344 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			344 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ModuleInliner.cpp - Code related to module inliner -----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the mechanics required to implement inlining without
 | 
						|
// missing any calls in the module level. It doesn't need any infromation about
 | 
						|
// SCC or call graph, which is different from the SCC inliner.  The decisions of
 | 
						|
// which calls are profitable to inline are implemented elsewhere.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO/ModuleInliner.h"
 | 
						|
#include "llvm/ADT/ScopeExit.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/InlineAdvisor.h"
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/Analysis/InlineOrder.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/ProfileSummaryInfo.h"
 | 
						|
#include "llvm/Analysis/ReplayInlineAdvisor.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "module-inline"
 | 
						|
 | 
						|
STATISTIC(NumInlined, "Number of functions inlined");
 | 
						|
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
 | 
						|
 | 
						|
static cl::opt<InlinePriorityMode> UseInlinePriority(
 | 
						|
    "inline-priority-mode", cl::init(InlinePriorityMode::Size), cl::Hidden,
 | 
						|
    cl::desc("Choose the priority mode to use in module inline"),
 | 
						|
    cl::values(clEnumValN(InlinePriorityMode::NoPriority, "no priority",
 | 
						|
                          "Use no priority, visit callsites in bottom-up."),
 | 
						|
               clEnumValN(InlinePriorityMode::Size, "size",
 | 
						|
                          "Use callee size priority."),
 | 
						|
               clEnumValN(InlinePriorityMode::Cost, "cost",
 | 
						|
                          "Use inline cost priority.")));
 | 
						|
 | 
						|
/// Return true if the specified inline history ID
 | 
						|
/// indicates an inline history that includes the specified function.
 | 
						|
static bool inlineHistoryIncludes(
 | 
						|
    Function *F, int InlineHistoryID,
 | 
						|
    const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
 | 
						|
  while (InlineHistoryID != -1) {
 | 
						|
    assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
 | 
						|
           "Invalid inline history ID");
 | 
						|
    if (InlineHistory[InlineHistoryID].first == F)
 | 
						|
      return true;
 | 
						|
    InlineHistoryID = InlineHistory[InlineHistoryID].second;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
InlineAdvisor &ModuleInlinerPass::getAdvisor(const ModuleAnalysisManager &MAM,
 | 
						|
                                             FunctionAnalysisManager &FAM,
 | 
						|
                                             Module &M) {
 | 
						|
  if (OwnedAdvisor)
 | 
						|
    return *OwnedAdvisor;
 | 
						|
 | 
						|
  auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
 | 
						|
  if (!IAA) {
 | 
						|
    // It should still be possible to run the inliner as a stand-alone module
 | 
						|
    // pass, for test scenarios. In that case, we default to the
 | 
						|
    // DefaultInlineAdvisor, which doesn't need to keep state between module
 | 
						|
    // pass runs. It also uses just the default InlineParams. In this case, we
 | 
						|
    // need to use the provided FAM, which is valid for the duration of the
 | 
						|
    // inliner pass, and thus the lifetime of the owned advisor. The one we
 | 
						|
    // would get from the MAM can be invalidated as a result of the inliner's
 | 
						|
    // activity.
 | 
						|
    OwnedAdvisor = std::make_unique<DefaultInlineAdvisor>(
 | 
						|
        M, FAM, Params,
 | 
						|
        InlineContext{LTOPhase, InlinePass::ModuleInliner});
 | 
						|
 | 
						|
    return *OwnedAdvisor;
 | 
						|
  }
 | 
						|
  assert(IAA->getAdvisor() &&
 | 
						|
         "Expected a present InlineAdvisorAnalysis also have an "
 | 
						|
         "InlineAdvisor initialized");
 | 
						|
  return *IAA->getAdvisor();
 | 
						|
}
 | 
						|
 | 
						|
static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
 | 
						|
  LibFunc LF;
 | 
						|
 | 
						|
  // Either this is a normal library function or a "vectorizable"
 | 
						|
  // function.  Not using the VFDatabase here because this query
 | 
						|
  // is related only to libraries handled via the TLI.
 | 
						|
  return TLI.getLibFunc(F, LF) ||
 | 
						|
         TLI.isKnownVectorFunctionInLibrary(F.getName());
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses ModuleInlinerPass::run(Module &M,
 | 
						|
                                         ModuleAnalysisManager &MAM) {
 | 
						|
  LLVM_DEBUG(dbgs() << "---- Module Inliner is Running ---- \n");
 | 
						|
 | 
						|
  auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
 | 
						|
  if (!IAA.tryCreate(
 | 
						|
          Params, Mode, {},
 | 
						|
          InlineContext{LTOPhase, InlinePass::ModuleInliner})) {
 | 
						|
    M.getContext().emitError(
 | 
						|
        "Could not setup Inlining Advisor for the requested "
 | 
						|
        "mode and/or options");
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
 | 
						|
 | 
						|
  FunctionAnalysisManager &FAM =
 | 
						|
      MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
 | 
						|
 | 
						|
  auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
 | 
						|
    return FAM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
  };
 | 
						|
 | 
						|
  InlineAdvisor &Advisor = getAdvisor(MAM, FAM, M);
 | 
						|
  Advisor.onPassEntry();
 | 
						|
 | 
						|
  auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); });
 | 
						|
 | 
						|
  // In the module inliner, a priority-based worklist is used for calls across
 | 
						|
  // the entire Module. With this module inliner, the inline order is not
 | 
						|
  // limited to bottom-up order. More globally scope inline order is enabled.
 | 
						|
  // Also, the inline deferral logic become unnecessary in this module inliner.
 | 
						|
  // It is possible to use other priority heuristics, e.g. profile-based
 | 
						|
  // heuristic.
 | 
						|
  //
 | 
						|
  // TODO: Here is a huge amount duplicate code between the module inliner and
 | 
						|
  // the SCC inliner, which need some refactoring.
 | 
						|
  auto Calls = getInlineOrder(UseInlinePriority, FAM, Params);
 | 
						|
  assert(Calls != nullptr && "Expected an initialized InlineOrder");
 | 
						|
 | 
						|
  // Populate the initial list of calls in this module.
 | 
						|
  for (Function &F : M) {
 | 
						|
    auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | 
						|
    // We want to generally process call sites top-down in order for
 | 
						|
    // simplifications stemming from replacing the call with the returned value
 | 
						|
    // after inlining to be visible to subsequent inlining decisions.
 | 
						|
    // FIXME: Using instructions sequence is a really bad way to do this.
 | 
						|
    // Instead we should do an actual RPO walk of the function body.
 | 
						|
    for (Instruction &I : instructions(F))
 | 
						|
      if (auto *CB = dyn_cast<CallBase>(&I))
 | 
						|
        if (Function *Callee = CB->getCalledFunction()) {
 | 
						|
          if (!Callee->isDeclaration())
 | 
						|
            Calls->push({CB, -1});
 | 
						|
          else if (!isa<IntrinsicInst>(I)) {
 | 
						|
            using namespace ore;
 | 
						|
            setInlineRemark(*CB, "unavailable definition");
 | 
						|
            ORE.emit([&]() {
 | 
						|
              return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
 | 
						|
                     << NV("Callee", Callee) << " will not be inlined into "
 | 
						|
                     << NV("Caller", CB->getCaller())
 | 
						|
                     << " because its definition is unavailable"
 | 
						|
                     << setIsVerbose();
 | 
						|
            });
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
  if (Calls->empty())
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  // When inlining a callee produces new call sites, we want to keep track of
 | 
						|
  // the fact that they were inlined from the callee.  This allows us to avoid
 | 
						|
  // infinite inlining in some obscure cases.  To represent this, we use an
 | 
						|
  // index into the InlineHistory vector.
 | 
						|
  SmallVector<std::pair<Function *, int>, 16> InlineHistory;
 | 
						|
 | 
						|
  // Track a set vector of inlined callees so that we can augment the caller
 | 
						|
  // with all of their edges in the call graph before pruning out the ones that
 | 
						|
  // got simplified away.
 | 
						|
  SmallSetVector<Function *, 4> InlinedCallees;
 | 
						|
 | 
						|
  // Track the dead functions to delete once finished with inlining calls. We
 | 
						|
  // defer deleting these to make it easier to handle the call graph updates.
 | 
						|
  SmallVector<Function *, 4> DeadFunctions;
 | 
						|
 | 
						|
  // Loop forward over all of the calls.
 | 
						|
  while (!Calls->empty()) {
 | 
						|
    // We expect the calls to typically be batched with sequences of calls that
 | 
						|
    // have the same caller, so we first set up some shared infrastructure for
 | 
						|
    // this caller. We also do any pruning we can at this layer on the caller
 | 
						|
    // alone.
 | 
						|
    Function &F = *Calls->front().first->getCaller();
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
 | 
						|
                      << "    Function size: " << F.getInstructionCount()
 | 
						|
                      << "\n");
 | 
						|
 | 
						|
    auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
 | 
						|
      return FAM.getResult<AssumptionAnalysis>(F);
 | 
						|
    };
 | 
						|
 | 
						|
    // Now process as many calls as we have within this caller in the sequence.
 | 
						|
    // We bail out as soon as the caller has to change so we can
 | 
						|
    // prepare the context of that new caller.
 | 
						|
    bool DidInline = false;
 | 
						|
    while (!Calls->empty() && Calls->front().first->getCaller() == &F) {
 | 
						|
      auto P = Calls->pop();
 | 
						|
      CallBase *CB = P.first;
 | 
						|
      const int InlineHistoryID = P.second;
 | 
						|
      Function &Callee = *CB->getCalledFunction();
 | 
						|
 | 
						|
      if (InlineHistoryID != -1 &&
 | 
						|
          inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
 | 
						|
        setInlineRemark(*CB, "recursive");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      auto Advice = Advisor.getAdvice(*CB, /*OnlyMandatory*/ false);
 | 
						|
      // Check whether we want to inline this callsite.
 | 
						|
      if (!Advice->isInliningRecommended()) {
 | 
						|
        Advice->recordUnattemptedInlining();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Setup the data structure used to plumb customization into the
 | 
						|
      // `InlineFunction` routine.
 | 
						|
      InlineFunctionInfo IFI(
 | 
						|
          /*cg=*/nullptr, GetAssumptionCache, PSI,
 | 
						|
          &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
 | 
						|
          &FAM.getResult<BlockFrequencyAnalysis>(Callee));
 | 
						|
 | 
						|
      InlineResult IR =
 | 
						|
          InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller()));
 | 
						|
      if (!IR.isSuccess()) {
 | 
						|
        Advice->recordUnsuccessfulInlining(IR);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      DidInline = true;
 | 
						|
      InlinedCallees.insert(&Callee);
 | 
						|
      ++NumInlined;
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "    Size after inlining: "
 | 
						|
                        << F.getInstructionCount() << "\n");
 | 
						|
 | 
						|
      // Add any new callsites to defined functions to the worklist.
 | 
						|
      if (!IFI.InlinedCallSites.empty()) {
 | 
						|
        int NewHistoryID = InlineHistory.size();
 | 
						|
        InlineHistory.push_back({&Callee, InlineHistoryID});
 | 
						|
 | 
						|
        for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
 | 
						|
          Function *NewCallee = ICB->getCalledFunction();
 | 
						|
          if (!NewCallee) {
 | 
						|
            // Try to promote an indirect (virtual) call without waiting for
 | 
						|
            // the post-inline cleanup and the next DevirtSCCRepeatedPass
 | 
						|
            // iteration because the next iteration may not happen and we may
 | 
						|
            // miss inlining it.
 | 
						|
            if (tryPromoteCall(*ICB))
 | 
						|
              NewCallee = ICB->getCalledFunction();
 | 
						|
          }
 | 
						|
          if (NewCallee)
 | 
						|
            if (!NewCallee->isDeclaration())
 | 
						|
              Calls->push({ICB, NewHistoryID});
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Merge the attributes based on the inlining.
 | 
						|
      AttributeFuncs::mergeAttributesForInlining(F, Callee);
 | 
						|
 | 
						|
      // For local functions, check whether this makes the callee trivially
 | 
						|
      // dead. In that case, we can drop the body of the function eagerly
 | 
						|
      // which may reduce the number of callers of other functions to one,
 | 
						|
      // changing inline cost thresholds.
 | 
						|
      bool CalleeWasDeleted = false;
 | 
						|
      if (Callee.hasLocalLinkage()) {
 | 
						|
        // To check this we also need to nuke any dead constant uses (perhaps
 | 
						|
        // made dead by this operation on other functions).
 | 
						|
        Callee.removeDeadConstantUsers();
 | 
						|
        // if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
 | 
						|
        if (Callee.use_empty() && !isKnownLibFunction(Callee, GetTLI(Callee))) {
 | 
						|
          Calls->erase_if([&](const std::pair<CallBase *, int> &Call) {
 | 
						|
            return Call.first->getCaller() == &Callee;
 | 
						|
          });
 | 
						|
          // Clear the body and queue the function itself for deletion when we
 | 
						|
          // finish inlining.
 | 
						|
          // Note that after this point, it is an error to do anything other
 | 
						|
          // than use the callee's address or delete it.
 | 
						|
          Callee.dropAllReferences();
 | 
						|
          assert(!is_contained(DeadFunctions, &Callee) &&
 | 
						|
                 "Cannot put cause a function to become dead twice!");
 | 
						|
          DeadFunctions.push_back(&Callee);
 | 
						|
          CalleeWasDeleted = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (CalleeWasDeleted)
 | 
						|
        Advice->recordInliningWithCalleeDeleted();
 | 
						|
      else
 | 
						|
        Advice->recordInlining();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!DidInline)
 | 
						|
      continue;
 | 
						|
    Changed = true;
 | 
						|
 | 
						|
    InlinedCallees.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we've finished inlining all of the calls across this module,
 | 
						|
  // delete all of the trivially dead functions.
 | 
						|
  //
 | 
						|
  // Note that this walks a pointer set which has non-deterministic order but
 | 
						|
  // that is OK as all we do is delete things and add pointers to unordered
 | 
						|
  // sets.
 | 
						|
  for (Function *DeadF : DeadFunctions) {
 | 
						|
    // Clear out any cached analyses.
 | 
						|
    FAM.clear(*DeadF, DeadF->getName());
 | 
						|
 | 
						|
    // And delete the actual function from the module.
 | 
						|
    M.getFunctionList().erase(DeadF);
 | 
						|
 | 
						|
    ++NumDeleted;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  return PreservedAnalyses::none();
 | 
						|
}
 |