905 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			905 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the guard widening pass.  The semantics of the
 | 
						|
// @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
 | 
						|
// more often that it did before the transform.  This optimization is called
 | 
						|
// "widening" and can be used hoist and common runtime checks in situations like
 | 
						|
// these:
 | 
						|
//
 | 
						|
//    %cmp0 = 7 u< Length
 | 
						|
//    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
 | 
						|
//    call @unknown_side_effects()
 | 
						|
//    %cmp1 = 9 u< Length
 | 
						|
//    call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
 | 
						|
//    ...
 | 
						|
//
 | 
						|
// =>
 | 
						|
//
 | 
						|
//    %cmp0 = 9 u< Length
 | 
						|
//    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
 | 
						|
//    call @unknown_side_effects()
 | 
						|
//    ...
 | 
						|
//
 | 
						|
// If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
 | 
						|
// generic implementation of the same function, which will have the correct
 | 
						|
// semantics from that point onward.  It is always _legal_ to deoptimize (so
 | 
						|
// replacing %cmp0 with false is "correct"), though it may not always be
 | 
						|
// profitable to do so.
 | 
						|
//
 | 
						|
// NB! This pass is a work in progress.  It hasn't been tuned to be "production
 | 
						|
// ready" yet.  It is known to have quadriatic running time and will not scale
 | 
						|
// to large numbers of guards
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/GuardWidening.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/GuardUtils.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/MemorySSAUpdater.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/ConstantRange.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/GuardUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include <functional>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "guard-widening"
 | 
						|
 | 
						|
STATISTIC(GuardsEliminated, "Number of eliminated guards");
 | 
						|
STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
 | 
						|
                      cl::desc("Whether or not we should widen guards  "
 | 
						|
                               "expressed as branches by widenable conditions"),
 | 
						|
                      cl::init(true));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Get the condition of \p I. It can either be a guard or a conditional branch.
 | 
						|
static Value *getCondition(Instruction *I) {
 | 
						|
  if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
 | 
						|
           "Bad guard intrinsic?");
 | 
						|
    return GI->getArgOperand(0);
 | 
						|
  }
 | 
						|
  Value *Cond, *WC;
 | 
						|
  BasicBlock *IfTrueBB, *IfFalseBB;
 | 
						|
  if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  return cast<BranchInst>(I)->getCondition();
 | 
						|
}
 | 
						|
 | 
						|
// Set the condition for \p I to \p NewCond. \p I can either be a guard or a
 | 
						|
// conditional branch.  
 | 
						|
static void setCondition(Instruction *I, Value *NewCond) {
 | 
						|
  if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
 | 
						|
           "Bad guard intrinsic?");
 | 
						|
    GI->setArgOperand(0, NewCond);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  cast<BranchInst>(I)->setCondition(NewCond);
 | 
						|
}
 | 
						|
 | 
						|
// Eliminates the guard instruction properly.
 | 
						|
static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
 | 
						|
  GuardInst->eraseFromParent();
 | 
						|
  if (MSSAU)
 | 
						|
    MSSAU->removeMemoryAccess(GuardInst);
 | 
						|
  ++GuardsEliminated;
 | 
						|
}
 | 
						|
 | 
						|
class GuardWideningImpl {
 | 
						|
  DominatorTree &DT;
 | 
						|
  PostDominatorTree *PDT;
 | 
						|
  LoopInfo &LI;
 | 
						|
  MemorySSAUpdater *MSSAU;
 | 
						|
 | 
						|
  /// Together, these describe the region of interest.  This might be all of
 | 
						|
  /// the blocks within a function, or only a given loop's blocks and preheader.
 | 
						|
  DomTreeNode *Root;
 | 
						|
  std::function<bool(BasicBlock*)> BlockFilter;
 | 
						|
 | 
						|
  /// The set of guards and conditional branches whose conditions have been
 | 
						|
  /// widened into dominating guards.
 | 
						|
  SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
 | 
						|
 | 
						|
  /// The set of guards which have been widened to include conditions to other
 | 
						|
  /// guards.
 | 
						|
  DenseSet<Instruction *> WidenedGuards;
 | 
						|
 | 
						|
  /// Try to eliminate instruction \p Instr by widening it into an earlier
 | 
						|
  /// dominating guard.  \p DFSI is the DFS iterator on the dominator tree that
 | 
						|
  /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
 | 
						|
  /// maps BasicBlocks to the set of guards seen in that block.
 | 
						|
  bool eliminateInstrViaWidening(
 | 
						|
      Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
 | 
						|
      const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
 | 
						|
          GuardsPerBlock, bool InvertCondition = false);
 | 
						|
 | 
						|
  /// Used to keep track of which widening potential is more effective.
 | 
						|
  enum WideningScore {
 | 
						|
    /// Don't widen.
 | 
						|
    WS_IllegalOrNegative,
 | 
						|
 | 
						|
    /// Widening is performance neutral as far as the cycles spent in check
 | 
						|
    /// conditions goes (but can still help, e.g., code layout, having less
 | 
						|
    /// deopt state).
 | 
						|
    WS_Neutral,
 | 
						|
 | 
						|
    /// Widening is profitable.
 | 
						|
    WS_Positive,
 | 
						|
 | 
						|
    /// Widening is very profitable.  Not significantly different from \c
 | 
						|
    /// WS_Positive, except by the order.
 | 
						|
    WS_VeryPositive
 | 
						|
  };
 | 
						|
 | 
						|
  static StringRef scoreTypeToString(WideningScore WS);
 | 
						|
 | 
						|
  /// Compute the score for widening the condition in \p DominatedInstr
 | 
						|
  /// into \p DominatingGuard. If \p InvertCond is set, then we widen the
 | 
						|
  /// inverted condition of the dominating guard.
 | 
						|
  WideningScore computeWideningScore(Instruction *DominatedInstr,
 | 
						|
                                     Instruction *DominatingGuard,
 | 
						|
                                     bool InvertCond);
 | 
						|
 | 
						|
  /// Helper to check if \p V can be hoisted to \p InsertPos.
 | 
						|
  bool isAvailableAt(const Value *V, const Instruction *InsertPos) const {
 | 
						|
    SmallPtrSet<const Instruction *, 8> Visited;
 | 
						|
    return isAvailableAt(V, InsertPos, Visited);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isAvailableAt(const Value *V, const Instruction *InsertPos,
 | 
						|
                     SmallPtrSetImpl<const Instruction *> &Visited) const;
 | 
						|
 | 
						|
  /// Helper to hoist \p V to \p InsertPos.  Guaranteed to succeed if \c
 | 
						|
  /// isAvailableAt returned true.
 | 
						|
  void makeAvailableAt(Value *V, Instruction *InsertPos) const;
 | 
						|
 | 
						|
  /// Common helper used by \c widenGuard and \c isWideningCondProfitable.  Try
 | 
						|
  /// to generate an expression computing the logical AND of \p Cond0 and (\p
 | 
						|
  /// Cond1 XOR \p InvertCondition).
 | 
						|
  /// Return true if the expression computing the AND is only as
 | 
						|
  /// expensive as computing one of the two. If \p InsertPt is true then
 | 
						|
  /// actually generate the resulting expression, make it available at \p
 | 
						|
  /// InsertPt and return it in \p Result (else no change to the IR is made).
 | 
						|
  bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
 | 
						|
                       Value *&Result, bool InvertCondition);
 | 
						|
 | 
						|
  /// Represents a range check of the form \c Base + \c Offset u< \c Length,
 | 
						|
  /// with the constraint that \c Length is not negative.  \c CheckInst is the
 | 
						|
  /// pre-existing instruction in the IR that computes the result of this range
 | 
						|
  /// check.
 | 
						|
  class RangeCheck {
 | 
						|
    const Value *Base;
 | 
						|
    const ConstantInt *Offset;
 | 
						|
    const Value *Length;
 | 
						|
    ICmpInst *CheckInst;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
 | 
						|
                        const Value *Length, ICmpInst *CheckInst)
 | 
						|
        : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
 | 
						|
 | 
						|
    void setBase(const Value *NewBase) { Base = NewBase; }
 | 
						|
    void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
 | 
						|
 | 
						|
    const Value *getBase() const { return Base; }
 | 
						|
    const ConstantInt *getOffset() const { return Offset; }
 | 
						|
    const APInt &getOffsetValue() const { return getOffset()->getValue(); }
 | 
						|
    const Value *getLength() const { return Length; };
 | 
						|
    ICmpInst *getCheckInst() const { return CheckInst; }
 | 
						|
 | 
						|
    void print(raw_ostream &OS, bool PrintTypes = false) {
 | 
						|
      OS << "Base: ";
 | 
						|
      Base->printAsOperand(OS, PrintTypes);
 | 
						|
      OS << " Offset: ";
 | 
						|
      Offset->printAsOperand(OS, PrintTypes);
 | 
						|
      OS << " Length: ";
 | 
						|
      Length->printAsOperand(OS, PrintTypes);
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DUMP_METHOD void dump() {
 | 
						|
      print(dbgs());
 | 
						|
      dbgs() << "\n";
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
 | 
						|
  /// append them to \p Checks.  Returns true on success, may clobber \c Checks
 | 
						|
  /// on failure.
 | 
						|
  bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
 | 
						|
    SmallPtrSet<const Value *, 8> Visited;
 | 
						|
    return parseRangeChecks(CheckCond, Checks, Visited);
 | 
						|
  }
 | 
						|
 | 
						|
  bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
 | 
						|
                        SmallPtrSetImpl<const Value *> &Visited);
 | 
						|
 | 
						|
  /// Combine the checks in \p Checks into a smaller set of checks and append
 | 
						|
  /// them into \p CombinedChecks.  Return true on success (i.e. all of checks
 | 
						|
  /// in \p Checks were combined into \p CombinedChecks).  Clobbers \p Checks
 | 
						|
  /// and \p CombinedChecks on success and on failure.
 | 
						|
  bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
 | 
						|
                          SmallVectorImpl<RangeCheck> &CombinedChecks) const;
 | 
						|
 | 
						|
  /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
 | 
						|
  /// computing only one of the two expressions?
 | 
						|
  bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) {
 | 
						|
    Value *ResultUnused;
 | 
						|
    return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused,
 | 
						|
                           InvertCond);
 | 
						|
  }
 | 
						|
 | 
						|
  /// If \p InvertCondition is false, Widen \p ToWiden to fail if
 | 
						|
  /// \p NewCondition is false, otherwise make it fail if \p NewCondition is
 | 
						|
  /// true (in addition to whatever it is already checking).
 | 
						|
  void widenGuard(Instruction *ToWiden, Value *NewCondition,
 | 
						|
                  bool InvertCondition) {
 | 
						|
    Value *Result;
 | 
						|
    
 | 
						|
    widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result,
 | 
						|
                    InvertCondition);
 | 
						|
    if (isGuardAsWidenableBranch(ToWiden)) {
 | 
						|
      setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    setCondition(ToWiden, Result);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
 | 
						|
                             LoopInfo &LI, MemorySSAUpdater *MSSAU,
 | 
						|
                             DomTreeNode *Root,
 | 
						|
                             std::function<bool(BasicBlock*)> BlockFilter)
 | 
						|
      : DT(DT), PDT(PDT), LI(LI), MSSAU(MSSAU), Root(Root),
 | 
						|
        BlockFilter(BlockFilter) {}
 | 
						|
 | 
						|
  /// The entry point for this pass.
 | 
						|
  bool run();
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
static bool isSupportedGuardInstruction(const Instruction *Insn) {
 | 
						|
  if (isGuard(Insn))
 | 
						|
    return true;
 | 
						|
  if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool GuardWideningImpl::run() {
 | 
						|
  DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto DFI = df_begin(Root), DFE = df_end(Root);
 | 
						|
       DFI != DFE; ++DFI) {
 | 
						|
    auto *BB = (*DFI)->getBlock();
 | 
						|
    if (!BlockFilter(BB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto &CurrentList = GuardsInBlock[BB];
 | 
						|
 | 
						|
    for (auto &I : *BB)
 | 
						|
      if (isSupportedGuardInstruction(&I))
 | 
						|
        CurrentList.push_back(cast<Instruction>(&I));
 | 
						|
 | 
						|
    for (auto *II : CurrentList)
 | 
						|
      Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(EliminatedGuardsAndBranches.empty() || Changed);
 | 
						|
  for (auto *I : EliminatedGuardsAndBranches)
 | 
						|
    if (!WidenedGuards.count(I)) {
 | 
						|
      assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
 | 
						|
      if (isSupportedGuardInstruction(I))
 | 
						|
        eliminateGuard(I, MSSAU);
 | 
						|
      else {
 | 
						|
        assert(isa<BranchInst>(I) &&
 | 
						|
               "Eliminated something other than guard or branch?");
 | 
						|
        ++CondBranchEliminated;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool GuardWideningImpl::eliminateInstrViaWidening(
 | 
						|
    Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
 | 
						|
    const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
 | 
						|
        GuardsInBlock, bool InvertCondition) {
 | 
						|
  // Ignore trivial true or false conditions. These instructions will be
 | 
						|
  // trivially eliminated by any cleanup pass. Do not erase them because other
 | 
						|
  // guards can possibly be widened into them.
 | 
						|
  if (isa<ConstantInt>(getCondition(Instr)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Instruction *BestSoFar = nullptr;
 | 
						|
  auto BestScoreSoFar = WS_IllegalOrNegative;
 | 
						|
 | 
						|
  // In the set of dominating guards, find the one we can merge GuardInst with
 | 
						|
  // for the most profit.
 | 
						|
  for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
 | 
						|
    auto *CurBB = DFSI.getPath(i)->getBlock();
 | 
						|
    if (!BlockFilter(CurBB))
 | 
						|
      break;
 | 
						|
    assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
 | 
						|
    const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
 | 
						|
 | 
						|
    auto I = GuardsInCurBB.begin();
 | 
						|
    auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
 | 
						|
                                         : GuardsInCurBB.end();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    {
 | 
						|
      unsigned Index = 0;
 | 
						|
      for (auto &I : *CurBB) {
 | 
						|
        if (Index == GuardsInCurBB.size())
 | 
						|
          break;
 | 
						|
        if (GuardsInCurBB[Index] == &I)
 | 
						|
          Index++;
 | 
						|
      }
 | 
						|
      assert(Index == GuardsInCurBB.size() &&
 | 
						|
             "Guards expected to be in order!");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
 | 
						|
 | 
						|
    for (auto *Candidate : make_range(I, E)) {
 | 
						|
      auto Score = computeWideningScore(Instr, Candidate, InvertCondition);
 | 
						|
      LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr)
 | 
						|
                        << " and " << *getCondition(Candidate) << " is "
 | 
						|
                        << scoreTypeToString(Score) << "\n");
 | 
						|
      if (Score > BestScoreSoFar) {
 | 
						|
        BestScoreSoFar = Score;
 | 
						|
        BestSoFar = Candidate;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (BestScoreSoFar == WS_IllegalOrNegative) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(BestSoFar != Instr && "Should have never visited same guard!");
 | 
						|
  assert(DT.dominates(BestSoFar, Instr) && "Should be!");
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
 | 
						|
                    << " with score " << scoreTypeToString(BestScoreSoFar)
 | 
						|
                    << "\n");
 | 
						|
  widenGuard(BestSoFar, getCondition(Instr), InvertCondition);
 | 
						|
  auto NewGuardCondition = InvertCondition
 | 
						|
                               ? ConstantInt::getFalse(Instr->getContext())
 | 
						|
                               : ConstantInt::getTrue(Instr->getContext());
 | 
						|
  setCondition(Instr, NewGuardCondition);
 | 
						|
  EliminatedGuardsAndBranches.push_back(Instr);
 | 
						|
  WidenedGuards.insert(BestSoFar);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
GuardWideningImpl::WideningScore
 | 
						|
GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr,
 | 
						|
                                        Instruction *DominatingGuard,
 | 
						|
                                        bool InvertCond) {
 | 
						|
  Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
 | 
						|
  Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent());
 | 
						|
  bool HoistingOutOfLoop = false;
 | 
						|
 | 
						|
  if (DominatingGuardLoop != DominatedInstrLoop) {
 | 
						|
    // Be conservative and don't widen into a sibling loop.  TODO: If the
 | 
						|
    // sibling is colder, we should consider allowing this.
 | 
						|
    if (DominatingGuardLoop &&
 | 
						|
        !DominatingGuardLoop->contains(DominatedInstrLoop))
 | 
						|
      return WS_IllegalOrNegative;
 | 
						|
 | 
						|
    HoistingOutOfLoop = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard))
 | 
						|
    return WS_IllegalOrNegative;
 | 
						|
 | 
						|
  // If the guard was conditional executed, it may never be reached
 | 
						|
  // dynamically.  There are two potential downsides to hoisting it out of the
 | 
						|
  // conditionally executed region: 1) we may spuriously deopt without need and
 | 
						|
  // 2) we have the extra cost of computing the guard condition in the common
 | 
						|
  // case.  At the moment, we really only consider the second in our heuristic
 | 
						|
  // here.  TODO: evaluate cost model for spurious deopt
 | 
						|
  // NOTE: As written, this also lets us hoist right over another guard which
 | 
						|
  // is essentially just another spelling for control flow.
 | 
						|
  if (isWideningCondProfitable(getCondition(DominatedInstr),
 | 
						|
                               getCondition(DominatingGuard), InvertCond))
 | 
						|
    return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
 | 
						|
 | 
						|
  if (HoistingOutOfLoop)
 | 
						|
    return WS_Positive;
 | 
						|
 | 
						|
  // Returns true if we might be hoisting above explicit control flow.  Note
 | 
						|
  // that this completely ignores implicit control flow (guards, calls which
 | 
						|
  // throw, etc...).  That choice appears arbitrary.
 | 
						|
  auto MaybeHoistingOutOfIf = [&]() {
 | 
						|
    auto *DominatingBlock = DominatingGuard->getParent();
 | 
						|
    auto *DominatedBlock = DominatedInstr->getParent();
 | 
						|
    if (isGuardAsWidenableBranch(DominatingGuard))
 | 
						|
      DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0);
 | 
						|
 | 
						|
    // Same Block?
 | 
						|
    if (DominatedBlock == DominatingBlock)
 | 
						|
      return false;
 | 
						|
    // Obvious successor (common loop header/preheader case)
 | 
						|
    if (DominatedBlock == DominatingBlock->getUniqueSuccessor())
 | 
						|
      return false;
 | 
						|
    // TODO: diamond, triangle cases
 | 
						|
    if (!PDT) return true;
 | 
						|
    return !PDT->dominates(DominatedBlock, DominatingBlock);
 | 
						|
  };
 | 
						|
 | 
						|
  return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral;
 | 
						|
}
 | 
						|
 | 
						|
bool GuardWideningImpl::isAvailableAt(
 | 
						|
    const Value *V, const Instruction *Loc,
 | 
						|
    SmallPtrSetImpl<const Instruction *> &Visited) const {
 | 
						|
  auto *Inst = dyn_cast<Instruction>(V);
 | 
						|
  if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) ||
 | 
						|
      Inst->mayReadFromMemory())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Visited.insert(Inst);
 | 
						|
 | 
						|
  // We only want to go _up_ the dominance chain when recursing.
 | 
						|
  assert(!isa<PHINode>(Loc) &&
 | 
						|
         "PHIs should return false for isSafeToSpeculativelyExecute");
 | 
						|
  assert(DT.isReachableFromEntry(Inst->getParent()) &&
 | 
						|
         "We did a DFS from the block entry!");
 | 
						|
  return all_of(Inst->operands(),
 | 
						|
                [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
 | 
						|
}
 | 
						|
 | 
						|
void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
 | 
						|
  auto *Inst = dyn_cast<Instruction>(V);
 | 
						|
  if (!Inst || DT.dominates(Inst, Loc))
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) &&
 | 
						|
         !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");
 | 
						|
 | 
						|
  for (Value *Op : Inst->operands())
 | 
						|
    makeAvailableAt(Op, Loc);
 | 
						|
 | 
						|
  Inst->moveBefore(Loc);
 | 
						|
  // If we moved instruction before guard we must clean poison generating flags.
 | 
						|
  Inst->dropPoisonGeneratingFlags();
 | 
						|
}
 | 
						|
 | 
						|
bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
 | 
						|
                                        Instruction *InsertPt, Value *&Result,
 | 
						|
                                        bool InvertCondition) {
 | 
						|
  using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
  {
 | 
						|
    // L >u C0 && L >u C1  ->  L >u max(C0, C1)
 | 
						|
    ConstantInt *RHS0, *RHS1;
 | 
						|
    Value *LHS;
 | 
						|
    ICmpInst::Predicate Pred0, Pred1;
 | 
						|
    if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
 | 
						|
        match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
 | 
						|
      if (InvertCondition)
 | 
						|
        Pred1 = ICmpInst::getInversePredicate(Pred1);
 | 
						|
 | 
						|
      ConstantRange CR0 =
 | 
						|
          ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
 | 
						|
      ConstantRange CR1 =
 | 
						|
          ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
 | 
						|
 | 
						|
      // Given what we're doing here and the semantics of guards, it would
 | 
						|
      // be correct to use a subset intersection, but that may be too
 | 
						|
      // aggressive in cases we care about.
 | 
						|
      if (Optional<ConstantRange> Intersect = CR0.exactIntersectWith(CR1)) {
 | 
						|
        APInt NewRHSAP;
 | 
						|
        CmpInst::Predicate Pred;
 | 
						|
        if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
 | 
						|
          if (InsertPt) {
 | 
						|
            ConstantInt *NewRHS =
 | 
						|
                ConstantInt::get(Cond0->getContext(), NewRHSAP);
 | 
						|
            Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
 | 
						|
          }
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
 | 
						|
    // TODO: Support InvertCondition case?
 | 
						|
    if (!InvertCondition &&
 | 
						|
        parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
 | 
						|
        combineRangeChecks(Checks, CombinedChecks)) {
 | 
						|
      if (InsertPt) {
 | 
						|
        Result = nullptr;
 | 
						|
        for (auto &RC : CombinedChecks) {
 | 
						|
          makeAvailableAt(RC.getCheckInst(), InsertPt);
 | 
						|
          if (Result)
 | 
						|
            Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
 | 
						|
                                               InsertPt);
 | 
						|
          else
 | 
						|
            Result = RC.getCheckInst();
 | 
						|
        }
 | 
						|
        assert(Result && "Failed to find result value");
 | 
						|
        Result->setName("wide.chk");
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Base case -- just logical-and the two conditions together.
 | 
						|
 | 
						|
  if (InsertPt) {
 | 
						|
    makeAvailableAt(Cond0, InsertPt);
 | 
						|
    makeAvailableAt(Cond1, InsertPt);
 | 
						|
    if (InvertCondition)
 | 
						|
      Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt);
 | 
						|
    Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
 | 
						|
  }
 | 
						|
 | 
						|
  // We were not able to compute Cond0 AND Cond1 for the price of one.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool GuardWideningImpl::parseRangeChecks(
 | 
						|
    Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
 | 
						|
    SmallPtrSetImpl<const Value *> &Visited) {
 | 
						|
  if (!Visited.insert(CheckCond).second)
 | 
						|
    return true;
 | 
						|
 | 
						|
  using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
  {
 | 
						|
    Value *AndLHS, *AndRHS;
 | 
						|
    if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
 | 
						|
      return parseRangeChecks(AndLHS, Checks) &&
 | 
						|
             parseRangeChecks(AndRHS, Checks);
 | 
						|
  }
 | 
						|
 | 
						|
  auto *IC = dyn_cast<ICmpInst>(CheckCond);
 | 
						|
  if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
 | 
						|
      (IC->getPredicate() != ICmpInst::ICMP_ULT &&
 | 
						|
       IC->getPredicate() != ICmpInst::ICMP_UGT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
 | 
						|
  if (IC->getPredicate() == ICmpInst::ICMP_UGT)
 | 
						|
    std::swap(CmpLHS, CmpRHS);
 | 
						|
 | 
						|
  auto &DL = IC->getModule()->getDataLayout();
 | 
						|
 | 
						|
  GuardWideningImpl::RangeCheck Check(
 | 
						|
      CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
 | 
						|
      CmpRHS, IC);
 | 
						|
 | 
						|
  if (!isKnownNonNegative(Check.getLength(), DL))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // What we have in \c Check now is a correct interpretation of \p CheckCond.
 | 
						|
  // Try to see if we can move some constant offsets into the \c Offset field.
 | 
						|
 | 
						|
  bool Changed;
 | 
						|
  auto &Ctx = CheckCond->getContext();
 | 
						|
 | 
						|
  do {
 | 
						|
    Value *OpLHS;
 | 
						|
    ConstantInt *OpRHS;
 | 
						|
    Changed = false;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
 | 
						|
    assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
 | 
						|
           "Unreachable instruction?");
 | 
						|
#endif
 | 
						|
 | 
						|
    if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
 | 
						|
      Check.setBase(OpLHS);
 | 
						|
      APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
 | 
						|
      Check.setOffset(ConstantInt::get(Ctx, NewOffset));
 | 
						|
      Changed = true;
 | 
						|
    } else if (match(Check.getBase(),
 | 
						|
                     m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
 | 
						|
      KnownBits Known = computeKnownBits(OpLHS, DL);
 | 
						|
      if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
 | 
						|
        Check.setBase(OpLHS);
 | 
						|
        APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
 | 
						|
        Check.setOffset(ConstantInt::get(Ctx, NewOffset));
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (Changed);
 | 
						|
 | 
						|
  Checks.push_back(Check);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool GuardWideningImpl::combineRangeChecks(
 | 
						|
    SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
 | 
						|
    SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
 | 
						|
  unsigned OldCount = Checks.size();
 | 
						|
  while (!Checks.empty()) {
 | 
						|
    // Pick all of the range checks with a specific base and length, and try to
 | 
						|
    // merge them.
 | 
						|
    const Value *CurrentBase = Checks.front().getBase();
 | 
						|
    const Value *CurrentLength = Checks.front().getLength();
 | 
						|
 | 
						|
    SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
 | 
						|
 | 
						|
    auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
 | 
						|
      return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
 | 
						|
    };
 | 
						|
 | 
						|
    copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
 | 
						|
    erase_if(Checks, IsCurrentCheck);
 | 
						|
 | 
						|
    assert(CurrentChecks.size() != 0 && "We know we have at least one!");
 | 
						|
 | 
						|
    if (CurrentChecks.size() < 3) {
 | 
						|
      llvm::append_range(RangeChecksOut, CurrentChecks);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // CurrentChecks.size() will typically be 3 here, but so far there has been
 | 
						|
    // no need to hard-code that fact.
 | 
						|
 | 
						|
    llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
 | 
						|
                                  const GuardWideningImpl::RangeCheck &RHS) {
 | 
						|
      return LHS.getOffsetValue().slt(RHS.getOffsetValue());
 | 
						|
    });
 | 
						|
 | 
						|
    // Note: std::sort should not invalidate the ChecksStart iterator.
 | 
						|
 | 
						|
    const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
 | 
						|
    const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
 | 
						|
 | 
						|
    unsigned BitWidth = MaxOffset->getValue().getBitWidth();
 | 
						|
    if ((MaxOffset->getValue() - MinOffset->getValue())
 | 
						|
            .ugt(APInt::getSignedMinValue(BitWidth)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
 | 
						|
    const APInt &HighOffset = MaxOffset->getValue();
 | 
						|
    auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
 | 
						|
      return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
 | 
						|
    };
 | 
						|
 | 
						|
    if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We have a series of f+1 checks as:
 | 
						|
    //
 | 
						|
    //   I+k_0 u< L   ... Chk_0
 | 
						|
    //   I+k_1 u< L   ... Chk_1
 | 
						|
    //   ...
 | 
						|
    //   I+k_f u< L   ... Chk_f
 | 
						|
    //
 | 
						|
    //     with forall i in [0,f]: k_f-k_i u< k_f-k_0  ... Precond_0
 | 
						|
    //          k_f-k_0 u< INT_MIN+k_f                 ... Precond_1
 | 
						|
    //          k_f != k_0                             ... Precond_2
 | 
						|
    //
 | 
						|
    // Claim:
 | 
						|
    //   Chk_0 AND Chk_f  implies all the other checks
 | 
						|
    //
 | 
						|
    // Informal proof sketch:
 | 
						|
    //
 | 
						|
    // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
 | 
						|
    // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
 | 
						|
    // thus I+k_f is the greatest unsigned value in that range.
 | 
						|
    //
 | 
						|
    // This combined with Ckh_(f+1) shows that everything in that range is u< L.
 | 
						|
    // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
 | 
						|
    // lie in [I+k_0,I+k_f], this proving our claim.
 | 
						|
    //
 | 
						|
    // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
 | 
						|
    // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
 | 
						|
    // since k_0 != k_f).  In the former case, [I+k_0,I+k_f] is not a wrapping
 | 
						|
    // range by definition, and the latter case is impossible:
 | 
						|
    //
 | 
						|
    //   0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
 | 
						|
    //   xxxxxx             xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 | 
						|
    //
 | 
						|
    // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
 | 
						|
    // with 'x' above) to be at least >u INT_MIN.
 | 
						|
 | 
						|
    RangeChecksOut.emplace_back(CurrentChecks.front());
 | 
						|
    RangeChecksOut.emplace_back(CurrentChecks.back());
 | 
						|
  }
 | 
						|
 | 
						|
  assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
 | 
						|
  return RangeChecksOut.size() != OldCount;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
 | 
						|
  switch (WS) {
 | 
						|
  case WS_IllegalOrNegative:
 | 
						|
    return "IllegalOrNegative";
 | 
						|
  case WS_Neutral:
 | 
						|
    return "Neutral";
 | 
						|
  case WS_Positive:
 | 
						|
    return "Positive";
 | 
						|
  case WS_VeryPositive:
 | 
						|
    return "VeryPositive";
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Fully covered switch above!");
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
PreservedAnalyses GuardWideningPass::run(Function &F,
 | 
						|
                                         FunctionAnalysisManager &AM) {
 | 
						|
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto &LI = AM.getResult<LoopAnalysis>(F);
 | 
						|
  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
 | 
						|
  auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
 | 
						|
  std::unique_ptr<MemorySSAUpdater> MSSAU;
 | 
						|
  if (MSSAA)
 | 
						|
    MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
 | 
						|
  if (!GuardWideningImpl(DT, &PDT, LI, MSSAU ? MSSAU.get() : nullptr,
 | 
						|
                         DT.getRootNode(), [](BasicBlock *) { return true; })
 | 
						|
           .run())
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserveSet<CFGAnalyses>();
 | 
						|
  PA.preserve<MemorySSAAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
 | 
						|
                                         LoopStandardAnalysisResults &AR,
 | 
						|
                                         LPMUpdater &U) {
 | 
						|
  BasicBlock *RootBB = L.getLoopPredecessor();
 | 
						|
  if (!RootBB)
 | 
						|
    RootBB = L.getHeader();
 | 
						|
  auto BlockFilter = [&](BasicBlock *BB) {
 | 
						|
    return BB == RootBB || L.contains(BB);
 | 
						|
  };
 | 
						|
  std::unique_ptr<MemorySSAUpdater> MSSAU;
 | 
						|
  if (AR.MSSA)
 | 
						|
    MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
 | 
						|
  if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, MSSAU ? MSSAU.get() : nullptr,
 | 
						|
                         AR.DT.getNode(RootBB), BlockFilter).run())
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  auto PA = getLoopPassPreservedAnalyses();
 | 
						|
  if (AR.MSSA)
 | 
						|
    PA.preserve<MemorySSAAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct GuardWideningLegacyPass : public FunctionPass {
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  GuardWideningLegacyPass() : FunctionPass(ID) {
 | 
						|
    initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipFunction(F))
 | 
						|
      return false;
 | 
						|
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
 | 
						|
    auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
 | 
						|
    std::unique_ptr<MemorySSAUpdater> MSSAU;
 | 
						|
    if (MSSAWP)
 | 
						|
      MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
 | 
						|
    return GuardWideningImpl(DT, &PDT, LI, MSSAU ? MSSAU.get() : nullptr,
 | 
						|
                             DT.getRootNode(),
 | 
						|
                             [](BasicBlock *) { return true; })
 | 
						|
        .run();
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<PostDominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
    AU.addPreserved<MemorySSAWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Same as above, but restricted to a single loop at a time.  Can be
 | 
						|
/// scheduled with other loop passes w/o breaking out of LPM
 | 
						|
struct LoopGuardWideningLegacyPass : public LoopPass {
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  LoopGuardWideningLegacyPass() : LoopPass(ID) {
 | 
						|
    initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
 | 
						|
    if (skipLoop(L))
 | 
						|
      return false;
 | 
						|
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
    auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
 | 
						|
    auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
 | 
						|
    auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
 | 
						|
    std::unique_ptr<MemorySSAUpdater> MSSAU;
 | 
						|
    if (MSSAWP)
 | 
						|
      MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
 | 
						|
 | 
						|
    BasicBlock *RootBB = L->getLoopPredecessor();
 | 
						|
    if (!RootBB)
 | 
						|
      RootBB = L->getHeader();
 | 
						|
    auto BlockFilter = [&](BasicBlock *BB) {
 | 
						|
      return BB == RootBB || L->contains(BB);
 | 
						|
    };
 | 
						|
    return GuardWideningImpl(DT, PDT, LI, MSSAU ? MSSAU.get() : nullptr,
 | 
						|
                             DT.getNode(RootBB), BlockFilter).run();
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    getLoopAnalysisUsage(AU);
 | 
						|
    AU.addPreserved<PostDominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<MemorySSAWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char GuardWideningLegacyPass::ID = 0;
 | 
						|
char LoopGuardWideningLegacyPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
 | 
						|
                      "Widen guards (within a single loop, as a loop pass)",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
 | 
						|
                    "Widen guards (within a single loop, as a loop pass)",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createGuardWideningPass() {
 | 
						|
  return new GuardWideningLegacyPass();
 | 
						|
}
 | 
						|
 | 
						|
Pass *llvm::createLoopGuardWideningPass() {
 | 
						|
  return new LoopGuardWideningLegacyPass();
 | 
						|
}
 |