357 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			357 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
| #include "blake3_impl.h"
 | |
| 
 | |
| #if BLAKE3_USE_NEON
 | |
| 
 | |
| #include <arm_neon.h>
 | |
| 
 | |
| #ifdef __ARM_BIG_ENDIAN
 | |
| #error "This implementation only supports little-endian ARM."
 | |
| // It might be that all we need for big-endian support here is to get the loads
 | |
| // and stores right, but step zero would be finding a way to test it in CI.
 | |
| #endif
 | |
| 
 | |
| INLINE uint32x4_t loadu_128(const uint8_t src[16]) {
 | |
|   // vld1q_u32 has alignment requirements. Don't use it.
 | |
|   uint32x4_t x;
 | |
|   memcpy(&x, src, 16);
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) {
 | |
|   // vst1q_u32 has alignment requirements. Don't use it.
 | |
|   memcpy(dest, &src, 16);
 | |
| }
 | |
| 
 | |
| INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) {
 | |
|   return vaddq_u32(a, b);
 | |
| }
 | |
| 
 | |
| INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) {
 | |
|   return veorq_u32(a, b);
 | |
| }
 | |
| 
 | |
| INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); }
 | |
| 
 | |
| INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
 | |
|   uint32_t array[4] = {a, b, c, d};
 | |
|   return vld1q_u32(array);
 | |
| }
 | |
| 
 | |
| INLINE uint32x4_t rot16_128(uint32x4_t x) {
 | |
|   return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16));
 | |
| }
 | |
| 
 | |
| INLINE uint32x4_t rot12_128(uint32x4_t x) {
 | |
|   return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12));
 | |
| }
 | |
| 
 | |
| INLINE uint32x4_t rot8_128(uint32x4_t x) {
 | |
|   return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8));
 | |
| }
 | |
| 
 | |
| INLINE uint32x4_t rot7_128(uint32x4_t x) {
 | |
|   return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7));
 | |
| }
 | |
| 
 | |
| // TODO: compress_neon
 | |
| 
 | |
| // TODO: hash2_neon
 | |
| 
 | |
| /*
 | |
|  * ----------------------------------------------------------------------------
 | |
|  * hash4_neon
 | |
|  * ----------------------------------------------------------------------------
 | |
|  */
 | |
| 
 | |
| INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) {
 | |
|   v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
 | |
|   v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
 | |
|   v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
 | |
|   v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
 | |
|   v[0] = add_128(v[0], v[4]);
 | |
|   v[1] = add_128(v[1], v[5]);
 | |
|   v[2] = add_128(v[2], v[6]);
 | |
|   v[3] = add_128(v[3], v[7]);
 | |
|   v[12] = xor_128(v[12], v[0]);
 | |
|   v[13] = xor_128(v[13], v[1]);
 | |
|   v[14] = xor_128(v[14], v[2]);
 | |
|   v[15] = xor_128(v[15], v[3]);
 | |
|   v[12] = rot16_128(v[12]);
 | |
|   v[13] = rot16_128(v[13]);
 | |
|   v[14] = rot16_128(v[14]);
 | |
|   v[15] = rot16_128(v[15]);
 | |
|   v[8] = add_128(v[8], v[12]);
 | |
|   v[9] = add_128(v[9], v[13]);
 | |
|   v[10] = add_128(v[10], v[14]);
 | |
|   v[11] = add_128(v[11], v[15]);
 | |
|   v[4] = xor_128(v[4], v[8]);
 | |
|   v[5] = xor_128(v[5], v[9]);
 | |
|   v[6] = xor_128(v[6], v[10]);
 | |
|   v[7] = xor_128(v[7], v[11]);
 | |
|   v[4] = rot12_128(v[4]);
 | |
|   v[5] = rot12_128(v[5]);
 | |
|   v[6] = rot12_128(v[6]);
 | |
|   v[7] = rot12_128(v[7]);
 | |
|   v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
 | |
|   v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
 | |
|   v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
 | |
|   v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
 | |
|   v[0] = add_128(v[0], v[4]);
 | |
|   v[1] = add_128(v[1], v[5]);
 | |
|   v[2] = add_128(v[2], v[6]);
 | |
|   v[3] = add_128(v[3], v[7]);
 | |
|   v[12] = xor_128(v[12], v[0]);
 | |
|   v[13] = xor_128(v[13], v[1]);
 | |
|   v[14] = xor_128(v[14], v[2]);
 | |
|   v[15] = xor_128(v[15], v[3]);
 | |
|   v[12] = rot8_128(v[12]);
 | |
|   v[13] = rot8_128(v[13]);
 | |
|   v[14] = rot8_128(v[14]);
 | |
|   v[15] = rot8_128(v[15]);
 | |
|   v[8] = add_128(v[8], v[12]);
 | |
|   v[9] = add_128(v[9], v[13]);
 | |
|   v[10] = add_128(v[10], v[14]);
 | |
|   v[11] = add_128(v[11], v[15]);
 | |
|   v[4] = xor_128(v[4], v[8]);
 | |
|   v[5] = xor_128(v[5], v[9]);
 | |
|   v[6] = xor_128(v[6], v[10]);
 | |
|   v[7] = xor_128(v[7], v[11]);
 | |
|   v[4] = rot7_128(v[4]);
 | |
|   v[5] = rot7_128(v[5]);
 | |
|   v[6] = rot7_128(v[6]);
 | |
|   v[7] = rot7_128(v[7]);
 | |
| 
 | |
|   v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
 | |
|   v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
 | |
|   v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
 | |
|   v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
 | |
|   v[0] = add_128(v[0], v[5]);
 | |
|   v[1] = add_128(v[1], v[6]);
 | |
|   v[2] = add_128(v[2], v[7]);
 | |
|   v[3] = add_128(v[3], v[4]);
 | |
|   v[15] = xor_128(v[15], v[0]);
 | |
|   v[12] = xor_128(v[12], v[1]);
 | |
|   v[13] = xor_128(v[13], v[2]);
 | |
|   v[14] = xor_128(v[14], v[3]);
 | |
|   v[15] = rot16_128(v[15]);
 | |
|   v[12] = rot16_128(v[12]);
 | |
|   v[13] = rot16_128(v[13]);
 | |
|   v[14] = rot16_128(v[14]);
 | |
|   v[10] = add_128(v[10], v[15]);
 | |
|   v[11] = add_128(v[11], v[12]);
 | |
|   v[8] = add_128(v[8], v[13]);
 | |
|   v[9] = add_128(v[9], v[14]);
 | |
|   v[5] = xor_128(v[5], v[10]);
 | |
|   v[6] = xor_128(v[6], v[11]);
 | |
|   v[7] = xor_128(v[7], v[8]);
 | |
|   v[4] = xor_128(v[4], v[9]);
 | |
|   v[5] = rot12_128(v[5]);
 | |
|   v[6] = rot12_128(v[6]);
 | |
|   v[7] = rot12_128(v[7]);
 | |
|   v[4] = rot12_128(v[4]);
 | |
|   v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
 | |
|   v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
 | |
|   v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
 | |
|   v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
 | |
|   v[0] = add_128(v[0], v[5]);
 | |
|   v[1] = add_128(v[1], v[6]);
 | |
|   v[2] = add_128(v[2], v[7]);
 | |
|   v[3] = add_128(v[3], v[4]);
 | |
|   v[15] = xor_128(v[15], v[0]);
 | |
|   v[12] = xor_128(v[12], v[1]);
 | |
|   v[13] = xor_128(v[13], v[2]);
 | |
|   v[14] = xor_128(v[14], v[3]);
 | |
|   v[15] = rot8_128(v[15]);
 | |
|   v[12] = rot8_128(v[12]);
 | |
|   v[13] = rot8_128(v[13]);
 | |
|   v[14] = rot8_128(v[14]);
 | |
|   v[10] = add_128(v[10], v[15]);
 | |
|   v[11] = add_128(v[11], v[12]);
 | |
|   v[8] = add_128(v[8], v[13]);
 | |
|   v[9] = add_128(v[9], v[14]);
 | |
|   v[5] = xor_128(v[5], v[10]);
 | |
|   v[6] = xor_128(v[6], v[11]);
 | |
|   v[7] = xor_128(v[7], v[8]);
 | |
|   v[4] = xor_128(v[4], v[9]);
 | |
|   v[5] = rot7_128(v[5]);
 | |
|   v[6] = rot7_128(v[6]);
 | |
|   v[7] = rot7_128(v[7]);
 | |
|   v[4] = rot7_128(v[4]);
 | |
| }
 | |
| 
 | |
| INLINE void transpose_vecs_128(uint32x4_t vecs[4]) {
 | |
|   // Individually transpose the four 2x2 sub-matrices in each corner.
 | |
|   uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]);
 | |
|   uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]);
 | |
| 
 | |
|   // Swap the top-right and bottom-left 2x2s (which just got transposed).
 | |
|   vecs[0] =
 | |
|       vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0]));
 | |
|   vecs[1] =
 | |
|       vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1]));
 | |
|   vecs[2] =
 | |
|       vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0]));
 | |
|   vecs[3] =
 | |
|       vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1]));
 | |
| }
 | |
| 
 | |
| INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
 | |
|                                 size_t block_offset, uint32x4_t out[16]) {
 | |
|   out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]);
 | |
|   out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]);
 | |
|   out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]);
 | |
|   out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]);
 | |
|   out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]);
 | |
|   out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]);
 | |
|   out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]);
 | |
|   out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]);
 | |
|   out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]);
 | |
|   out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]);
 | |
|   out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]);
 | |
|   out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]);
 | |
|   out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]);
 | |
|   out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]);
 | |
|   out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]);
 | |
|   out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]);
 | |
|   transpose_vecs_128(&out[0]);
 | |
|   transpose_vecs_128(&out[4]);
 | |
|   transpose_vecs_128(&out[8]);
 | |
|   transpose_vecs_128(&out[12]);
 | |
| }
 | |
| 
 | |
| INLINE void load_counters4(uint64_t counter, bool increment_counter,
 | |
|                            uint32x4_t *out_low, uint32x4_t *out_high) {
 | |
|   uint64_t mask = (increment_counter ? ~0 : 0);
 | |
|   *out_low = set4(
 | |
|       counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)),
 | |
|       counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3)));
 | |
|   *out_high = set4(
 | |
|       counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)),
 | |
|       counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3)));
 | |
| }
 | |
| 
 | |
| static
 | |
| void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks,
 | |
|                        const uint32_t key[8], uint64_t counter,
 | |
|                        bool increment_counter, uint8_t flags,
 | |
|                        uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
 | |
|   uint32x4_t h_vecs[8] = {
 | |
|       set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
 | |
|       set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
 | |
|   };
 | |
|   uint32x4_t counter_low_vec, counter_high_vec;
 | |
|   load_counters4(counter, increment_counter, &counter_low_vec,
 | |
|                  &counter_high_vec);
 | |
|   uint8_t block_flags = flags | flags_start;
 | |
| 
 | |
|   for (size_t block = 0; block < blocks; block++) {
 | |
|     if (block + 1 == blocks) {
 | |
|       block_flags |= flags_end;
 | |
|     }
 | |
|     uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
 | |
|     uint32x4_t block_flags_vec = set1_128(block_flags);
 | |
|     uint32x4_t msg_vecs[16];
 | |
|     transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
 | |
| 
 | |
|     uint32x4_t v[16] = {
 | |
|         h_vecs[0],       h_vecs[1],        h_vecs[2],       h_vecs[3],
 | |
|         h_vecs[4],       h_vecs[5],        h_vecs[6],       h_vecs[7],
 | |
|         set1_128(IV[0]), set1_128(IV[1]),  set1_128(IV[2]), set1_128(IV[3]),
 | |
|         counter_low_vec, counter_high_vec, block_len_vec,   block_flags_vec,
 | |
|     };
 | |
|     round_fn4(v, msg_vecs, 0);
 | |
|     round_fn4(v, msg_vecs, 1);
 | |
|     round_fn4(v, msg_vecs, 2);
 | |
|     round_fn4(v, msg_vecs, 3);
 | |
|     round_fn4(v, msg_vecs, 4);
 | |
|     round_fn4(v, msg_vecs, 5);
 | |
|     round_fn4(v, msg_vecs, 6);
 | |
|     h_vecs[0] = xor_128(v[0], v[8]);
 | |
|     h_vecs[1] = xor_128(v[1], v[9]);
 | |
|     h_vecs[2] = xor_128(v[2], v[10]);
 | |
|     h_vecs[3] = xor_128(v[3], v[11]);
 | |
|     h_vecs[4] = xor_128(v[4], v[12]);
 | |
|     h_vecs[5] = xor_128(v[5], v[13]);
 | |
|     h_vecs[6] = xor_128(v[6], v[14]);
 | |
|     h_vecs[7] = xor_128(v[7], v[15]);
 | |
| 
 | |
|     block_flags = flags;
 | |
|   }
 | |
| 
 | |
|   transpose_vecs_128(&h_vecs[0]);
 | |
|   transpose_vecs_128(&h_vecs[4]);
 | |
|   // The first four vecs now contain the first half of each output, and the
 | |
|   // second four vecs contain the second half of each output.
 | |
|   storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]);
 | |
|   storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]);
 | |
|   storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]);
 | |
|   storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]);
 | |
|   storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]);
 | |
|   storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]);
 | |
|   storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]);
 | |
|   storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ----------------------------------------------------------------------------
 | |
|  * hash_many_neon
 | |
|  * ----------------------------------------------------------------------------
 | |
|  */
 | |
| 
 | |
| void blake3_compress_in_place_portable(uint32_t cv[8],
 | |
|                                        const uint8_t block[BLAKE3_BLOCK_LEN],
 | |
|                                        uint8_t block_len, uint64_t counter,
 | |
|                                        uint8_t flags);
 | |
| 
 | |
| INLINE void hash_one_neon(const uint8_t *input, size_t blocks,
 | |
|                           const uint32_t key[8], uint64_t counter,
 | |
|                           uint8_t flags, uint8_t flags_start, uint8_t flags_end,
 | |
|                           uint8_t out[BLAKE3_OUT_LEN]) {
 | |
|   uint32_t cv[8];
 | |
|   memcpy(cv, key, BLAKE3_KEY_LEN);
 | |
|   uint8_t block_flags = flags | flags_start;
 | |
|   while (blocks > 0) {
 | |
|     if (blocks == 1) {
 | |
|       block_flags |= flags_end;
 | |
|     }
 | |
|     // TODO: Implement compress_neon. However note that according to
 | |
|     // https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227,
 | |
|     // compress_neon might not be any faster than compress_portable.
 | |
|     blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter,
 | |
|                                       block_flags);
 | |
|     input = &input[BLAKE3_BLOCK_LEN];
 | |
|     blocks -= 1;
 | |
|     block_flags = flags;
 | |
|   }
 | |
|   memcpy(out, cv, BLAKE3_OUT_LEN);
 | |
| }
 | |
| 
 | |
| void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
 | |
|                            size_t blocks, const uint32_t key[8],
 | |
|                            uint64_t counter, bool increment_counter,
 | |
|                            uint8_t flags, uint8_t flags_start,
 | |
|                            uint8_t flags_end, uint8_t *out) {
 | |
|   while (num_inputs >= 4) {
 | |
|     blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags,
 | |
|                       flags_start, flags_end, out);
 | |
|     if (increment_counter) {
 | |
|       counter += 4;
 | |
|     }
 | |
|     inputs += 4;
 | |
|     num_inputs -= 4;
 | |
|     out = &out[4 * BLAKE3_OUT_LEN];
 | |
|   }
 | |
|   while (num_inputs > 0) {
 | |
|     hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start,
 | |
|                   flags_end, out);
 | |
|     if (increment_counter) {
 | |
|       counter += 1;
 | |
|     }
 | |
|     inputs += 1;
 | |
|     num_inputs -= 1;
 | |
|     out = &out[BLAKE3_OUT_LEN];
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif // BLAKE3_USE_NEON
 |