633 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			633 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains a class for representing known zeros and ones used by
 | |
| // computeKnownBits.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static KnownBits computeForAddCarry(
 | |
|     const KnownBits &LHS, const KnownBits &RHS,
 | |
|     bool CarryZero, bool CarryOne) {
 | |
|   assert(!(CarryZero && CarryOne) &&
 | |
|          "Carry can't be zero and one at the same time");
 | |
| 
 | |
|   APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero;
 | |
|   APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne;
 | |
| 
 | |
|   // Compute known bits of the carry.
 | |
|   APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero);
 | |
|   APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One;
 | |
| 
 | |
|   // Compute set of known bits (where all three relevant bits are known).
 | |
|   APInt LHSKnownUnion = LHS.Zero | LHS.One;
 | |
|   APInt RHSKnownUnion = RHS.Zero | RHS.One;
 | |
|   APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne;
 | |
|   APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion;
 | |
| 
 | |
|   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
 | |
|          "known bits of sum differ");
 | |
| 
 | |
|   // Compute known bits of the result.
 | |
|   KnownBits KnownOut;
 | |
|   KnownOut.Zero = ~std::move(PossibleSumZero) & Known;
 | |
|   KnownOut.One = std::move(PossibleSumOne) & Known;
 | |
|   return KnownOut;
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::computeForAddCarry(
 | |
|     const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) {
 | |
|   assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit");
 | |
|   return ::computeForAddCarry(
 | |
|       LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue());
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::computeForAddSub(bool Add, bool NSW,
 | |
|                                       const KnownBits &LHS, KnownBits RHS) {
 | |
|   KnownBits KnownOut;
 | |
|   if (Add) {
 | |
|     // Sum = LHS + RHS + 0
 | |
|     KnownOut = ::computeForAddCarry(
 | |
|         LHS, RHS, /*CarryZero*/true, /*CarryOne*/false);
 | |
|   } else {
 | |
|     // Sum = LHS + ~RHS + 1
 | |
|     std::swap(RHS.Zero, RHS.One);
 | |
|     KnownOut = ::computeForAddCarry(
 | |
|         LHS, RHS, /*CarryZero*/false, /*CarryOne*/true);
 | |
|   }
 | |
| 
 | |
|   // Are we still trying to solve for the sign bit?
 | |
|   if (!KnownOut.isNegative() && !KnownOut.isNonNegative()) {
 | |
|     if (NSW) {
 | |
|       // Adding two non-negative numbers, or subtracting a negative number from
 | |
|       // a non-negative one, can't wrap into negative.
 | |
|       if (LHS.isNonNegative() && RHS.isNonNegative())
 | |
|         KnownOut.makeNonNegative();
 | |
|       // Adding two negative numbers, or subtracting a non-negative number from
 | |
|       // a negative one, can't wrap into non-negative.
 | |
|       else if (LHS.isNegative() && RHS.isNegative())
 | |
|         KnownOut.makeNegative();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return KnownOut;
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::sextInReg(unsigned SrcBitWidth) const {
 | |
|   unsigned BitWidth = getBitWidth();
 | |
|   assert(0 < SrcBitWidth && SrcBitWidth <= BitWidth &&
 | |
|          "Illegal sext-in-register");
 | |
| 
 | |
|   if (SrcBitWidth == BitWidth)
 | |
|     return *this;
 | |
| 
 | |
|   unsigned ExtBits = BitWidth - SrcBitWidth;
 | |
|   KnownBits Result;
 | |
|   Result.One = One << ExtBits;
 | |
|   Result.Zero = Zero << ExtBits;
 | |
|   Result.One.ashrInPlace(ExtBits);
 | |
|   Result.Zero.ashrInPlace(ExtBits);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::makeGE(const APInt &Val) const {
 | |
|   // Count the number of leading bit positions where our underlying value is
 | |
|   // known to be less than or equal to Val.
 | |
|   unsigned N = (Zero | Val).countLeadingOnes();
 | |
| 
 | |
|   // For each of those bit positions, if Val has a 1 in that bit then our
 | |
|   // underlying value must also have a 1.
 | |
|   APInt MaskedVal(Val);
 | |
|   MaskedVal.clearLowBits(getBitWidth() - N);
 | |
|   return KnownBits(Zero, One | MaskedVal);
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   // If we can prove that LHS >= RHS then use LHS as the result. Likewise for
 | |
|   // RHS. Ideally our caller would already have spotted these cases and
 | |
|   // optimized away the umax operation, but we handle them here for
 | |
|   // completeness.
 | |
|   if (LHS.getMinValue().uge(RHS.getMaxValue()))
 | |
|     return LHS;
 | |
|   if (RHS.getMinValue().uge(LHS.getMaxValue()))
 | |
|     return RHS;
 | |
| 
 | |
|   // If the result of the umax is LHS then it must be greater than or equal to
 | |
|   // the minimum possible value of RHS. Likewise for RHS. Any known bits that
 | |
|   // are common to these two values are also known in the result.
 | |
|   KnownBits L = LHS.makeGE(RHS.getMinValue());
 | |
|   KnownBits R = RHS.makeGE(LHS.getMinValue());
 | |
|   return KnownBits::commonBits(L, R);
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   // Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0]
 | |
|   auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); };
 | |
|   return Flip(umax(Flip(LHS), Flip(RHS)));
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF]
 | |
|   auto Flip = [](const KnownBits &Val) {
 | |
|     unsigned SignBitPosition = Val.getBitWidth() - 1;
 | |
|     APInt Zero = Val.Zero;
 | |
|     APInt One = Val.One;
 | |
|     Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]);
 | |
|     One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]);
 | |
|     return KnownBits(Zero, One);
 | |
|   };
 | |
|   return Flip(umax(Flip(LHS), Flip(RHS)));
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0]
 | |
|   auto Flip = [](const KnownBits &Val) {
 | |
|     unsigned SignBitPosition = Val.getBitWidth() - 1;
 | |
|     APInt Zero = Val.One;
 | |
|     APInt One = Val.Zero;
 | |
|     Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]);
 | |
|     One.setBitVal(SignBitPosition, Val.One[SignBitPosition]);
 | |
|     return KnownBits(Zero, One);
 | |
|   };
 | |
|   return Flip(umax(Flip(LHS), Flip(RHS)));
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::shl(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   unsigned BitWidth = LHS.getBitWidth();
 | |
|   KnownBits Known(BitWidth);
 | |
| 
 | |
|   // If the shift amount is a valid constant then transform LHS directly.
 | |
|   if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) {
 | |
|     unsigned Shift = RHS.getConstant().getZExtValue();
 | |
|     Known = LHS;
 | |
|     Known.Zero <<= Shift;
 | |
|     Known.One <<= Shift;
 | |
|     // Low bits are known zero.
 | |
|     Known.Zero.setLowBits(Shift);
 | |
|     return Known;
 | |
|   }
 | |
| 
 | |
|   // No matter the shift amount, the trailing zeros will stay zero.
 | |
|   unsigned MinTrailingZeros = LHS.countMinTrailingZeros();
 | |
| 
 | |
|   // Minimum shift amount low bits are known zero.
 | |
|   APInt MinShiftAmount = RHS.getMinValue();
 | |
|   if (MinShiftAmount.ult(BitWidth)) {
 | |
|     MinTrailingZeros += MinShiftAmount.getZExtValue();
 | |
|     MinTrailingZeros = std::min(MinTrailingZeros, BitWidth);
 | |
|   }
 | |
| 
 | |
|   // If the maximum shift is in range, then find the common bits from all
 | |
|   // possible shifts.
 | |
|   APInt MaxShiftAmount = RHS.getMaxValue();
 | |
|   if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) {
 | |
|     uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue();
 | |
|     uint64_t ShiftAmtOneMask = RHS.One.getZExtValue();
 | |
|     assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range");
 | |
|     Known.Zero.setAllBits();
 | |
|     Known.One.setAllBits();
 | |
|     for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(),
 | |
|                   MaxShiftAmt = MaxShiftAmount.getZExtValue();
 | |
|          ShiftAmt <= MaxShiftAmt; ++ShiftAmt) {
 | |
|       // Skip if the shift amount is impossible.
 | |
|       if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt ||
 | |
|           (ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
 | |
|         continue;
 | |
|       KnownBits SpecificShift;
 | |
|       SpecificShift.Zero = LHS.Zero << ShiftAmt;
 | |
|       SpecificShift.One = LHS.One << ShiftAmt;
 | |
|       Known = KnownBits::commonBits(Known, SpecificShift);
 | |
|       if (Known.isUnknown())
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Known.Zero.setLowBits(MinTrailingZeros);
 | |
|   return Known;
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::lshr(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   unsigned BitWidth = LHS.getBitWidth();
 | |
|   KnownBits Known(BitWidth);
 | |
| 
 | |
|   if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) {
 | |
|     unsigned Shift = RHS.getConstant().getZExtValue();
 | |
|     Known = LHS;
 | |
|     Known.Zero.lshrInPlace(Shift);
 | |
|     Known.One.lshrInPlace(Shift);
 | |
|     // High bits are known zero.
 | |
|     Known.Zero.setHighBits(Shift);
 | |
|     return Known;
 | |
|   }
 | |
| 
 | |
|   // No matter the shift amount, the leading zeros will stay zero.
 | |
|   unsigned MinLeadingZeros = LHS.countMinLeadingZeros();
 | |
| 
 | |
|   // Minimum shift amount high bits are known zero.
 | |
|   APInt MinShiftAmount = RHS.getMinValue();
 | |
|   if (MinShiftAmount.ult(BitWidth)) {
 | |
|     MinLeadingZeros += MinShiftAmount.getZExtValue();
 | |
|     MinLeadingZeros = std::min(MinLeadingZeros, BitWidth);
 | |
|   }
 | |
| 
 | |
|   // If the maximum shift is in range, then find the common bits from all
 | |
|   // possible shifts.
 | |
|   APInt MaxShiftAmount = RHS.getMaxValue();
 | |
|   if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) {
 | |
|     uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue();
 | |
|     uint64_t ShiftAmtOneMask = RHS.One.getZExtValue();
 | |
|     assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range");
 | |
|     Known.Zero.setAllBits();
 | |
|     Known.One.setAllBits();
 | |
|     for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(),
 | |
|                   MaxShiftAmt = MaxShiftAmount.getZExtValue();
 | |
|          ShiftAmt <= MaxShiftAmt; ++ShiftAmt) {
 | |
|       // Skip if the shift amount is impossible.
 | |
|       if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt ||
 | |
|           (ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
 | |
|         continue;
 | |
|       KnownBits SpecificShift = LHS;
 | |
|       SpecificShift.Zero.lshrInPlace(ShiftAmt);
 | |
|       SpecificShift.One.lshrInPlace(ShiftAmt);
 | |
|       Known = KnownBits::commonBits(Known, SpecificShift);
 | |
|       if (Known.isUnknown())
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Known.Zero.setHighBits(MinLeadingZeros);
 | |
|   return Known;
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::ashr(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   unsigned BitWidth = LHS.getBitWidth();
 | |
|   KnownBits Known(BitWidth);
 | |
| 
 | |
|   if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) {
 | |
|     unsigned Shift = RHS.getConstant().getZExtValue();
 | |
|     Known = LHS;
 | |
|     Known.Zero.ashrInPlace(Shift);
 | |
|     Known.One.ashrInPlace(Shift);
 | |
|     return Known;
 | |
|   }
 | |
| 
 | |
|   // No matter the shift amount, the leading sign bits will stay.
 | |
|   unsigned MinLeadingZeros = LHS.countMinLeadingZeros();
 | |
|   unsigned MinLeadingOnes = LHS.countMinLeadingOnes();
 | |
| 
 | |
|   // Minimum shift amount high bits are known sign bits.
 | |
|   APInt MinShiftAmount = RHS.getMinValue();
 | |
|   if (MinShiftAmount.ult(BitWidth)) {
 | |
|     if (MinLeadingZeros) {
 | |
|       MinLeadingZeros += MinShiftAmount.getZExtValue();
 | |
|       MinLeadingZeros = std::min(MinLeadingZeros, BitWidth);
 | |
|     }
 | |
|     if (MinLeadingOnes) {
 | |
|       MinLeadingOnes += MinShiftAmount.getZExtValue();
 | |
|       MinLeadingOnes = std::min(MinLeadingOnes, BitWidth);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the maximum shift is in range, then find the common bits from all
 | |
|   // possible shifts.
 | |
|   APInt MaxShiftAmount = RHS.getMaxValue();
 | |
|   if (MaxShiftAmount.ult(BitWidth) && !LHS.isUnknown()) {
 | |
|     uint64_t ShiftAmtZeroMask = (~RHS.Zero).getZExtValue();
 | |
|     uint64_t ShiftAmtOneMask = RHS.One.getZExtValue();
 | |
|     assert(MinShiftAmount.ult(MaxShiftAmount) && "Illegal shift range");
 | |
|     Known.Zero.setAllBits();
 | |
|     Known.One.setAllBits();
 | |
|     for (uint64_t ShiftAmt = MinShiftAmount.getZExtValue(),
 | |
|                   MaxShiftAmt = MaxShiftAmount.getZExtValue();
 | |
|          ShiftAmt <= MaxShiftAmt; ++ShiftAmt) {
 | |
|       // Skip if the shift amount is impossible.
 | |
|       if ((ShiftAmtZeroMask & ShiftAmt) != ShiftAmt ||
 | |
|           (ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
 | |
|         continue;
 | |
|       KnownBits SpecificShift = LHS;
 | |
|       SpecificShift.Zero.ashrInPlace(ShiftAmt);
 | |
|       SpecificShift.One.ashrInPlace(ShiftAmt);
 | |
|       Known = KnownBits::commonBits(Known, SpecificShift);
 | |
|       if (Known.isUnknown())
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Known.Zero.setHighBits(MinLeadingZeros);
 | |
|   Known.One.setHighBits(MinLeadingOnes);
 | |
|   return Known;
 | |
| }
 | |
| 
 | |
| Optional<bool> KnownBits::eq(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   if (LHS.isConstant() && RHS.isConstant())
 | |
|     return Optional<bool>(LHS.getConstant() == RHS.getConstant());
 | |
|   if (LHS.One.intersects(RHS.Zero) || RHS.One.intersects(LHS.Zero))
 | |
|     return Optional<bool>(false);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Optional<bool> KnownBits::ne(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   if (Optional<bool> KnownEQ = eq(LHS, RHS))
 | |
|     return Optional<bool>(!*KnownEQ);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Optional<bool> KnownBits::ugt(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   // LHS >u RHS -> false if umax(LHS) <= umax(RHS)
 | |
|   if (LHS.getMaxValue().ule(RHS.getMinValue()))
 | |
|     return Optional<bool>(false);
 | |
|   // LHS >u RHS -> true if umin(LHS) > umax(RHS)
 | |
|   if (LHS.getMinValue().ugt(RHS.getMaxValue()))
 | |
|     return Optional<bool>(true);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Optional<bool> KnownBits::uge(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   if (Optional<bool> IsUGT = ugt(RHS, LHS))
 | |
|     return Optional<bool>(!*IsUGT);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Optional<bool> KnownBits::ult(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   return ugt(RHS, LHS);
 | |
| }
 | |
| 
 | |
| Optional<bool> KnownBits::ule(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   return uge(RHS, LHS);
 | |
| }
 | |
| 
 | |
| Optional<bool> KnownBits::sgt(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   // LHS >s RHS -> false if smax(LHS) <= smax(RHS)
 | |
|   if (LHS.getSignedMaxValue().sle(RHS.getSignedMinValue()))
 | |
|     return Optional<bool>(false);
 | |
|   // LHS >s RHS -> true if smin(LHS) > smax(RHS)
 | |
|   if (LHS.getSignedMinValue().sgt(RHS.getSignedMaxValue()))
 | |
|     return Optional<bool>(true);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Optional<bool> KnownBits::sge(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   if (Optional<bool> KnownSGT = sgt(RHS, LHS))
 | |
|     return Optional<bool>(!*KnownSGT);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| Optional<bool> KnownBits::slt(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   return sgt(RHS, LHS);
 | |
| }
 | |
| 
 | |
| Optional<bool> KnownBits::sle(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   return sge(RHS, LHS);
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::abs(bool IntMinIsPoison) const {
 | |
|   // If the source's MSB is zero then we know the rest of the bits already.
 | |
|   if (isNonNegative())
 | |
|     return *this;
 | |
| 
 | |
|   // Absolute value preserves trailing zero count.
 | |
|   KnownBits KnownAbs(getBitWidth());
 | |
|   KnownAbs.Zero.setLowBits(countMinTrailingZeros());
 | |
| 
 | |
|   // We only know that the absolute values's MSB will be zero if INT_MIN is
 | |
|   // poison, or there is a set bit that isn't the sign bit (otherwise it could
 | |
|   // be INT_MIN).
 | |
|   if (IntMinIsPoison || (!One.isZero() && !One.isMinSignedValue()))
 | |
|     KnownAbs.Zero.setSignBit();
 | |
| 
 | |
|   // FIXME: Handle known negative input?
 | |
|   // FIXME: Calculate the negated Known bits and combine them?
 | |
|   return KnownAbs;
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS,
 | |
|                          bool NoUndefSelfMultiply) {
 | |
|   unsigned BitWidth = LHS.getBitWidth();
 | |
|   assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() &&
 | |
|          !RHS.hasConflict() && "Operand mismatch");
 | |
|   assert((!NoUndefSelfMultiply || LHS == RHS) &&
 | |
|          "Self multiplication knownbits mismatch");
 | |
| 
 | |
|   // Compute the high known-0 bits by multiplying the unsigned max of each side.
 | |
|   // Conservatively, M active bits * N active bits results in M + N bits in the
 | |
|   // result. But if we know a value is a power-of-2 for example, then this
 | |
|   // computes one more leading zero.
 | |
|   // TODO: This could be generalized to number of sign bits (negative numbers).
 | |
|   APInt UMaxLHS = LHS.getMaxValue();
 | |
|   APInt UMaxRHS = RHS.getMaxValue();
 | |
| 
 | |
|   // For leading zeros in the result to be valid, the unsigned max product must
 | |
|   // fit in the bitwidth (it must not overflow).
 | |
|   bool HasOverflow;
 | |
|   APInt UMaxResult = UMaxLHS.umul_ov(UMaxRHS, HasOverflow);
 | |
|   unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countLeadingZeros();
 | |
| 
 | |
|   // The result of the bottom bits of an integer multiply can be
 | |
|   // inferred by looking at the bottom bits of both operands and
 | |
|   // multiplying them together.
 | |
|   // We can infer at least the minimum number of known trailing bits
 | |
|   // of both operands. Depending on number of trailing zeros, we can
 | |
|   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
 | |
|   // a and b are divisible by m and n respectively.
 | |
|   // We then calculate how many of those bits are inferrable and set
 | |
|   // the output. For example, the i8 mul:
 | |
|   //  a = XXXX1100 (12)
 | |
|   //  b = XXXX1110 (14)
 | |
|   // We know the bottom 3 bits are zero since the first can be divided by
 | |
|   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
 | |
|   // Applying the multiplication to the trimmed arguments gets:
 | |
|   //    XX11 (3)
 | |
|   //    X111 (7)
 | |
|   // -------
 | |
|   //    XX11
 | |
|   //   XX11
 | |
|   //  XX11
 | |
|   // XX11
 | |
|   // -------
 | |
|   // XXXXX01
 | |
|   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
 | |
|   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
 | |
|   // The proof for this can be described as:
 | |
|   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
 | |
|   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
 | |
|   //                    umin(countTrailingZeros(C2), C6) +
 | |
|   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
 | |
|   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
 | |
|   // %aa = shl i8 %a, C5
 | |
|   // %bb = shl i8 %b, C6
 | |
|   // %aaa = or i8 %aa, C1
 | |
|   // %bbb = or i8 %bb, C2
 | |
|   // %mul = mul i8 %aaa, %bbb
 | |
|   // %mask = and i8 %mul, C7
 | |
|   //   =>
 | |
|   // %mask = i8 ((C1*C2)&C7)
 | |
|   // Where C5, C6 describe the known bits of %a, %b
 | |
|   // C1, C2 describe the known bottom bits of %a, %b.
 | |
|   // C7 describes the mask of the known bits of the result.
 | |
|   const APInt &Bottom0 = LHS.One;
 | |
|   const APInt &Bottom1 = RHS.One;
 | |
| 
 | |
|   // How many times we'd be able to divide each argument by 2 (shr by 1).
 | |
|   // This gives us the number of trailing zeros on the multiplication result.
 | |
|   unsigned TrailBitsKnown0 = (LHS.Zero | LHS.One).countTrailingOnes();
 | |
|   unsigned TrailBitsKnown1 = (RHS.Zero | RHS.One).countTrailingOnes();
 | |
|   unsigned TrailZero0 = LHS.countMinTrailingZeros();
 | |
|   unsigned TrailZero1 = RHS.countMinTrailingZeros();
 | |
|   unsigned TrailZ = TrailZero0 + TrailZero1;
 | |
| 
 | |
|   // Figure out the fewest known-bits operand.
 | |
|   unsigned SmallestOperand =
 | |
|       std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1);
 | |
|   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
 | |
| 
 | |
|   APInt BottomKnown =
 | |
|       Bottom0.getLoBits(TrailBitsKnown0) * Bottom1.getLoBits(TrailBitsKnown1);
 | |
| 
 | |
|   KnownBits Res(BitWidth);
 | |
|   Res.Zero.setHighBits(LeadZ);
 | |
|   Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
 | |
|   Res.One = BottomKnown.getLoBits(ResultBitsKnown);
 | |
| 
 | |
|   // If we're self-multiplying then bit[1] is guaranteed to be zero.
 | |
|   if (NoUndefSelfMultiply && BitWidth > 1) {
 | |
|     assert(Res.One[1] == 0 &&
 | |
|            "Self-multiplication failed Quadratic Reciprocity!");
 | |
|     Res.Zero.setBit(1);
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::mulhs(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   unsigned BitWidth = LHS.getBitWidth();
 | |
|   assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() &&
 | |
|          !RHS.hasConflict() && "Operand mismatch");
 | |
|   KnownBits WideLHS = LHS.sext(2 * BitWidth);
 | |
|   KnownBits WideRHS = RHS.sext(2 * BitWidth);
 | |
|   return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth);
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::mulhu(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   unsigned BitWidth = LHS.getBitWidth();
 | |
|   assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() &&
 | |
|          !RHS.hasConflict() && "Operand mismatch");
 | |
|   KnownBits WideLHS = LHS.zext(2 * BitWidth);
 | |
|   KnownBits WideRHS = RHS.zext(2 * BitWidth);
 | |
|   return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth);
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::udiv(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   unsigned BitWidth = LHS.getBitWidth();
 | |
|   assert(!LHS.hasConflict() && !RHS.hasConflict());
 | |
|   KnownBits Known(BitWidth);
 | |
| 
 | |
|   // For the purposes of computing leading zeros we can conservatively
 | |
|   // treat a udiv as a logical right shift by the power of 2 known to
 | |
|   // be less than the denominator.
 | |
|   unsigned LeadZ = LHS.countMinLeadingZeros();
 | |
|   unsigned RHSMaxLeadingZeros = RHS.countMaxLeadingZeros();
 | |
| 
 | |
|   if (RHSMaxLeadingZeros != BitWidth)
 | |
|     LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
 | |
| 
 | |
|   Known.Zero.setHighBits(LeadZ);
 | |
|   return Known;
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::urem(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   unsigned BitWidth = LHS.getBitWidth();
 | |
|   assert(!LHS.hasConflict() && !RHS.hasConflict());
 | |
|   KnownBits Known(BitWidth);
 | |
| 
 | |
|   if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) {
 | |
|     // The upper bits are all zero, the lower ones are unchanged.
 | |
|     APInt LowBits = RHS.getConstant() - 1;
 | |
|     Known.Zero = LHS.Zero | ~LowBits;
 | |
|     Known.One = LHS.One & LowBits;
 | |
|     return Known;
 | |
|   }
 | |
| 
 | |
|   // Since the result is less than or equal to either operand, any leading
 | |
|   // zero bits in either operand must also exist in the result.
 | |
|   uint32_t Leaders =
 | |
|       std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingZeros());
 | |
|   Known.Zero.setHighBits(Leaders);
 | |
|   return Known;
 | |
| }
 | |
| 
 | |
| KnownBits KnownBits::srem(const KnownBits &LHS, const KnownBits &RHS) {
 | |
|   unsigned BitWidth = LHS.getBitWidth();
 | |
|   assert(!LHS.hasConflict() && !RHS.hasConflict());
 | |
|   KnownBits Known(BitWidth);
 | |
| 
 | |
|   if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) {
 | |
|     // The low bits of the first operand are unchanged by the srem.
 | |
|     APInt LowBits = RHS.getConstant() - 1;
 | |
|     Known.Zero = LHS.Zero & LowBits;
 | |
|     Known.One = LHS.One & LowBits;
 | |
| 
 | |
|     // If the first operand is non-negative or has all low bits zero, then
 | |
|     // the upper bits are all zero.
 | |
|     if (LHS.isNonNegative() || LowBits.isSubsetOf(LHS.Zero))
 | |
|       Known.Zero |= ~LowBits;
 | |
| 
 | |
|     // If the first operand is negative and not all low bits are zero, then
 | |
|     // the upper bits are all one.
 | |
|     if (LHS.isNegative() && LowBits.intersects(LHS.One))
 | |
|       Known.One |= ~LowBits;
 | |
|     return Known;
 | |
|   }
 | |
| 
 | |
|   // The sign bit is the LHS's sign bit, except when the result of the
 | |
|   // remainder is zero. The magnitude of the result should be less than or
 | |
|   // equal to the magnitude of the LHS. Therefore any leading zeros that exist
 | |
|   // in the left hand side must also exist in the result.
 | |
|   Known.Zero.setHighBits(LHS.countMinLeadingZeros());
 | |
|   return Known;
 | |
| }
 | |
| 
 | |
| KnownBits &KnownBits::operator&=(const KnownBits &RHS) {
 | |
|   // Result bit is 0 if either operand bit is 0.
 | |
|   Zero |= RHS.Zero;
 | |
|   // Result bit is 1 if both operand bits are 1.
 | |
|   One &= RHS.One;
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| KnownBits &KnownBits::operator|=(const KnownBits &RHS) {
 | |
|   // Result bit is 0 if both operand bits are 0.
 | |
|   Zero &= RHS.Zero;
 | |
|   // Result bit is 1 if either operand bit is 1.
 | |
|   One |= RHS.One;
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| KnownBits &KnownBits::operator^=(const KnownBits &RHS) {
 | |
|   // Result bit is 0 if both operand bits are 0 or both are 1.
 | |
|   APInt Z = (Zero & RHS.Zero) | (One & RHS.One);
 | |
|   // Result bit is 1 if one operand bit is 0 and the other is 1.
 | |
|   One = (Zero & RHS.One) | (One & RHS.Zero);
 | |
|   Zero = std::move(Z);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| void KnownBits::print(raw_ostream &OS) const {
 | |
|   OS << "{Zero=" << Zero << ", One=" << One << "}";
 | |
| }
 | |
| void KnownBits::dump() const {
 | |
|   print(dbgs());
 | |
|   dbgs() << "\n";
 | |
| }
 |