepoint from
 | |
| //    RegA = STATEPOINT ... RegB(tied-def N)
 | |
| // to
 | |
| //    RegB = STATEPOINT ... RegB(tied-def N)
 | |
| // and replaces all uses of RegA with RegB.
 | |
| // No extra COPY instruction is necessary because tied use is killed at
 | |
| // STATEPOINT.
 | |
| bool TwoAddressInstructionPass::processStatepoint(
 | |
|     MachineInstr *MI, TiedOperandMap &TiedOperands) {
 | |
| 
 | |
|   bool NeedCopy = false;
 | |
|   for (auto &TO : TiedOperands) {
 | |
|     Register RegB = TO.first;
 | |
|     if (TO.second.size() != 1) {
 | |
|       NeedCopy = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     unsigned SrcIdx = TO.second[0].first;
 | |
|     unsigned DstIdx = TO.second[0].second;
 | |
| 
 | |
|     MachineOperand &DstMO = MI->getOperand(DstIdx);
 | |
|     Register RegA = DstMO.getReg();
 | |
| 
 | |
|     assert(RegB == MI->getOperand(SrcIdx).getReg());
 | |
| 
 | |
|     if (RegA == RegB)
 | |
|       continue;
 | |
| 
 | |
|     // CodeGenPrepare can sink pointer compare past statepoint, which
 | |
|     // breaks assumption that statepoint kills tied-use register when
 | |
|     // in SSA form (see note in IR/SafepointIRVerifier.cpp). Fall back
 | |
|     // to generic tied register handling to avoid assertion failures.
 | |
|     // TODO: Recompute LIS/LV information for new range here.
 | |
|     if (LIS) {
 | |
|       const auto &UseLI = LIS->getInterval(RegB);
 | |
|       const auto &DefLI = LIS->getInterval(RegA);
 | |
|       if (DefLI.overlaps(UseLI)) {
 | |
|         LLVM_DEBUG(dbgs() << "LIS: " << printReg(RegB, TRI, 0)
 | |
|                           << " UseLI overlaps with DefLI\n");
 | |
|         NeedCopy = true;
 | |
|         continue;
 | |
|       }
 | |
|     } else if (LV && LV->getVarInfo(RegB).findKill(MI->getParent()) != MI) {
 | |
|       // Note that MachineOperand::isKill does not work here, because it
 | |
|       // is set only on first register use in instruction and for statepoint
 | |
|       // tied-use register will usually be found in preceeding deopt bundle.
 | |
|       LLVM_DEBUG(dbgs() << "LV: " << printReg(RegB, TRI, 0)
 | |
|                         << " not killed by statepoint\n");
 | |
|       NeedCopy = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     MRI->replaceRegWith(RegA, RegB);
 | |
| 
 | |
|     if (LIS) {
 | |
|       VNInfo::Allocator &A = LIS->getVNInfoAllocator();
 | |
|       LiveInterval &LI = LIS->getInterval(RegB);
 | |
|       LiveInterval &Other = LIS->getInterval(RegA);
 | |
|       SmallVector<VNInfo *> NewVNIs;
 | |
|       for (const VNInfo *VNI : Other.valnos) {
 | |
|         assert(VNI->id == NewVNIs.size() && "assumed");
 | |
|         NewVNIs.push_back(LI.createValueCopy(VNI, A));
 | |
|       }
 | |
|       for (auto &S : Other) {
 | |
|         VNInfo *VNI = NewVNIs[S.valno->id];
 | |
|         LiveRange::Segment NewSeg(S.start, S.end, VNI);
 | |
|         LI.addSegment(NewSeg);
 | |
|       }
 | |
|       LIS->removeInterval(RegA);
 | |
|     }
 | |
| 
 | |
|     if (LV) {
 | |
|       if (MI->getOperand(SrcIdx).isKill())
 | |
|         LV->removeVirtualRegisterKilled(RegB, *MI);
 | |
|       LiveVariables::VarInfo &SrcInfo = LV->getVarInfo(RegB);
 | |
|       LiveVariables::VarInfo &DstInfo = LV->getVarInfo(RegA);
 | |
|       SrcInfo.AliveBlocks |= DstInfo.AliveBlocks;
 | |
|       for (auto *KillMI : DstInfo.Kills)
 | |
|         LV->addVirtualRegisterKilled(RegB, *KillMI, false);
 | |
|     }
 | |
|   }
 | |
|   return !NeedCopy;
 | |
| }
 | |
| 
 | |
| /// Reduce two-address instructions to two operands.
 | |
| bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
 | |
|   MF = &Func;
 | |
|   const TargetMachine &TM = MF->getTarget();
 | |
|   MRI = &MF->getRegInfo();
 | |
|   TII = MF->getSubtarget().getInstrInfo();
 | |
|   TRI = MF->getSubtarget().getRegisterInfo();
 | |
|   InstrItins = MF->getSubtarget().getInstrItineraryData();
 | |
|   LV = getAnalysisIfAvailable<LiveVariables>();
 | |
|   LIS = getAnalysisIfAvailable<LiveIntervals>();
 | |
|   if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
 | |
|     AA = &AAPass->getAAResults();
 | |
|   else
 | |
|     AA = nullptr;
 | |
|   OptLevel = TM.getOptLevel();
 | |
|   // Disable optimizations if requested. We cannot skip the whole pass as some
 | |
|   // fixups are necessary for correctness.
 | |
|   if (skipFunction(Func.getFunction()))
 | |
|     OptLevel = CodeGenOpt::None;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
 | |
|   LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
 | |
| 
 | |
|   // This pass takes the function out of SSA form.
 | |
|   MRI->leaveSSA();
 | |
| 
 | |
|   // This pass will rewrite the tied-def to meet the RegConstraint.
 | |
|   MF->getProperties()
 | |
|       .set(MachineFunctionProperties::Property::TiedOpsRewritten);
 | |
| 
 | |
|   TiedOperandMap TiedOperands;
 | |
|   for (MachineBasicBlock &MBBI : *MF) {
 | |
|     MBB = &MBBI;
 | |
|     unsigned Dist = 0;
 | |
|     DistanceMap.clear();
 | |
|     SrcRegMap.clear();
 | |
|     DstRegMap.clear();
 | |
|     Processed.clear();
 | |
|     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
 | |
|          mi != me; ) {
 | |
|       MachineBasicBlock::iterator nmi = std::next(mi);
 | |
|       // Skip debug instructions.
 | |
|       if (mi->isDebugInstr()) {
 | |
|         mi = nmi;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Expand REG_SEQUENCE instructions. This will position mi at the first
 | |
|       // expanded instruction.
 | |
|       if (mi->isRegSequence())
 | |
|         eliminateRegSequence(mi);
 | |
| 
 | |
|       DistanceMap.insert(std::make_pair(&*mi, ++Dist));
 | |
| 
 | |
|       processCopy(&*mi);
 | |
| 
 | |
|       // First scan through all the tied register uses in this instruction
 | |
|       // and record a list of pairs of tied operands for each register.
 | |
|       if (!collectTiedOperands(&*mi, TiedOperands)) {
 | |
|         removeClobberedSrcRegMap(&*mi);
 | |
|         mi = nmi;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       ++NumTwoAddressInstrs;
 | |
|       MadeChange = true;
 | |
|       LLVM_DEBUG(dbgs() << '\t' << *mi);
 | |
| 
 | |
|       // If the instruction has a single pair of tied operands, try some
 | |
|       // transformations that may either eliminate the tied operands or
 | |
|       // improve the opportunities for coalescing away the register copy.
 | |
|       if (TiedOperands.size() == 1) {
 | |
|         SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
 | |
|           = TiedOperands.begin()->second;
 | |
|         if (TiedPairs.size() == 1) {
 | |
|           unsigned SrcIdx = TiedPairs[0].first;
 | |
|           unsigned DstIdx = TiedPairs[0].second;
 | |
|           Register SrcReg = mi->getOperand(SrcIdx).getReg();
 | |
|           Register DstReg = mi->getOperand(DstIdx).getReg();
 | |
|           if (SrcReg != DstReg &&
 | |
|               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
 | |
|             // The tied operands have been eliminated or shifted further down
 | |
|             // the block to ease elimination. Continue processing with 'nmi'.
 | |
|             TiedOperands.clear();
 | |
|             removeClobberedSrcRegMap(&*mi);
 | |
|             mi = nmi;
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (mi->getOpcode() == TargetOpcode::STATEPOINT &&
 | |
|           processStatepoint(&*mi, TiedOperands)) {
 | |
|         TiedOperands.clear();
 | |
|         LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
 | |
|         mi = nmi;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Now iterate over the information collected above.
 | |
|       for (auto &TO : TiedOperands) {
 | |
|         processTiedPairs(&*mi, TO.second, Dist);
 | |
|         LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
 | |
|       }
 | |
| 
 | |
|       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
 | |
|       if (mi->isInsertSubreg()) {
 | |
|         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
 | |
|         // To   %reg:subidx = COPY %subreg
 | |
|         unsigned SubIdx = mi->getOperand(3).getImm();
 | |
|         mi->removeOperand(3);
 | |
|         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
 | |
|         mi->getOperand(0).setSubReg(SubIdx);
 | |
|         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
 | |
|         mi->removeOperand(1);
 | |
|         mi->setDesc(TII->get(TargetOpcode::COPY));
 | |
|         LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
 | |
| 
 | |
|         // Update LiveIntervals.
 | |
|         if (LIS) {
 | |
|           Register Reg = mi->getOperand(0).getReg();
 | |
|           LiveInterval &LI = LIS->getInterval(Reg);
 | |
|           if (LI.hasSubRanges()) {
 | |
|             // The COPY no longer defines subregs of %reg except for
 | |
|             // %reg.subidx.
 | |
|             LaneBitmask LaneMask =
 | |
|                 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg());
 | |
|             SlotIndex Idx = LIS->getInstructionIndex(*mi);
 | |
|             for (auto &S : LI.subranges()) {
 | |
|               if ((S.LaneMask & LaneMask).none()) {
 | |
|                 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx);
 | |
|                 LiveRange::iterator DefSeg = std::next(UseSeg);
 | |
|                 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno);
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             // The COPY no longer has a use of %reg.
 | |
|             LIS->shrinkToUses(&LI);
 | |
|           } else {
 | |
|             // The live interval for Reg did not have subranges but now it needs
 | |
|             // them because we have introduced a subreg def. Recompute it.
 | |
|             LIS->removeInterval(Reg);
 | |
|             LIS->createAndComputeVirtRegInterval(Reg);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Clear TiedOperands here instead of at the top of the loop
 | |
|       // since most instructions do not have tied operands.
 | |
|       TiedOperands.clear();
 | |
|       removeClobberedSrcRegMap(&*mi);
 | |
|       mi = nmi;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
 | |
| ///
 | |
| /// The instruction is turned into a sequence of sub-register copies:
 | |
| ///
 | |
| ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
 | |
| ///
 | |
| /// Becomes:
 | |
| ///
 | |
| ///   undef %dst:ssub0 = COPY %v1
 | |
| ///   %dst:ssub1 = COPY %v2
 | |
| void TwoAddressInstructionPass::
 | |
| eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
 | |
|   MachineInstr &MI = *MBBI;
 | |
|   Register DstReg = MI.getOperand(0).getReg();
 | |
|   if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() ||
 | |
|       !(MI.getNumOperands() & 1)) {
 | |
|     LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
 | |
|     llvm_unreachable(nullptr);
 | |
|   }
 | |
| 
 | |
|   SmallVector<Register, 4> OrigRegs;
 | |
|   if (LIS) {
 | |
|     OrigRegs.push_back(MI.getOperand(0).getReg());
 | |
|     for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
 | |
|       OrigRegs.push_back(MI.getOperand(i).getReg());
 | |
|   }
 | |
| 
 | |
|   bool DefEmitted = false;
 | |
|   for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
 | |
|     MachineOperand &UseMO = MI.getOperand(i);
 | |
|     Register SrcReg = UseMO.getReg();
 | |
|     unsigned SubIdx = MI.getOperand(i+1).getImm();
 | |
|     // Nothing needs to be inserted for undef operands.
 | |
|     if (UseMO.isUndef())
 | |
|       continue;
 | |
| 
 | |
|     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
 | |
|     // might insert a COPY that uses SrcReg after is was killed.
 | |
|     bool isKill = UseMO.isKill();
 | |
|     if (isKill)
 | |
|       for (unsigned j = i + 2; j < e; j += 2)
 | |
|         if (MI.getOperand(j).getReg() == SrcReg) {
 | |
|           MI.getOperand(j).setIsKill();
 | |
|           UseMO.setIsKill(false);
 | |
|           isKill = false;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|     // Insert the sub-register copy.
 | |
|     MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
 | |
|                                    TII->get(TargetOpcode::COPY))
 | |
|                                .addReg(DstReg, RegState::Define, SubIdx)
 | |
|                                .add(UseMO);
 | |
| 
 | |
|     // The first def needs an undef flag because there is no live register
 | |
|     // before it.
 | |
|     if (!DefEmitted) {
 | |
|       CopyMI->getOperand(0).setIsUndef(true);
 | |
|       // Return an iterator pointing to the first inserted instr.
 | |
|       MBBI = CopyMI;
 | |
|     }
 | |
|     DefEmitted = true;
 | |
| 
 | |
|     // Update LiveVariables' kill info.
 | |
|     if (LV && isKill && !SrcReg.isPhysical())
 | |
|       LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::iterator EndMBBI =
 | |
|       std::next(MachineBasicBlock::iterator(MI));
 | |
| 
 | |
|   if (!DefEmitted) {
 | |
|     LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
 | |
|     MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
 | |
|     for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
 | |
|       MI.removeOperand(j);
 | |
|   } else {
 | |
|     if (LIS)
 | |
|       LIS->RemoveMachineInstrFromMaps(MI);
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
 | |
|     MI.eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Udpate LiveIntervals.
 | |
|   if (LIS)
 | |
|     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
 | |
| }
 |