1561 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1561 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the visit functions for load, store and alloca.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombineInternal.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
 | 
						|
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
 | 
						|
 | 
						|
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
 | 
						|
/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
 | 
						|
/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
 | 
						|
/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
 | 
						|
/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
 | 
						|
/// the alloca, and if the source pointer is a pointer to a constant global, we
 | 
						|
/// can optimize this.
 | 
						|
static bool
 | 
						|
isOnlyCopiedFromConstantMemory(AAResults *AA,
 | 
						|
                               Value *V, MemTransferInst *&TheCopy,
 | 
						|
                               SmallVectorImpl<Instruction *> &ToDelete) {
 | 
						|
  // We track lifetime intrinsics as we encounter them.  If we decide to go
 | 
						|
  // ahead and replace the value with the global, this lets the caller quickly
 | 
						|
  // eliminate the markers.
 | 
						|
 | 
						|
  SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
 | 
						|
  ValuesToInspect.emplace_back(V, false);
 | 
						|
  while (!ValuesToInspect.empty()) {
 | 
						|
    auto ValuePair = ValuesToInspect.pop_back_val();
 | 
						|
    const bool IsOffset = ValuePair.second;
 | 
						|
    for (auto &U : ValuePair.first->uses()) {
 | 
						|
      auto *I = cast<Instruction>(U.getUser());
 | 
						|
 | 
						|
      if (auto *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
        // Ignore non-volatile loads, they are always ok.
 | 
						|
        if (!LI->isSimple()) return false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
 | 
						|
        // If uses of the bitcast are ok, we are ok.
 | 
						|
        ValuesToInspect.emplace_back(I, IsOffset);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
        // If the GEP has all zero indices, it doesn't offset the pointer. If it
 | 
						|
        // doesn't, it does.
 | 
						|
        ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (auto *Call = dyn_cast<CallBase>(I)) {
 | 
						|
        // If this is the function being called then we treat it like a load and
 | 
						|
        // ignore it.
 | 
						|
        if (Call->isCallee(&U))
 | 
						|
          continue;
 | 
						|
 | 
						|
        unsigned DataOpNo = Call->getDataOperandNo(&U);
 | 
						|
        bool IsArgOperand = Call->isArgOperand(&U);
 | 
						|
 | 
						|
        // Inalloca arguments are clobbered by the call.
 | 
						|
        if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
 | 
						|
          return false;
 | 
						|
 | 
						|
        // If this is a readonly/readnone call site, then we know it is just a
 | 
						|
        // load (but one that potentially returns the value itself), so we can
 | 
						|
        // ignore it if we know that the value isn't captured.
 | 
						|
        if (Call->onlyReadsMemory() &&
 | 
						|
            (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If this is being passed as a byval argument, the caller is making a
 | 
						|
        // copy, so it is only a read of the alloca.
 | 
						|
        if (IsArgOperand && Call->isByValArgument(DataOpNo))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Lifetime intrinsics can be handled by the caller.
 | 
						|
      if (I->isLifetimeStartOrEnd()) {
 | 
						|
        assert(I->use_empty() && "Lifetime markers have no result to use!");
 | 
						|
        ToDelete.push_back(I);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is isn't our memcpy/memmove, reject it as something we can't
 | 
						|
      // handle.
 | 
						|
      MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
 | 
						|
      if (!MI)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // If the transfer is using the alloca as a source of the transfer, then
 | 
						|
      // ignore it since it is a load (unless the transfer is volatile).
 | 
						|
      if (U.getOperandNo() == 1) {
 | 
						|
        if (MI->isVolatile()) return false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we already have seen a copy, reject the second one.
 | 
						|
      if (TheCopy) return false;
 | 
						|
 | 
						|
      // If the pointer has been offset from the start of the alloca, we can't
 | 
						|
      // safely handle this.
 | 
						|
      if (IsOffset) return false;
 | 
						|
 | 
						|
      // If the memintrinsic isn't using the alloca as the dest, reject it.
 | 
						|
      if (U.getOperandNo() != 0) return false;
 | 
						|
 | 
						|
      // If the source of the memcpy/move is not a constant global, reject it.
 | 
						|
      if (!AA->pointsToConstantMemory(MI->getSource()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Otherwise, the transform is safe.  Remember the copy instruction.
 | 
						|
      TheCopy = MI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
 | 
						|
/// modified by a copy from a constant global.  If we can prove this, we can
 | 
						|
/// replace any uses of the alloca with uses of the global directly.
 | 
						|
static MemTransferInst *
 | 
						|
isOnlyCopiedFromConstantMemory(AAResults *AA,
 | 
						|
                               AllocaInst *AI,
 | 
						|
                               SmallVectorImpl<Instruction *> &ToDelete) {
 | 
						|
  MemTransferInst *TheCopy = nullptr;
 | 
						|
  if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
 | 
						|
    return TheCopy;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if V is dereferenceable for size of alloca.
 | 
						|
static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
 | 
						|
                                           const DataLayout &DL) {
 | 
						|
  if (AI->isArrayAllocation())
 | 
						|
    return false;
 | 
						|
  uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
 | 
						|
  if (!AllocaSize)
 | 
						|
    return false;
 | 
						|
  return isDereferenceableAndAlignedPointer(V, AI->getAlign(),
 | 
						|
                                            APInt(64, AllocaSize), DL);
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
 | 
						|
                                            AllocaInst &AI) {
 | 
						|
  // Check for array size of 1 (scalar allocation).
 | 
						|
  if (!AI.isArrayAllocation()) {
 | 
						|
    // i32 1 is the canonical array size for scalar allocations.
 | 
						|
    if (AI.getArraySize()->getType()->isIntegerTy(32))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Canonicalize it.
 | 
						|
    return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
 | 
						|
  if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
 | 
						|
    if (C->getValue().getActiveBits() <= 64) {
 | 
						|
      Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
 | 
						|
      AllocaInst *New = IC.Builder.CreateAlloca(NewTy, AI.getAddressSpace(),
 | 
						|
                                                nullptr, AI.getName());
 | 
						|
      New->setAlignment(AI.getAlign());
 | 
						|
 | 
						|
      // Scan to the end of the allocation instructions, to skip over a block of
 | 
						|
      // allocas if possible...also skip interleaved debug info
 | 
						|
      //
 | 
						|
      BasicBlock::iterator It(New);
 | 
						|
      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
 | 
						|
        ++It;
 | 
						|
 | 
						|
      // Now that I is pointing to the first non-allocation-inst in the block,
 | 
						|
      // insert our getelementptr instruction...
 | 
						|
      //
 | 
						|
      Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
 | 
						|
      Value *NullIdx = Constant::getNullValue(IdxTy);
 | 
						|
      Value *Idx[2] = {NullIdx, NullIdx};
 | 
						|
      Instruction *GEP = GetElementPtrInst::CreateInBounds(
 | 
						|
          NewTy, New, Idx, New->getName() + ".sub");
 | 
						|
      IC.InsertNewInstBefore(GEP, *It);
 | 
						|
 | 
						|
      // Now make everything use the getelementptr instead of the original
 | 
						|
      // allocation.
 | 
						|
      return IC.replaceInstUsesWith(AI, GEP);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<UndefValue>(AI.getArraySize()))
 | 
						|
    return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | 
						|
 | 
						|
  // Ensure that the alloca array size argument has type intptr_t, so that
 | 
						|
  // any casting is exposed early.
 | 
						|
  Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
 | 
						|
  if (AI.getArraySize()->getType() != IntPtrTy) {
 | 
						|
    Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
 | 
						|
    return IC.replaceOperand(AI, 0, V);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
// If I and V are pointers in different address space, it is not allowed to
 | 
						|
// use replaceAllUsesWith since I and V have different types. A
 | 
						|
// non-target-specific transformation should not use addrspacecast on V since
 | 
						|
// the two address space may be disjoint depending on target.
 | 
						|
//
 | 
						|
// This class chases down uses of the old pointer until reaching the load
 | 
						|
// instructions, then replaces the old pointer in the load instructions with
 | 
						|
// the new pointer. If during the chasing it sees bitcast or GEP, it will
 | 
						|
// create new bitcast or GEP with the new pointer and use them in the load
 | 
						|
// instruction.
 | 
						|
class PointerReplacer {
 | 
						|
public:
 | 
						|
  PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
 | 
						|
 | 
						|
  bool collectUsers(Instruction &I);
 | 
						|
  void replacePointer(Instruction &I, Value *V);
 | 
						|
 | 
						|
private:
 | 
						|
  void replace(Instruction *I);
 | 
						|
  Value *getReplacement(Value *I);
 | 
						|
 | 
						|
  SmallSetVector<Instruction *, 4> Worklist;
 | 
						|
  MapVector<Value *, Value *> WorkMap;
 | 
						|
  InstCombinerImpl &IC;
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool PointerReplacer::collectUsers(Instruction &I) {
 | 
						|
  for (auto U : I.users()) {
 | 
						|
    auto *Inst = cast<Instruction>(&*U);
 | 
						|
    if (auto *Load = dyn_cast<LoadInst>(Inst)) {
 | 
						|
      if (Load->isVolatile())
 | 
						|
        return false;
 | 
						|
      Worklist.insert(Load);
 | 
						|
    } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
 | 
						|
      Worklist.insert(Inst);
 | 
						|
      if (!collectUsers(*Inst))
 | 
						|
        return false;
 | 
						|
    } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) {
 | 
						|
      if (MI->isVolatile())
 | 
						|
        return false;
 | 
						|
      Worklist.insert(Inst);
 | 
						|
    } else if (Inst->isLifetimeStartOrEnd()) {
 | 
						|
      continue;
 | 
						|
    } else {
 | 
						|
      LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
 | 
						|
 | 
						|
void PointerReplacer::replace(Instruction *I) {
 | 
						|
  if (getReplacement(I))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (auto *LT = dyn_cast<LoadInst>(I)) {
 | 
						|
    auto *V = getReplacement(LT->getPointerOperand());
 | 
						|
    assert(V && "Operand not replaced");
 | 
						|
    auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
 | 
						|
                              LT->getAlign(), LT->getOrdering(),
 | 
						|
                              LT->getSyncScopeID());
 | 
						|
    NewI->takeName(LT);
 | 
						|
    copyMetadataForLoad(*NewI, *LT);
 | 
						|
 | 
						|
    IC.InsertNewInstWith(NewI, *LT);
 | 
						|
    IC.replaceInstUsesWith(*LT, NewI);
 | 
						|
    WorkMap[LT] = NewI;
 | 
						|
  } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
    auto *V = getReplacement(GEP->getPointerOperand());
 | 
						|
    assert(V && "Operand not replaced");
 | 
						|
    SmallVector<Value *, 8> Indices;
 | 
						|
    Indices.append(GEP->idx_begin(), GEP->idx_end());
 | 
						|
    auto *NewI =
 | 
						|
        GetElementPtrInst::Create(GEP->getSourceElementType(), V, Indices);
 | 
						|
    IC.InsertNewInstWith(NewI, *GEP);
 | 
						|
    NewI->takeName(GEP);
 | 
						|
    WorkMap[GEP] = NewI;
 | 
						|
  } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
 | 
						|
    auto *V = getReplacement(BC->getOperand(0));
 | 
						|
    assert(V && "Operand not replaced");
 | 
						|
    auto *NewT = PointerType::getWithSamePointeeType(
 | 
						|
        cast<PointerType>(BC->getType()),
 | 
						|
        V->getType()->getPointerAddressSpace());
 | 
						|
    auto *NewI = new BitCastInst(V, NewT);
 | 
						|
    IC.InsertNewInstWith(NewI, *BC);
 | 
						|
    NewI->takeName(BC);
 | 
						|
    WorkMap[BC] = NewI;
 | 
						|
  } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
 | 
						|
    auto *SrcV = getReplacement(MemCpy->getRawSource());
 | 
						|
    // The pointer may appear in the destination of a copy, but we don't want to
 | 
						|
    // replace it.
 | 
						|
    if (!SrcV) {
 | 
						|
      assert(getReplacement(MemCpy->getRawDest()) &&
 | 
						|
             "destination not in replace list");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    IC.Builder.SetInsertPoint(MemCpy);
 | 
						|
    auto *NewI = IC.Builder.CreateMemTransferInst(
 | 
						|
        MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
 | 
						|
        SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
 | 
						|
        MemCpy->isVolatile());
 | 
						|
    AAMDNodes AAMD = MemCpy->getAAMetadata();
 | 
						|
    if (AAMD)
 | 
						|
      NewI->setAAMetadata(AAMD);
 | 
						|
 | 
						|
    IC.eraseInstFromFunction(*MemCpy);
 | 
						|
    WorkMap[MemCpy] = NewI;
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("should never reach here");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void PointerReplacer::replacePointer(Instruction &I, Value *V) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  auto *PT = cast<PointerType>(I.getType());
 | 
						|
  auto *NT = cast<PointerType>(V->getType());
 | 
						|
  assert(PT != NT && PT->hasSameElementTypeAs(NT) && "Invalid usage");
 | 
						|
#endif
 | 
						|
  WorkMap[&I] = V;
 | 
						|
 | 
						|
  for (Instruction *Workitem : Worklist)
 | 
						|
    replace(Workitem);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
 | 
						|
  if (auto *I = simplifyAllocaArraySize(*this, AI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (AI.getAllocatedType()->isSized()) {
 | 
						|
    // Move all alloca's of zero byte objects to the entry block and merge them
 | 
						|
    // together.  Note that we only do this for alloca's, because malloc should
 | 
						|
    // allocate and return a unique pointer, even for a zero byte allocation.
 | 
						|
    if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
 | 
						|
      // For a zero sized alloca there is no point in doing an array allocation.
 | 
						|
      // This is helpful if the array size is a complicated expression not used
 | 
						|
      // elsewhere.
 | 
						|
      if (AI.isArrayAllocation())
 | 
						|
        return replaceOperand(AI, 0,
 | 
						|
            ConstantInt::get(AI.getArraySize()->getType(), 1));
 | 
						|
 | 
						|
      // Get the first instruction in the entry block.
 | 
						|
      BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
 | 
						|
      Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
 | 
						|
      if (FirstInst != &AI) {
 | 
						|
        // If the entry block doesn't start with a zero-size alloca then move
 | 
						|
        // this one to the start of the entry block.  There is no problem with
 | 
						|
        // dominance as the array size was forced to a constant earlier already.
 | 
						|
        AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
 | 
						|
        if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
 | 
						|
            DL.getTypeAllocSize(EntryAI->getAllocatedType())
 | 
						|
                    .getKnownMinSize() != 0) {
 | 
						|
          AI.moveBefore(FirstInst);
 | 
						|
          return &AI;
 | 
						|
        }
 | 
						|
 | 
						|
        // Replace this zero-sized alloca with the one at the start of the entry
 | 
						|
        // block after ensuring that the address will be aligned enough for both
 | 
						|
        // types.
 | 
						|
        const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
 | 
						|
        EntryAI->setAlignment(MaxAlign);
 | 
						|
        if (AI.getType() != EntryAI->getType())
 | 
						|
          return new BitCastInst(EntryAI, AI.getType());
 | 
						|
        return replaceInstUsesWith(AI, EntryAI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if this allocation is only modified by a memcpy/memmove from
 | 
						|
  // a constant whose alignment is equal to or exceeds that of the allocation.
 | 
						|
  // If this is the case, we can change all users to use the constant global
 | 
						|
  // instead.  This is commonly produced by the CFE by constructs like "void
 | 
						|
  // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
 | 
						|
  // read.
 | 
						|
  SmallVector<Instruction *, 4> ToDelete;
 | 
						|
  if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
 | 
						|
    Value *TheSrc = Copy->getSource();
 | 
						|
    Align AllocaAlign = AI.getAlign();
 | 
						|
    Align SourceAlign = getOrEnforceKnownAlignment(
 | 
						|
      TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
 | 
						|
    if (AllocaAlign <= SourceAlign &&
 | 
						|
        isDereferenceableForAllocaSize(TheSrc, &AI, DL) &&
 | 
						|
        !isa<Instruction>(TheSrc)) {
 | 
						|
      // FIXME: Can we sink instructions without violating dominance when TheSrc
 | 
						|
      // is an instruction instead of a constant or argument?
 | 
						|
      LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
 | 
						|
      LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
 | 
						|
      unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
 | 
						|
      auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
 | 
						|
      if (AI.getAddressSpace() == SrcAddrSpace) {
 | 
						|
        for (Instruction *Delete : ToDelete)
 | 
						|
          eraseInstFromFunction(*Delete);
 | 
						|
 | 
						|
        Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
 | 
						|
        Instruction *NewI = replaceInstUsesWith(AI, Cast);
 | 
						|
        eraseInstFromFunction(*Copy);
 | 
						|
        ++NumGlobalCopies;
 | 
						|
        return NewI;
 | 
						|
      }
 | 
						|
 | 
						|
      PointerReplacer PtrReplacer(*this);
 | 
						|
      if (PtrReplacer.collectUsers(AI)) {
 | 
						|
        for (Instruction *Delete : ToDelete)
 | 
						|
          eraseInstFromFunction(*Delete);
 | 
						|
 | 
						|
        Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
 | 
						|
        PtrReplacer.replacePointer(AI, Cast);
 | 
						|
        ++NumGlobalCopies;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // At last, use the generic allocation site handler to aggressively remove
 | 
						|
  // unused allocas.
 | 
						|
  return visitAllocSite(AI);
 | 
						|
}
 | 
						|
 | 
						|
// Are we allowed to form a atomic load or store of this type?
 | 
						|
static bool isSupportedAtomicType(Type *Ty) {
 | 
						|
  return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
 | 
						|
}
 | 
						|
 | 
						|
/// Helper to combine a load to a new type.
 | 
						|
///
 | 
						|
/// This just does the work of combining a load to a new type. It handles
 | 
						|
/// metadata, etc., and returns the new instruction. The \c NewTy should be the
 | 
						|
/// loaded *value* type. This will convert it to a pointer, cast the operand to
 | 
						|
/// that pointer type, load it, etc.
 | 
						|
///
 | 
						|
/// Note that this will create all of the instructions with whatever insert
 | 
						|
/// point the \c InstCombinerImpl currently is using.
 | 
						|
LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
 | 
						|
                                                 const Twine &Suffix) {
 | 
						|
  assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
 | 
						|
         "can't fold an atomic load to requested type");
 | 
						|
 | 
						|
  Value *Ptr = LI.getPointerOperand();
 | 
						|
  unsigned AS = LI.getPointerAddressSpace();
 | 
						|
  Type *NewPtrTy = NewTy->getPointerTo(AS);
 | 
						|
  Value *NewPtr = nullptr;
 | 
						|
  if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
 | 
						|
        NewPtr->getType() == NewPtrTy))
 | 
						|
    NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy);
 | 
						|
 | 
						|
  LoadInst *NewLoad = Builder.CreateAlignedLoad(
 | 
						|
      NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
 | 
						|
  NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
 | 
						|
  copyMetadataForLoad(*NewLoad, LI);
 | 
						|
  return NewLoad;
 | 
						|
}
 | 
						|
 | 
						|
/// Combine a store to a new type.
 | 
						|
///
 | 
						|
/// Returns the newly created store instruction.
 | 
						|
static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
 | 
						|
                                         Value *V) {
 | 
						|
  assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
 | 
						|
         "can't fold an atomic store of requested type");
 | 
						|
 | 
						|
  Value *Ptr = SI.getPointerOperand();
 | 
						|
  unsigned AS = SI.getPointerAddressSpace();
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
 | 
						|
  SI.getAllMetadata(MD);
 | 
						|
 | 
						|
  StoreInst *NewStore = IC.Builder.CreateAlignedStore(
 | 
						|
      V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
 | 
						|
      SI.getAlign(), SI.isVolatile());
 | 
						|
  NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
 | 
						|
  for (const auto &MDPair : MD) {
 | 
						|
    unsigned ID = MDPair.first;
 | 
						|
    MDNode *N = MDPair.second;
 | 
						|
    // Note, essentially every kind of metadata should be preserved here! This
 | 
						|
    // routine is supposed to clone a store instruction changing *only its
 | 
						|
    // type*. The only metadata it makes sense to drop is metadata which is
 | 
						|
    // invalidated when the pointer type changes. This should essentially
 | 
						|
    // never be the case in LLVM, but we explicitly switch over only known
 | 
						|
    // metadata to be conservatively correct. If you are adding metadata to
 | 
						|
    // LLVM which pertains to stores, you almost certainly want to add it
 | 
						|
    // here.
 | 
						|
    switch (ID) {
 | 
						|
    case LLVMContext::MD_dbg:
 | 
						|
    case LLVMContext::MD_tbaa:
 | 
						|
    case LLVMContext::MD_prof:
 | 
						|
    case LLVMContext::MD_fpmath:
 | 
						|
    case LLVMContext::MD_tbaa_struct:
 | 
						|
    case LLVMContext::MD_alias_scope:
 | 
						|
    case LLVMContext::MD_noalias:
 | 
						|
    case LLVMContext::MD_nontemporal:
 | 
						|
    case LLVMContext::MD_mem_parallel_loop_access:
 | 
						|
    case LLVMContext::MD_access_group:
 | 
						|
      // All of these directly apply.
 | 
						|
      NewStore->setMetadata(ID, N);
 | 
						|
      break;
 | 
						|
    case LLVMContext::MD_invariant_load:
 | 
						|
    case LLVMContext::MD_nonnull:
 | 
						|
    case LLVMContext::MD_noundef:
 | 
						|
    case LLVMContext::MD_range:
 | 
						|
    case LLVMContext::MD_align:
 | 
						|
    case LLVMContext::MD_dereferenceable:
 | 
						|
    case LLVMContext::MD_dereferenceable_or_null:
 | 
						|
      // These don't apply for stores.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NewStore;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if instruction represent minmax pattern like:
 | 
						|
///   select ((cmp load V1, load V2), V1, V2).
 | 
						|
static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
 | 
						|
  assert(V->getType()->isPointerTy() && "Expected pointer type.");
 | 
						|
  // Ignore possible ty* to ixx* bitcast.
 | 
						|
  V = InstCombiner::peekThroughBitcast(V);
 | 
						|
  // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
 | 
						|
  // pattern.
 | 
						|
  CmpInst::Predicate Pred;
 | 
						|
  Instruction *L1;
 | 
						|
  Instruction *L2;
 | 
						|
  Value *LHS;
 | 
						|
  Value *RHS;
 | 
						|
  if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
 | 
						|
                         m_Value(LHS), m_Value(RHS))))
 | 
						|
    return false;
 | 
						|
  LoadTy = L1->getType();
 | 
						|
  return (match(L1, m_Load(m_Specific(LHS))) &&
 | 
						|
          match(L2, m_Load(m_Specific(RHS)))) ||
 | 
						|
         (match(L1, m_Load(m_Specific(RHS))) &&
 | 
						|
          match(L2, m_Load(m_Specific(LHS))));
 | 
						|
}
 | 
						|
 | 
						|
/// Combine loads to match the type of their uses' value after looking
 | 
						|
/// through intervening bitcasts.
 | 
						|
///
 | 
						|
/// The core idea here is that if the result of a load is used in an operation,
 | 
						|
/// we should load the type most conducive to that operation. For example, when
 | 
						|
/// loading an integer and converting that immediately to a pointer, we should
 | 
						|
/// instead directly load a pointer.
 | 
						|
///
 | 
						|
/// However, this routine must never change the width of a load or the number of
 | 
						|
/// loads as that would introduce a semantic change. This combine is expected to
 | 
						|
/// be a semantic no-op which just allows loads to more closely model the types
 | 
						|
/// of their consuming operations.
 | 
						|
///
 | 
						|
/// Currently, we also refuse to change the precise type used for an atomic load
 | 
						|
/// or a volatile load. This is debatable, and might be reasonable to change
 | 
						|
/// later. However, it is risky in case some backend or other part of LLVM is
 | 
						|
/// relying on the exact type loaded to select appropriate atomic operations.
 | 
						|
static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
 | 
						|
                                               LoadInst &LI) {
 | 
						|
  // FIXME: We could probably with some care handle both volatile and ordered
 | 
						|
  // atomic loads here but it isn't clear that this is important.
 | 
						|
  if (!LI.isUnordered())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (LI.use_empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // swifterror values can't be bitcasted.
 | 
						|
  if (LI.getPointerOperand()->isSwiftError())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const DataLayout &DL = IC.getDataLayout();
 | 
						|
 | 
						|
  // Fold away bit casts of the loaded value by loading the desired type.
 | 
						|
  // Note that we should not do this for pointer<->integer casts,
 | 
						|
  // because that would result in type punning.
 | 
						|
  if (LI.hasOneUse()) {
 | 
						|
    // Don't transform when the type is x86_amx, it makes the pass that lower
 | 
						|
    // x86_amx type happy.
 | 
						|
    if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
 | 
						|
      assert(!LI.getType()->isX86_AMXTy() &&
 | 
						|
             "load from x86_amx* should not happen!");
 | 
						|
      if (BC->getType()->isX86_AMXTy())
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
 | 
						|
      if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
 | 
						|
                                    CI->getDestTy()->isPtrOrPtrVectorTy())
 | 
						|
        if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
 | 
						|
          LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
 | 
						|
          CI->replaceAllUsesWith(NewLoad);
 | 
						|
          IC.eraseInstFromFunction(*CI);
 | 
						|
          return &LI;
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We should also canonicalize loads of vectors when their elements are
 | 
						|
  // cast to other types.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
 | 
						|
  // FIXME: We could probably with some care handle both volatile and atomic
 | 
						|
  // stores here but it isn't clear that this is important.
 | 
						|
  if (!LI.isSimple())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *T = LI.getType();
 | 
						|
  if (!T->isAggregateType())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  StringRef Name = LI.getName();
 | 
						|
 | 
						|
  if (auto *ST = dyn_cast<StructType>(T)) {
 | 
						|
    // If the struct only have one element, we unpack.
 | 
						|
    auto NumElements = ST->getNumElements();
 | 
						|
    if (NumElements == 1) {
 | 
						|
      LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
 | 
						|
                                                  ".unpack");
 | 
						|
      NewLoad->setAAMetadata(LI.getAAMetadata());
 | 
						|
      return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
 | 
						|
        PoisonValue::get(T), NewLoad, 0, Name));
 | 
						|
    }
 | 
						|
 | 
						|
    // We don't want to break loads with padding here as we'd loose
 | 
						|
    // the knowledge that padding exists for the rest of the pipeline.
 | 
						|
    const DataLayout &DL = IC.getDataLayout();
 | 
						|
    auto *SL = DL.getStructLayout(ST);
 | 
						|
    if (SL->hasPadding())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    const auto Align = LI.getAlign();
 | 
						|
    auto *Addr = LI.getPointerOperand();
 | 
						|
    auto *IdxType = Type::getInt32Ty(T->getContext());
 | 
						|
    auto *Zero = ConstantInt::get(IdxType, 0);
 | 
						|
 | 
						|
    Value *V = PoisonValue::get(T);
 | 
						|
    for (unsigned i = 0; i < NumElements; i++) {
 | 
						|
      Value *Indices[2] = {
 | 
						|
        Zero,
 | 
						|
        ConstantInt::get(IdxType, i),
 | 
						|
      };
 | 
						|
      auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
 | 
						|
                                               Name + ".elt");
 | 
						|
      auto *L = IC.Builder.CreateAlignedLoad(
 | 
						|
          ST->getElementType(i), Ptr,
 | 
						|
          commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
 | 
						|
      // Propagate AA metadata. It'll still be valid on the narrowed load.
 | 
						|
      L->setAAMetadata(LI.getAAMetadata());
 | 
						|
      V = IC.Builder.CreateInsertValue(V, L, i);
 | 
						|
    }
 | 
						|
 | 
						|
    V->setName(Name);
 | 
						|
    return IC.replaceInstUsesWith(LI, V);
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *AT = dyn_cast<ArrayType>(T)) {
 | 
						|
    auto *ET = AT->getElementType();
 | 
						|
    auto NumElements = AT->getNumElements();
 | 
						|
    if (NumElements == 1) {
 | 
						|
      LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
 | 
						|
      NewLoad->setAAMetadata(LI.getAAMetadata());
 | 
						|
      return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
 | 
						|
        PoisonValue::get(T), NewLoad, 0, Name));
 | 
						|
    }
 | 
						|
 | 
						|
    // Bail out if the array is too large. Ideally we would like to optimize
 | 
						|
    // arrays of arbitrary size but this has a terrible impact on compile time.
 | 
						|
    // The threshold here is chosen arbitrarily, maybe needs a little bit of
 | 
						|
    // tuning.
 | 
						|
    if (NumElements > IC.MaxArraySizeForCombine)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    const DataLayout &DL = IC.getDataLayout();
 | 
						|
    auto EltSize = DL.getTypeAllocSize(ET);
 | 
						|
    const auto Align = LI.getAlign();
 | 
						|
 | 
						|
    auto *Addr = LI.getPointerOperand();
 | 
						|
    auto *IdxType = Type::getInt64Ty(T->getContext());
 | 
						|
    auto *Zero = ConstantInt::get(IdxType, 0);
 | 
						|
 | 
						|
    Value *V = PoisonValue::get(T);
 | 
						|
    uint64_t Offset = 0;
 | 
						|
    for (uint64_t i = 0; i < NumElements; i++) {
 | 
						|
      Value *Indices[2] = {
 | 
						|
        Zero,
 | 
						|
        ConstantInt::get(IdxType, i),
 | 
						|
      };
 | 
						|
      auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
 | 
						|
                                               Name + ".elt");
 | 
						|
      auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
 | 
						|
                                             commonAlignment(Align, Offset),
 | 
						|
                                             Name + ".unpack");
 | 
						|
      L->setAAMetadata(LI.getAAMetadata());
 | 
						|
      V = IC.Builder.CreateInsertValue(V, L, i);
 | 
						|
      Offset += EltSize;
 | 
						|
    }
 | 
						|
 | 
						|
    V->setName(Name);
 | 
						|
    return IC.replaceInstUsesWith(LI, V);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// If we can determine that all possible objects pointed to by the provided
 | 
						|
// pointer value are, not only dereferenceable, but also definitively less than
 | 
						|
// or equal to the provided maximum size, then return true. Otherwise, return
 | 
						|
// false (constant global values and allocas fall into this category).
 | 
						|
//
 | 
						|
// FIXME: This should probably live in ValueTracking (or similar).
 | 
						|
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
 | 
						|
                                     const DataLayout &DL) {
 | 
						|
  SmallPtrSet<Value *, 4> Visited;
 | 
						|
  SmallVector<Value *, 4> Worklist(1, V);
 | 
						|
 | 
						|
  do {
 | 
						|
    Value *P = Worklist.pop_back_val();
 | 
						|
    P = P->stripPointerCasts();
 | 
						|
 | 
						|
    if (!Visited.insert(P).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
 | 
						|
      Worklist.push_back(SI->getTrueValue());
 | 
						|
      Worklist.push_back(SI->getFalseValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(P)) {
 | 
						|
      append_range(Worklist, PN->incoming_values());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
 | 
						|
      if (GA->isInterposable())
 | 
						|
        return false;
 | 
						|
      Worklist.push_back(GA->getAliasee());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we know how big this object is, and it is less than MaxSize, continue
 | 
						|
    // searching. Otherwise, return false.
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
 | 
						|
      if (!AI->getAllocatedType()->isSized())
 | 
						|
        return false;
 | 
						|
 | 
						|
      ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
 | 
						|
      if (!CS)
 | 
						|
        return false;
 | 
						|
 | 
						|
      uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
 | 
						|
      // Make sure that, even if the multiplication below would wrap as an
 | 
						|
      // uint64_t, we still do the right thing.
 | 
						|
      if ((CS->getValue().zext(128) * APInt(128, TypeSize)).ugt(MaxSize))
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
 | 
						|
      if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
 | 
						|
        return false;
 | 
						|
 | 
						|
      uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
 | 
						|
      if (InitSize > MaxSize)
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  } while (!Worklist.empty());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// If we're indexing into an object of a known size, and the outer index is
 | 
						|
// not a constant, but having any value but zero would lead to undefined
 | 
						|
// behavior, replace it with zero.
 | 
						|
//
 | 
						|
// For example, if we have:
 | 
						|
// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
 | 
						|
// ...
 | 
						|
// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
 | 
						|
// ... = load i32* %arrayidx, align 4
 | 
						|
// Then we know that we can replace %x in the GEP with i64 0.
 | 
						|
//
 | 
						|
// FIXME: We could fold any GEP index to zero that would cause UB if it were
 | 
						|
// not zero. Currently, we only handle the first such index. Also, we could
 | 
						|
// also search through non-zero constant indices if we kept track of the
 | 
						|
// offsets those indices implied.
 | 
						|
static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
 | 
						|
                                     GetElementPtrInst *GEPI, Instruction *MemI,
 | 
						|
                                     unsigned &Idx) {
 | 
						|
  if (GEPI->getNumOperands() < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the first non-zero index of a GEP. If all indices are zero, return
 | 
						|
  // one past the last index.
 | 
						|
  auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
 | 
						|
    unsigned I = 1;
 | 
						|
    for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
 | 
						|
      Value *V = GEPI->getOperand(I);
 | 
						|
      if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | 
						|
        if (CI->isZero())
 | 
						|
          continue;
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return I;
 | 
						|
  };
 | 
						|
 | 
						|
  // Skip through initial 'zero' indices, and find the corresponding pointer
 | 
						|
  // type. See if the next index is not a constant.
 | 
						|
  Idx = FirstNZIdx(GEPI);
 | 
						|
  if (Idx == GEPI->getNumOperands())
 | 
						|
    return false;
 | 
						|
  if (isa<Constant>(GEPI->getOperand(Idx)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
 | 
						|
  Type *SourceElementType = GEPI->getSourceElementType();
 | 
						|
  // Size information about scalable vectors is not available, so we cannot
 | 
						|
  // deduce whether indexing at n is undefined behaviour or not. Bail out.
 | 
						|
  if (isa<ScalableVectorType>(SourceElementType))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
 | 
						|
  if (!AllocTy || !AllocTy->isSized())
 | 
						|
    return false;
 | 
						|
  const DataLayout &DL = IC.getDataLayout();
 | 
						|
  uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize();
 | 
						|
 | 
						|
  // If there are more indices after the one we might replace with a zero, make
 | 
						|
  // sure they're all non-negative. If any of them are negative, the overall
 | 
						|
  // address being computed might be before the base address determined by the
 | 
						|
  // first non-zero index.
 | 
						|
  auto IsAllNonNegative = [&]() {
 | 
						|
    for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
 | 
						|
      KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
 | 
						|
      if (Known.isNonNegative())
 | 
						|
        continue;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  // FIXME: If the GEP is not inbounds, and there are extra indices after the
 | 
						|
  // one we'll replace, those could cause the address computation to wrap
 | 
						|
  // (rendering the IsAllNonNegative() check below insufficient). We can do
 | 
						|
  // better, ignoring zero indices (and other indices we can prove small
 | 
						|
  // enough not to wrap).
 | 
						|
  if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
 | 
						|
  // also known to be dereferenceable.
 | 
						|
  return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
 | 
						|
         IsAllNonNegative();
 | 
						|
}
 | 
						|
 | 
						|
// If we're indexing into an object with a variable index for the memory
 | 
						|
// access, but the object has only one element, we can assume that the index
 | 
						|
// will always be zero. If we replace the GEP, return it.
 | 
						|
template <typename T>
 | 
						|
static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
 | 
						|
                                          T &MemI) {
 | 
						|
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
 | 
						|
    unsigned Idx;
 | 
						|
    if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
 | 
						|
      Instruction *NewGEPI = GEPI->clone();
 | 
						|
      NewGEPI->setOperand(Idx,
 | 
						|
        ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
 | 
						|
      NewGEPI->insertBefore(GEPI);
 | 
						|
      MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
 | 
						|
      return NewGEPI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
 | 
						|
  if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *Ptr = SI.getPointerOperand();
 | 
						|
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
 | 
						|
    Ptr = GEPI->getOperand(0);
 | 
						|
  return (isa<ConstantPointerNull>(Ptr) &&
 | 
						|
          !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
 | 
						|
}
 | 
						|
 | 
						|
static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
 | 
						|
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
 | 
						|
    const Value *GEPI0 = GEPI->getOperand(0);
 | 
						|
    if (isa<ConstantPointerNull>(GEPI0) &&
 | 
						|
        !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  if (isa<UndefValue>(Op) ||
 | 
						|
      (isa<ConstantPointerNull>(Op) &&
 | 
						|
       !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
 | 
						|
  Value *Op = LI.getOperand(0);
 | 
						|
 | 
						|
  // Try to canonicalize the loaded type.
 | 
						|
  if (Instruction *Res = combineLoadToOperationType(*this, LI))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Attempt to improve the alignment.
 | 
						|
  Align KnownAlign = getOrEnforceKnownAlignment(
 | 
						|
      Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
 | 
						|
  if (KnownAlign > LI.getAlign())
 | 
						|
    LI.setAlignment(KnownAlign);
 | 
						|
 | 
						|
  // Replace GEP indices if possible.
 | 
						|
  if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
 | 
						|
      Worklist.push(NewGEPI);
 | 
						|
      return &LI;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *Res = unpackLoadToAggregate(*this, LI))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Do really simple store-to-load forwarding and load CSE, to catch cases
 | 
						|
  // where there are several consecutive memory accesses to the same location,
 | 
						|
  // separated by a few arithmetic operations.
 | 
						|
  bool IsLoadCSE = false;
 | 
						|
  if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) {
 | 
						|
    if (IsLoadCSE)
 | 
						|
      combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
 | 
						|
 | 
						|
    return replaceInstUsesWith(
 | 
						|
        LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
 | 
						|
                                           LI.getName() + ".cast"));
 | 
						|
  }
 | 
						|
 | 
						|
  // None of the following transforms are legal for volatile/ordered atomic
 | 
						|
  // loads.  Most of them do apply for unordered atomics.
 | 
						|
  if (!LI.isUnordered()) return nullptr;
 | 
						|
 | 
						|
  // load(gep null, ...) -> unreachable
 | 
						|
  // load null/undef -> unreachable
 | 
						|
  // TODO: Consider a target hook for valid address spaces for this xforms.
 | 
						|
  if (canSimplifyNullLoadOrGEP(LI, Op)) {
 | 
						|
    // Insert a new store to null instruction before the load to indicate
 | 
						|
    // that this code is not reachable.  We do this instead of inserting
 | 
						|
    // an unreachable instruction directly because we cannot modify the
 | 
						|
    // CFG.
 | 
						|
    StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()),
 | 
						|
                                  Constant::getNullValue(Op->getType()), &LI);
 | 
						|
    SI->setDebugLoc(LI.getDebugLoc());
 | 
						|
    return replaceInstUsesWith(LI, PoisonValue::get(LI.getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op->hasOneUse()) {
 | 
						|
    // Change select and PHI nodes to select values instead of addresses: this
 | 
						|
    // helps alias analysis out a lot, allows many others simplifications, and
 | 
						|
    // exposes redundancy in the code.
 | 
						|
    //
 | 
						|
    // Note that we cannot do the transformation unless we know that the
 | 
						|
    // introduced loads cannot trap!  Something like this is valid as long as
 | 
						|
    // the condition is always false: load (select bool %C, int* null, int* %G),
 | 
						|
    // but it would not be valid if we transformed it to load from null
 | 
						|
    // unconditionally.
 | 
						|
    //
 | 
						|
    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
 | 
						|
      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
 | 
						|
      Align Alignment = LI.getAlign();
 | 
						|
      if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
 | 
						|
                                      Alignment, DL, SI) &&
 | 
						|
          isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
 | 
						|
                                      Alignment, DL, SI)) {
 | 
						|
        LoadInst *V1 =
 | 
						|
            Builder.CreateLoad(LI.getType(), SI->getOperand(1),
 | 
						|
                               SI->getOperand(1)->getName() + ".val");
 | 
						|
        LoadInst *V2 =
 | 
						|
            Builder.CreateLoad(LI.getType(), SI->getOperand(2),
 | 
						|
                               SI->getOperand(2)->getName() + ".val");
 | 
						|
        assert(LI.isUnordered() && "implied by above");
 | 
						|
        V1->setAlignment(Alignment);
 | 
						|
        V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
 | 
						|
        V2->setAlignment(Alignment);
 | 
						|
        V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
 | 
						|
        return SelectInst::Create(SI->getCondition(), V1, V2);
 | 
						|
      }
 | 
						|
 | 
						|
      // load (select (cond, null, P)) -> load P
 | 
						|
      if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
 | 
						|
          !NullPointerIsDefined(SI->getFunction(),
 | 
						|
                                LI.getPointerAddressSpace()))
 | 
						|
        return replaceOperand(LI, 0, SI->getOperand(2));
 | 
						|
 | 
						|
      // load (select (cond, P, null)) -> load P
 | 
						|
      if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
 | 
						|
          !NullPointerIsDefined(SI->getFunction(),
 | 
						|
                                LI.getPointerAddressSpace()))
 | 
						|
        return replaceOperand(LI, 0, SI->getOperand(1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Look for extractelement/insertvalue sequence that acts like a bitcast.
 | 
						|
///
 | 
						|
/// \returns underlying value that was "cast", or nullptr otherwise.
 | 
						|
///
 | 
						|
/// For example, if we have:
 | 
						|
///
 | 
						|
///     %E0 = extractelement <2 x double> %U, i32 0
 | 
						|
///     %V0 = insertvalue [2 x double] undef, double %E0, 0
 | 
						|
///     %E1 = extractelement <2 x double> %U, i32 1
 | 
						|
///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
 | 
						|
///
 | 
						|
/// and the layout of a <2 x double> is isomorphic to a [2 x double],
 | 
						|
/// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
 | 
						|
/// Note that %U may contain non-undef values where %V1 has undef.
 | 
						|
static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
 | 
						|
  Value *U = nullptr;
 | 
						|
  while (auto *IV = dyn_cast<InsertValueInst>(V)) {
 | 
						|
    auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
 | 
						|
    if (!E)
 | 
						|
      return nullptr;
 | 
						|
    auto *W = E->getVectorOperand();
 | 
						|
    if (!U)
 | 
						|
      U = W;
 | 
						|
    else if (U != W)
 | 
						|
      return nullptr;
 | 
						|
    auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
 | 
						|
    if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
 | 
						|
      return nullptr;
 | 
						|
    V = IV->getAggregateOperand();
 | 
						|
  }
 | 
						|
  if (!match(V, m_Undef()) || !U)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *UT = cast<VectorType>(U->getType());
 | 
						|
  auto *VT = V->getType();
 | 
						|
  // Check that types UT and VT are bitwise isomorphic.
 | 
						|
  const auto &DL = IC.getDataLayout();
 | 
						|
  if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  if (auto *AT = dyn_cast<ArrayType>(VT)) {
 | 
						|
    if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
 | 
						|
      return nullptr;
 | 
						|
  } else {
 | 
						|
    auto *ST = cast<StructType>(VT);
 | 
						|
    if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
 | 
						|
      return nullptr;
 | 
						|
    for (const auto *EltT : ST->elements()) {
 | 
						|
      if (EltT != UT->getElementType())
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return U;
 | 
						|
}
 | 
						|
 | 
						|
/// Combine stores to match the type of value being stored.
 | 
						|
///
 | 
						|
/// The core idea here is that the memory does not have any intrinsic type and
 | 
						|
/// where we can we should match the type of a store to the type of value being
 | 
						|
/// stored.
 | 
						|
///
 | 
						|
/// However, this routine must never change the width of a store or the number of
 | 
						|
/// stores as that would introduce a semantic change. This combine is expected to
 | 
						|
/// be a semantic no-op which just allows stores to more closely model the types
 | 
						|
/// of their incoming values.
 | 
						|
///
 | 
						|
/// Currently, we also refuse to change the precise type used for an atomic or
 | 
						|
/// volatile store. This is debatable, and might be reasonable to change later.
 | 
						|
/// However, it is risky in case some backend or other part of LLVM is relying
 | 
						|
/// on the exact type stored to select appropriate atomic operations.
 | 
						|
///
 | 
						|
/// \returns true if the store was successfully combined away. This indicates
 | 
						|
/// the caller must erase the store instruction. We have to let the caller erase
 | 
						|
/// the store instruction as otherwise there is no way to signal whether it was
 | 
						|
/// combined or not: IC.EraseInstFromFunction returns a null pointer.
 | 
						|
static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
 | 
						|
  // FIXME: We could probably with some care handle both volatile and ordered
 | 
						|
  // atomic stores here but it isn't clear that this is important.
 | 
						|
  if (!SI.isUnordered())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // swifterror values can't be bitcasted.
 | 
						|
  if (SI.getPointerOperand()->isSwiftError())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *V = SI.getValueOperand();
 | 
						|
 | 
						|
  // Fold away bit casts of the stored value by storing the original type.
 | 
						|
  if (auto *BC = dyn_cast<BitCastInst>(V)) {
 | 
						|
    assert(!BC->getType()->isX86_AMXTy() &&
 | 
						|
           "store to x86_amx* should not happen!");
 | 
						|
    V = BC->getOperand(0);
 | 
						|
    // Don't transform when the type is x86_amx, it makes the pass that lower
 | 
						|
    // x86_amx type happy.
 | 
						|
    if (V->getType()->isX86_AMXTy())
 | 
						|
      return false;
 | 
						|
    if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
 | 
						|
      combineStoreToNewValue(IC, SI, V);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *U = likeBitCastFromVector(IC, V))
 | 
						|
    if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
 | 
						|
      combineStoreToNewValue(IC, SI, U);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  // FIXME: We should also canonicalize stores of vectors when their elements
 | 
						|
  // are cast to other types.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
 | 
						|
  // FIXME: We could probably with some care handle both volatile and atomic
 | 
						|
  // stores here but it isn't clear that this is important.
 | 
						|
  if (!SI.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *V = SI.getValueOperand();
 | 
						|
  Type *T = V->getType();
 | 
						|
 | 
						|
  if (!T->isAggregateType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (auto *ST = dyn_cast<StructType>(T)) {
 | 
						|
    // If the struct only have one element, we unpack.
 | 
						|
    unsigned Count = ST->getNumElements();
 | 
						|
    if (Count == 1) {
 | 
						|
      V = IC.Builder.CreateExtractValue(V, 0);
 | 
						|
      combineStoreToNewValue(IC, SI, V);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // We don't want to break loads with padding here as we'd loose
 | 
						|
    // the knowledge that padding exists for the rest of the pipeline.
 | 
						|
    const DataLayout &DL = IC.getDataLayout();
 | 
						|
    auto *SL = DL.getStructLayout(ST);
 | 
						|
    if (SL->hasPadding())
 | 
						|
      return false;
 | 
						|
 | 
						|
    const auto Align = SI.getAlign();
 | 
						|
 | 
						|
    SmallString<16> EltName = V->getName();
 | 
						|
    EltName += ".elt";
 | 
						|
    auto *Addr = SI.getPointerOperand();
 | 
						|
    SmallString<16> AddrName = Addr->getName();
 | 
						|
    AddrName += ".repack";
 | 
						|
 | 
						|
    auto *IdxType = Type::getInt32Ty(ST->getContext());
 | 
						|
    auto *Zero = ConstantInt::get(IdxType, 0);
 | 
						|
    for (unsigned i = 0; i < Count; i++) {
 | 
						|
      Value *Indices[2] = {
 | 
						|
        Zero,
 | 
						|
        ConstantInt::get(IdxType, i),
 | 
						|
      };
 | 
						|
      auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
 | 
						|
                                               AddrName);
 | 
						|
      auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
 | 
						|
      auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
 | 
						|
      llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
 | 
						|
      NS->setAAMetadata(SI.getAAMetadata());
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *AT = dyn_cast<ArrayType>(T)) {
 | 
						|
    // If the array only have one element, we unpack.
 | 
						|
    auto NumElements = AT->getNumElements();
 | 
						|
    if (NumElements == 1) {
 | 
						|
      V = IC.Builder.CreateExtractValue(V, 0);
 | 
						|
      combineStoreToNewValue(IC, SI, V);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Bail out if the array is too large. Ideally we would like to optimize
 | 
						|
    // arrays of arbitrary size but this has a terrible impact on compile time.
 | 
						|
    // The threshold here is chosen arbitrarily, maybe needs a little bit of
 | 
						|
    // tuning.
 | 
						|
    if (NumElements > IC.MaxArraySizeForCombine)
 | 
						|
      return false;
 | 
						|
 | 
						|
    const DataLayout &DL = IC.getDataLayout();
 | 
						|
    auto EltSize = DL.getTypeAllocSize(AT->getElementType());
 | 
						|
    const auto Align = SI.getAlign();
 | 
						|
 | 
						|
    SmallString<16> EltName = V->getName();
 | 
						|
    EltName += ".elt";
 | 
						|
    auto *Addr = SI.getPointerOperand();
 | 
						|
    SmallString<16> AddrName = Addr->getName();
 | 
						|
    AddrName += ".repack";
 | 
						|
 | 
						|
    auto *IdxType = Type::getInt64Ty(T->getContext());
 | 
						|
    auto *Zero = ConstantInt::get(IdxType, 0);
 | 
						|
 | 
						|
    uint64_t Offset = 0;
 | 
						|
    for (uint64_t i = 0; i < NumElements; i++) {
 | 
						|
      Value *Indices[2] = {
 | 
						|
        Zero,
 | 
						|
        ConstantInt::get(IdxType, i),
 | 
						|
      };
 | 
						|
      auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
 | 
						|
                                               AddrName);
 | 
						|
      auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
 | 
						|
      auto EltAlign = commonAlignment(Align, Offset);
 | 
						|
      Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
 | 
						|
      NS->setAAMetadata(SI.getAAMetadata());
 | 
						|
      Offset += EltSize;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// equivalentAddressValues - Test if A and B will obviously have the same
 | 
						|
/// value. This includes recognizing that %t0 and %t1 will have the same
 | 
						|
/// value in code like this:
 | 
						|
///   %t0 = getelementptr \@a, 0, 3
 | 
						|
///   store i32 0, i32* %t0
 | 
						|
///   %t1 = getelementptr \@a, 0, 3
 | 
						|
///   %t2 = load i32* %t1
 | 
						|
///
 | 
						|
static bool equivalentAddressValues(Value *A, Value *B) {
 | 
						|
  // Test if the values are trivially equivalent.
 | 
						|
  if (A == B) return true;
 | 
						|
 | 
						|
  // Test if the values come form identical arithmetic instructions.
 | 
						|
  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
 | 
						|
  // its only used to compare two uses within the same basic block, which
 | 
						|
  // means that they'll always either have the same value or one of them
 | 
						|
  // will have an undefined value.
 | 
						|
  if (isa<BinaryOperator>(A) ||
 | 
						|
      isa<CastInst>(A) ||
 | 
						|
      isa<PHINode>(A) ||
 | 
						|
      isa<GetElementPtrInst>(A))
 | 
						|
    if (Instruction *BI = dyn_cast<Instruction>(B))
 | 
						|
      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
 | 
						|
        return true;
 | 
						|
 | 
						|
  // Otherwise they may not be equivalent.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Converts store (bitcast (load (bitcast (select ...)))) to
 | 
						|
/// store (load (select ...)), where select is minmax:
 | 
						|
/// select ((cmp load V1, load V2), V1, V2).
 | 
						|
static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
 | 
						|
                                                StoreInst &SI) {
 | 
						|
  // bitcast?
 | 
						|
  if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
 | 
						|
    return false;
 | 
						|
  // load? integer?
 | 
						|
  Value *LoadAddr;
 | 
						|
  if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
 | 
						|
    return false;
 | 
						|
  auto *LI = cast<LoadInst>(SI.getValueOperand());
 | 
						|
  if (!LI->getType()->isIntegerTy())
 | 
						|
    return false;
 | 
						|
  Type *CmpLoadTy;
 | 
						|
  if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure the type would actually change.
 | 
						|
  // This condition can be hit with chains of bitcasts.
 | 
						|
  if (LI->getType() == CmpLoadTy)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure we're not changing the size of the load/store.
 | 
						|
  const auto &DL = IC.getDataLayout();
 | 
						|
  if (DL.getTypeStoreSizeInBits(LI->getType()) !=
 | 
						|
      DL.getTypeStoreSizeInBits(CmpLoadTy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
 | 
						|
        auto *SI = dyn_cast<StoreInst>(U);
 | 
						|
        return SI && SI->getPointerOperand() != LI &&
 | 
						|
               InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
 | 
						|
                   LoadAddr &&
 | 
						|
               !SI->getPointerOperand()->isSwiftError();
 | 
						|
      }))
 | 
						|
    return false;
 | 
						|
 | 
						|
  IC.Builder.SetInsertPoint(LI);
 | 
						|
  LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
 | 
						|
  // Replace all the stores with stores of the newly loaded value.
 | 
						|
  for (auto *UI : LI->users()) {
 | 
						|
    auto *USI = cast<StoreInst>(UI);
 | 
						|
    IC.Builder.SetInsertPoint(USI);
 | 
						|
    combineStoreToNewValue(IC, *USI, NewLI);
 | 
						|
  }
 | 
						|
  IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
 | 
						|
  IC.eraseInstFromFunction(*LI);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
 | 
						|
  Value *Val = SI.getOperand(0);
 | 
						|
  Value *Ptr = SI.getOperand(1);
 | 
						|
 | 
						|
  // Try to canonicalize the stored type.
 | 
						|
  if (combineStoreToValueType(*this, SI))
 | 
						|
    return eraseInstFromFunction(SI);
 | 
						|
 | 
						|
  // Attempt to improve the alignment.
 | 
						|
  const Align KnownAlign = getOrEnforceKnownAlignment(
 | 
						|
      Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
 | 
						|
  if (KnownAlign > SI.getAlign())
 | 
						|
    SI.setAlignment(KnownAlign);
 | 
						|
 | 
						|
  // Try to canonicalize the stored type.
 | 
						|
  if (unpackStoreToAggregate(*this, SI))
 | 
						|
    return eraseInstFromFunction(SI);
 | 
						|
 | 
						|
  if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
 | 
						|
    return eraseInstFromFunction(SI);
 | 
						|
 | 
						|
  // Replace GEP indices if possible.
 | 
						|
  if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
 | 
						|
      Worklist.push(NewGEPI);
 | 
						|
      return &SI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't hack volatile/ordered stores.
 | 
						|
  // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
 | 
						|
  if (!SI.isUnordered()) return nullptr;
 | 
						|
 | 
						|
  // If the RHS is an alloca with a single use, zapify the store, making the
 | 
						|
  // alloca dead.
 | 
						|
  if (Ptr->hasOneUse()) {
 | 
						|
    if (isa<AllocaInst>(Ptr))
 | 
						|
      return eraseInstFromFunction(SI);
 | 
						|
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
 | 
						|
      if (isa<AllocaInst>(GEP->getOperand(0))) {
 | 
						|
        if (GEP->getOperand(0)->hasOneUse())
 | 
						|
          return eraseInstFromFunction(SI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a store to a location which is known constant, we can conclude
 | 
						|
  // that the store must be storing the constant value (else the memory
 | 
						|
  // wouldn't be constant), and this must be a noop.
 | 
						|
  if (AA->pointsToConstantMemory(Ptr))
 | 
						|
    return eraseInstFromFunction(SI);
 | 
						|
 | 
						|
  // Do really simple DSE, to catch cases where there are several consecutive
 | 
						|
  // stores to the same location, separated by a few arithmetic operations. This
 | 
						|
  // situation often occurs with bitfield accesses.
 | 
						|
  BasicBlock::iterator BBI(SI);
 | 
						|
  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
 | 
						|
       --ScanInsts) {
 | 
						|
    --BBI;
 | 
						|
    // Don't count debug info directives, lest they affect codegen,
 | 
						|
    // and we skip pointer-to-pointer bitcasts, which are NOPs.
 | 
						|
    if (BBI->isDebugOrPseudoInst() ||
 | 
						|
        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
 | 
						|
      ScanInsts++;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
 | 
						|
      // Prev store isn't volatile, and stores to the same location?
 | 
						|
      if (PrevSI->isUnordered() &&
 | 
						|
          equivalentAddressValues(PrevSI->getOperand(1), SI.getOperand(1)) &&
 | 
						|
          PrevSI->getValueOperand()->getType() ==
 | 
						|
              SI.getValueOperand()->getType()) {
 | 
						|
        ++NumDeadStore;
 | 
						|
        // Manually add back the original store to the worklist now, so it will
 | 
						|
        // be processed after the operands of the removed store, as this may
 | 
						|
        // expose additional DSE opportunities.
 | 
						|
        Worklist.push(&SI);
 | 
						|
        eraseInstFromFunction(*PrevSI);
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a load, we have to stop.  However, if the loaded value is from
 | 
						|
    // the pointer we're loading and is producing the pointer we're storing,
 | 
						|
    // then *this* store is dead (X = load P; store X -> P).
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | 
						|
      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
 | 
						|
        assert(SI.isUnordered() && "can't eliminate ordering operation");
 | 
						|
        return eraseInstFromFunction(SI);
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, this is a load from some other location.  Stores before it
 | 
						|
      // may not be dead.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't skip over loads, throws or things that can modify memory.
 | 
						|
    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // store X, null    -> turns into 'unreachable' in SimplifyCFG
 | 
						|
  // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
 | 
						|
  if (canSimplifyNullStoreOrGEP(SI)) {
 | 
						|
    if (!isa<PoisonValue>(Val))
 | 
						|
      return replaceOperand(SI, 0, PoisonValue::get(Val->getType()));
 | 
						|
    return nullptr;  // Do not modify these!
 | 
						|
  }
 | 
						|
 | 
						|
  // store undef, Ptr -> noop
 | 
						|
  // FIXME: This is technically incorrect because it might overwrite a poison
 | 
						|
  // value. Change to PoisonValue once #52930 is resolved.
 | 
						|
  if (isa<UndefValue>(Val))
 | 
						|
    return eraseInstFromFunction(SI);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to transform:
 | 
						|
///   if () { *P = v1; } else { *P = v2 }
 | 
						|
/// or:
 | 
						|
///   *P = v1; if () { *P = v2; }
 | 
						|
/// into a phi node with a store in the successor.
 | 
						|
bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
 | 
						|
  if (!SI.isUnordered())
 | 
						|
    return false; // This code has not been audited for volatile/ordered case.
 | 
						|
 | 
						|
  // Check if the successor block has exactly 2 incoming edges.
 | 
						|
  BasicBlock *StoreBB = SI.getParent();
 | 
						|
  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
 | 
						|
  if (!DestBB->hasNPredecessors(2))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Capture the other block (the block that doesn't contain our store).
 | 
						|
  pred_iterator PredIter = pred_begin(DestBB);
 | 
						|
  if (*PredIter == StoreBB)
 | 
						|
    ++PredIter;
 | 
						|
  BasicBlock *OtherBB = *PredIter;
 | 
						|
 | 
						|
  // Bail out if all of the relevant blocks aren't distinct. This can happen,
 | 
						|
  // for example, if SI is in an infinite loop.
 | 
						|
  if (StoreBB == DestBB || OtherBB == DestBB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Verify that the other block ends in a branch and is not otherwise empty.
 | 
						|
  BasicBlock::iterator BBI(OtherBB->getTerminator());
 | 
						|
  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
 | 
						|
  if (!OtherBr || BBI == OtherBB->begin())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the other block ends in an unconditional branch, check for the 'if then
 | 
						|
  // else' case. There is an instruction before the branch.
 | 
						|
  StoreInst *OtherStore = nullptr;
 | 
						|
  if (OtherBr->isUnconditional()) {
 | 
						|
    --BBI;
 | 
						|
    // Skip over debugging info and pseudo probes.
 | 
						|
    while (BBI->isDebugOrPseudoInst() ||
 | 
						|
           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
 | 
						|
      if (BBI==OtherBB->begin())
 | 
						|
        return false;
 | 
						|
      --BBI;
 | 
						|
    }
 | 
						|
    // If this isn't a store, isn't a store to the same location, or is not the
 | 
						|
    // right kind of store, bail out.
 | 
						|
    OtherStore = dyn_cast<StoreInst>(BBI);
 | 
						|
    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
 | 
						|
        !SI.isSameOperationAs(OtherStore))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    // Otherwise, the other block ended with a conditional branch. If one of the
 | 
						|
    // destinations is StoreBB, then we have the if/then case.
 | 
						|
    if (OtherBr->getSuccessor(0) != StoreBB &&
 | 
						|
        OtherBr->getSuccessor(1) != StoreBB)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
 | 
						|
    // if/then triangle. See if there is a store to the same ptr as SI that
 | 
						|
    // lives in OtherBB.
 | 
						|
    for (;; --BBI) {
 | 
						|
      // Check to see if we find the matching store.
 | 
						|
      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
 | 
						|
        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
 | 
						|
            !SI.isSameOperationAs(OtherStore))
 | 
						|
          return false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // If we find something that may be using or overwriting the stored
 | 
						|
      // value, or if we run out of instructions, we can't do the transform.
 | 
						|
      if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
 | 
						|
          BBI->mayWriteToMemory() || BBI == OtherBB->begin())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // In order to eliminate the store in OtherBr, we have to make sure nothing
 | 
						|
    // reads or overwrites the stored value in StoreBB.
 | 
						|
    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
 | 
						|
      // FIXME: This should really be AA driven.
 | 
						|
      if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a PHI node now if we need it.
 | 
						|
  Value *MergedVal = OtherStore->getOperand(0);
 | 
						|
  // The debug locations of the original instructions might differ. Merge them.
 | 
						|
  DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
 | 
						|
                                                     OtherStore->getDebugLoc());
 | 
						|
  if (MergedVal != SI.getOperand(0)) {
 | 
						|
    PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
 | 
						|
    PN->addIncoming(SI.getOperand(0), SI.getParent());
 | 
						|
    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
 | 
						|
    MergedVal = InsertNewInstBefore(PN, DestBB->front());
 | 
						|
    PN->setDebugLoc(MergedLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  // Advance to a place where it is safe to insert the new store and insert it.
 | 
						|
  BBI = DestBB->getFirstInsertionPt();
 | 
						|
  StoreInst *NewSI =
 | 
						|
      new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
 | 
						|
                    SI.getOrdering(), SI.getSyncScopeID());
 | 
						|
  InsertNewInstBefore(NewSI, *BBI);
 | 
						|
  NewSI->setDebugLoc(MergedLoc);
 | 
						|
 | 
						|
  // If the two stores had AA tags, merge them.
 | 
						|
  AAMDNodes AATags = SI.getAAMetadata();
 | 
						|
  if (AATags)
 | 
						|
    NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata()));
 | 
						|
 | 
						|
  // Nuke the old stores.
 | 
						|
  eraseInstFromFunction(SI);
 | 
						|
  eraseInstFromFunction(*OtherStore);
 | 
						|
  return true;
 | 
						|
}
 |