649 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			649 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the VirtRegMap class.
 | |
| //
 | |
| // It also contains implementations of the Spiller interface, which, given a
 | |
| // virtual register map and a machine function, eliminates all virtual
 | |
| // references by replacing them with physical register references - adding spill
 | |
| // code as necessary.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/VirtRegMap.h"
 | |
| #include "LiveDebugVariables.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/LiveStacks.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/TargetFrameLowering.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/MC/LaneBitmask.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| 
 | |
| STATISTIC(NumSpillSlots, "Number of spill slots allocated");
 | |
| STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  VirtRegMap implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| char VirtRegMap::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
 | |
| 
 | |
| bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
 | |
|   MRI = &mf.getRegInfo();
 | |
|   TII = mf.getSubtarget().getInstrInfo();
 | |
|   TRI = mf.getSubtarget().getRegisterInfo();
 | |
|   MF = &mf;
 | |
| 
 | |
|   Virt2PhysMap.clear();
 | |
|   Virt2StackSlotMap.clear();
 | |
|   Virt2SplitMap.clear();
 | |
|   Virt2ShapeMap.clear();
 | |
| 
 | |
|   grow();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void VirtRegMap::grow() {
 | |
|   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
 | |
|   Virt2PhysMap.resize(NumRegs);
 | |
|   Virt2StackSlotMap.resize(NumRegs);
 | |
|   Virt2SplitMap.resize(NumRegs);
 | |
| }
 | |
| 
 | |
| void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
 | |
|   assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
 | |
|   assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
 | |
|          "attempt to assign physical register to already mapped "
 | |
|          "virtual register");
 | |
|   assert(!getRegInfo().isReserved(physReg) &&
 | |
|          "Attempt to map virtReg to a reserved physReg");
 | |
|   Virt2PhysMap[virtReg.id()] = physReg;
 | |
| }
 | |
| 
 | |
| unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
 | |
|   unsigned Size = TRI->getSpillSize(*RC);
 | |
|   Align Alignment = TRI->getSpillAlign(*RC);
 | |
|   // Set preferred alignment if we are still able to realign the stack
 | |
|   auto &ST = MF->getSubtarget();
 | |
|   Align CurrentAlign = ST.getFrameLowering()->getStackAlign();
 | |
|   if (Alignment > CurrentAlign && !ST.getRegisterInfo()->canRealignStack(*MF)) {
 | |
|     Alignment = CurrentAlign;
 | |
|   }
 | |
|   int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
 | |
|   ++NumSpillSlots;
 | |
|   return SS;
 | |
| }
 | |
| 
 | |
| bool VirtRegMap::hasPreferredPhys(Register VirtReg) const {
 | |
|   Register Hint = MRI->getSimpleHint(VirtReg);
 | |
|   if (!Hint.isValid())
 | |
|     return false;
 | |
|   if (Hint.isVirtual())
 | |
|     Hint = getPhys(Hint);
 | |
|   return Register(getPhys(VirtReg)) == Hint;
 | |
| }
 | |
| 
 | |
| bool VirtRegMap::hasKnownPreference(Register VirtReg) const {
 | |
|   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
 | |
|   if (Register::isPhysicalRegister(Hint.second))
 | |
|     return true;
 | |
|   if (Register::isVirtualRegister(Hint.second))
 | |
|     return hasPhys(Hint.second);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
 | |
|   assert(virtReg.isVirtual());
 | |
|   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
 | |
|          "attempt to assign stack slot to already spilled register");
 | |
|   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
 | |
|   return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
 | |
| }
 | |
| 
 | |
| void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
 | |
|   assert(virtReg.isVirtual());
 | |
|   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
 | |
|          "attempt to assign stack slot to already spilled register");
 | |
|   assert((SS >= 0 ||
 | |
|           (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
 | |
|          "illegal fixed frame index");
 | |
|   Virt2StackSlotMap[virtReg.id()] = SS;
 | |
| }
 | |
| 
 | |
| void VirtRegMap::print(raw_ostream &OS, const Module*) const {
 | |
|   OS << "********** REGISTER MAP **********\n";
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = Register::index2VirtReg(i);
 | |
|     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
 | |
|       OS << '[' << printReg(Reg, TRI) << " -> "
 | |
|          << printReg(Virt2PhysMap[Reg], TRI) << "] "
 | |
|          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = Register::index2VirtReg(i);
 | |
|     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
 | |
|       OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
 | |
|          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
 | |
|     }
 | |
|   }
 | |
|   OS << '\n';
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void VirtRegMap::dump() const {
 | |
|   print(dbgs());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              VirtRegRewriter
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The VirtRegRewriter is the last of the register allocator passes.
 | |
| // It rewrites virtual registers to physical registers as specified in the
 | |
| // VirtRegMap analysis. It also updates live-in information on basic blocks
 | |
| // according to LiveIntervals.
 | |
| //
 | |
| namespace {
 | |
| 
 | |
| class VirtRegRewriter : public MachineFunctionPass {
 | |
|   MachineFunction *MF;
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   const TargetInstrInfo *TII;
 | |
|   MachineRegisterInfo *MRI;
 | |
|   SlotIndexes *Indexes;
 | |
|   LiveIntervals *LIS;
 | |
|   VirtRegMap *VRM;
 | |
|   LiveDebugVariables *DebugVars;
 | |
|   DenseSet<Register> RewriteRegs;
 | |
|   bool ClearVirtRegs;
 | |
| 
 | |
|   void rewrite();
 | |
|   void addMBBLiveIns();
 | |
|   bool readsUndefSubreg(const MachineOperand &MO) const;
 | |
|   void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const;
 | |
|   void handleIdentityCopy(MachineInstr &MI);
 | |
|   void expandCopyBundle(MachineInstr &MI) const;
 | |
|   bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
|   VirtRegRewriter(bool ClearVirtRegs_ = true) :
 | |
|     MachineFunctionPass(ID),
 | |
|     ClearVirtRegs(ClearVirtRegs_) {}
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction&) override;
 | |
| 
 | |
|   MachineFunctionProperties getSetProperties() const override {
 | |
|     if (ClearVirtRegs) {
 | |
|       return MachineFunctionProperties().set(
 | |
|         MachineFunctionProperties::Property::NoVRegs);
 | |
|     }
 | |
| 
 | |
|     return MachineFunctionProperties();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char VirtRegRewriter::ID = 0;
 | |
| 
 | |
| char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
 | |
|                       "Virtual Register Rewriter", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveStacks)
 | |
| INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
 | |
| INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
 | |
|                     "Virtual Register Rewriter", false, false)
 | |
| 
 | |
| void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addPreserved<LiveIntervals>();
 | |
|   AU.addRequired<SlotIndexes>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequired<LiveDebugVariables>();
 | |
|   AU.addRequired<LiveStacks>();
 | |
|   AU.addPreserved<LiveStacks>();
 | |
|   AU.addRequired<VirtRegMap>();
 | |
| 
 | |
|   if (!ClearVirtRegs)
 | |
|     AU.addPreserved<LiveDebugVariables>();
 | |
| 
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
 | |
|   MF = &fn;
 | |
|   TRI = MF->getSubtarget().getRegisterInfo();
 | |
|   TII = MF->getSubtarget().getInstrInfo();
 | |
|   MRI = &MF->getRegInfo();
 | |
|   Indexes = &getAnalysis<SlotIndexes>();
 | |
|   LIS = &getAnalysis<LiveIntervals>();
 | |
|   VRM = &getAnalysis<VirtRegMap>();
 | |
|   DebugVars = getAnalysisIfAvailable<LiveDebugVariables>();
 | |
|   LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
 | |
|                     << "********** Function: " << MF->getName() << '\n');
 | |
|   LLVM_DEBUG(VRM->dump());
 | |
| 
 | |
|   // Add kill flags while we still have virtual registers.
 | |
|   LIS->addKillFlags(VRM);
 | |
| 
 | |
|   // Live-in lists on basic blocks are required for physregs.
 | |
|   addMBBLiveIns();
 | |
| 
 | |
|   // Rewrite virtual registers.
 | |
|   rewrite();
 | |
| 
 | |
|   if (DebugVars && ClearVirtRegs) {
 | |
|     // Write out new DBG_VALUE instructions.
 | |
| 
 | |
|     // We only do this if ClearVirtRegs is specified since this should be the
 | |
|     // final run of the pass and we don't want to emit them multiple times.
 | |
|     DebugVars->emitDebugValues(VRM);
 | |
| 
 | |
|     // All machine operands and other references to virtual registers have been
 | |
|     // replaced. Remove the virtual registers and release all the transient data.
 | |
|     VRM->clearAllVirt();
 | |
|     MRI->clearVirtRegs();
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
 | |
|                                              MCRegister PhysReg) const {
 | |
|   assert(!LI.empty());
 | |
|   assert(LI.hasSubRanges());
 | |
| 
 | |
|   using SubRangeIteratorPair =
 | |
|       std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
 | |
| 
 | |
|   SmallVector<SubRangeIteratorPair, 4> SubRanges;
 | |
|   SlotIndex First;
 | |
|   SlotIndex Last;
 | |
|   for (const LiveInterval::SubRange &SR : LI.subranges()) {
 | |
|     SubRanges.push_back(std::make_pair(&SR, SR.begin()));
 | |
|     if (!First.isValid() || SR.segments.front().start < First)
 | |
|       First = SR.segments.front().start;
 | |
|     if (!Last.isValid() || SR.segments.back().end > Last)
 | |
|       Last = SR.segments.back().end;
 | |
|   }
 | |
| 
 | |
|   // Check all mbb start positions between First and Last while
 | |
|   // simulatenously advancing an iterator for each subrange.
 | |
|   for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
 | |
|        MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
 | |
|     SlotIndex MBBBegin = MBBI->first;
 | |
|     // Advance all subrange iterators so that their end position is just
 | |
|     // behind MBBBegin (or the iterator is at the end).
 | |
|     LaneBitmask LaneMask;
 | |
|     for (auto &RangeIterPair : SubRanges) {
 | |
|       const LiveInterval::SubRange *SR = RangeIterPair.first;
 | |
|       LiveInterval::const_iterator &SRI = RangeIterPair.second;
 | |
|       while (SRI != SR->end() && SRI->end <= MBBBegin)
 | |
|         ++SRI;
 | |
|       if (SRI == SR->end())
 | |
|         continue;
 | |
|       if (SRI->start <= MBBBegin)
 | |
|         LaneMask |= SR->LaneMask;
 | |
|     }
 | |
|     if (LaneMask.none())
 | |
|       continue;
 | |
|     MachineBasicBlock *MBB = MBBI->second;
 | |
|     MBB->addLiveIn(PhysReg, LaneMask);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Compute MBB live-in lists from virtual register live ranges and their
 | |
| // assignments.
 | |
| void VirtRegRewriter::addMBBLiveIns() {
 | |
|   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
 | |
|     Register VirtReg = Register::index2VirtReg(Idx);
 | |
|     if (MRI->reg_nodbg_empty(VirtReg))
 | |
|       continue;
 | |
|     LiveInterval &LI = LIS->getInterval(VirtReg);
 | |
|     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
 | |
|       continue;
 | |
|     // This is a virtual register that is live across basic blocks. Its
 | |
|     // assigned PhysReg must be marked as live-in to those blocks.
 | |
|     Register PhysReg = VRM->getPhys(VirtReg);
 | |
|     if (PhysReg == VirtRegMap::NO_PHYS_REG) {
 | |
|       // There may be no physical register assigned if only some register
 | |
|       // classes were already allocated.
 | |
|       assert(!ClearVirtRegs && "Unmapped virtual register");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (LI.hasSubRanges()) {
 | |
|       addLiveInsForSubRanges(LI, PhysReg);
 | |
|     } else {
 | |
|       // Go over MBB begin positions and see if we have segments covering them.
 | |
|       // The following works because segments and the MBBIndex list are both
 | |
|       // sorted by slot indexes.
 | |
|       SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
 | |
|       for (const auto &Seg : LI) {
 | |
|         I = Indexes->advanceMBBIndex(I, Seg.start);
 | |
|         for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
 | |
|           MachineBasicBlock *MBB = I->second;
 | |
|           MBB->addLiveIn(PhysReg);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
 | |
|   // each MBB's LiveIns set before calling addLiveIn on them.
 | |
|   for (MachineBasicBlock &MBB : *MF)
 | |
|     MBB.sortUniqueLiveIns();
 | |
| }
 | |
| 
 | |
| /// Returns true if the given machine operand \p MO only reads undefined lanes.
 | |
| /// The function only works for use operands with a subregister set.
 | |
| bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
 | |
|   // Shortcut if the operand is already marked undef.
 | |
|   if (MO.isUndef())
 | |
|     return true;
 | |
| 
 | |
|   Register Reg = MO.getReg();
 | |
|   const LiveInterval &LI = LIS->getInterval(Reg);
 | |
|   const MachineInstr &MI = *MO.getParent();
 | |
|   SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
 | |
|   // This code is only meant to handle reading undefined subregisters which
 | |
|   // we couldn't properly detect before.
 | |
|   assert(LI.liveAt(BaseIndex) &&
 | |
|          "Reads of completely dead register should be marked undef already");
 | |
|   unsigned SubRegIdx = MO.getSubReg();
 | |
|   assert(SubRegIdx != 0 && LI.hasSubRanges());
 | |
|   LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
 | |
|   // See if any of the relevant subregister liveranges is defined at this point.
 | |
|   for (const LiveInterval::SubRange &SR : LI.subranges()) {
 | |
|     if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) {
 | |
|   if (!MI.isIdentityCopy())
 | |
|     return;
 | |
|   LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
 | |
|   ++NumIdCopies;
 | |
| 
 | |
|   Register DstReg = MI.getOperand(0).getReg();
 | |
| 
 | |
|   // We may have deferred allocation of the virtual register, and the rewrite
 | |
|   // regs code doesn't handle the liveness update.
 | |
|   if (DstReg.isVirtual())
 | |
|     return;
 | |
| 
 | |
|   RewriteRegs.insert(DstReg);
 | |
| 
 | |
|   // Copies like:
 | |
|   //    %r0 = COPY undef %r0
 | |
|   //    %al = COPY %al, implicit-def %eax
 | |
|   // give us additional liveness information: The target (super-)register
 | |
|   // must not be valid before this point. Replace the COPY with a KILL
 | |
|   // instruction to maintain this information.
 | |
|   if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
 | |
|     MI.setDesc(TII->get(TargetOpcode::KILL));
 | |
|     LLVM_DEBUG(dbgs() << "  replace by: " << MI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Indexes)
 | |
|     Indexes->removeSingleMachineInstrFromMaps(MI);
 | |
|   MI.eraseFromBundle();
 | |
|   LLVM_DEBUG(dbgs() << "  deleted.\n");
 | |
| }
 | |
| 
 | |
| /// The liverange splitting logic sometimes produces bundles of copies when
 | |
| /// subregisters are involved. Expand these into a sequence of copy instructions
 | |
| /// after processing the last in the bundle. Does not update LiveIntervals
 | |
| /// which we shouldn't need for this instruction anymore.
 | |
| void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
 | |
|   if (!MI.isCopy() && !MI.isKill())
 | |
|     return;
 | |
| 
 | |
|   if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
 | |
|     SmallVector<MachineInstr *, 2> MIs({&MI});
 | |
| 
 | |
|     // Only do this when the complete bundle is made out of COPYs and KILLs.
 | |
|     MachineBasicBlock &MBB = *MI.getParent();
 | |
|     for (MachineBasicBlock::reverse_instr_iterator I =
 | |
|          std::next(MI.getReverseIterator()), E = MBB.instr_rend();
 | |
|          I != E && I->isBundledWithSucc(); ++I) {
 | |
|       if (!I->isCopy() && !I->isKill())
 | |
|         return;
 | |
|       MIs.push_back(&*I);
 | |
|     }
 | |
|     MachineInstr *FirstMI = MIs.back();
 | |
| 
 | |
|     auto anyRegsAlias = [](const MachineInstr *Dst,
 | |
|                            ArrayRef<MachineInstr *> Srcs,
 | |
|                            const TargetRegisterInfo *TRI) {
 | |
|       for (const MachineInstr *Src : Srcs)
 | |
|         if (Src != Dst)
 | |
|           if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
 | |
|                                Src->getOperand(1).getReg()))
 | |
|             return true;
 | |
|       return false;
 | |
|     };
 | |
| 
 | |
|     // If any of the destination registers in the bundle of copies alias any of
 | |
|     // the source registers, try to schedule the instructions to avoid any
 | |
|     // clobbering.
 | |
|     for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
 | |
|       for (int I = E; I--; )
 | |
|         if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
 | |
|           if (I + 1 != E)
 | |
|             std::swap(MIs[I], MIs[E - 1]);
 | |
|           --E;
 | |
|         }
 | |
|       if (PrevE == E) {
 | |
|         MF->getFunction().getContext().emitError(
 | |
|             "register rewriting failed: cycle in copy bundle");
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     MachineInstr *BundleStart = FirstMI;
 | |
|     for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
 | |
|       // If instruction is in the middle of the bundle, move it before the
 | |
|       // bundle starts, otherwise, just unbundle it. When we get to the last
 | |
|       // instruction, the bundle will have been completely undone.
 | |
|       if (BundledMI != BundleStart) {
 | |
|         BundledMI->removeFromBundle();
 | |
|         MBB.insert(BundleStart, BundledMI);
 | |
|       } else if (BundledMI->isBundledWithSucc()) {
 | |
|         BundledMI->unbundleFromSucc();
 | |
|         BundleStart = &*std::next(BundledMI->getIterator());
 | |
|       }
 | |
| 
 | |
|       if (Indexes && BundledMI != FirstMI)
 | |
|         Indexes->insertMachineInstrInMaps(*BundledMI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check whether (part of) \p SuperPhysReg is live through \p MI.
 | |
| /// \pre \p MI defines a subregister of a virtual register that
 | |
| /// has been assigned to \p SuperPhysReg.
 | |
| bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
 | |
|                                         MCRegister SuperPhysReg) const {
 | |
|   SlotIndex MIIndex = LIS->getInstructionIndex(MI);
 | |
|   SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
 | |
|   SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
 | |
|   for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
 | |
|     const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
 | |
|     // If the regunit is live both before and after MI,
 | |
|     // we assume it is live through.
 | |
|     // Generally speaking, this is not true, because something like
 | |
|     // "RU = op RU" would match that description.
 | |
|     // However, we know that we are trying to assess whether
 | |
|     // a def of a virtual reg, vreg, is live at the same time of RU.
 | |
|     // If we are in the "RU = op RU" situation, that means that vreg
 | |
|     // is defined at the same time as RU (i.e., "vreg, RU = op RU").
 | |
|     // Thus, vreg and RU interferes and vreg cannot be assigned to
 | |
|     // SuperPhysReg. Therefore, this situation cannot happen.
 | |
|     if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void VirtRegRewriter::rewrite() {
 | |
|   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
 | |
|   SmallVector<Register, 8> SuperDeads;
 | |
|   SmallVector<Register, 8> SuperDefs;
 | |
|   SmallVector<Register, 8> SuperKills;
 | |
| 
 | |
|   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
 | |
|        MBBI != MBBE; ++MBBI) {
 | |
|     LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
 | |
|     for (MachineInstr &MI : llvm::make_early_inc_range(MBBI->instrs())) {
 | |
|       for (MachineOperand &MO : MI.operands()) {
 | |
|         // Make sure MRI knows about registers clobbered by regmasks.
 | |
|         if (MO.isRegMask())
 | |
|           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
 | |
| 
 | |
|         if (!MO.isReg() || !MO.getReg().isVirtual())
 | |
|           continue;
 | |
|         Register VirtReg = MO.getReg();
 | |
|         MCRegister PhysReg = VRM->getPhys(VirtReg);
 | |
|         if (PhysReg == VirtRegMap::NO_PHYS_REG)
 | |
|           continue;
 | |
| 
 | |
|         assert(Register(PhysReg).isPhysical());
 | |
| 
 | |
|         RewriteRegs.insert(PhysReg);
 | |
|         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
 | |
| 
 | |
|         // Preserve semantics of sub-register operands.
 | |
|         unsigned SubReg = MO.getSubReg();
 | |
|         if (SubReg != 0) {
 | |
|           if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
 | |
|             // A virtual register kill refers to the whole register, so we may
 | |
|             // have to add implicit killed operands for the super-register.  A
 | |
|             // partial redef always kills and redefines the super-register.
 | |
|             if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
 | |
|                 (MO.isDef() && subRegLiveThrough(MI, PhysReg)))
 | |
|               SuperKills.push_back(PhysReg);
 | |
| 
 | |
|             if (MO.isDef()) {
 | |
|               // Also add implicit defs for the super-register.
 | |
|               if (MO.isDead())
 | |
|                 SuperDeads.push_back(PhysReg);
 | |
|               else
 | |
|                 SuperDefs.push_back(PhysReg);
 | |
|             }
 | |
|           } else {
 | |
|             if (MO.isUse()) {
 | |
|               if (readsUndefSubreg(MO))
 | |
|                 // We need to add an <undef> flag if the subregister is
 | |
|                 // completely undefined (and we are not adding super-register
 | |
|                 // defs).
 | |
|                 MO.setIsUndef(true);
 | |
|             } else if (!MO.isDead()) {
 | |
|               assert(MO.isDef());
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // The def undef and def internal flags only make sense for
 | |
|           // sub-register defs, and we are substituting a full physreg.  An
 | |
|           // implicit killed operand from the SuperKills list will represent the
 | |
|           // partial read of the super-register.
 | |
|           if (MO.isDef()) {
 | |
|             MO.setIsUndef(false);
 | |
|             MO.setIsInternalRead(false);
 | |
|           }
 | |
| 
 | |
|           // PhysReg operands cannot have subregister indexes.
 | |
|           PhysReg = TRI->getSubReg(PhysReg, SubReg);
 | |
|           assert(PhysReg.isValid() && "Invalid SubReg for physical register");
 | |
|           MO.setSubReg(0);
 | |
|         }
 | |
|         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
 | |
|         // we need the inlining here.
 | |
|         MO.setReg(PhysReg);
 | |
|         MO.setIsRenamable(true);
 | |
|       }
 | |
| 
 | |
|       // Add any missing super-register kills after rewriting the whole
 | |
|       // instruction.
 | |
|       while (!SuperKills.empty())
 | |
|         MI.addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
 | |
| 
 | |
|       while (!SuperDeads.empty())
 | |
|         MI.addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
 | |
| 
 | |
|       while (!SuperDefs.empty())
 | |
|         MI.addRegisterDefined(SuperDefs.pop_back_val(), TRI);
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "> " << MI);
 | |
| 
 | |
|       expandCopyBundle(MI);
 | |
| 
 | |
|       // We can remove identity copies right now.
 | |
|       handleIdentityCopy(MI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LIS) {
 | |
|     // Don't bother maintaining accurate LiveIntervals for registers which were
 | |
|     // already allocated.
 | |
|     for (Register PhysReg : RewriteRegs) {
 | |
|       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid();
 | |
|            ++Units) {
 | |
|         LIS->removeRegUnit(*Units);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   RewriteRegs.clear();
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) {
 | |
|   return new VirtRegRewriter(ClearVirtRegs);
 | |
| }
 |