1727 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1727 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass implements a simple loop reroller.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AliasSetTracker.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Scalar/LoopReroll.h"
 | 
						|
#include "llvm/Transforms/Utils.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <map>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-reroll"
 | 
						|
 | 
						|
STATISTIC(NumRerolledLoops, "Number of rerolled loops");
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
 | 
						|
                          cl::Hidden,
 | 
						|
                          cl::desc("The maximum number of failures to tolerate"
 | 
						|
                                   " during fuzzy matching. (default: 400)"));
 | 
						|
 | 
						|
// This loop re-rolling transformation aims to transform loops like this:
 | 
						|
//
 | 
						|
// int foo(int a);
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 500; i += 3) {
 | 
						|
//     foo(i);
 | 
						|
//     foo(i+1);
 | 
						|
//     foo(i+2);
 | 
						|
//   }
 | 
						|
// }
 | 
						|
//
 | 
						|
// into a loop like this:
 | 
						|
//
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 500; ++i)
 | 
						|
//     foo(i);
 | 
						|
// }
 | 
						|
//
 | 
						|
// It does this by looking for loops that, besides the latch code, are composed
 | 
						|
// of isomorphic DAGs of instructions, with each DAG rooted at some increment
 | 
						|
// to the induction variable, and where each DAG is isomorphic to the DAG
 | 
						|
// rooted at the induction variable (excepting the sub-DAGs which root the
 | 
						|
// other induction-variable increments). In other words, we're looking for loop
 | 
						|
// bodies of the form:
 | 
						|
//
 | 
						|
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | 
						|
// f(%iv)
 | 
						|
// %iv.1 = add %iv, 1                <-- a root increment
 | 
						|
// f(%iv.1)
 | 
						|
// %iv.2 = add %iv, 2                <-- a root increment
 | 
						|
// f(%iv.2)
 | 
						|
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
 | 
						|
// f(%iv.scale_m_1)
 | 
						|
// ...
 | 
						|
// %iv.next = add %iv, scale
 | 
						|
// %cmp = icmp(%iv, ...)
 | 
						|
// br %cmp, header, exit
 | 
						|
//
 | 
						|
// where each f(i) is a set of instructions that, collectively, are a function
 | 
						|
// only of i (and other loop-invariant values).
 | 
						|
//
 | 
						|
// As a special case, we can also reroll loops like this:
 | 
						|
//
 | 
						|
// int foo(int);
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 500; ++i) {
 | 
						|
//     x[3*i] = foo(0);
 | 
						|
//     x[3*i+1] = foo(0);
 | 
						|
//     x[3*i+2] = foo(0);
 | 
						|
//   }
 | 
						|
// }
 | 
						|
//
 | 
						|
// into this:
 | 
						|
//
 | 
						|
// void bar(int *x) {
 | 
						|
//   for (int i = 0; i < 1500; ++i)
 | 
						|
//     x[i] = foo(0);
 | 
						|
// }
 | 
						|
//
 | 
						|
// in which case, we're looking for inputs like this:
 | 
						|
//
 | 
						|
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | 
						|
// %scaled.iv = mul %iv, scale
 | 
						|
// f(%scaled.iv)
 | 
						|
// %scaled.iv.1 = add %scaled.iv, 1
 | 
						|
// f(%scaled.iv.1)
 | 
						|
// %scaled.iv.2 = add %scaled.iv, 2
 | 
						|
// f(%scaled.iv.2)
 | 
						|
// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
 | 
						|
// f(%scaled.iv.scale_m_1)
 | 
						|
// ...
 | 
						|
// %iv.next = add %iv, 1
 | 
						|
// %cmp = icmp(%iv, ...)
 | 
						|
// br %cmp, header, exit
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  enum IterationLimits {
 | 
						|
    /// The maximum number of iterations that we'll try and reroll.
 | 
						|
    IL_MaxRerollIterations = 32,
 | 
						|
    /// The bitvector index used by loop induction variables and other
 | 
						|
    /// instructions that belong to all iterations.
 | 
						|
    IL_All,
 | 
						|
    IL_End
 | 
						|
  };
 | 
						|
 | 
						|
  class LoopRerollLegacyPass : public LoopPass {
 | 
						|
  public:
 | 
						|
    static char ID; // Pass ID, replacement for typeid
 | 
						|
 | 
						|
    LoopRerollLegacyPass() : LoopPass(ID) {
 | 
						|
      initializeLoopRerollLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
      getLoopAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  class LoopReroll {
 | 
						|
  public:
 | 
						|
    LoopReroll(AliasAnalysis *AA, LoopInfo *LI, ScalarEvolution *SE,
 | 
						|
               TargetLibraryInfo *TLI, DominatorTree *DT, bool PreserveLCSSA)
 | 
						|
        : AA(AA), LI(LI), SE(SE), TLI(TLI), DT(DT),
 | 
						|
          PreserveLCSSA(PreserveLCSSA) {}
 | 
						|
    bool runOnLoop(Loop *L);
 | 
						|
 | 
						|
  protected:
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    LoopInfo *LI;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    TargetLibraryInfo *TLI;
 | 
						|
    DominatorTree *DT;
 | 
						|
    bool PreserveLCSSA;
 | 
						|
 | 
						|
    using SmallInstructionVector = SmallVector<Instruction *, 16>;
 | 
						|
    using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
 | 
						|
 | 
						|
    // Map between induction variable and its increment
 | 
						|
    DenseMap<Instruction *, int64_t> IVToIncMap;
 | 
						|
 | 
						|
    // For loop with multiple induction variable, remember the one used only to
 | 
						|
    // control the loop.
 | 
						|
    Instruction *LoopControlIV;
 | 
						|
 | 
						|
    // A chain of isomorphic instructions, identified by a single-use PHI
 | 
						|
    // representing a reduction. Only the last value may be used outside the
 | 
						|
    // loop.
 | 
						|
    struct SimpleLoopReduction {
 | 
						|
      SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
 | 
						|
        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
 | 
						|
        add(L);
 | 
						|
      }
 | 
						|
 | 
						|
      bool valid() const {
 | 
						|
        return Valid;
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *getPHI() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions.front();
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *getReducedValue() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions.back();
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *get(size_t i) const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions[i+1];
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *operator [] (size_t i) const { return get(i); }
 | 
						|
 | 
						|
      // The size, ignoring the initial PHI.
 | 
						|
      size_t size() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return Instructions.size()-1;
 | 
						|
      }
 | 
						|
 | 
						|
      using iterator = SmallInstructionVector::iterator;
 | 
						|
      using const_iterator = SmallInstructionVector::const_iterator;
 | 
						|
 | 
						|
      iterator begin() {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return std::next(Instructions.begin());
 | 
						|
      }
 | 
						|
 | 
						|
      const_iterator begin() const {
 | 
						|
        assert(Valid && "Using invalid reduction");
 | 
						|
        return std::next(Instructions.begin());
 | 
						|
      }
 | 
						|
 | 
						|
      iterator end() { return Instructions.end(); }
 | 
						|
      const_iterator end() const { return Instructions.end(); }
 | 
						|
 | 
						|
    protected:
 | 
						|
      bool Valid = false;
 | 
						|
      SmallInstructionVector Instructions;
 | 
						|
 | 
						|
      void add(Loop *L);
 | 
						|
    };
 | 
						|
 | 
						|
    // The set of all reductions, and state tracking of possible reductions
 | 
						|
    // during loop instruction processing.
 | 
						|
    struct ReductionTracker {
 | 
						|
      using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
 | 
						|
 | 
						|
      // Add a new possible reduction.
 | 
						|
      void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
 | 
						|
 | 
						|
      // Setup to track possible reductions corresponding to the provided
 | 
						|
      // rerolling scale. Only reductions with a number of non-PHI instructions
 | 
						|
      // that is divisible by the scale are considered. Three instructions sets
 | 
						|
      // are filled in:
 | 
						|
      //   - A set of all possible instructions in eligible reductions.
 | 
						|
      //   - A set of all PHIs in eligible reductions
 | 
						|
      //   - A set of all reduced values (last instructions) in eligible
 | 
						|
      //     reductions.
 | 
						|
      void restrictToScale(uint64_t Scale,
 | 
						|
                           SmallInstructionSet &PossibleRedSet,
 | 
						|
                           SmallInstructionSet &PossibleRedPHISet,
 | 
						|
                           SmallInstructionSet &PossibleRedLastSet) {
 | 
						|
        PossibleRedIdx.clear();
 | 
						|
        PossibleRedIter.clear();
 | 
						|
        Reds.clear();
 | 
						|
 | 
						|
        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
 | 
						|
          if (PossibleReds[i].size() % Scale == 0) {
 | 
						|
            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
 | 
						|
            PossibleRedPHISet.insert(PossibleReds[i].getPHI());
 | 
						|
 | 
						|
            PossibleRedSet.insert(PossibleReds[i].getPHI());
 | 
						|
            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
 | 
						|
            for (Instruction *J : PossibleReds[i]) {
 | 
						|
              PossibleRedSet.insert(J);
 | 
						|
              PossibleRedIdx[J] = i;
 | 
						|
            }
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
      // The functions below are used while processing the loop instructions.
 | 
						|
 | 
						|
      // Are the two instructions both from reductions, and furthermore, from
 | 
						|
      // the same reduction?
 | 
						|
      bool isPairInSame(Instruction *J1, Instruction *J2) {
 | 
						|
        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
 | 
						|
        if (J1I != PossibleRedIdx.end()) {
 | 
						|
          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
 | 
						|
          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // The two provided instructions, the first from the base iteration, and
 | 
						|
      // the second from iteration i, form a matched pair. If these are part of
 | 
						|
      // a reduction, record that fact.
 | 
						|
      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
 | 
						|
        if (PossibleRedIdx.count(J1)) {
 | 
						|
          assert(PossibleRedIdx.count(J2) &&
 | 
						|
                 "Recording reduction vs. non-reduction instruction?");
 | 
						|
 | 
						|
          PossibleRedIter[J1] = 0;
 | 
						|
          PossibleRedIter[J2] = i;
 | 
						|
 | 
						|
          int Idx = PossibleRedIdx[J1];
 | 
						|
          assert(Idx == PossibleRedIdx[J2] &&
 | 
						|
                 "Recording pair from different reductions?");
 | 
						|
          Reds.insert(Idx);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // The functions below can be called after we've finished processing all
 | 
						|
      // instructions in the loop, and we know which reductions were selected.
 | 
						|
 | 
						|
      bool validateSelected();
 | 
						|
      void replaceSelected();
 | 
						|
 | 
						|
    protected:
 | 
						|
      // The vector of all possible reductions (for any scale).
 | 
						|
      SmallReductionVector PossibleReds;
 | 
						|
 | 
						|
      DenseMap<Instruction *, int> PossibleRedIdx;
 | 
						|
      DenseMap<Instruction *, int> PossibleRedIter;
 | 
						|
      DenseSet<int> Reds;
 | 
						|
    };
 | 
						|
 | 
						|
    // A DAGRootSet models an induction variable being used in a rerollable
 | 
						|
    // loop. For example,
 | 
						|
    //
 | 
						|
    //   x[i*3+0] = y1
 | 
						|
    //   x[i*3+1] = y2
 | 
						|
    //   x[i*3+2] = y3
 | 
						|
    //
 | 
						|
    //   Base instruction -> i*3
 | 
						|
    //                    +---+----+
 | 
						|
    //                   /    |     \
 | 
						|
    //               ST[y1]  +1     +2  <-- Roots
 | 
						|
    //                        |      |
 | 
						|
    //                      ST[y2] ST[y3]
 | 
						|
    //
 | 
						|
    // There may be multiple DAGRoots, for example:
 | 
						|
    //
 | 
						|
    //   x[i*2+0] = ...   (1)
 | 
						|
    //   x[i*2+1] = ...   (1)
 | 
						|
    //   x[i*2+4] = ...   (2)
 | 
						|
    //   x[i*2+5] = ...   (2)
 | 
						|
    //   x[(i+1234)*2+5678] = ... (3)
 | 
						|
    //   x[(i+1234)*2+5679] = ... (3)
 | 
						|
    //
 | 
						|
    // The loop will be rerolled by adding a new loop induction variable,
 | 
						|
    // one for the Base instruction in each DAGRootSet.
 | 
						|
    //
 | 
						|
    struct DAGRootSet {
 | 
						|
      Instruction *BaseInst;
 | 
						|
      SmallInstructionVector Roots;
 | 
						|
 | 
						|
      // The instructions between IV and BaseInst (but not including BaseInst).
 | 
						|
      SmallInstructionSet SubsumedInsts;
 | 
						|
    };
 | 
						|
 | 
						|
    // The set of all DAG roots, and state tracking of all roots
 | 
						|
    // for a particular induction variable.
 | 
						|
    struct DAGRootTracker {
 | 
						|
      DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
 | 
						|
                     ScalarEvolution *SE, AliasAnalysis *AA,
 | 
						|
                     TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
 | 
						|
                     bool PreserveLCSSA,
 | 
						|
                     DenseMap<Instruction *, int64_t> &IncrMap,
 | 
						|
                     Instruction *LoopCtrlIV)
 | 
						|
          : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
 | 
						|
            PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
 | 
						|
            LoopControlIV(LoopCtrlIV) {}
 | 
						|
 | 
						|
      /// Stage 1: Find all the DAG roots for the induction variable.
 | 
						|
      bool findRoots();
 | 
						|
 | 
						|
      /// Stage 2: Validate if the found roots are valid.
 | 
						|
      bool validate(ReductionTracker &Reductions);
 | 
						|
 | 
						|
      /// Stage 3: Assuming validate() returned true, perform the
 | 
						|
      /// replacement.
 | 
						|
      /// @param BackedgeTakenCount The backedge-taken count of L.
 | 
						|
      void replace(const SCEV *BackedgeTakenCount);
 | 
						|
 | 
						|
    protected:
 | 
						|
      using UsesTy = MapVector<Instruction *, BitVector>;
 | 
						|
 | 
						|
      void findRootsRecursive(Instruction *IVU,
 | 
						|
                              SmallInstructionSet SubsumedInsts);
 | 
						|
      bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
 | 
						|
      bool collectPossibleRoots(Instruction *Base,
 | 
						|
                                std::map<int64_t,Instruction*> &Roots);
 | 
						|
      bool validateRootSet(DAGRootSet &DRS);
 | 
						|
 | 
						|
      bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
 | 
						|
      void collectInLoopUserSet(const SmallInstructionVector &Roots,
 | 
						|
                                const SmallInstructionSet &Exclude,
 | 
						|
                                const SmallInstructionSet &Final,
 | 
						|
                                DenseSet<Instruction *> &Users);
 | 
						|
      void collectInLoopUserSet(Instruction *Root,
 | 
						|
                                const SmallInstructionSet &Exclude,
 | 
						|
                                const SmallInstructionSet &Final,
 | 
						|
                                DenseSet<Instruction *> &Users);
 | 
						|
 | 
						|
      UsesTy::iterator nextInstr(int Val, UsesTy &In,
 | 
						|
                                 const SmallInstructionSet &Exclude,
 | 
						|
                                 UsesTy::iterator *StartI=nullptr);
 | 
						|
      bool isBaseInst(Instruction *I);
 | 
						|
      bool isRootInst(Instruction *I);
 | 
						|
      bool instrDependsOn(Instruction *I,
 | 
						|
                          UsesTy::iterator Start,
 | 
						|
                          UsesTy::iterator End);
 | 
						|
      void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
 | 
						|
 | 
						|
      LoopReroll *Parent;
 | 
						|
 | 
						|
      // Members of Parent, replicated here for brevity.
 | 
						|
      Loop *L;
 | 
						|
      ScalarEvolution *SE;
 | 
						|
      AliasAnalysis *AA;
 | 
						|
      TargetLibraryInfo *TLI;
 | 
						|
      DominatorTree *DT;
 | 
						|
      LoopInfo *LI;
 | 
						|
      bool PreserveLCSSA;
 | 
						|
 | 
						|
      // The loop induction variable.
 | 
						|
      Instruction *IV;
 | 
						|
 | 
						|
      // Loop step amount.
 | 
						|
      int64_t Inc;
 | 
						|
 | 
						|
      // Loop reroll count; if Inc == 1, this records the scaling applied
 | 
						|
      // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
 | 
						|
      // If Inc is not 1, Scale = Inc.
 | 
						|
      uint64_t Scale;
 | 
						|
 | 
						|
      // The roots themselves.
 | 
						|
      SmallVector<DAGRootSet,16> RootSets;
 | 
						|
 | 
						|
      // All increment instructions for IV.
 | 
						|
      SmallInstructionVector LoopIncs;
 | 
						|
 | 
						|
      // Map of all instructions in the loop (in order) to the iterations
 | 
						|
      // they are used in (or specially, IL_All for instructions
 | 
						|
      // used in the loop increment mechanism).
 | 
						|
      UsesTy Uses;
 | 
						|
 | 
						|
      // Map between induction variable and its increment
 | 
						|
      DenseMap<Instruction *, int64_t> &IVToIncMap;
 | 
						|
 | 
						|
      Instruction *LoopControlIV;
 | 
						|
    };
 | 
						|
 | 
						|
    // Check if it is a compare-like instruction whose user is a branch
 | 
						|
    bool isCompareUsedByBranch(Instruction *I) {
 | 
						|
      auto *TI = I->getParent()->getTerminator();
 | 
						|
      if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
 | 
						|
        return false;
 | 
						|
      return I->hasOneUse() && TI->getOperand(0) == I;
 | 
						|
    };
 | 
						|
 | 
						|
    bool isLoopControlIV(Loop *L, Instruction *IV);
 | 
						|
    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
 | 
						|
    void collectPossibleReductions(Loop *L,
 | 
						|
           ReductionTracker &Reductions);
 | 
						|
    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
 | 
						|
                const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char LoopRerollLegacyPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(LoopRerollLegacyPass, "loop-reroll", "Reroll loops",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LoopRerollLegacyPass, "loop-reroll", "Reroll loops", false,
 | 
						|
                    false)
 | 
						|
 | 
						|
Pass *llvm::createLoopRerollPass() { return new LoopRerollLegacyPass; }
 | 
						|
 | 
						|
// Returns true if the provided instruction is used outside the given loop.
 | 
						|
// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
 | 
						|
// non-loop blocks to be outside the loop.
 | 
						|
static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
 | 
						|
  for (User *U : I->users()) {
 | 
						|
    if (!L->contains(cast<Instruction>(U)))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Check if an IV is only used to control the loop. There are two cases:
 | 
						|
// 1. It only has one use which is loop increment, and the increment is only
 | 
						|
// used by comparison and the PHI (could has sext with nsw in between), and the
 | 
						|
// comparison is only used by branch.
 | 
						|
// 2. It is used by loop increment and the comparison, the loop increment is
 | 
						|
// only used by the PHI, and the comparison is used only by the branch.
 | 
						|
bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
 | 
						|
  unsigned IVUses = IV->getNumUses();
 | 
						|
  if (IVUses != 2 && IVUses != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto *User : IV->users()) {
 | 
						|
    int32_t IncOrCmpUses = User->getNumUses();
 | 
						|
    bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
 | 
						|
 | 
						|
    // User can only have one or two uses.
 | 
						|
    if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Case 1
 | 
						|
    if (IVUses == 1) {
 | 
						|
      // The only user must be the loop increment.
 | 
						|
      // The loop increment must have two uses.
 | 
						|
      if (IsCompInst || IncOrCmpUses != 2)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Case 2
 | 
						|
    if (IVUses == 2 && IncOrCmpUses != 1)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // The users of the IV must be a binary operation or a comparison
 | 
						|
    if (auto *BO = dyn_cast<BinaryOperator>(User)) {
 | 
						|
      if (BO->getOpcode() == Instruction::Add) {
 | 
						|
        // Loop Increment
 | 
						|
        // User of Loop Increment should be either PHI or CMP
 | 
						|
        for (auto *UU : User->users()) {
 | 
						|
          if (PHINode *PN = dyn_cast<PHINode>(UU)) {
 | 
						|
            if (PN != IV)
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
          // Must be a CMP or an ext (of a value with nsw) then CMP
 | 
						|
          else {
 | 
						|
            auto *UUser = cast<Instruction>(UU);
 | 
						|
            // Skip SExt if we are extending an nsw value
 | 
						|
            // TODO: Allow ZExt too
 | 
						|
            if (BO->hasNoSignedWrap() && UUser->hasOneUse() &&
 | 
						|
                isa<SExtInst>(UUser))
 | 
						|
              UUser = cast<Instruction>(*(UUser->user_begin()));
 | 
						|
            if (!isCompareUsedByBranch(UUser))
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        return false;
 | 
						|
      // Compare : can only have one use, and must be branch
 | 
						|
    } else if (!IsCompInst)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Collect the list of loop induction variables with respect to which it might
 | 
						|
// be possible to reroll the loop.
 | 
						|
void LoopReroll::collectPossibleIVs(Loop *L,
 | 
						|
                                    SmallInstructionVector &PossibleIVs) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  for (BasicBlock::iterator I = Header->begin(),
 | 
						|
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
 | 
						|
    if (!isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
    if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (const SCEVAddRecExpr *PHISCEV =
 | 
						|
            dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
 | 
						|
      if (PHISCEV->getLoop() != L)
 | 
						|
        continue;
 | 
						|
      if (!PHISCEV->isAffine())
 | 
						|
        continue;
 | 
						|
      auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
 | 
						|
      if (IncSCEV) {
 | 
						|
        IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
 | 
						|
        LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
 | 
						|
                          << "\n");
 | 
						|
 | 
						|
        if (isLoopControlIV(L, &*I)) {
 | 
						|
          assert(!LoopControlIV && "Found two loop control only IV");
 | 
						|
          LoopControlIV = &(*I);
 | 
						|
          LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
 | 
						|
                            << " = " << *PHISCEV << "\n");
 | 
						|
        } else
 | 
						|
          PossibleIVs.push_back(&*I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Add the remainder of the reduction-variable chain to the instruction vector
 | 
						|
// (the initial PHINode has already been added). If successful, the object is
 | 
						|
// marked as valid.
 | 
						|
void LoopReroll::SimpleLoopReduction::add(Loop *L) {
 | 
						|
  assert(!Valid && "Cannot add to an already-valid chain");
 | 
						|
 | 
						|
  // The reduction variable must be a chain of single-use instructions
 | 
						|
  // (including the PHI), except for the last value (which is used by the PHI
 | 
						|
  // and also outside the loop).
 | 
						|
  Instruction *C = Instructions.front();
 | 
						|
  if (C->user_empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  do {
 | 
						|
    C = cast<Instruction>(*C->user_begin());
 | 
						|
    if (C->hasOneUse()) {
 | 
						|
      if (!C->isBinaryOp())
 | 
						|
        return;
 | 
						|
 | 
						|
      if (!(isa<PHINode>(Instructions.back()) ||
 | 
						|
            C->isSameOperationAs(Instructions.back())))
 | 
						|
        return;
 | 
						|
 | 
						|
      Instructions.push_back(C);
 | 
						|
    }
 | 
						|
  } while (C->hasOneUse());
 | 
						|
 | 
						|
  if (Instructions.size() < 2 ||
 | 
						|
      !C->isSameOperationAs(Instructions.back()) ||
 | 
						|
      C->use_empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // C is now the (potential) last instruction in the reduction chain.
 | 
						|
  for (User *U : C->users()) {
 | 
						|
    // The only in-loop user can be the initial PHI.
 | 
						|
    if (L->contains(cast<Instruction>(U)))
 | 
						|
      if (cast<Instruction>(U) != Instructions.front())
 | 
						|
        return;
 | 
						|
  }
 | 
						|
 | 
						|
  Instructions.push_back(C);
 | 
						|
  Valid = true;
 | 
						|
}
 | 
						|
 | 
						|
// Collect the vector of possible reduction variables.
 | 
						|
void LoopReroll::collectPossibleReductions(Loop *L,
 | 
						|
  ReductionTracker &Reductions) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  for (BasicBlock::iterator I = Header->begin(),
 | 
						|
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
 | 
						|
    if (!isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
    if (!I->getType()->isSingleValueType())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SimpleLoopReduction SLR(&*I, L);
 | 
						|
    if (!SLR.valid())
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
 | 
						|
                      << SLR.size() << " chained instructions)\n");
 | 
						|
    Reductions.addSLR(SLR);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Collect the set of all users of the provided root instruction. This set of
 | 
						|
// users contains not only the direct users of the root instruction, but also
 | 
						|
// all users of those users, and so on. There are two exceptions:
 | 
						|
//
 | 
						|
//   1. Instructions in the set of excluded instructions are never added to the
 | 
						|
//   use set (even if they are users). This is used, for example, to exclude
 | 
						|
//   including root increments in the use set of the primary IV.
 | 
						|
//
 | 
						|
//   2. Instructions in the set of final instructions are added to the use set
 | 
						|
//   if they are users, but their users are not added. This is used, for
 | 
						|
//   example, to prevent a reduction update from forcing all later reduction
 | 
						|
//   updates into the use set.
 | 
						|
void LoopReroll::DAGRootTracker::collectInLoopUserSet(
 | 
						|
  Instruction *Root, const SmallInstructionSet &Exclude,
 | 
						|
  const SmallInstructionSet &Final,
 | 
						|
  DenseSet<Instruction *> &Users) {
 | 
						|
  SmallInstructionVector Queue(1, Root);
 | 
						|
  while (!Queue.empty()) {
 | 
						|
    Instruction *I = Queue.pop_back_val();
 | 
						|
    if (!Users.insert(I).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!Final.count(I))
 | 
						|
      for (Use &U : I->uses()) {
 | 
						|
        Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
        if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | 
						|
          // Ignore "wrap-around" uses to PHIs of this loop's header.
 | 
						|
          if (PN->getIncomingBlock(U) == L->getHeader())
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (L->contains(User) && !Exclude.count(User)) {
 | 
						|
          Queue.push_back(User);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // We also want to collect single-user "feeder" values.
 | 
						|
    for (Use &U : I->operands()) {
 | 
						|
      if (Instruction *Op = dyn_cast<Instruction>(U))
 | 
						|
        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
 | 
						|
            !Final.count(Op))
 | 
						|
          Queue.push_back(Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Collect all of the users of all of the provided root instructions (combined
 | 
						|
// into a single set).
 | 
						|
void LoopReroll::DAGRootTracker::collectInLoopUserSet(
 | 
						|
  const SmallInstructionVector &Roots,
 | 
						|
  const SmallInstructionSet &Exclude,
 | 
						|
  const SmallInstructionSet &Final,
 | 
						|
  DenseSet<Instruction *> &Users) {
 | 
						|
  for (Instruction *Root : Roots)
 | 
						|
    collectInLoopUserSet(Root, Exclude, Final, Users);
 | 
						|
}
 | 
						|
 | 
						|
static bool isUnorderedLoadStore(Instruction *I) {
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return LI->isUnordered();
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return SI->isUnordered();
 | 
						|
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | 
						|
    return !MI->isVolatile();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if IVU is a "simple" arithmetic operation.
 | 
						|
/// This is used for narrowing the search space for DAGRoots; only arithmetic
 | 
						|
/// and GEPs can be part of a DAGRoot.
 | 
						|
static bool isSimpleArithmeticOp(User *IVU) {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(IVU)) {
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    default: return false;
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isLoopIncrement(User *U, Instruction *IV) {
 | 
						|
  BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
 | 
						|
 | 
						|
  if ((BO && BO->getOpcode() != Instruction::Add) ||
 | 
						|
      (!BO && !isa<GetElementPtrInst>(U)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto *UU : U->users()) {
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(UU);
 | 
						|
    if (PN && PN == IV)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::
 | 
						|
collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
 | 
						|
  SmallInstructionVector BaseUsers;
 | 
						|
 | 
						|
  for (auto *I : Base->users()) {
 | 
						|
    ConstantInt *CI = nullptr;
 | 
						|
 | 
						|
    if (isLoopIncrement(I, IV)) {
 | 
						|
      LoopIncs.push_back(cast<Instruction>(I));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // The root nodes must be either GEPs, ORs or ADDs.
 | 
						|
    if (auto *BO = dyn_cast<BinaryOperator>(I)) {
 | 
						|
      if (BO->getOpcode() == Instruction::Add ||
 | 
						|
          BO->getOpcode() == Instruction::Or)
 | 
						|
        CI = dyn_cast<ConstantInt>(BO->getOperand(1));
 | 
						|
    } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
      Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
 | 
						|
      CI = dyn_cast<ConstantInt>(LastOperand);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!CI) {
 | 
						|
      if (Instruction *II = dyn_cast<Instruction>(I)) {
 | 
						|
        BaseUsers.push_back(II);
 | 
						|
        continue;
 | 
						|
      } else {
 | 
						|
        LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
 | 
						|
                          << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    int64_t V = std::abs(CI->getValue().getSExtValue());
 | 
						|
    if (Roots.find(V) != Roots.end())
 | 
						|
      // No duplicates, please.
 | 
						|
      return false;
 | 
						|
 | 
						|
    Roots[V] = cast<Instruction>(I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure we have at least two roots.
 | 
						|
  if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we found non-loop-inc, non-root users of Base, assume they are
 | 
						|
  // for the zeroth root index. This is because "add %a, 0" gets optimized
 | 
						|
  // away.
 | 
						|
  if (BaseUsers.size()) {
 | 
						|
    if (Roots.find(0) != Roots.end()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Roots[0] = Base;
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate the number of users of the base, or lowest indexed, iteration.
 | 
						|
  unsigned NumBaseUses = BaseUsers.size();
 | 
						|
  if (NumBaseUses == 0)
 | 
						|
    NumBaseUses = Roots.begin()->second->getNumUses();
 | 
						|
 | 
						|
  // Check that every node has the same number of users.
 | 
						|
  for (auto &KV : Roots) {
 | 
						|
    if (KV.first == 0)
 | 
						|
      continue;
 | 
						|
    if (!KV.second->hasNUses(NumBaseUses)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
 | 
						|
                        << "#Base=" << NumBaseUses
 | 
						|
                        << ", #Root=" << KV.second->getNumUses() << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopReroll::DAGRootTracker::
 | 
						|
findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
 | 
						|
  // Does the user look like it could be part of a root set?
 | 
						|
  // All its users must be simple arithmetic ops.
 | 
						|
  if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (I != IV && findRootsBase(I, SubsumedInsts))
 | 
						|
    return;
 | 
						|
 | 
						|
  SubsumedInsts.insert(I);
 | 
						|
 | 
						|
  for (User *V : I->users()) {
 | 
						|
    Instruction *I = cast<Instruction>(V);
 | 
						|
    if (is_contained(LoopIncs, I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!isSimpleArithmeticOp(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // The recursive call makes a copy of SubsumedInsts.
 | 
						|
    findRootsRecursive(I, SubsumedInsts);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
 | 
						|
  if (DRS.Roots.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the value of the base instruction is used outside the loop, we cannot
 | 
						|
  // reroll the loop. Check for other root instructions is unnecessary because
 | 
						|
  // they don't match any base instructions if their values are used outside.
 | 
						|
  if (hasUsesOutsideLoop(DRS.BaseInst, L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Consider a DAGRootSet with N-1 roots (so N different values including
 | 
						|
  //   BaseInst).
 | 
						|
  // Define d = Roots[0] - BaseInst, which should be the same as
 | 
						|
  //   Roots[I] - Roots[I-1] for all I in [1..N).
 | 
						|
  // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
 | 
						|
  //   loop iteration J.
 | 
						|
  //
 | 
						|
  // Now, For the loop iterations to be consecutive:
 | 
						|
  //   D = d * N
 | 
						|
  const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
 | 
						|
  if (!ADR)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the first root is evenly spaced.
 | 
						|
  unsigned N = DRS.Roots.size() + 1;
 | 
						|
  const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
 | 
						|
  if (isa<SCEVCouldNotCompute>(StepSCEV) || StepSCEV->getType()->isPointerTy())
 | 
						|
    return false;
 | 
						|
  const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
 | 
						|
  if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the remainling roots are evenly spaced.
 | 
						|
  for (unsigned i = 1; i < N - 1; ++i) {
 | 
						|
    const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
 | 
						|
                                               SE->getSCEV(DRS.Roots[i-1]));
 | 
						|
    if (NewStepSCEV != StepSCEV)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::
 | 
						|
findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
 | 
						|
  // The base of a RootSet must be an AddRec, so it can be erased.
 | 
						|
  const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
 | 
						|
  if (!IVU_ADR || IVU_ADR->getLoop() != L)
 | 
						|
    return false;
 | 
						|
 | 
						|
  std::map<int64_t, Instruction*> V;
 | 
						|
  if (!collectPossibleRoots(IVU, V))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we didn't get a root for index zero, then IVU must be
 | 
						|
  // subsumed.
 | 
						|
  if (V.find(0) == V.end())
 | 
						|
    SubsumedInsts.insert(IVU);
 | 
						|
 | 
						|
  // Partition the vector into monotonically increasing indexes.
 | 
						|
  DAGRootSet DRS;
 | 
						|
  DRS.BaseInst = nullptr;
 | 
						|
 | 
						|
  SmallVector<DAGRootSet, 16> PotentialRootSets;
 | 
						|
 | 
						|
  for (auto &KV : V) {
 | 
						|
    if (!DRS.BaseInst) {
 | 
						|
      DRS.BaseInst = KV.second;
 | 
						|
      DRS.SubsumedInsts = SubsumedInsts;
 | 
						|
    } else if (DRS.Roots.empty()) {
 | 
						|
      DRS.Roots.push_back(KV.second);
 | 
						|
    } else if (V.find(KV.first - 1) != V.end()) {
 | 
						|
      DRS.Roots.push_back(KV.second);
 | 
						|
    } else {
 | 
						|
      // Linear sequence terminated.
 | 
						|
      if (!validateRootSet(DRS))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Construct a new DAGRootSet with the next sequence.
 | 
						|
      PotentialRootSets.push_back(DRS);
 | 
						|
      DRS.BaseInst = KV.second;
 | 
						|
      DRS.Roots.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!validateRootSet(DRS))
 | 
						|
    return false;
 | 
						|
 | 
						|
  PotentialRootSets.push_back(DRS);
 | 
						|
 | 
						|
  RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::findRoots() {
 | 
						|
  Inc = IVToIncMap[IV];
 | 
						|
 | 
						|
  assert(RootSets.empty() && "Unclean state!");
 | 
						|
  if (std::abs(Inc) == 1) {
 | 
						|
    for (auto *IVU : IV->users()) {
 | 
						|
      if (isLoopIncrement(IVU, IV))
 | 
						|
        LoopIncs.push_back(cast<Instruction>(IVU));
 | 
						|
    }
 | 
						|
    findRootsRecursive(IV, SmallInstructionSet());
 | 
						|
    LoopIncs.push_back(IV);
 | 
						|
  } else {
 | 
						|
    if (!findRootsBase(IV, SmallInstructionSet()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure all sets have the same size.
 | 
						|
  if (RootSets.empty()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  for (auto &V : RootSets) {
 | 
						|
    if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs()
 | 
						|
          << "LRR: Aborting because not all root sets have the same size\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Scale = RootSets[0].Roots.size() + 1;
 | 
						|
 | 
						|
  if (Scale > IL_MaxRerollIterations) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
 | 
						|
                      << "#Found=" << Scale
 | 
						|
                      << ", #Max=" << IL_MaxRerollIterations << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
 | 
						|
                    << "\n");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
 | 
						|
  // Populate the MapVector with all instructions in the block, in order first,
 | 
						|
  // so we can iterate over the contents later in perfect order.
 | 
						|
  for (auto &I : *L->getHeader()) {
 | 
						|
    Uses[&I].resize(IL_End);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallInstructionSet Exclude;
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
 | 
						|
    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
 | 
						|
    Exclude.insert(DRS.BaseInst);
 | 
						|
  }
 | 
						|
  Exclude.insert(LoopIncs.begin(), LoopIncs.end());
 | 
						|
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    DenseSet<Instruction*> VBase;
 | 
						|
    collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
 | 
						|
    for (auto *I : VBase) {
 | 
						|
      Uses[I].set(0);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Idx = 1;
 | 
						|
    for (auto *Root : DRS.Roots) {
 | 
						|
      DenseSet<Instruction*> V;
 | 
						|
      collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
 | 
						|
 | 
						|
      // While we're here, check the use sets are the same size.
 | 
						|
      if (V.size() != VBase.size()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      for (auto *I : V) {
 | 
						|
        Uses[I].set(Idx);
 | 
						|
      }
 | 
						|
      ++Idx;
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure our subsumed instructions are remembered too.
 | 
						|
    for (auto *I : DRS.SubsumedInsts) {
 | 
						|
      Uses[I].set(IL_All);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure the loop increments are also accounted for.
 | 
						|
 | 
						|
  Exclude.clear();
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
 | 
						|
    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
 | 
						|
    Exclude.insert(DRS.BaseInst);
 | 
						|
  }
 | 
						|
 | 
						|
  DenseSet<Instruction*> V;
 | 
						|
  collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
 | 
						|
  for (auto *I : V) {
 | 
						|
    if (I->mayHaveSideEffects()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LRR: Aborting - "
 | 
						|
                        << "An instruction which does not belong to any root "
 | 
						|
                        << "sets must not have side effects: " << *I);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Uses[I].set(IL_All);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the next instruction in "In" that is a member of set Val.
 | 
						|
/// Start searching from StartI, and do not return anything in Exclude.
 | 
						|
/// If StartI is not given, start from In.begin().
 | 
						|
LoopReroll::DAGRootTracker::UsesTy::iterator
 | 
						|
LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
 | 
						|
                                      const SmallInstructionSet &Exclude,
 | 
						|
                                      UsesTy::iterator *StartI) {
 | 
						|
  UsesTy::iterator I = StartI ? *StartI : In.begin();
 | 
						|
  while (I != In.end() && (I->second.test(Val) == 0 ||
 | 
						|
                           Exclude.contains(I->first)))
 | 
						|
    ++I;
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    if (DRS.BaseInst == I)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    if (is_contained(DRS.Roots, I))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if instruction I depends on any instruction between
 | 
						|
/// Start and End.
 | 
						|
bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
 | 
						|
                                                UsesTy::iterator Start,
 | 
						|
                                                UsesTy::iterator End) {
 | 
						|
  for (auto *U : I->users()) {
 | 
						|
    for (auto It = Start; It != End; ++It)
 | 
						|
      if (U == It->first)
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isIgnorableInst(const Instruction *I) {
 | 
						|
  if (isa<DbgInfoIntrinsic>(I))
 | 
						|
    return true;
 | 
						|
  const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
 | 
						|
  if (!II)
 | 
						|
    return false;
 | 
						|
  switch (II->getIntrinsicID()) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case Intrinsic::annotation:
 | 
						|
    case Intrinsic::ptr_annotation:
 | 
						|
    case Intrinsic::var_annotation:
 | 
						|
    // TODO: the following intrinsics may also be allowed:
 | 
						|
    //   lifetime_start, lifetime_end, invariant_start, invariant_end
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
 | 
						|
  // We now need to check for equivalence of the use graph of each root with
 | 
						|
  // that of the primary induction variable (excluding the roots). Our goal
 | 
						|
  // here is not to solve the full graph isomorphism problem, but rather to
 | 
						|
  // catch common cases without a lot of work. As a result, we will assume
 | 
						|
  // that the relative order of the instructions in each unrolled iteration
 | 
						|
  // is the same (although we will not make an assumption about how the
 | 
						|
  // different iterations are intermixed). Note that while the order must be
 | 
						|
  // the same, the instructions may not be in the same basic block.
 | 
						|
 | 
						|
  // An array of just the possible reductions for this scale factor. When we
 | 
						|
  // collect the set of all users of some root instructions, these reduction
 | 
						|
  // instructions are treated as 'final' (their uses are not considered).
 | 
						|
  // This is important because we don't want the root use set to search down
 | 
						|
  // the reduction chain.
 | 
						|
  SmallInstructionSet PossibleRedSet;
 | 
						|
  SmallInstructionSet PossibleRedLastSet;
 | 
						|
  SmallInstructionSet PossibleRedPHISet;
 | 
						|
  Reductions.restrictToScale(Scale, PossibleRedSet,
 | 
						|
                             PossibleRedPHISet, PossibleRedLastSet);
 | 
						|
 | 
						|
  // Populate "Uses" with where each instruction is used.
 | 
						|
  if (!collectUsedInstructions(PossibleRedSet))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure we mark the reduction PHIs as used in all iterations.
 | 
						|
  for (auto *I : PossibleRedPHISet) {
 | 
						|
    Uses[I].set(IL_All);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure we mark loop-control-only PHIs as used in all iterations. See
 | 
						|
  // comment above LoopReroll::isLoopControlIV for more information.
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  if (LoopControlIV && LoopControlIV != IV) {
 | 
						|
    for (auto *U : LoopControlIV->users()) {
 | 
						|
      Instruction *IVUser = dyn_cast<Instruction>(U);
 | 
						|
      // IVUser could be loop increment or compare
 | 
						|
      Uses[IVUser].set(IL_All);
 | 
						|
      for (auto *UU : IVUser->users()) {
 | 
						|
        Instruction *UUser = dyn_cast<Instruction>(UU);
 | 
						|
        // UUser could be compare, PHI or branch
 | 
						|
        Uses[UUser].set(IL_All);
 | 
						|
        // Skip SExt
 | 
						|
        if (isa<SExtInst>(UUser)) {
 | 
						|
          UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
 | 
						|
          Uses[UUser].set(IL_All);
 | 
						|
        }
 | 
						|
        // Is UUser a compare instruction?
 | 
						|
        if (UU->hasOneUse()) {
 | 
						|
          Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
 | 
						|
          if (BI == cast<BranchInst>(Header->getTerminator()))
 | 
						|
            Uses[BI].set(IL_All);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure all instructions in the loop are in one and only one
 | 
						|
  // set.
 | 
						|
  for (auto &KV : Uses) {
 | 
						|
    if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
 | 
						|
                 << *KV.first << " (#uses=" << KV.second.count() << ")\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(for (auto &KV
 | 
						|
                  : Uses) {
 | 
						|
    dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
 | 
						|
  });
 | 
						|
 | 
						|
  for (unsigned Iter = 1; Iter < Scale; ++Iter) {
 | 
						|
    // In addition to regular aliasing information, we need to look for
 | 
						|
    // instructions from later (future) iterations that have side effects
 | 
						|
    // preventing us from reordering them past other instructions with side
 | 
						|
    // effects.
 | 
						|
    bool FutureSideEffects = false;
 | 
						|
    AliasSetTracker AST(*AA);
 | 
						|
    // The map between instructions in f(%iv.(i+1)) and f(%iv).
 | 
						|
    DenseMap<Value *, Value *> BaseMap;
 | 
						|
 | 
						|
    // Compare iteration Iter to the base.
 | 
						|
    SmallInstructionSet Visited;
 | 
						|
    auto BaseIt = nextInstr(0, Uses, Visited);
 | 
						|
    auto RootIt = nextInstr(Iter, Uses, Visited);
 | 
						|
    auto LastRootIt = Uses.begin();
 | 
						|
 | 
						|
    while (BaseIt != Uses.end() && RootIt != Uses.end()) {
 | 
						|
      Instruction *BaseInst = BaseIt->first;
 | 
						|
      Instruction *RootInst = RootIt->first;
 | 
						|
 | 
						|
      // Skip over the IV or root instructions; only match their users.
 | 
						|
      bool Continue = false;
 | 
						|
      if (isBaseInst(BaseInst)) {
 | 
						|
        Visited.insert(BaseInst);
 | 
						|
        BaseIt = nextInstr(0, Uses, Visited);
 | 
						|
        Continue = true;
 | 
						|
      }
 | 
						|
      if (isRootInst(RootInst)) {
 | 
						|
        LastRootIt = RootIt;
 | 
						|
        Visited.insert(RootInst);
 | 
						|
        RootIt = nextInstr(Iter, Uses, Visited);
 | 
						|
        Continue = true;
 | 
						|
      }
 | 
						|
      if (Continue) continue;
 | 
						|
 | 
						|
      if (!BaseInst->isSameOperationAs(RootInst)) {
 | 
						|
        // Last chance saloon. We don't try and solve the full isomorphism
 | 
						|
        // problem, but try and at least catch the case where two instructions
 | 
						|
        // *of different types* are round the wrong way. We won't be able to
 | 
						|
        // efficiently tell, given two ADD instructions, which way around we
 | 
						|
        // should match them, but given an ADD and a SUB, we can at least infer
 | 
						|
        // which one is which.
 | 
						|
        //
 | 
						|
        // This should allow us to deal with a greater subset of the isomorphism
 | 
						|
        // problem. It does however change a linear algorithm into a quadratic
 | 
						|
        // one, so limit the number of probes we do.
 | 
						|
        auto TryIt = RootIt;
 | 
						|
        unsigned N = NumToleratedFailedMatches;
 | 
						|
        while (TryIt != Uses.end() &&
 | 
						|
               !BaseInst->isSameOperationAs(TryIt->first) &&
 | 
						|
               N--) {
 | 
						|
          ++TryIt;
 | 
						|
          TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
 | 
						|
        }
 | 
						|
 | 
						|
        if (TryIt == Uses.end() || TryIt == RootIt ||
 | 
						|
            instrDependsOn(TryIt->first, RootIt, TryIt)) {
 | 
						|
          LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
 | 
						|
                            << *BaseInst << " vs. " << *RootInst << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        RootIt = TryIt;
 | 
						|
        RootInst = TryIt->first;
 | 
						|
      }
 | 
						|
 | 
						|
      // All instructions between the last root and this root
 | 
						|
      // may belong to some other iteration. If they belong to a
 | 
						|
      // future iteration, then they're dangerous to alias with.
 | 
						|
      //
 | 
						|
      // Note that because we allow a limited amount of flexibility in the order
 | 
						|
      // that we visit nodes, LastRootIt might be *before* RootIt, in which
 | 
						|
      // case we've already checked this set of instructions so we shouldn't
 | 
						|
      // do anything.
 | 
						|
      for (; LastRootIt < RootIt; ++LastRootIt) {
 | 
						|
        Instruction *I = LastRootIt->first;
 | 
						|
        if (LastRootIt->second.find_first() < (int)Iter)
 | 
						|
          continue;
 | 
						|
        if (I->mayWriteToMemory())
 | 
						|
          AST.add(I);
 | 
						|
        // Note: This is specifically guarded by a check on isa<PHINode>,
 | 
						|
        // which while a valid (somewhat arbitrary) micro-optimization, is
 | 
						|
        // needed because otherwise isSafeToSpeculativelyExecute returns
 | 
						|
        // false on PHI nodes.
 | 
						|
        if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
 | 
						|
            !isSafeToSpeculativelyExecute(I))
 | 
						|
          // Intervening instructions cause side effects.
 | 
						|
          FutureSideEffects = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Make sure that this instruction, which is in the use set of this
 | 
						|
      // root instruction, does not also belong to the base set or the set of
 | 
						|
      // some other root instruction.
 | 
						|
      if (RootIt->second.count() > 1) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
 | 
						|
                          << " vs. " << *RootInst << " (prev. case overlap)\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Make sure that we don't alias with any instruction in the alias set
 | 
						|
      // tracker. If we do, then we depend on a future iteration, and we
 | 
						|
      // can't reroll.
 | 
						|
      if (RootInst->mayReadFromMemory())
 | 
						|
        for (auto &K : AST) {
 | 
						|
          if (K.aliasesUnknownInst(RootInst, *AA)) {
 | 
						|
            LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
 | 
						|
                              << *BaseInst << " vs. " << *RootInst
 | 
						|
                              << " (depends on future store)\n");
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      // If we've past an instruction from a future iteration that may have
 | 
						|
      // side effects, and this instruction might also, then we can't reorder
 | 
						|
      // them, and this matching fails. As an exception, we allow the alias
 | 
						|
      // set tracker to handle regular (unordered) load/store dependencies.
 | 
						|
      if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
 | 
						|
                                 !isSafeToSpeculativelyExecute(BaseInst)) ||
 | 
						|
                                (!isUnorderedLoadStore(RootInst) &&
 | 
						|
                                 !isSafeToSpeculativelyExecute(RootInst)))) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
 | 
						|
                          << " vs. " << *RootInst
 | 
						|
                          << " (side effects prevent reordering)\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // For instructions that are part of a reduction, if the operation is
 | 
						|
      // associative, then don't bother matching the operands (because we
 | 
						|
      // already know that the instructions are isomorphic, and the order
 | 
						|
      // within the iteration does not matter). For non-associative reductions,
 | 
						|
      // we do need to match the operands, because we need to reject
 | 
						|
      // out-of-order instructions within an iteration!
 | 
						|
      // For example (assume floating-point addition), we need to reject this:
 | 
						|
      //   x += a[i]; x += b[i];
 | 
						|
      //   x += a[i+1]; x += b[i+1];
 | 
						|
      //   x += b[i+2]; x += a[i+2];
 | 
						|
      bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
 | 
						|
 | 
						|
      if (!(InReduction && BaseInst->isAssociative())) {
 | 
						|
        bool Swapped = false, SomeOpMatched = false;
 | 
						|
        for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
 | 
						|
          Value *Op2 = RootInst->getOperand(j);
 | 
						|
 | 
						|
          // If this is part of a reduction (and the operation is not
 | 
						|
          // associatve), then we match all operands, but not those that are
 | 
						|
          // part of the reduction.
 | 
						|
          if (InReduction)
 | 
						|
            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
 | 
						|
              if (Reductions.isPairInSame(RootInst, Op2I))
 | 
						|
                continue;
 | 
						|
 | 
						|
          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
 | 
						|
          if (BMI != BaseMap.end()) {
 | 
						|
            Op2 = BMI->second;
 | 
						|
          } else {
 | 
						|
            for (auto &DRS : RootSets) {
 | 
						|
              if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
 | 
						|
                Op2 = DRS.BaseInst;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
 | 
						|
            // If we've not already decided to swap the matched operands, and
 | 
						|
            // we've not already matched our first operand (note that we could
 | 
						|
            // have skipped matching the first operand because it is part of a
 | 
						|
            // reduction above), and the instruction is commutative, then try
 | 
						|
            // the swapped match.
 | 
						|
            if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
 | 
						|
                BaseInst->getOperand(!j) == Op2) {
 | 
						|
              Swapped = true;
 | 
						|
            } else {
 | 
						|
              LLVM_DEBUG(dbgs()
 | 
						|
                         << "LRR: iteration root match failed at " << *BaseInst
 | 
						|
                         << " vs. " << *RootInst << " (operand " << j << ")\n");
 | 
						|
              return false;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          SomeOpMatched = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if ((!PossibleRedLastSet.count(BaseInst) &&
 | 
						|
           hasUsesOutsideLoop(BaseInst, L)) ||
 | 
						|
          (!PossibleRedLastSet.count(RootInst) &&
 | 
						|
           hasUsesOutsideLoop(RootInst, L))) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
 | 
						|
                          << " vs. " << *RootInst << " (uses outside loop)\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      Reductions.recordPair(BaseInst, RootInst, Iter);
 | 
						|
      BaseMap.insert(std::make_pair(RootInst, BaseInst));
 | 
						|
 | 
						|
      LastRootIt = RootIt;
 | 
						|
      Visited.insert(BaseInst);
 | 
						|
      Visited.insert(RootInst);
 | 
						|
      BaseIt = nextInstr(0, Uses, Visited);
 | 
						|
      RootIt = nextInstr(Iter, Uses, Visited);
 | 
						|
    }
 | 
						|
    assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
 | 
						|
           "Mismatched set sizes!");
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
 | 
						|
                    << "\n");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
 | 
						|
  // Compute the start and increment for each BaseInst before we start erasing
 | 
						|
  // instructions.
 | 
						|
  SmallVector<const SCEV *, 8> StartExprs;
 | 
						|
  SmallVector<const SCEV *, 8> IncrExprs;
 | 
						|
  for (auto &DRS : RootSets) {
 | 
						|
    const SCEVAddRecExpr *IVSCEV =
 | 
						|
        cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
 | 
						|
    StartExprs.push_back(IVSCEV->getStart());
 | 
						|
    IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove instructions associated with non-base iterations.
 | 
						|
  for (Instruction &Inst : llvm::make_early_inc_range(llvm::reverse(*Header))) {
 | 
						|
    unsigned I = Uses[&Inst].find_first();
 | 
						|
    if (I > 0 && I < IL_All) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LRR: removing: " << Inst << "\n");
 | 
						|
      Inst.eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite each BaseInst using SCEV.
 | 
						|
  for (size_t i = 0, e = RootSets.size(); i != e; ++i)
 | 
						|
    // Insert the new induction variable.
 | 
						|
    replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
 | 
						|
 | 
						|
  { // Limit the lifetime of SCEVExpander.
 | 
						|
    BranchInst *BI = cast<BranchInst>(Header->getTerminator());
 | 
						|
    const DataLayout &DL = Header->getModule()->getDataLayout();
 | 
						|
    SCEVExpander Expander(*SE, DL, "reroll");
 | 
						|
    auto Zero = SE->getZero(BackedgeTakenCount->getType());
 | 
						|
    auto One = SE->getOne(BackedgeTakenCount->getType());
 | 
						|
    auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
 | 
						|
    Value *NewIV =
 | 
						|
        Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
 | 
						|
                               Header->getFirstNonPHIOrDbg());
 | 
						|
    // FIXME: This arithmetic can overflow.
 | 
						|
    auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
 | 
						|
    auto ScaledTripCount = SE->getMulExpr(
 | 
						|
        TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
 | 
						|
    auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
 | 
						|
    Value *TakenCount =
 | 
						|
        Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
 | 
						|
                               Header->getFirstNonPHIOrDbg());
 | 
						|
    Value *Cond =
 | 
						|
        new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
 | 
						|
    BI->setCondition(Cond);
 | 
						|
 | 
						|
    if (BI->getSuccessor(1) != Header)
 | 
						|
      BI->swapSuccessors();
 | 
						|
  }
 | 
						|
 | 
						|
  SimplifyInstructionsInBlock(Header, TLI);
 | 
						|
  DeleteDeadPHIs(Header, TLI);
 | 
						|
}
 | 
						|
 | 
						|
void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
 | 
						|
                                           const SCEV *Start,
 | 
						|
                                           const SCEV *IncrExpr) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  Instruction *Inst = DRS.BaseInst;
 | 
						|
 | 
						|
  const SCEV *NewIVSCEV =
 | 
						|
      SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
 | 
						|
 | 
						|
  { // Limit the lifetime of SCEVExpander.
 | 
						|
    const DataLayout &DL = Header->getModule()->getDataLayout();
 | 
						|
    SCEVExpander Expander(*SE, DL, "reroll");
 | 
						|
    Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
 | 
						|
                                          Header->getFirstNonPHIOrDbg());
 | 
						|
 | 
						|
    for (auto &KV : Uses)
 | 
						|
      if (KV.second.find_first() == 0)
 | 
						|
        KV.first->replaceUsesOfWith(Inst, NewIV);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Validate the selected reductions. All iterations must have an isomorphic
 | 
						|
// part of the reduction chain and, for non-associative reductions, the chain
 | 
						|
// entries must appear in order.
 | 
						|
bool LoopReroll::ReductionTracker::validateSelected() {
 | 
						|
  // For a non-associative reduction, the chain entries must appear in order.
 | 
						|
  for (int i : Reds) {
 | 
						|
    int PrevIter = 0, BaseCount = 0, Count = 0;
 | 
						|
    for (Instruction *J : PossibleReds[i]) {
 | 
						|
      // Note that all instructions in the chain must have been found because
 | 
						|
      // all instructions in the function must have been assigned to some
 | 
						|
      // iteration.
 | 
						|
      int Iter = PossibleRedIter[J];
 | 
						|
      if (Iter != PrevIter && Iter != PrevIter + 1 &&
 | 
						|
          !PossibleReds[i].getReducedValue()->isAssociative()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
 | 
						|
                          << J << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Iter != PrevIter) {
 | 
						|
        if (Count != BaseCount) {
 | 
						|
          LLVM_DEBUG(dbgs()
 | 
						|
                     << "LRR: Iteration " << PrevIter << " reduction use count "
 | 
						|
                     << Count << " is not equal to the base use count "
 | 
						|
                     << BaseCount << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        Count = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      ++Count;
 | 
						|
      if (Iter == 0)
 | 
						|
        ++BaseCount;
 | 
						|
 | 
						|
      PrevIter = Iter;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// For all selected reductions, remove all parts except those in the first
 | 
						|
// iteration (and the PHI). Replace outside uses of the reduced value with uses
 | 
						|
// of the first-iteration reduced value (in other words, reroll the selected
 | 
						|
// reductions).
 | 
						|
void LoopReroll::ReductionTracker::replaceSelected() {
 | 
						|
  // Fixup reductions to refer to the last instruction associated with the
 | 
						|
  // first iteration (not the last).
 | 
						|
  for (int i : Reds) {
 | 
						|
    int j = 0;
 | 
						|
    for (int e = PossibleReds[i].size(); j != e; ++j)
 | 
						|
      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
 | 
						|
        --j;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    // Replace users with the new end-of-chain value.
 | 
						|
    SmallInstructionVector Users;
 | 
						|
    for (User *U : PossibleReds[i].getReducedValue()->users()) {
 | 
						|
      Users.push_back(cast<Instruction>(U));
 | 
						|
    }
 | 
						|
 | 
						|
    for (Instruction *User : Users)
 | 
						|
      User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
 | 
						|
                              PossibleReds[i][j]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Reroll the provided loop with respect to the provided induction variable.
 | 
						|
// Generally, we're looking for a loop like this:
 | 
						|
//
 | 
						|
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | 
						|
// f(%iv)
 | 
						|
// %iv.1 = add %iv, 1                <-- a root increment
 | 
						|
// f(%iv.1)
 | 
						|
// %iv.2 = add %iv, 2                <-- a root increment
 | 
						|
// f(%iv.2)
 | 
						|
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
 | 
						|
// f(%iv.scale_m_1)
 | 
						|
// ...
 | 
						|
// %iv.next = add %iv, scale
 | 
						|
// %cmp = icmp(%iv, ...)
 | 
						|
// br %cmp, header, exit
 | 
						|
//
 | 
						|
// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
 | 
						|
// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
 | 
						|
// be intermixed with eachother. The restriction imposed by this algorithm is
 | 
						|
// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
 | 
						|
// etc. be the same.
 | 
						|
//
 | 
						|
// First, we collect the use set of %iv, excluding the other increment roots.
 | 
						|
// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
 | 
						|
// times, having collected the use set of f(%iv.(i+1)), during which we:
 | 
						|
//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
 | 
						|
//     the next unmatched instruction in f(%iv.(i+1)).
 | 
						|
//   - Ensure that both matched instructions don't have any external users
 | 
						|
//     (with the exception of last-in-chain reduction instructions).
 | 
						|
//   - Track the (aliasing) write set, and other side effects, of all
 | 
						|
//     instructions that belong to future iterations that come before the matched
 | 
						|
//     instructions. If the matched instructions read from that write set, then
 | 
						|
//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
 | 
						|
//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
 | 
						|
//     if any of these future instructions had side effects (could not be
 | 
						|
//     speculatively executed), and so do the matched instructions, when we
 | 
						|
//     cannot reorder those side-effect-producing instructions, and rerolling
 | 
						|
//     fails.
 | 
						|
//
 | 
						|
// Finally, we make sure that all loop instructions are either loop increment
 | 
						|
// roots, belong to simple latch code, parts of validated reductions, part of
 | 
						|
// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
 | 
						|
// have been validated), then we reroll the loop.
 | 
						|
bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
 | 
						|
                        const SCEV *BackedgeTakenCount,
 | 
						|
                        ReductionTracker &Reductions) {
 | 
						|
  DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
 | 
						|
                          IVToIncMap, LoopControlIV);
 | 
						|
 | 
						|
  if (!DAGRoots.findRoots())
 | 
						|
    return false;
 | 
						|
  LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
 | 
						|
                    << "\n");
 | 
						|
 | 
						|
  if (!DAGRoots.validate(Reductions))
 | 
						|
    return false;
 | 
						|
  if (!Reductions.validateSelected())
 | 
						|
    return false;
 | 
						|
  // At this point, we've validated the rerolling, and we're committed to
 | 
						|
  // making changes!
 | 
						|
 | 
						|
  Reductions.replaceSelected();
 | 
						|
  DAGRoots.replace(BackedgeTakenCount);
 | 
						|
 | 
						|
  ++NumRerolledLoops;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopReroll::runOnLoop(Loop *L) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
 | 
						|
                    << Header->getName() << " (" << L->getNumBlocks()
 | 
						|
                    << " block(s))\n");
 | 
						|
 | 
						|
  // For now, we'll handle only single BB loops.
 | 
						|
  if (L->getNumBlocks() > 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | 
						|
  LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
 | 
						|
  LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
 | 
						|
               << "\n");
 | 
						|
 | 
						|
  // First, we need to find the induction variable with respect to which we can
 | 
						|
  // reroll (there may be several possible options).
 | 
						|
  SmallInstructionVector PossibleIVs;
 | 
						|
  IVToIncMap.clear();
 | 
						|
  LoopControlIV = nullptr;
 | 
						|
  collectPossibleIVs(L, PossibleIVs);
 | 
						|
 | 
						|
  if (PossibleIVs.empty()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  ReductionTracker Reductions;
 | 
						|
  collectPossibleReductions(L, Reductions);
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // For each possible IV, collect the associated possible set of 'root' nodes
 | 
						|
  // (i+1, i+2, etc.).
 | 
						|
  for (Instruction *PossibleIV : PossibleIVs)
 | 
						|
    if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
 | 
						|
      Changed = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
 | 
						|
 | 
						|
  // Trip count of L has changed so SE must be re-evaluated.
 | 
						|
  if (Changed)
 | 
						|
    SE->forgetLoop(L);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopRerollLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  if (skipLoop(L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
 | 
						|
      *L->getHeader()->getParent());
 | 
						|
  auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
 | 
						|
 | 
						|
  return LoopReroll(AA, LI, SE, TLI, DT, PreserveLCSSA).runOnLoop(L);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses LoopRerollPass::run(Loop &L, LoopAnalysisManager &AM,
 | 
						|
                                      LoopStandardAnalysisResults &AR,
 | 
						|
                                      LPMUpdater &U) {
 | 
						|
  return LoopReroll(&AR.AA, &AR.LI, &AR.SE, &AR.TLI, &AR.DT, true).runOnLoop(&L)
 | 
						|
             ? getLoopPassPreservedAnalyses()
 | 
						|
             : PreservedAnalyses::all();
 | 
						|
}
 |