3404 lines
		
	
	
		
			128 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3404 lines
		
	
	
		
			128 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- Local.cpp - Functions to perform local transformations -------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This family of functions perform various local transformations to the
 | 
						|
// program.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseMapInfo.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/Hashing.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AssumeBundleQueries.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/DomTreeUpdater.h"
 | 
						|
#include "llvm/Analysis/EHPersonalities.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/MemorySSAUpdater.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/BinaryFormat/Dwarf.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/ConstantRange.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalObject.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <map>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "local"
 | 
						|
 | 
						|
STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
 | 
						|
STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
 | 
						|
 | 
						|
static cl::opt<bool> PHICSEDebugHash(
 | 
						|
    "phicse-debug-hash",
 | 
						|
#ifdef EXPENSIVE_CHECKS
 | 
						|
    cl::init(true),
 | 
						|
#else
 | 
						|
    cl::init(false),
 | 
						|
#endif
 | 
						|
    cl::Hidden,
 | 
						|
    cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
 | 
						|
             "function is well-behaved w.r.t. its isEqual predicate"));
 | 
						|
 | 
						|
static cl::opt<unsigned> PHICSENumPHISmallSize(
 | 
						|
    "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
 | 
						|
    cl::desc(
 | 
						|
        "When the basic block contains not more than this number of PHI nodes, "
 | 
						|
        "perform a (faster!) exhaustive search instead of set-driven one."));
 | 
						|
 | 
						|
// Max recursion depth for collectBitParts used when detecting bswap and
 | 
						|
// bitreverse idioms.
 | 
						|
static const unsigned BitPartRecursionMaxDepth = 48;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Local constant propagation.
 | 
						|
//
 | 
						|
 | 
						|
/// ConstantFoldTerminator - If a terminator instruction is predicated on a
 | 
						|
/// constant value, convert it into an unconditional branch to the constant
 | 
						|
/// destination.  This is a nontrivial operation because the successors of this
 | 
						|
/// basic block must have their PHI nodes updated.
 | 
						|
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
 | 
						|
/// conditions and indirectbr addresses this might make dead if
 | 
						|
/// DeleteDeadConditions is true.
 | 
						|
bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
 | 
						|
                                  const TargetLibraryInfo *TLI,
 | 
						|
                                  DomTreeUpdater *DTU) {
 | 
						|
  Instruction *T = BB->getTerminator();
 | 
						|
  IRBuilder<> Builder(T);
 | 
						|
 | 
						|
  // Branch - See if we are conditional jumping on constant
 | 
						|
  if (auto *BI = dyn_cast<BranchInst>(T)) {
 | 
						|
    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
 | 
						|
 | 
						|
    BasicBlock *Dest1 = BI->getSuccessor(0);
 | 
						|
    BasicBlock *Dest2 = BI->getSuccessor(1);
 | 
						|
 | 
						|
    if (Dest2 == Dest1) {       // Conditional branch to same location?
 | 
						|
      // This branch matches something like this:
 | 
						|
      //     br bool %cond, label %Dest, label %Dest
 | 
						|
      // and changes it into:  br label %Dest
 | 
						|
 | 
						|
      // Let the basic block know that we are letting go of one copy of it.
 | 
						|
      assert(BI->getParent() && "Terminator not inserted in block!");
 | 
						|
      Dest1->removePredecessor(BI->getParent());
 | 
						|
 | 
						|
      // Replace the conditional branch with an unconditional one.
 | 
						|
      BranchInst *NewBI = Builder.CreateBr(Dest1);
 | 
						|
 | 
						|
      // Transfer the metadata to the new branch instruction.
 | 
						|
      NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
 | 
						|
                                LLVMContext::MD_annotation});
 | 
						|
 | 
						|
      Value *Cond = BI->getCondition();
 | 
						|
      BI->eraseFromParent();
 | 
						|
      if (DeleteDeadConditions)
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
 | 
						|
      // Are we branching on constant?
 | 
						|
      // YES.  Change to unconditional branch...
 | 
						|
      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
 | 
						|
      BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
 | 
						|
 | 
						|
      // Let the basic block know that we are letting go of it.  Based on this,
 | 
						|
      // it will adjust it's PHI nodes.
 | 
						|
      OldDest->removePredecessor(BB);
 | 
						|
 | 
						|
      // Replace the conditional branch with an unconditional one.
 | 
						|
      BranchInst *NewBI = Builder.CreateBr(Destination);
 | 
						|
 | 
						|
      // Transfer the metadata to the new branch instruction.
 | 
						|
      NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
 | 
						|
                                LLVMContext::MD_annotation});
 | 
						|
 | 
						|
      BI->eraseFromParent();
 | 
						|
      if (DTU)
 | 
						|
        DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *SI = dyn_cast<SwitchInst>(T)) {
 | 
						|
    // If we are switching on a constant, we can convert the switch to an
 | 
						|
    // unconditional branch.
 | 
						|
    auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
 | 
						|
    BasicBlock *DefaultDest = SI->getDefaultDest();
 | 
						|
    BasicBlock *TheOnlyDest = DefaultDest;
 | 
						|
 | 
						|
    // If the default is unreachable, ignore it when searching for TheOnlyDest.
 | 
						|
    if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
 | 
						|
        SI->getNumCases() > 0) {
 | 
						|
      TheOnlyDest = SI->case_begin()->getCaseSuccessor();
 | 
						|
    }
 | 
						|
 | 
						|
    bool Changed = false;
 | 
						|
 | 
						|
    // Figure out which case it goes to.
 | 
						|
    for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
 | 
						|
      // Found case matching a constant operand?
 | 
						|
      if (i->getCaseValue() == CI) {
 | 
						|
        TheOnlyDest = i->getCaseSuccessor();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check to see if this branch is going to the same place as the default
 | 
						|
      // dest.  If so, eliminate it as an explicit compare.
 | 
						|
      if (i->getCaseSuccessor() == DefaultDest) {
 | 
						|
        MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
 | 
						|
        unsigned NCases = SI->getNumCases();
 | 
						|
        // Fold the case metadata into the default if there will be any branches
 | 
						|
        // left, unless the metadata doesn't match the switch.
 | 
						|
        if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
 | 
						|
          // Collect branch weights into a vector.
 | 
						|
          SmallVector<uint32_t, 8> Weights;
 | 
						|
          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
 | 
						|
               ++MD_i) {
 | 
						|
            auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
 | 
						|
            Weights.push_back(CI->getValue().getZExtValue());
 | 
						|
          }
 | 
						|
          // Merge weight of this case to the default weight.
 | 
						|
          unsigned idx = i->getCaseIndex();
 | 
						|
          Weights[0] += Weights[idx+1];
 | 
						|
          // Remove weight for this case.
 | 
						|
          std::swap(Weights[idx+1], Weights.back());
 | 
						|
          Weights.pop_back();
 | 
						|
          SI->setMetadata(LLVMContext::MD_prof,
 | 
						|
                          MDBuilder(BB->getContext()).
 | 
						|
                          createBranchWeights(Weights));
 | 
						|
        }
 | 
						|
        // Remove this entry.
 | 
						|
        BasicBlock *ParentBB = SI->getParent();
 | 
						|
        DefaultDest->removePredecessor(ParentBB);
 | 
						|
        i = SI->removeCase(i);
 | 
						|
        e = SI->case_end();
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, check to see if the switch only branches to one destination.
 | 
						|
      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
 | 
						|
      // destinations.
 | 
						|
      if (i->getCaseSuccessor() != TheOnlyDest)
 | 
						|
        TheOnlyDest = nullptr;
 | 
						|
 | 
						|
      // Increment this iterator as we haven't removed the case.
 | 
						|
      ++i;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CI && !TheOnlyDest) {
 | 
						|
      // Branching on a constant, but not any of the cases, go to the default
 | 
						|
      // successor.
 | 
						|
      TheOnlyDest = SI->getDefaultDest();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a single destination that we can fold the switch into, do so
 | 
						|
    // now.
 | 
						|
    if (TheOnlyDest) {
 | 
						|
      // Insert the new branch.
 | 
						|
      Builder.CreateBr(TheOnlyDest);
 | 
						|
      BasicBlock *BB = SI->getParent();
 | 
						|
 | 
						|
      SmallSet<BasicBlock *, 8> RemovedSuccessors;
 | 
						|
 | 
						|
      // Remove entries from PHI nodes which we no longer branch to...
 | 
						|
      BasicBlock *SuccToKeep = TheOnlyDest;
 | 
						|
      for (BasicBlock *Succ : successors(SI)) {
 | 
						|
        if (DTU && Succ != TheOnlyDest)
 | 
						|
          RemovedSuccessors.insert(Succ);
 | 
						|
        // Found case matching a constant operand?
 | 
						|
        if (Succ == SuccToKeep) {
 | 
						|
          SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
 | 
						|
        } else {
 | 
						|
          Succ->removePredecessor(BB);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Delete the old switch.
 | 
						|
      Value *Cond = SI->getCondition();
 | 
						|
      SI->eraseFromParent();
 | 
						|
      if (DeleteDeadConditions)
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
 | 
						|
      if (DTU) {
 | 
						|
        std::vector<DominatorTree::UpdateType> Updates;
 | 
						|
        Updates.reserve(RemovedSuccessors.size());
 | 
						|
        for (auto *RemovedSuccessor : RemovedSuccessors)
 | 
						|
          Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
 | 
						|
        DTU->applyUpdates(Updates);
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SI->getNumCases() == 1) {
 | 
						|
      // Otherwise, we can fold this switch into a conditional branch
 | 
						|
      // instruction if it has only one non-default destination.
 | 
						|
      auto FirstCase = *SI->case_begin();
 | 
						|
      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
 | 
						|
          FirstCase.getCaseValue(), "cond");
 | 
						|
 | 
						|
      // Insert the new branch.
 | 
						|
      BranchInst *NewBr = Builder.CreateCondBr(Cond,
 | 
						|
                                               FirstCase.getCaseSuccessor(),
 | 
						|
                                               SI->getDefaultDest());
 | 
						|
      MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
 | 
						|
      if (MD && MD->getNumOperands() == 3) {
 | 
						|
        ConstantInt *SICase =
 | 
						|
            mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
 | 
						|
        ConstantInt *SIDef =
 | 
						|
            mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
 | 
						|
        assert(SICase && SIDef);
 | 
						|
        // The TrueWeight should be the weight for the single case of SI.
 | 
						|
        NewBr->setMetadata(LLVMContext::MD_prof,
 | 
						|
                        MDBuilder(BB->getContext()).
 | 
						|
                        createBranchWeights(SICase->getValue().getZExtValue(),
 | 
						|
                                            SIDef->getValue().getZExtValue()));
 | 
						|
      }
 | 
						|
 | 
						|
      // Update make.implicit metadata to the newly-created conditional branch.
 | 
						|
      MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
 | 
						|
      if (MakeImplicitMD)
 | 
						|
        NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
 | 
						|
 | 
						|
      // Delete the old switch.
 | 
						|
      SI->eraseFromParent();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
 | 
						|
    // indirectbr blockaddress(@F, @BB) -> br label @BB
 | 
						|
    if (auto *BA =
 | 
						|
          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
 | 
						|
      BasicBlock *TheOnlyDest = BA->getBasicBlock();
 | 
						|
      SmallSet<BasicBlock *, 8> RemovedSuccessors;
 | 
						|
 | 
						|
      // Insert the new branch.
 | 
						|
      Builder.CreateBr(TheOnlyDest);
 | 
						|
 | 
						|
      BasicBlock *SuccToKeep = TheOnlyDest;
 | 
						|
      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
 | 
						|
        BasicBlock *DestBB = IBI->getDestination(i);
 | 
						|
        if (DTU && DestBB != TheOnlyDest)
 | 
						|
          RemovedSuccessors.insert(DestBB);
 | 
						|
        if (IBI->getDestination(i) == SuccToKeep) {
 | 
						|
          SuccToKeep = nullptr;
 | 
						|
        } else {
 | 
						|
          DestBB->removePredecessor(BB);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Value *Address = IBI->getAddress();
 | 
						|
      IBI->eraseFromParent();
 | 
						|
      if (DeleteDeadConditions)
 | 
						|
        // Delete pointer cast instructions.
 | 
						|
        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
 | 
						|
 | 
						|
      // Also zap the blockaddress constant if there are no users remaining,
 | 
						|
      // otherwise the destination is still marked as having its address taken.
 | 
						|
      if (BA->use_empty())
 | 
						|
        BA->destroyConstant();
 | 
						|
 | 
						|
      // If we didn't find our destination in the IBI successor list, then we
 | 
						|
      // have undefined behavior.  Replace the unconditional branch with an
 | 
						|
      // 'unreachable' instruction.
 | 
						|
      if (SuccToKeep) {
 | 
						|
        BB->getTerminator()->eraseFromParent();
 | 
						|
        new UnreachableInst(BB->getContext(), BB);
 | 
						|
      }
 | 
						|
 | 
						|
      if (DTU) {
 | 
						|
        std::vector<DominatorTree::UpdateType> Updates;
 | 
						|
        Updates.reserve(RemovedSuccessors.size());
 | 
						|
        for (auto *RemovedSuccessor : RemovedSuccessors)
 | 
						|
          Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
 | 
						|
        DTU->applyUpdates(Updates);
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Local dead code elimination.
 | 
						|
//
 | 
						|
 | 
						|
/// isInstructionTriviallyDead - Return true if the result produced by the
 | 
						|
/// instruction is not used, and the instruction has no side effects.
 | 
						|
///
 | 
						|
bool llvm::isInstructionTriviallyDead(Instruction *I,
 | 
						|
                                      const TargetLibraryInfo *TLI) {
 | 
						|
  if (!I->use_empty())
 | 
						|
    return false;
 | 
						|
  return wouldInstructionBeTriviallyDead(I, TLI);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths(
 | 
						|
    Instruction *I, const TargetLibraryInfo *TLI) {
 | 
						|
  // Instructions that are "markers" and have implied meaning on code around
 | 
						|
  // them (without explicit uses), are not dead on unused paths.
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::stacksave ||
 | 
						|
        II->getIntrinsicID() == Intrinsic::launder_invariant_group ||
 | 
						|
        II->isLifetimeStartOrEnd())
 | 
						|
      return false;
 | 
						|
  return wouldInstructionBeTriviallyDead(I, TLI);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
 | 
						|
                                           const TargetLibraryInfo *TLI) {
 | 
						|
  if (I->isTerminator())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We don't want the landingpad-like instructions removed by anything this
 | 
						|
  // general.
 | 
						|
  if (I->isEHPad())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We don't want debug info removed by anything this general, unless
 | 
						|
  // debug info is empty.
 | 
						|
  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
 | 
						|
    if (DDI->getAddress())
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
 | 
						|
    if (DVI->hasArgList() || DVI->getValue(0))
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
 | 
						|
    if (DLI->getLabel())
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *CB = dyn_cast<CallBase>(I))
 | 
						|
    if (isRemovableAlloc(CB, TLI))
 | 
						|
      return true;
 | 
						|
 | 
						|
  if (!I->willReturn())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!I->mayHaveSideEffects())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Special case intrinsics that "may have side effects" but can be deleted
 | 
						|
  // when dead.
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    // Safe to delete llvm.stacksave and launder.invariant.group if dead.
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::stacksave ||
 | 
						|
        II->getIntrinsicID() == Intrinsic::launder_invariant_group)
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (II->isLifetimeStartOrEnd()) {
 | 
						|
      auto *Arg = II->getArgOperand(1);
 | 
						|
      // Lifetime intrinsics are dead when their right-hand is undef.
 | 
						|
      if (isa<UndefValue>(Arg))
 | 
						|
        return true;
 | 
						|
      // If the right-hand is an alloc, global, or argument and the only uses
 | 
						|
      // are lifetime intrinsics then the intrinsics are dead.
 | 
						|
      if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
 | 
						|
        return llvm::all_of(Arg->uses(), [](Use &Use) {
 | 
						|
          if (IntrinsicInst *IntrinsicUse =
 | 
						|
                  dyn_cast<IntrinsicInst>(Use.getUser()))
 | 
						|
            return IntrinsicUse->isLifetimeStartOrEnd();
 | 
						|
          return false;
 | 
						|
        });
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Assumptions are dead if their condition is trivially true.  Guards on
 | 
						|
    // true are operationally no-ops.  In the future we can consider more
 | 
						|
    // sophisticated tradeoffs for guards considering potential for check
 | 
						|
    // widening, but for now we keep things simple.
 | 
						|
    if ((II->getIntrinsicID() == Intrinsic::assume &&
 | 
						|
         isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) ||
 | 
						|
        II->getIntrinsicID() == Intrinsic::experimental_guard) {
 | 
						|
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
 | 
						|
        return !Cond->isZero();
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
 | 
						|
      Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior();
 | 
						|
      return *ExBehavior != fp::ebStrict;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *Call = dyn_cast<CallBase>(I)) {
 | 
						|
    if (Value *FreedOp = getFreedOperand(Call, TLI))
 | 
						|
      if (Constant *C = dyn_cast<Constant>(FreedOp))
 | 
						|
        return C->isNullValue() || isa<UndefValue>(C);
 | 
						|
    if (isMathLibCallNoop(Call, TLI))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Non-volatile atomic loads from constants can be removed.
 | 
						|
  if (auto *LI = dyn_cast<LoadInst>(I))
 | 
						|
    if (auto *GV = dyn_cast<GlobalVariable>(
 | 
						|
            LI->getPointerOperand()->stripPointerCasts()))
 | 
						|
      if (!LI->isVolatile() && GV->isConstant())
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
 | 
						|
/// trivially dead instruction, delete it.  If that makes any of its operands
 | 
						|
/// trivially dead, delete them too, recursively.  Return true if any
 | 
						|
/// instructions were deleted.
 | 
						|
bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
 | 
						|
    Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
 | 
						|
    std::function<void(Value *)> AboutToDeleteCallback) {
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I || !isInstructionTriviallyDead(I, TLI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<WeakTrackingVH, 16> DeadInsts;
 | 
						|
  DeadInsts.push_back(I);
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
 | 
						|
                                             AboutToDeleteCallback);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
 | 
						|
    SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
 | 
						|
    MemorySSAUpdater *MSSAU,
 | 
						|
    std::function<void(Value *)> AboutToDeleteCallback) {
 | 
						|
  unsigned S = 0, E = DeadInsts.size(), Alive = 0;
 | 
						|
  for (; S != E; ++S) {
 | 
						|
    auto *I = dyn_cast<Instruction>(DeadInsts[S]);
 | 
						|
    if (!I || !isInstructionTriviallyDead(I)) {
 | 
						|
      DeadInsts[S] = nullptr;
 | 
						|
      ++Alive;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Alive == E)
 | 
						|
    return false;
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
 | 
						|
                                             AboutToDeleteCallback);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::RecursivelyDeleteTriviallyDeadInstructions(
 | 
						|
    SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
 | 
						|
    MemorySSAUpdater *MSSAU,
 | 
						|
    std::function<void(Value *)> AboutToDeleteCallback) {
 | 
						|
  // Process the dead instruction list until empty.
 | 
						|
  while (!DeadInsts.empty()) {
 | 
						|
    Value *V = DeadInsts.pop_back_val();
 | 
						|
    Instruction *I = cast_or_null<Instruction>(V);
 | 
						|
    if (!I)
 | 
						|
      continue;
 | 
						|
    assert(isInstructionTriviallyDead(I, TLI) &&
 | 
						|
           "Live instruction found in dead worklist!");
 | 
						|
    assert(I->use_empty() && "Instructions with uses are not dead.");
 | 
						|
 | 
						|
    // Don't lose the debug info while deleting the instructions.
 | 
						|
    salvageDebugInfo(*I);
 | 
						|
 | 
						|
    if (AboutToDeleteCallback)
 | 
						|
      AboutToDeleteCallback(I);
 | 
						|
 | 
						|
    // Null out all of the instruction's operands to see if any operand becomes
 | 
						|
    // dead as we go.
 | 
						|
    for (Use &OpU : I->operands()) {
 | 
						|
      Value *OpV = OpU.get();
 | 
						|
      OpU.set(nullptr);
 | 
						|
 | 
						|
      if (!OpV->use_empty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the operand is an instruction that became dead as we nulled out the
 | 
						|
      // operand, and if it is 'trivially' dead, delete it in a future loop
 | 
						|
      // iteration.
 | 
						|
      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
 | 
						|
        if (isInstructionTriviallyDead(OpI, TLI))
 | 
						|
          DeadInsts.push_back(OpI);
 | 
						|
    }
 | 
						|
    if (MSSAU)
 | 
						|
      MSSAU->removeMemoryAccess(I);
 | 
						|
 | 
						|
    I->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
 | 
						|
  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
 | 
						|
  findDbgUsers(DbgUsers, I);
 | 
						|
  for (auto *DII : DbgUsers) {
 | 
						|
    Value *Undef = UndefValue::get(I->getType());
 | 
						|
    DII->replaceVariableLocationOp(I, Undef);
 | 
						|
  }
 | 
						|
  return !DbgUsers.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// areAllUsesEqual - Check whether the uses of a value are all the same.
 | 
						|
/// This is similar to Instruction::hasOneUse() except this will also return
 | 
						|
/// true when there are no uses or multiple uses that all refer to the same
 | 
						|
/// value.
 | 
						|
static bool areAllUsesEqual(Instruction *I) {
 | 
						|
  Value::user_iterator UI = I->user_begin();
 | 
						|
  Value::user_iterator UE = I->user_end();
 | 
						|
  if (UI == UE)
 | 
						|
    return true;
 | 
						|
 | 
						|
  User *TheUse = *UI;
 | 
						|
  for (++UI; UI != UE; ++UI) {
 | 
						|
    if (*UI != TheUse)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
 | 
						|
/// dead PHI node, due to being a def-use chain of single-use nodes that
 | 
						|
/// either forms a cycle or is terminated by a trivially dead instruction,
 | 
						|
/// delete it.  If that makes any of its operands trivially dead, delete them
 | 
						|
/// too, recursively.  Return true if a change was made.
 | 
						|
bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
 | 
						|
                                        const TargetLibraryInfo *TLI,
 | 
						|
                                        llvm::MemorySSAUpdater *MSSAU) {
 | 
						|
  SmallPtrSet<Instruction*, 4> Visited;
 | 
						|
  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
 | 
						|
       I = cast<Instruction>(*I->user_begin())) {
 | 
						|
    if (I->use_empty())
 | 
						|
      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
 | 
						|
 | 
						|
    // If we find an instruction more than once, we're on a cycle that
 | 
						|
    // won't prove fruitful.
 | 
						|
    if (!Visited.insert(I).second) {
 | 
						|
      // Break the cycle and delete the instruction and its operands.
 | 
						|
      I->replaceAllUsesWith(PoisonValue::get(I->getType()));
 | 
						|
      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
simplifyAndDCEInstruction(Instruction *I,
 | 
						|
                          SmallSetVector<Instruction *, 16> &WorkList,
 | 
						|
                          const DataLayout &DL,
 | 
						|
                          const TargetLibraryInfo *TLI) {
 | 
						|
  if (isInstructionTriviallyDead(I, TLI)) {
 | 
						|
    salvageDebugInfo(*I);
 | 
						|
 | 
						|
    // Null out all of the instruction's operands to see if any operand becomes
 | 
						|
    // dead as we go.
 | 
						|
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
      Value *OpV = I->getOperand(i);
 | 
						|
      I->setOperand(i, nullptr);
 | 
						|
 | 
						|
      if (!OpV->use_empty() || I == OpV)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the operand is an instruction that became dead as we nulled out the
 | 
						|
      // operand, and if it is 'trivially' dead, delete it in a future loop
 | 
						|
      // iteration.
 | 
						|
      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
 | 
						|
        if (isInstructionTriviallyDead(OpI, TLI))
 | 
						|
          WorkList.insert(OpI);
 | 
						|
    }
 | 
						|
 | 
						|
    I->eraseFromParent();
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *SimpleV = simplifyInstruction(I, DL)) {
 | 
						|
    // Add the users to the worklist. CAREFUL: an instruction can use itself,
 | 
						|
    // in the case of a phi node.
 | 
						|
    for (User *U : I->users()) {
 | 
						|
      if (U != I) {
 | 
						|
        WorkList.insert(cast<Instruction>(U));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace the instruction with its simplified value.
 | 
						|
    bool Changed = false;
 | 
						|
    if (!I->use_empty()) {
 | 
						|
      I->replaceAllUsesWith(SimpleV);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
    if (isInstructionTriviallyDead(I, TLI)) {
 | 
						|
      I->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
 | 
						|
/// simplify any instructions in it and recursively delete dead instructions.
 | 
						|
///
 | 
						|
/// This returns true if it changed the code, note that it can delete
 | 
						|
/// instructions in other blocks as well in this block.
 | 
						|
bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
 | 
						|
                                       const TargetLibraryInfo *TLI) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  const DataLayout &DL = BB->getModule()->getDataLayout();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // In debug builds, ensure that the terminator of the block is never replaced
 | 
						|
  // or deleted by these simplifications. The idea of simplification is that it
 | 
						|
  // cannot introduce new instructions, and there is no way to replace the
 | 
						|
  // terminator of a block without introducing a new instruction.
 | 
						|
  AssertingVH<Instruction> TerminatorVH(&BB->back());
 | 
						|
#endif
 | 
						|
 | 
						|
  SmallSetVector<Instruction *, 16> WorkList;
 | 
						|
  // Iterate over the original function, only adding insts to the worklist
 | 
						|
  // if they actually need to be revisited. This avoids having to pre-init
 | 
						|
  // the worklist with the entire function's worth of instructions.
 | 
						|
  for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
 | 
						|
       BI != E;) {
 | 
						|
    assert(!BI->isTerminator());
 | 
						|
    Instruction *I = &*BI;
 | 
						|
    ++BI;
 | 
						|
 | 
						|
    // We're visiting this instruction now, so make sure it's not in the
 | 
						|
    // worklist from an earlier visit.
 | 
						|
    if (!WorkList.count(I))
 | 
						|
      MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Instruction *I = WorkList.pop_back_val();
 | 
						|
    MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Control Flow Graph Restructuring.
 | 
						|
//
 | 
						|
 | 
						|
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
 | 
						|
                                       DomTreeUpdater *DTU) {
 | 
						|
 | 
						|
  // If BB has single-entry PHI nodes, fold them.
 | 
						|
  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
 | 
						|
    Value *NewVal = PN->getIncomingValue(0);
 | 
						|
    // Replace self referencing PHI with poison, it must be dead.
 | 
						|
    if (NewVal == PN) NewVal = PoisonValue::get(PN->getType());
 | 
						|
    PN->replaceAllUsesWith(NewVal);
 | 
						|
    PN->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *PredBB = DestBB->getSinglePredecessor();
 | 
						|
  assert(PredBB && "Block doesn't have a single predecessor!");
 | 
						|
 | 
						|
  bool ReplaceEntryBB = PredBB->isEntryBlock();
 | 
						|
 | 
						|
  // DTU updates: Collect all the edges that enter
 | 
						|
  // PredBB. These dominator edges will be redirected to DestBB.
 | 
						|
  SmallVector<DominatorTree::UpdateType, 32> Updates;
 | 
						|
 | 
						|
  if (DTU) {
 | 
						|
    // To avoid processing the same predecessor more than once.
 | 
						|
    SmallPtrSet<BasicBlock *, 2> SeenPreds;
 | 
						|
    Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1);
 | 
						|
    for (BasicBlock *PredOfPredBB : predecessors(PredBB))
 | 
						|
      // This predecessor of PredBB may already have DestBB as a successor.
 | 
						|
      if (PredOfPredBB != PredBB)
 | 
						|
        if (SeenPreds.insert(PredOfPredBB).second)
 | 
						|
          Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
 | 
						|
    SeenPreds.clear();
 | 
						|
    for (BasicBlock *PredOfPredBB : predecessors(PredBB))
 | 
						|
      if (SeenPreds.insert(PredOfPredBB).second)
 | 
						|
        Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
 | 
						|
    Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
 | 
						|
  }
 | 
						|
 | 
						|
  // Zap anything that took the address of DestBB.  Not doing this will give the
 | 
						|
  // address an invalid value.
 | 
						|
  if (DestBB->hasAddressTaken()) {
 | 
						|
    BlockAddress *BA = BlockAddress::get(DestBB);
 | 
						|
    Constant *Replacement =
 | 
						|
      ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
 | 
						|
    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
 | 
						|
                                                     BA->getType()));
 | 
						|
    BA->destroyConstant();
 | 
						|
  }
 | 
						|
 | 
						|
  // Anything that branched to PredBB now branches to DestBB.
 | 
						|
  PredBB->replaceAllUsesWith(DestBB);
 | 
						|
 | 
						|
  // Splice all the instructions from PredBB to DestBB.
 | 
						|
  PredBB->getTerminator()->eraseFromParent();
 | 
						|
  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
 | 
						|
  new UnreachableInst(PredBB->getContext(), PredBB);
 | 
						|
 | 
						|
  // If the PredBB is the entry block of the function, move DestBB up to
 | 
						|
  // become the entry block after we erase PredBB.
 | 
						|
  if (ReplaceEntryBB)
 | 
						|
    DestBB->moveAfter(PredBB);
 | 
						|
 | 
						|
  if (DTU) {
 | 
						|
    assert(PredBB->getInstList().size() == 1 &&
 | 
						|
           isa<UnreachableInst>(PredBB->getTerminator()) &&
 | 
						|
           "The successor list of PredBB isn't empty before "
 | 
						|
           "applying corresponding DTU updates.");
 | 
						|
    DTU->applyUpdatesPermissive(Updates);
 | 
						|
    DTU->deleteBB(PredBB);
 | 
						|
    // Recalculation of DomTree is needed when updating a forward DomTree and
 | 
						|
    // the Entry BB is replaced.
 | 
						|
    if (ReplaceEntryBB && DTU->hasDomTree()) {
 | 
						|
      // The entry block was removed and there is no external interface for
 | 
						|
      // the dominator tree to be notified of this change. In this corner-case
 | 
						|
      // we recalculate the entire tree.
 | 
						|
      DTU->recalculate(*(DestBB->getParent()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  else {
 | 
						|
    PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we can choose one of these values to use in place of the
 | 
						|
/// other. Note that we will always choose the non-undef value to keep.
 | 
						|
static bool CanMergeValues(Value *First, Value *Second) {
 | 
						|
  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we can fold BB, an almost-empty BB ending in an unconditional
 | 
						|
/// branch to Succ, into Succ.
 | 
						|
///
 | 
						|
/// Assumption: Succ is the single successor for BB.
 | 
						|
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
 | 
						|
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
 | 
						|
                    << Succ->getName() << "\n");
 | 
						|
  // Shortcut, if there is only a single predecessor it must be BB and merging
 | 
						|
  // is always safe
 | 
						|
  if (Succ->getSinglePredecessor()) return true;
 | 
						|
 | 
						|
  // Make a list of the predecessors of BB
 | 
						|
  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
 | 
						|
 | 
						|
  // Look at all the phi nodes in Succ, to see if they present a conflict when
 | 
						|
  // merging these blocks
 | 
						|
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
 | 
						|
    // If the incoming value from BB is again a PHINode in
 | 
						|
    // BB which has the same incoming value for *PI as PN does, we can
 | 
						|
    // merge the phi nodes and then the blocks can still be merged
 | 
						|
    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
 | 
						|
    if (BBPN && BBPN->getParent() == BB) {
 | 
						|
      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
 | 
						|
        BasicBlock *IBB = PN->getIncomingBlock(PI);
 | 
						|
        if (BBPreds.count(IBB) &&
 | 
						|
            !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
 | 
						|
                            PN->getIncomingValue(PI))) {
 | 
						|
          LLVM_DEBUG(dbgs()
 | 
						|
                     << "Can't fold, phi node " << PN->getName() << " in "
 | 
						|
                     << Succ->getName() << " is conflicting with "
 | 
						|
                     << BBPN->getName() << " with regard to common predecessor "
 | 
						|
                     << IBB->getName() << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Value* Val = PN->getIncomingValueForBlock(BB);
 | 
						|
      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
 | 
						|
        // See if the incoming value for the common predecessor is equal to the
 | 
						|
        // one for BB, in which case this phi node will not prevent the merging
 | 
						|
        // of the block.
 | 
						|
        BasicBlock *IBB = PN->getIncomingBlock(PI);
 | 
						|
        if (BBPreds.count(IBB) &&
 | 
						|
            !CanMergeValues(Val, PN->getIncomingValue(PI))) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
 | 
						|
                            << " in " << Succ->getName()
 | 
						|
                            << " is conflicting with regard to common "
 | 
						|
                            << "predecessor " << IBB->getName() << "\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
using PredBlockVector = SmallVector<BasicBlock *, 16>;
 | 
						|
using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
 | 
						|
 | 
						|
/// Determines the value to use as the phi node input for a block.
 | 
						|
///
 | 
						|
/// Select between \p OldVal any value that we know flows from \p BB
 | 
						|
/// to a particular phi on the basis of which one (if either) is not
 | 
						|
/// undef. Update IncomingValues based on the selected value.
 | 
						|
///
 | 
						|
/// \param OldVal The value we are considering selecting.
 | 
						|
/// \param BB The block that the value flows in from.
 | 
						|
/// \param IncomingValues A map from block-to-value for other phi inputs
 | 
						|
/// that we have examined.
 | 
						|
///
 | 
						|
/// \returns the selected value.
 | 
						|
static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
 | 
						|
                                          IncomingValueMap &IncomingValues) {
 | 
						|
  if (!isa<UndefValue>(OldVal)) {
 | 
						|
    assert((!IncomingValues.count(BB) ||
 | 
						|
            IncomingValues.find(BB)->second == OldVal) &&
 | 
						|
           "Expected OldVal to match incoming value from BB!");
 | 
						|
 | 
						|
    IncomingValues.insert(std::make_pair(BB, OldVal));
 | 
						|
    return OldVal;
 | 
						|
  }
 | 
						|
 | 
						|
  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
 | 
						|
  if (It != IncomingValues.end()) return It->second;
 | 
						|
 | 
						|
  return OldVal;
 | 
						|
}
 | 
						|
 | 
						|
/// Create a map from block to value for the operands of a
 | 
						|
/// given phi.
 | 
						|
///
 | 
						|
/// Create a map from block to value for each non-undef value flowing
 | 
						|
/// into \p PN.
 | 
						|
///
 | 
						|
/// \param PN The phi we are collecting the map for.
 | 
						|
/// \param IncomingValues [out] The map from block to value for this phi.
 | 
						|
static void gatherIncomingValuesToPhi(PHINode *PN,
 | 
						|
                                      IncomingValueMap &IncomingValues) {
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *BB = PN->getIncomingBlock(i);
 | 
						|
    Value *V = PN->getIncomingValue(i);
 | 
						|
 | 
						|
    if (!isa<UndefValue>(V))
 | 
						|
      IncomingValues.insert(std::make_pair(BB, V));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Replace the incoming undef values to a phi with the values
 | 
						|
/// from a block-to-value map.
 | 
						|
///
 | 
						|
/// \param PN The phi we are replacing the undefs in.
 | 
						|
/// \param IncomingValues A map from block to value.
 | 
						|
static void replaceUndefValuesInPhi(PHINode *PN,
 | 
						|
                                    const IncomingValueMap &IncomingValues) {
 | 
						|
  SmallVector<unsigned> TrueUndefOps;
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *V = PN->getIncomingValue(i);
 | 
						|
 | 
						|
    if (!isa<UndefValue>(V)) continue;
 | 
						|
 | 
						|
    BasicBlock *BB = PN->getIncomingBlock(i);
 | 
						|
    IncomingValueMap::const_iterator It = IncomingValues.find(BB);
 | 
						|
 | 
						|
    // Keep track of undef/poison incoming values. Those must match, so we fix
 | 
						|
    // them up below if needed.
 | 
						|
    // Note: this is conservatively correct, but we could try harder and group
 | 
						|
    // the undef values per incoming basic block.
 | 
						|
    if (It == IncomingValues.end()) {
 | 
						|
      TrueUndefOps.push_back(i);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // There is a defined value for this incoming block, so map this undef
 | 
						|
    // incoming value to the defined value.
 | 
						|
    PN->setIncomingValue(i, It->second);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are both undef and poison values incoming, then convert those
 | 
						|
  // values to undef. It is invalid to have different values for the same
 | 
						|
  // incoming block.
 | 
						|
  unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
 | 
						|
    return isa<PoisonValue>(PN->getIncomingValue(i));
 | 
						|
  });
 | 
						|
  if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
 | 
						|
    for (unsigned i : TrueUndefOps)
 | 
						|
      PN->setIncomingValue(i, UndefValue::get(PN->getType()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Replace a value flowing from a block to a phi with
 | 
						|
/// potentially multiple instances of that value flowing from the
 | 
						|
/// block's predecessors to the phi.
 | 
						|
///
 | 
						|
/// \param BB The block with the value flowing into the phi.
 | 
						|
/// \param BBPreds The predecessors of BB.
 | 
						|
/// \param PN The phi that we are updating.
 | 
						|
static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
 | 
						|
                                                const PredBlockVector &BBPreds,
 | 
						|
                                                PHINode *PN) {
 | 
						|
  Value *OldVal = PN->removeIncomingValue(BB, false);
 | 
						|
  assert(OldVal && "No entry in PHI for Pred BB!");
 | 
						|
 | 
						|
  IncomingValueMap IncomingValues;
 | 
						|
 | 
						|
  // We are merging two blocks - BB, and the block containing PN - and
 | 
						|
  // as a result we need to redirect edges from the predecessors of BB
 | 
						|
  // to go to the block containing PN, and update PN
 | 
						|
  // accordingly. Since we allow merging blocks in the case where the
 | 
						|
  // predecessor and successor blocks both share some predecessors,
 | 
						|
  // and where some of those common predecessors might have undef
 | 
						|
  // values flowing into PN, we want to rewrite those values to be
 | 
						|
  // consistent with the non-undef values.
 | 
						|
 | 
						|
  gatherIncomingValuesToPhi(PN, IncomingValues);
 | 
						|
 | 
						|
  // If this incoming value is one of the PHI nodes in BB, the new entries
 | 
						|
  // in the PHI node are the entries from the old PHI.
 | 
						|
  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
 | 
						|
    PHINode *OldValPN = cast<PHINode>(OldVal);
 | 
						|
    for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      // Note that, since we are merging phi nodes and BB and Succ might
 | 
						|
      // have common predecessors, we could end up with a phi node with
 | 
						|
      // identical incoming branches. This will be cleaned up later (and
 | 
						|
      // will trigger asserts if we try to clean it up now, without also
 | 
						|
      // simplifying the corresponding conditional branch).
 | 
						|
      BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
 | 
						|
      Value *PredVal = OldValPN->getIncomingValue(i);
 | 
						|
      Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
 | 
						|
                                                    IncomingValues);
 | 
						|
 | 
						|
      // And add a new incoming value for this predecessor for the
 | 
						|
      // newly retargeted branch.
 | 
						|
      PN->addIncoming(Selected, PredBB);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
 | 
						|
      // Update existing incoming values in PN for this
 | 
						|
      // predecessor of BB.
 | 
						|
      BasicBlock *PredBB = BBPreds[i];
 | 
						|
      Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
 | 
						|
                                                    IncomingValues);
 | 
						|
 | 
						|
      // And add a new incoming value for this predecessor for the
 | 
						|
      // newly retargeted branch.
 | 
						|
      PN->addIncoming(Selected, PredBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  replaceUndefValuesInPhi(PN, IncomingValues);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
 | 
						|
                                                   DomTreeUpdater *DTU) {
 | 
						|
  assert(BB != &BB->getParent()->getEntryBlock() &&
 | 
						|
         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
 | 
						|
 | 
						|
  // We can't eliminate infinite loops.
 | 
						|
  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
 | 
						|
  if (BB == Succ) return false;
 | 
						|
 | 
						|
  // Check to see if merging these blocks would cause conflicts for any of the
 | 
						|
  // phi nodes in BB or Succ. If not, we can safely merge.
 | 
						|
  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
 | 
						|
 | 
						|
  // Check for cases where Succ has multiple predecessors and a PHI node in BB
 | 
						|
  // has uses which will not disappear when the PHI nodes are merged.  It is
 | 
						|
  // possible to handle such cases, but difficult: it requires checking whether
 | 
						|
  // BB dominates Succ, which is non-trivial to calculate in the case where
 | 
						|
  // Succ has multiple predecessors.  Also, it requires checking whether
 | 
						|
  // constructing the necessary self-referential PHI node doesn't introduce any
 | 
						|
  // conflicts; this isn't too difficult, but the previous code for doing this
 | 
						|
  // was incorrect.
 | 
						|
  //
 | 
						|
  // Note that if this check finds a live use, BB dominates Succ, so BB is
 | 
						|
  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
 | 
						|
  // folding the branch isn't profitable in that case anyway.
 | 
						|
  if (!Succ->getSinglePredecessor()) {
 | 
						|
    BasicBlock::iterator BBI = BB->begin();
 | 
						|
    while (isa<PHINode>(*BBI)) {
 | 
						|
      for (Use &U : BBI->uses()) {
 | 
						|
        if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
 | 
						|
          if (PN->getIncomingBlock(U) != BB)
 | 
						|
            return false;
 | 
						|
        } else {
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ++BBI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We cannot fold the block if it's a branch to an already present callbr
 | 
						|
  // successor because that creates duplicate successors.
 | 
						|
  for (BasicBlock *PredBB : predecessors(BB)) {
 | 
						|
    if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
 | 
						|
      if (Succ == CBI->getDefaultDest())
 | 
						|
        return false;
 | 
						|
      for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
 | 
						|
        if (Succ == CBI->getIndirectDest(i))
 | 
						|
          return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
 | 
						|
 | 
						|
  SmallVector<DominatorTree::UpdateType, 32> Updates;
 | 
						|
  if (DTU) {
 | 
						|
    // To avoid processing the same predecessor more than once.
 | 
						|
    SmallPtrSet<BasicBlock *, 8> SeenPreds;
 | 
						|
    // All predecessors of BB will be moved to Succ.
 | 
						|
    SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ));
 | 
						|
    Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1);
 | 
						|
    for (auto *PredOfBB : predecessors(BB))
 | 
						|
      // This predecessor of BB may already have Succ as a successor.
 | 
						|
      if (!PredsOfSucc.contains(PredOfBB))
 | 
						|
        if (SeenPreds.insert(PredOfBB).second)
 | 
						|
          Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
 | 
						|
    SeenPreds.clear();
 | 
						|
    for (auto *PredOfBB : predecessors(BB))
 | 
						|
      if (SeenPreds.insert(PredOfBB).second)
 | 
						|
        Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
 | 
						|
    Updates.push_back({DominatorTree::Delete, BB, Succ});
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<PHINode>(Succ->begin())) {
 | 
						|
    // If there is more than one pred of succ, and there are PHI nodes in
 | 
						|
    // the successor, then we need to add incoming edges for the PHI nodes
 | 
						|
    //
 | 
						|
    const PredBlockVector BBPreds(predecessors(BB));
 | 
						|
 | 
						|
    // Loop over all of the PHI nodes in the successor of BB.
 | 
						|
    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
      PHINode *PN = cast<PHINode>(I);
 | 
						|
 | 
						|
      redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Succ->getSinglePredecessor()) {
 | 
						|
    // BB is the only predecessor of Succ, so Succ will end up with exactly
 | 
						|
    // the same predecessors BB had.
 | 
						|
 | 
						|
    // Copy over any phi, debug or lifetime instruction.
 | 
						|
    BB->getTerminator()->eraseFromParent();
 | 
						|
    Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
 | 
						|
                               BB->getInstList());
 | 
						|
  } else {
 | 
						|
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | 
						|
      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
 | 
						|
      assert(PN->use_empty() && "There shouldn't be any uses here!");
 | 
						|
      PN->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the unconditional branch we replaced contains llvm.loop metadata, we
 | 
						|
  // add the metadata to the branch instructions in the predecessors.
 | 
						|
  unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
 | 
						|
  Instruction *TI = BB->getTerminator();
 | 
						|
  if (TI)
 | 
						|
    if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
 | 
						|
      for (BasicBlock *Pred : predecessors(BB))
 | 
						|
        Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
 | 
						|
 | 
						|
  // Everything that jumped to BB now goes to Succ.
 | 
						|
  BB->replaceAllUsesWith(Succ);
 | 
						|
  if (!Succ->hasName()) Succ->takeName(BB);
 | 
						|
 | 
						|
  // Clear the successor list of BB to match updates applying to DTU later.
 | 
						|
  if (BB->getTerminator())
 | 
						|
    BB->getInstList().pop_back();
 | 
						|
  new UnreachableInst(BB->getContext(), BB);
 | 
						|
  assert(succ_empty(BB) && "The successor list of BB isn't empty before "
 | 
						|
                           "applying corresponding DTU updates.");
 | 
						|
 | 
						|
  if (DTU)
 | 
						|
    DTU->applyUpdates(Updates);
 | 
						|
 | 
						|
  DeleteDeadBlock(BB, DTU);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
 | 
						|
  // This implementation doesn't currently consider undef operands
 | 
						|
  // specially. Theoretically, two phis which are identical except for
 | 
						|
  // one having an undef where the other doesn't could be collapsed.
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Examine each PHI.
 | 
						|
  // Note that increment of I must *NOT* be in the iteration_expression, since
 | 
						|
  // we don't want to immediately advance when we restart from the beginning.
 | 
						|
  for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
 | 
						|
    ++I;
 | 
						|
    // Is there an identical PHI node in this basic block?
 | 
						|
    // Note that we only look in the upper square's triangle,
 | 
						|
    // we already checked that the lower triangle PHI's aren't identical.
 | 
						|
    for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
 | 
						|
      if (!DuplicatePN->isIdenticalToWhenDefined(PN))
 | 
						|
        continue;
 | 
						|
      // A duplicate. Replace this PHI with the base PHI.
 | 
						|
      ++NumPHICSEs;
 | 
						|
      DuplicatePN->replaceAllUsesWith(PN);
 | 
						|
      DuplicatePN->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
 | 
						|
      // The RAUW can change PHIs that we already visited.
 | 
						|
      I = BB->begin();
 | 
						|
      break; // Start over from the beginning.
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
 | 
						|
  // This implementation doesn't currently consider undef operands
 | 
						|
  // specially. Theoretically, two phis which are identical except for
 | 
						|
  // one having an undef where the other doesn't could be collapsed.
 | 
						|
 | 
						|
  struct PHIDenseMapInfo {
 | 
						|
    static PHINode *getEmptyKey() {
 | 
						|
      return DenseMapInfo<PHINode *>::getEmptyKey();
 | 
						|
    }
 | 
						|
 | 
						|
    static PHINode *getTombstoneKey() {
 | 
						|
      return DenseMapInfo<PHINode *>::getTombstoneKey();
 | 
						|
    }
 | 
						|
 | 
						|
    static bool isSentinel(PHINode *PN) {
 | 
						|
      return PN == getEmptyKey() || PN == getTombstoneKey();
 | 
						|
    }
 | 
						|
 | 
						|
    // WARNING: this logic must be kept in sync with
 | 
						|
    //          Instruction::isIdenticalToWhenDefined()!
 | 
						|
    static unsigned getHashValueImpl(PHINode *PN) {
 | 
						|
      // Compute a hash value on the operands. Instcombine will likely have
 | 
						|
      // sorted them, which helps expose duplicates, but we have to check all
 | 
						|
      // the operands to be safe in case instcombine hasn't run.
 | 
						|
      return static_cast<unsigned>(hash_combine(
 | 
						|
          hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
 | 
						|
          hash_combine_range(PN->block_begin(), PN->block_end())));
 | 
						|
    }
 | 
						|
 | 
						|
    static unsigned getHashValue(PHINode *PN) {
 | 
						|
#ifndef NDEBUG
 | 
						|
      // If -phicse-debug-hash was specified, return a constant -- this
 | 
						|
      // will force all hashing to collide, so we'll exhaustively search
 | 
						|
      // the table for a match, and the assertion in isEqual will fire if
 | 
						|
      // there's a bug causing equal keys to hash differently.
 | 
						|
      if (PHICSEDebugHash)
 | 
						|
        return 0;
 | 
						|
#endif
 | 
						|
      return getHashValueImpl(PN);
 | 
						|
    }
 | 
						|
 | 
						|
    static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
 | 
						|
      if (isSentinel(LHS) || isSentinel(RHS))
 | 
						|
        return LHS == RHS;
 | 
						|
      return LHS->isIdenticalTo(RHS);
 | 
						|
    }
 | 
						|
 | 
						|
    static bool isEqual(PHINode *LHS, PHINode *RHS) {
 | 
						|
      // These comparisons are nontrivial, so assert that equality implies
 | 
						|
      // hash equality (DenseMap demands this as an invariant).
 | 
						|
      bool Result = isEqualImpl(LHS, RHS);
 | 
						|
      assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
 | 
						|
             getHashValueImpl(LHS) == getHashValueImpl(RHS));
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // Set of unique PHINodes.
 | 
						|
  DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
 | 
						|
  PHISet.reserve(4 * PHICSENumPHISmallSize);
 | 
						|
 | 
						|
  // Examine each PHI.
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
 | 
						|
    auto Inserted = PHISet.insert(PN);
 | 
						|
    if (!Inserted.second) {
 | 
						|
      // A duplicate. Replace this PHI with its duplicate.
 | 
						|
      ++NumPHICSEs;
 | 
						|
      PN->replaceAllUsesWith(*Inserted.first);
 | 
						|
      PN->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
 | 
						|
      // The RAUW can change PHIs that we already visited. Start over from the
 | 
						|
      // beginning.
 | 
						|
      PHISet.clear();
 | 
						|
      I = BB->begin();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
 | 
						|
  if (
 | 
						|
#ifndef NDEBUG
 | 
						|
      !PHICSEDebugHash &&
 | 
						|
#endif
 | 
						|
      hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
 | 
						|
    return EliminateDuplicatePHINodesNaiveImpl(BB);
 | 
						|
  return EliminateDuplicatePHINodesSetBasedImpl(BB);
 | 
						|
}
 | 
						|
 | 
						|
/// If the specified pointer points to an object that we control, try to modify
 | 
						|
/// the object's alignment to PrefAlign. Returns a minimum known alignment of
 | 
						|
/// the value after the operation, which may be lower than PrefAlign.
 | 
						|
///
 | 
						|
/// Increating value alignment isn't often possible though. If alignment is
 | 
						|
/// important, a more reliable approach is to simply align all global variables
 | 
						|
/// and allocation instructions to their preferred alignment from the beginning.
 | 
						|
static Align tryEnforceAlignment(Value *V, Align PrefAlign,
 | 
						|
                                 const DataLayout &DL) {
 | 
						|
  V = V->stripPointerCasts();
 | 
						|
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | 
						|
    // TODO: Ideally, this function would not be called if PrefAlign is smaller
 | 
						|
    // than the current alignment, as the known bits calculation should have
 | 
						|
    // already taken it into account. However, this is not always the case,
 | 
						|
    // as computeKnownBits() has a depth limit, while stripPointerCasts()
 | 
						|
    // doesn't.
 | 
						|
    Align CurrentAlign = AI->getAlign();
 | 
						|
    if (PrefAlign <= CurrentAlign)
 | 
						|
      return CurrentAlign;
 | 
						|
 | 
						|
    // If the preferred alignment is greater than the natural stack alignment
 | 
						|
    // then don't round up. This avoids dynamic stack realignment.
 | 
						|
    if (DL.exceedsNaturalStackAlignment(PrefAlign))
 | 
						|
      return CurrentAlign;
 | 
						|
    AI->setAlignment(PrefAlign);
 | 
						|
    return PrefAlign;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *GO = dyn_cast<GlobalObject>(V)) {
 | 
						|
    // TODO: as above, this shouldn't be necessary.
 | 
						|
    Align CurrentAlign = GO->getPointerAlignment(DL);
 | 
						|
    if (PrefAlign <= CurrentAlign)
 | 
						|
      return CurrentAlign;
 | 
						|
 | 
						|
    // If there is a large requested alignment and we can, bump up the alignment
 | 
						|
    // of the global.  If the memory we set aside for the global may not be the
 | 
						|
    // memory used by the final program then it is impossible for us to reliably
 | 
						|
    // enforce the preferred alignment.
 | 
						|
    if (!GO->canIncreaseAlignment())
 | 
						|
      return CurrentAlign;
 | 
						|
 | 
						|
    GO->setAlignment(PrefAlign);
 | 
						|
    return PrefAlign;
 | 
						|
  }
 | 
						|
 | 
						|
  return Align(1);
 | 
						|
}
 | 
						|
 | 
						|
Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
 | 
						|
                                       const DataLayout &DL,
 | 
						|
                                       const Instruction *CxtI,
 | 
						|
                                       AssumptionCache *AC,
 | 
						|
                                       const DominatorTree *DT) {
 | 
						|
  assert(V->getType()->isPointerTy() &&
 | 
						|
         "getOrEnforceKnownAlignment expects a pointer!");
 | 
						|
 | 
						|
  KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
 | 
						|
  unsigned TrailZ = Known.countMinTrailingZeros();
 | 
						|
 | 
						|
  // Avoid trouble with ridiculously large TrailZ values, such as
 | 
						|
  // those computed from a null pointer.
 | 
						|
  // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
 | 
						|
  TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
 | 
						|
 | 
						|
  Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
 | 
						|
 | 
						|
  if (PrefAlign && *PrefAlign > Alignment)
 | 
						|
    Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
 | 
						|
 | 
						|
  // We don't need to make any adjustment.
 | 
						|
  return Alignment;
 | 
						|
}
 | 
						|
 | 
						|
///===---------------------------------------------------------------------===//
 | 
						|
///  Dbg Intrinsic utilities
 | 
						|
///
 | 
						|
 | 
						|
/// See if there is a dbg.value intrinsic for DIVar for the PHI node.
 | 
						|
static bool PhiHasDebugValue(DILocalVariable *DIVar,
 | 
						|
                             DIExpression *DIExpr,
 | 
						|
                             PHINode *APN) {
 | 
						|
  // Since we can't guarantee that the original dbg.declare intrinsic
 | 
						|
  // is removed by LowerDbgDeclare(), we need to make sure that we are
 | 
						|
  // not inserting the same dbg.value intrinsic over and over.
 | 
						|
  SmallVector<DbgValueInst *, 1> DbgValues;
 | 
						|
  findDbgValues(DbgValues, APN);
 | 
						|
  for (auto *DVI : DbgValues) {
 | 
						|
    assert(is_contained(DVI->getValues(), APN));
 | 
						|
    if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the alloc size of \p ValTy is large enough to cover the variable
 | 
						|
/// (or fragment of the variable) described by \p DII.
 | 
						|
///
 | 
						|
/// This is primarily intended as a helper for the different
 | 
						|
/// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
 | 
						|
/// converted describes an alloca'd variable, so we need to use the
 | 
						|
/// alloc size of the value when doing the comparison. E.g. an i1 value will be
 | 
						|
/// identified as covering an n-bit fragment, if the store size of i1 is at
 | 
						|
/// least n bits.
 | 
						|
static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
 | 
						|
  const DataLayout &DL = DII->getModule()->getDataLayout();
 | 
						|
  TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
 | 
						|
  if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
 | 
						|
    assert(!ValueSize.isScalable() &&
 | 
						|
           "Fragments don't work on scalable types.");
 | 
						|
    return ValueSize.getFixedSize() >= *FragmentSize;
 | 
						|
  }
 | 
						|
  // We can't always calculate the size of the DI variable (e.g. if it is a
 | 
						|
  // VLA). Try to use the size of the alloca that the dbg intrinsic describes
 | 
						|
  // intead.
 | 
						|
  if (DII->isAddressOfVariable()) {
 | 
						|
    // DII should have exactly 1 location when it is an address.
 | 
						|
    assert(DII->getNumVariableLocationOps() == 1 &&
 | 
						|
           "address of variable must have exactly 1 location operand.");
 | 
						|
    if (auto *AI =
 | 
						|
            dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
 | 
						|
      if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
 | 
						|
        return TypeSize::isKnownGE(ValueSize, *FragmentSize);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Could not determine size of variable. Conservatively return false.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
 | 
						|
/// to a dbg.value. Because no machine insts can come from debug intrinsics,
 | 
						|
/// only the scope and inlinedAt is significant. Zero line numbers are used in
 | 
						|
/// case this DebugLoc leaks into any adjacent instructions.
 | 
						|
static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
 | 
						|
  // Original dbg.declare must have a location.
 | 
						|
  const DebugLoc &DeclareLoc = DII->getDebugLoc();
 | 
						|
  MDNode *Scope = DeclareLoc.getScope();
 | 
						|
  DILocation *InlinedAt = DeclareLoc.getInlinedAt();
 | 
						|
  // Produce an unknown location with the correct scope / inlinedAt fields.
 | 
						|
  return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
 | 
						|
}
 | 
						|
 | 
						|
/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
 | 
						|
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
 | 
						|
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
 | 
						|
                                           StoreInst *SI, DIBuilder &Builder) {
 | 
						|
  assert(DII->isAddressOfVariable());
 | 
						|
  auto *DIVar = DII->getVariable();
 | 
						|
  assert(DIVar && "Missing variable");
 | 
						|
  auto *DIExpr = DII->getExpression();
 | 
						|
  Value *DV = SI->getValueOperand();
 | 
						|
 | 
						|
  DebugLoc NewLoc = getDebugValueLoc(DII, SI);
 | 
						|
 | 
						|
  if (!valueCoversEntireFragment(DV->getType(), DII)) {
 | 
						|
    // FIXME: If storing to a part of the variable described by the dbg.declare,
 | 
						|
    // then we want to insert a dbg.value for the corresponding fragment.
 | 
						|
    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
 | 
						|
                      << *DII << '\n');
 | 
						|
    // For now, when there is a store to parts of the variable (but we do not
 | 
						|
    // know which part) we insert an dbg.value intrinsic to indicate that we
 | 
						|
    // know nothing about the variable's content.
 | 
						|
    DV = UndefValue::get(DV->getType());
 | 
						|
    Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
 | 
						|
}
 | 
						|
 | 
						|
/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
 | 
						|
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
 | 
						|
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
 | 
						|
                                           LoadInst *LI, DIBuilder &Builder) {
 | 
						|
  auto *DIVar = DII->getVariable();
 | 
						|
  auto *DIExpr = DII->getExpression();
 | 
						|
  assert(DIVar && "Missing variable");
 | 
						|
 | 
						|
  if (!valueCoversEntireFragment(LI->getType(), DII)) {
 | 
						|
    // FIXME: If only referring to a part of the variable described by the
 | 
						|
    // dbg.declare, then we want to insert a dbg.value for the corresponding
 | 
						|
    // fragment.
 | 
						|
    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
 | 
						|
                      << *DII << '\n');
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
 | 
						|
 | 
						|
  // We are now tracking the loaded value instead of the address. In the
 | 
						|
  // future if multi-location support is added to the IR, it might be
 | 
						|
  // preferable to keep tracking both the loaded value and the original
 | 
						|
  // address in case the alloca can not be elided.
 | 
						|
  Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
 | 
						|
      LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
 | 
						|
  DbgValue->insertAfter(LI);
 | 
						|
}
 | 
						|
 | 
						|
/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
 | 
						|
/// llvm.dbg.declare or llvm.dbg.addr intrinsic.
 | 
						|
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
 | 
						|
                                           PHINode *APN, DIBuilder &Builder) {
 | 
						|
  auto *DIVar = DII->getVariable();
 | 
						|
  auto *DIExpr = DII->getExpression();
 | 
						|
  assert(DIVar && "Missing variable");
 | 
						|
 | 
						|
  if (PhiHasDebugValue(DIVar, DIExpr, APN))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!valueCoversEntireFragment(APN->getType(), DII)) {
 | 
						|
    // FIXME: If only referring to a part of the variable described by the
 | 
						|
    // dbg.declare, then we want to insert a dbg.value for the corresponding
 | 
						|
    // fragment.
 | 
						|
    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
 | 
						|
                      << *DII << '\n');
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *BB = APN->getParent();
 | 
						|
  auto InsertionPt = BB->getFirstInsertionPt();
 | 
						|
 | 
						|
  DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
 | 
						|
 | 
						|
  // The block may be a catchswitch block, which does not have a valid
 | 
						|
  // insertion point.
 | 
						|
  // FIXME: Insert dbg.value markers in the successors when appropriate.
 | 
						|
  if (InsertionPt != BB->end())
 | 
						|
    Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether this alloca is either a VLA or an array.
 | 
						|
static bool isArray(AllocaInst *AI) {
 | 
						|
  return AI->isArrayAllocation() ||
 | 
						|
         (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether this alloca is a structure.
 | 
						|
static bool isStructure(AllocaInst *AI) {
 | 
						|
  return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
 | 
						|
}
 | 
						|
 | 
						|
/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
 | 
						|
/// of llvm.dbg.value intrinsics.
 | 
						|
bool llvm::LowerDbgDeclare(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
 | 
						|
  SmallVector<DbgDeclareInst *, 4> Dbgs;
 | 
						|
  for (auto &FI : F)
 | 
						|
    for (Instruction &BI : FI)
 | 
						|
      if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
 | 
						|
        Dbgs.push_back(DDI);
 | 
						|
 | 
						|
  if (Dbgs.empty())
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  for (auto &I : Dbgs) {
 | 
						|
    DbgDeclareInst *DDI = I;
 | 
						|
    AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
 | 
						|
    // If this is an alloca for a scalar variable, insert a dbg.value
 | 
						|
    // at each load and store to the alloca and erase the dbg.declare.
 | 
						|
    // The dbg.values allow tracking a variable even if it is not
 | 
						|
    // stored on the stack, while the dbg.declare can only describe
 | 
						|
    // the stack slot (and at a lexical-scope granularity). Later
 | 
						|
    // passes will attempt to elide the stack slot.
 | 
						|
    if (!AI || isArray(AI) || isStructure(AI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // A volatile load/store means that the alloca can't be elided anyway.
 | 
						|
    if (llvm::any_of(AI->users(), [](User *U) -> bool {
 | 
						|
          if (LoadInst *LI = dyn_cast<LoadInst>(U))
 | 
						|
            return LI->isVolatile();
 | 
						|
          if (StoreInst *SI = dyn_cast<StoreInst>(U))
 | 
						|
            return SI->isVolatile();
 | 
						|
          return false;
 | 
						|
        }))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SmallVector<const Value *, 8> WorkList;
 | 
						|
    WorkList.push_back(AI);
 | 
						|
    while (!WorkList.empty()) {
 | 
						|
      const Value *V = WorkList.pop_back_val();
 | 
						|
      for (const auto &AIUse : V->uses()) {
 | 
						|
        User *U = AIUse.getUser();
 | 
						|
        if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | 
						|
          if (AIUse.getOperandNo() == 1)
 | 
						|
            ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
 | 
						|
        } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | 
						|
          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
 | 
						|
        } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
 | 
						|
          // This is a call by-value or some other instruction that takes a
 | 
						|
          // pointer to the variable. Insert a *value* intrinsic that describes
 | 
						|
          // the variable by dereferencing the alloca.
 | 
						|
          if (!CI->isLifetimeStartOrEnd()) {
 | 
						|
            DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
 | 
						|
            auto *DerefExpr =
 | 
						|
                DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
 | 
						|
            DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
 | 
						|
                                        NewLoc, CI);
 | 
						|
          }
 | 
						|
        } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
 | 
						|
          if (BI->getType()->isPointerTy())
 | 
						|
            WorkList.push_back(BI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DDI->eraseFromParent();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Changed)
 | 
						|
  for (BasicBlock &BB : F)
 | 
						|
    RemoveRedundantDbgInstrs(&BB);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Propagate dbg.value intrinsics through the newly inserted PHIs.
 | 
						|
void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
 | 
						|
                                    SmallVectorImpl<PHINode *> &InsertedPHIs) {
 | 
						|
  assert(BB && "No BasicBlock to clone dbg.value(s) from.");
 | 
						|
  if (InsertedPHIs.size() == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Map existing PHI nodes to their dbg.values.
 | 
						|
  ValueToValueMapTy DbgValueMap;
 | 
						|
  for (auto &I : *BB) {
 | 
						|
    if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
 | 
						|
      for (Value *V : DbgII->location_ops())
 | 
						|
        if (auto *Loc = dyn_cast_or_null<PHINode>(V))
 | 
						|
          DbgValueMap.insert({Loc, DbgII});
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (DbgValueMap.size() == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Map a pair of the destination BB and old dbg.value to the new dbg.value,
 | 
						|
  // so that if a dbg.value is being rewritten to use more than one of the
 | 
						|
  // inserted PHIs in the same destination BB, we can update the same dbg.value
 | 
						|
  // with all the new PHIs instead of creating one copy for each.
 | 
						|
  MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
 | 
						|
            DbgVariableIntrinsic *>
 | 
						|
      NewDbgValueMap;
 | 
						|
  // Then iterate through the new PHIs and look to see if they use one of the
 | 
						|
  // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
 | 
						|
  // propagate the info through the new PHI. If we use more than one new PHI in
 | 
						|
  // a single destination BB with the same old dbg.value, merge the updates so
 | 
						|
  // that we get a single new dbg.value with all the new PHIs.
 | 
						|
  for (auto PHI : InsertedPHIs) {
 | 
						|
    BasicBlock *Parent = PHI->getParent();
 | 
						|
    // Avoid inserting an intrinsic into an EH block.
 | 
						|
    if (Parent->getFirstNonPHI()->isEHPad())
 | 
						|
      continue;
 | 
						|
    for (auto VI : PHI->operand_values()) {
 | 
						|
      auto V = DbgValueMap.find(VI);
 | 
						|
      if (V != DbgValueMap.end()) {
 | 
						|
        auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
 | 
						|
        auto NewDI = NewDbgValueMap.find({Parent, DbgII});
 | 
						|
        if (NewDI == NewDbgValueMap.end()) {
 | 
						|
          auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
 | 
						|
          NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
 | 
						|
        }
 | 
						|
        DbgVariableIntrinsic *NewDbgII = NewDI->second;
 | 
						|
        // If PHI contains VI as an operand more than once, we may
 | 
						|
        // replaced it in NewDbgII; confirm that it is present.
 | 
						|
        if (is_contained(NewDbgII->location_ops(), VI))
 | 
						|
          NewDbgII->replaceVariableLocationOp(VI, PHI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Insert thew new dbg.values into their destination blocks.
 | 
						|
  for (auto DI : NewDbgValueMap) {
 | 
						|
    BasicBlock *Parent = DI.first.first;
 | 
						|
    auto *NewDbgII = DI.second;
 | 
						|
    auto InsertionPt = Parent->getFirstInsertionPt();
 | 
						|
    assert(InsertionPt != Parent->end() && "Ill-formed basic block");
 | 
						|
    NewDbgII->insertBefore(&*InsertionPt);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
 | 
						|
                             DIBuilder &Builder, uint8_t DIExprFlags,
 | 
						|
                             int Offset) {
 | 
						|
  auto DbgAddrs = FindDbgAddrUses(Address);
 | 
						|
  for (DbgVariableIntrinsic *DII : DbgAddrs) {
 | 
						|
    const DebugLoc &Loc = DII->getDebugLoc();
 | 
						|
    auto *DIVar = DII->getVariable();
 | 
						|
    auto *DIExpr = DII->getExpression();
 | 
						|
    assert(DIVar && "Missing variable");
 | 
						|
    DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
 | 
						|
    // Insert llvm.dbg.declare immediately before DII, and remove old
 | 
						|
    // llvm.dbg.declare.
 | 
						|
    Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
 | 
						|
    DII->eraseFromParent();
 | 
						|
  }
 | 
						|
  return !DbgAddrs.empty();
 | 
						|
}
 | 
						|
 | 
						|
static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
 | 
						|
                                        DIBuilder &Builder, int Offset) {
 | 
						|
  const DebugLoc &Loc = DVI->getDebugLoc();
 | 
						|
  auto *DIVar = DVI->getVariable();
 | 
						|
  auto *DIExpr = DVI->getExpression();
 | 
						|
  assert(DIVar && "Missing variable");
 | 
						|
 | 
						|
  // This is an alloca-based llvm.dbg.value. The first thing it should do with
 | 
						|
  // the alloca pointer is dereference it. Otherwise we don't know how to handle
 | 
						|
  // it and give up.
 | 
						|
  if (!DIExpr || DIExpr->getNumElements() < 1 ||
 | 
						|
      DIExpr->getElement(0) != dwarf::DW_OP_deref)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Insert the offset before the first deref.
 | 
						|
  // We could just change the offset argument of dbg.value, but it's unsigned...
 | 
						|
  if (Offset)
 | 
						|
    DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
 | 
						|
 | 
						|
  Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
 | 
						|
  DVI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
 | 
						|
                                    DIBuilder &Builder, int Offset) {
 | 
						|
  if (auto *L = LocalAsMetadata::getIfExists(AI))
 | 
						|
    if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
 | 
						|
      for (Use &U : llvm::make_early_inc_range(MDV->uses()))
 | 
						|
        if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
 | 
						|
          replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
 | 
						|
}
 | 
						|
 | 
						|
/// Where possible to salvage debug information for \p I do so.
 | 
						|
/// If not possible mark undef.
 | 
						|
void llvm::salvageDebugInfo(Instruction &I) {
 | 
						|
  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
 | 
						|
  findDbgUsers(DbgUsers, &I);
 | 
						|
  salvageDebugInfoForDbgValues(I, DbgUsers);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::salvageDebugInfoForDbgValues(
 | 
						|
    Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
 | 
						|
  // These are arbitrary chosen limits on the maximum number of values and the
 | 
						|
  // maximum size of a debug expression we can salvage up to, used for
 | 
						|
  // performance reasons.
 | 
						|
  const unsigned MaxDebugArgs = 16;
 | 
						|
  const unsigned MaxExpressionSize = 128;
 | 
						|
  bool Salvaged = false;
 | 
						|
 | 
						|
  for (auto *DII : DbgUsers) {
 | 
						|
    // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
 | 
						|
    // are implicitly pointing out the value as a DWARF memory location
 | 
						|
    // description.
 | 
						|
    bool StackValue = isa<DbgValueInst>(DII);
 | 
						|
    auto DIILocation = DII->location_ops();
 | 
						|
    assert(
 | 
						|
        is_contained(DIILocation, &I) &&
 | 
						|
        "DbgVariableIntrinsic must use salvaged instruction as its location");
 | 
						|
    SmallVector<Value *, 4> AdditionalValues;
 | 
						|
    // `I` may appear more than once in DII's location ops, and each use of `I`
 | 
						|
    // must be updated in the DIExpression and potentially have additional
 | 
						|
    // values added; thus we call salvageDebugInfoImpl for each `I` instance in
 | 
						|
    // DIILocation.
 | 
						|
    Value *Op0 = nullptr;
 | 
						|
    DIExpression *SalvagedExpr = DII->getExpression();
 | 
						|
    auto LocItr = find(DIILocation, &I);
 | 
						|
    while (SalvagedExpr && LocItr != DIILocation.end()) {
 | 
						|
      SmallVector<uint64_t, 16> Ops;
 | 
						|
      unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
 | 
						|
      uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
 | 
						|
      Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
 | 
						|
      if (!Op0)
 | 
						|
        break;
 | 
						|
      SalvagedExpr =
 | 
						|
          DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
 | 
						|
      LocItr = std::find(++LocItr, DIILocation.end(), &I);
 | 
						|
    }
 | 
						|
    // salvageDebugInfoImpl should fail on examining the first element of
 | 
						|
    // DbgUsers, or none of them.
 | 
						|
    if (!Op0)
 | 
						|
      break;
 | 
						|
 | 
						|
    DII->replaceVariableLocationOp(&I, Op0);
 | 
						|
    bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize;
 | 
						|
    if (AdditionalValues.empty() && IsValidSalvageExpr) {
 | 
						|
      DII->setExpression(SalvagedExpr);
 | 
						|
    } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr &&
 | 
						|
               DII->getNumVariableLocationOps() + AdditionalValues.size() <=
 | 
						|
                   MaxDebugArgs) {
 | 
						|
      DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
 | 
						|
    } else {
 | 
						|
      // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
 | 
						|
      // currently only valid for stack value expressions.
 | 
						|
      // Also do not salvage if the resulting DIArgList would contain an
 | 
						|
      // unreasonably large number of values.
 | 
						|
      Value *Undef = UndefValue::get(I.getOperand(0)->getType());
 | 
						|
      DII->replaceVariableLocationOp(I.getOperand(0), Undef);
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
 | 
						|
    Salvaged = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Salvaged)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (auto *DII : DbgUsers) {
 | 
						|
    Value *Undef = UndefValue::get(I.getType());
 | 
						|
    DII->replaceVariableLocationOp(&I, Undef);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
 | 
						|
                           uint64_t CurrentLocOps,
 | 
						|
                           SmallVectorImpl<uint64_t> &Opcodes,
 | 
						|
                           SmallVectorImpl<Value *> &AdditionalValues) {
 | 
						|
  unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
 | 
						|
  // Rewrite a GEP into a DIExpression.
 | 
						|
  MapVector<Value *, APInt> VariableOffsets;
 | 
						|
  APInt ConstantOffset(BitWidth, 0);
 | 
						|
  if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
 | 
						|
    return nullptr;
 | 
						|
  if (!VariableOffsets.empty() && !CurrentLocOps) {
 | 
						|
    Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
 | 
						|
    CurrentLocOps = 1;
 | 
						|
  }
 | 
						|
  for (auto Offset : VariableOffsets) {
 | 
						|
    AdditionalValues.push_back(Offset.first);
 | 
						|
    assert(Offset.second.isStrictlyPositive() &&
 | 
						|
           "Expected strictly positive multiplier for offset.");
 | 
						|
    Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
 | 
						|
                    Offset.second.getZExtValue(), dwarf::DW_OP_mul,
 | 
						|
                    dwarf::DW_OP_plus});
 | 
						|
  }
 | 
						|
  DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
 | 
						|
  return GEP->getOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Add:
 | 
						|
    return dwarf::DW_OP_plus;
 | 
						|
  case Instruction::Sub:
 | 
						|
    return dwarf::DW_OP_minus;
 | 
						|
  case Instruction::Mul:
 | 
						|
    return dwarf::DW_OP_mul;
 | 
						|
  case Instruction::SDiv:
 | 
						|
    return dwarf::DW_OP_div;
 | 
						|
  case Instruction::SRem:
 | 
						|
    return dwarf::DW_OP_mod;
 | 
						|
  case Instruction::Or:
 | 
						|
    return dwarf::DW_OP_or;
 | 
						|
  case Instruction::And:
 | 
						|
    return dwarf::DW_OP_and;
 | 
						|
  case Instruction::Xor:
 | 
						|
    return dwarf::DW_OP_xor;
 | 
						|
  case Instruction::Shl:
 | 
						|
    return dwarf::DW_OP_shl;
 | 
						|
  case Instruction::LShr:
 | 
						|
    return dwarf::DW_OP_shr;
 | 
						|
  case Instruction::AShr:
 | 
						|
    return dwarf::DW_OP_shra;
 | 
						|
  default:
 | 
						|
    // TODO: Salvage from each kind of binop we know about.
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
 | 
						|
                             SmallVectorImpl<uint64_t> &Opcodes,
 | 
						|
                             SmallVectorImpl<Value *> &AdditionalValues) {
 | 
						|
  // Handle binary operations with constant integer operands as a special case.
 | 
						|
  auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
 | 
						|
  // Values wider than 64 bits cannot be represented within a DIExpression.
 | 
						|
  if (ConstInt && ConstInt->getBitWidth() > 64)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Instruction::BinaryOps BinOpcode = BI->getOpcode();
 | 
						|
  // Push any Constant Int operand onto the expression stack.
 | 
						|
  if (ConstInt) {
 | 
						|
    uint64_t Val = ConstInt->getSExtValue();
 | 
						|
    // Add or Sub Instructions with a constant operand can potentially be
 | 
						|
    // simplified.
 | 
						|
    if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
 | 
						|
      uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
 | 
						|
      DIExpression::appendOffset(Opcodes, Offset);
 | 
						|
      return BI->getOperand(0);
 | 
						|
    }
 | 
						|
    Opcodes.append({dwarf::DW_OP_constu, Val});
 | 
						|
  } else {
 | 
						|
    if (!CurrentLocOps) {
 | 
						|
      Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
 | 
						|
      CurrentLocOps = 1;
 | 
						|
    }
 | 
						|
    Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
 | 
						|
    AdditionalValues.push_back(BI->getOperand(1));
 | 
						|
  }
 | 
						|
 | 
						|
  // Add salvaged binary operator to expression stack, if it has a valid
 | 
						|
  // representation in a DIExpression.
 | 
						|
  uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
 | 
						|
  if (!DwarfBinOp)
 | 
						|
    return nullptr;
 | 
						|
  Opcodes.push_back(DwarfBinOp);
 | 
						|
  return BI->getOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
 | 
						|
                                  SmallVectorImpl<uint64_t> &Ops,
 | 
						|
                                  SmallVectorImpl<Value *> &AdditionalValues) {
 | 
						|
  auto &M = *I.getModule();
 | 
						|
  auto &DL = M.getDataLayout();
 | 
						|
 | 
						|
  if (auto *CI = dyn_cast<CastInst>(&I)) {
 | 
						|
    Value *FromValue = CI->getOperand(0);
 | 
						|
    // No-op casts are irrelevant for debug info.
 | 
						|
    if (CI->isNoopCast(DL)) {
 | 
						|
      return FromValue;
 | 
						|
    }
 | 
						|
 | 
						|
    Type *Type = CI->getType();
 | 
						|
    if (Type->isPointerTy())
 | 
						|
      Type = DL.getIntPtrType(Type);
 | 
						|
    // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
 | 
						|
    if (Type->isVectorTy() ||
 | 
						|
        !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) ||
 | 
						|
          isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I)))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    llvm::Type *FromType = FromValue->getType();
 | 
						|
    if (FromType->isPointerTy())
 | 
						|
      FromType = DL.getIntPtrType(FromType);
 | 
						|
 | 
						|
    unsigned FromTypeBitSize = FromType->getScalarSizeInBits();
 | 
						|
    unsigned ToTypeBitSize = Type->getScalarSizeInBits();
 | 
						|
 | 
						|
    auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
 | 
						|
                                          isa<SExtInst>(&I));
 | 
						|
    Ops.append(ExtOps.begin(), ExtOps.end());
 | 
						|
    return FromValue;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
 | 
						|
    return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues);
 | 
						|
  if (auto *BI = dyn_cast<BinaryOperator>(&I))
 | 
						|
    return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues);
 | 
						|
 | 
						|
  // *Not* to do: we should not attempt to salvage load instructions,
 | 
						|
  // because the validity and lifetime of a dbg.value containing
 | 
						|
  // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// A replacement for a dbg.value expression.
 | 
						|
using DbgValReplacement = Optional<DIExpression *>;
 | 
						|
 | 
						|
/// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
 | 
						|
/// possibly moving/undefing users to prevent use-before-def. Returns true if
 | 
						|
/// changes are made.
 | 
						|
static bool rewriteDebugUsers(
 | 
						|
    Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
 | 
						|
    function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
 | 
						|
  // Find debug users of From.
 | 
						|
  SmallVector<DbgVariableIntrinsic *, 1> Users;
 | 
						|
  findDbgUsers(Users, &From);
 | 
						|
  if (Users.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Prevent use-before-def of To.
 | 
						|
  bool Changed = false;
 | 
						|
  SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
 | 
						|
  if (isa<Instruction>(&To)) {
 | 
						|
    bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
 | 
						|
 | 
						|
    for (auto *DII : Users) {
 | 
						|
      // It's common to see a debug user between From and DomPoint. Move it
 | 
						|
      // after DomPoint to preserve the variable update without any reordering.
 | 
						|
      if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
 | 
						|
        LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
 | 
						|
        DII->moveAfter(&DomPoint);
 | 
						|
        Changed = true;
 | 
						|
 | 
						|
      // Users which otherwise aren't dominated by the replacement value must
 | 
						|
      // be salvaged or deleted.
 | 
						|
      } else if (!DT.dominates(&DomPoint, DII)) {
 | 
						|
        UndefOrSalvage.insert(DII);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update debug users without use-before-def risk.
 | 
						|
  for (auto *DII : Users) {
 | 
						|
    if (UndefOrSalvage.count(DII))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DbgValReplacement DVR = RewriteExpr(*DII);
 | 
						|
    if (!DVR)
 | 
						|
      continue;
 | 
						|
 | 
						|
    DII->replaceVariableLocationOp(&From, &To);
 | 
						|
    DII->setExpression(*DVR);
 | 
						|
    LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!UndefOrSalvage.empty()) {
 | 
						|
    // Try to salvage the remaining debug users.
 | 
						|
    salvageDebugInfo(From);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
 | 
						|
/// losslessly preserve the bits and semantics of the value. This predicate is
 | 
						|
/// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
 | 
						|
///
 | 
						|
/// Note that Type::canLosslesslyBitCastTo is not suitable here because it
 | 
						|
/// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
 | 
						|
/// and also does not allow lossless pointer <-> integer conversions.
 | 
						|
static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
 | 
						|
                                         Type *ToTy) {
 | 
						|
  // Trivially compatible types.
 | 
						|
  if (FromTy == ToTy)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Handle compatible pointer <-> integer conversions.
 | 
						|
  if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
 | 
						|
    bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
 | 
						|
    bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
 | 
						|
                              !DL.isNonIntegralPointerType(ToTy);
 | 
						|
    return SameSize && LosslessConversion;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: This is not exhaustive.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
 | 
						|
                                 Instruction &DomPoint, DominatorTree &DT) {
 | 
						|
  // Exit early if From has no debug users.
 | 
						|
  if (!From.isUsedByMetadata())
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(&From != &To && "Can't replace something with itself");
 | 
						|
 | 
						|
  Type *FromTy = From.getType();
 | 
						|
  Type *ToTy = To.getType();
 | 
						|
 | 
						|
  auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
 | 
						|
    return DII.getExpression();
 | 
						|
  };
 | 
						|
 | 
						|
  // Handle no-op conversions.
 | 
						|
  Module &M = *From.getModule();
 | 
						|
  const DataLayout &DL = M.getDataLayout();
 | 
						|
  if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
 | 
						|
    return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
 | 
						|
 | 
						|
  // Handle integer-to-integer widening and narrowing.
 | 
						|
  // FIXME: Use DW_OP_convert when it's available everywhere.
 | 
						|
  if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
 | 
						|
    uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
 | 
						|
    uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
 | 
						|
    assert(FromBits != ToBits && "Unexpected no-op conversion");
 | 
						|
 | 
						|
    // When the width of the result grows, assume that a debugger will only
 | 
						|
    // access the low `FromBits` bits when inspecting the source variable.
 | 
						|
    if (FromBits < ToBits)
 | 
						|
      return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
 | 
						|
 | 
						|
    // The width of the result has shrunk. Use sign/zero extension to describe
 | 
						|
    // the source variable's high bits.
 | 
						|
    auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
 | 
						|
      DILocalVariable *Var = DII.getVariable();
 | 
						|
 | 
						|
      // Without knowing signedness, sign/zero extension isn't possible.
 | 
						|
      auto Signedness = Var->getSignedness();
 | 
						|
      if (!Signedness)
 | 
						|
        return None;
 | 
						|
 | 
						|
      bool Signed = *Signedness == DIBasicType::Signedness::Signed;
 | 
						|
      return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
 | 
						|
                                     Signed);
 | 
						|
    };
 | 
						|
    return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Floating-point conversions, vectors.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, unsigned>
 | 
						|
llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
 | 
						|
  unsigned NumDeadInst = 0;
 | 
						|
  unsigned NumDeadDbgInst = 0;
 | 
						|
  // Delete the instructions backwards, as it has a reduced likelihood of
 | 
						|
  // having to update as many def-use and use-def chains.
 | 
						|
  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
 | 
						|
  while (EndInst != &BB->front()) {
 | 
						|
    // Delete the next to last instruction.
 | 
						|
    Instruction *Inst = &*--EndInst->getIterator();
 | 
						|
    if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
 | 
						|
      Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
 | 
						|
    if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
 | 
						|
      EndInst = Inst;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isa<DbgInfoIntrinsic>(Inst))
 | 
						|
      ++NumDeadDbgInst;
 | 
						|
    else
 | 
						|
      ++NumDeadInst;
 | 
						|
    Inst->eraseFromParent();
 | 
						|
  }
 | 
						|
  return {NumDeadInst, NumDeadDbgInst};
 | 
						|
}
 | 
						|
 | 
						|
unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA,
 | 
						|
                                   DomTreeUpdater *DTU,
 | 
						|
                                   MemorySSAUpdater *MSSAU) {
 | 
						|
  BasicBlock *BB = I->getParent();
 | 
						|
 | 
						|
  if (MSSAU)
 | 
						|
    MSSAU->changeToUnreachable(I);
 | 
						|
 | 
						|
  SmallSet<BasicBlock *, 8> UniqueSuccessors;
 | 
						|
 | 
						|
  // Loop over all of the successors, removing BB's entry from any PHI
 | 
						|
  // nodes.
 | 
						|
  for (BasicBlock *Successor : successors(BB)) {
 | 
						|
    Successor->removePredecessor(BB, PreserveLCSSA);
 | 
						|
    if (DTU)
 | 
						|
      UniqueSuccessors.insert(Successor);
 | 
						|
  }
 | 
						|
  auto *UI = new UnreachableInst(I->getContext(), I);
 | 
						|
  UI->setDebugLoc(I->getDebugLoc());
 | 
						|
 | 
						|
  // All instructions after this are dead.
 | 
						|
  unsigned NumInstrsRemoved = 0;
 | 
						|
  BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
 | 
						|
  while (BBI != BBE) {
 | 
						|
    if (!BBI->use_empty())
 | 
						|
      BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
 | 
						|
    BB->getInstList().erase(BBI++);
 | 
						|
    ++NumInstrsRemoved;
 | 
						|
  }
 | 
						|
  if (DTU) {
 | 
						|
    SmallVector<DominatorTree::UpdateType, 8> Updates;
 | 
						|
    Updates.reserve(UniqueSuccessors.size());
 | 
						|
    for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
 | 
						|
      Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
 | 
						|
    DTU->applyUpdates(Updates);
 | 
						|
  }
 | 
						|
  return NumInstrsRemoved;
 | 
						|
}
 | 
						|
 | 
						|
CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
 | 
						|
  SmallVector<Value *, 8> Args(II->args());
 | 
						|
  SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						|
  II->getOperandBundlesAsDefs(OpBundles);
 | 
						|
  CallInst *NewCall = CallInst::Create(II->getFunctionType(),
 | 
						|
                                       II->getCalledOperand(), Args, OpBundles);
 | 
						|
  NewCall->setCallingConv(II->getCallingConv());
 | 
						|
  NewCall->setAttributes(II->getAttributes());
 | 
						|
  NewCall->setDebugLoc(II->getDebugLoc());
 | 
						|
  NewCall->copyMetadata(*II);
 | 
						|
 | 
						|
  // If the invoke had profile metadata, try converting them for CallInst.
 | 
						|
  uint64_t TotalWeight;
 | 
						|
  if (NewCall->extractProfTotalWeight(TotalWeight)) {
 | 
						|
    // Set the total weight if it fits into i32, otherwise reset.
 | 
						|
    MDBuilder MDB(NewCall->getContext());
 | 
						|
    auto NewWeights = uint32_t(TotalWeight) != TotalWeight
 | 
						|
                          ? nullptr
 | 
						|
                          : MDB.createBranchWeights({uint32_t(TotalWeight)});
 | 
						|
    NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
 | 
						|
  }
 | 
						|
 | 
						|
  return NewCall;
 | 
						|
}
 | 
						|
 | 
						|
// changeToCall - Convert the specified invoke into a normal call.
 | 
						|
CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
 | 
						|
  CallInst *NewCall = createCallMatchingInvoke(II);
 | 
						|
  NewCall->takeName(II);
 | 
						|
  NewCall->insertBefore(II);
 | 
						|
  II->replaceAllUsesWith(NewCall);
 | 
						|
 | 
						|
  // Follow the call by a branch to the normal destination.
 | 
						|
  BasicBlock *NormalDestBB = II->getNormalDest();
 | 
						|
  BranchInst::Create(NormalDestBB, II);
 | 
						|
 | 
						|
  // Update PHI nodes in the unwind destination
 | 
						|
  BasicBlock *BB = II->getParent();
 | 
						|
  BasicBlock *UnwindDestBB = II->getUnwindDest();
 | 
						|
  UnwindDestBB->removePredecessor(BB);
 | 
						|
  II->eraseFromParent();
 | 
						|
  if (DTU)
 | 
						|
    DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
 | 
						|
  return NewCall;
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
 | 
						|
                                                   BasicBlock *UnwindEdge,
 | 
						|
                                                   DomTreeUpdater *DTU) {
 | 
						|
  BasicBlock *BB = CI->getParent();
 | 
						|
 | 
						|
  // Convert this function call into an invoke instruction.  First, split the
 | 
						|
  // basic block.
 | 
						|
  BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
 | 
						|
                                 CI->getName() + ".noexc");
 | 
						|
 | 
						|
  // Delete the unconditional branch inserted by SplitBlock
 | 
						|
  BB->getInstList().pop_back();
 | 
						|
 | 
						|
  // Create the new invoke instruction.
 | 
						|
  SmallVector<Value *, 8> InvokeArgs(CI->args());
 | 
						|
  SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						|
 | 
						|
  CI->getOperandBundlesAsDefs(OpBundles);
 | 
						|
 | 
						|
  // Note: we're round tripping operand bundles through memory here, and that
 | 
						|
  // can potentially be avoided with a cleverer API design that we do not have
 | 
						|
  // as of this time.
 | 
						|
 | 
						|
  InvokeInst *II =
 | 
						|
      InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
 | 
						|
                         UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
 | 
						|
  II->setDebugLoc(CI->getDebugLoc());
 | 
						|
  II->setCallingConv(CI->getCallingConv());
 | 
						|
  II->setAttributes(CI->getAttributes());
 | 
						|
  II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof));
 | 
						|
 | 
						|
  if (DTU)
 | 
						|
    DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
 | 
						|
 | 
						|
  // Make sure that anything using the call now uses the invoke!  This also
 | 
						|
  // updates the CallGraph if present, because it uses a WeakTrackingVH.
 | 
						|
  CI->replaceAllUsesWith(II);
 | 
						|
 | 
						|
  // Delete the original call
 | 
						|
  Split->getInstList().pop_front();
 | 
						|
  return Split;
 | 
						|
}
 | 
						|
 | 
						|
static bool markAliveBlocks(Function &F,
 | 
						|
                            SmallPtrSetImpl<BasicBlock *> &Reachable,
 | 
						|
                            DomTreeUpdater *DTU = nullptr) {
 | 
						|
  SmallVector<BasicBlock*, 128> Worklist;
 | 
						|
  BasicBlock *BB = &F.front();
 | 
						|
  Worklist.push_back(BB);
 | 
						|
  Reachable.insert(BB);
 | 
						|
  bool Changed = false;
 | 
						|
  do {
 | 
						|
    BB = Worklist.pop_back_val();
 | 
						|
 | 
						|
    // Do a quick scan of the basic block, turning any obviously unreachable
 | 
						|
    // instructions into LLVM unreachable insts.  The instruction combining pass
 | 
						|
    // canonicalizes unreachable insts into stores to null or undef.
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      if (auto *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
        Value *Callee = CI->getCalledOperand();
 | 
						|
        // Handle intrinsic calls.
 | 
						|
        if (Function *F = dyn_cast<Function>(Callee)) {
 | 
						|
          auto IntrinsicID = F->getIntrinsicID();
 | 
						|
          // Assumptions that are known to be false are equivalent to
 | 
						|
          // unreachable. Also, if the condition is undefined, then we make the
 | 
						|
          // choice most beneficial to the optimizer, and choose that to also be
 | 
						|
          // unreachable.
 | 
						|
          if (IntrinsicID == Intrinsic::assume) {
 | 
						|
            if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
 | 
						|
              // Don't insert a call to llvm.trap right before the unreachable.
 | 
						|
              changeToUnreachable(CI, false, DTU);
 | 
						|
              Changed = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          } else if (IntrinsicID == Intrinsic::experimental_guard) {
 | 
						|
            // A call to the guard intrinsic bails out of the current
 | 
						|
            // compilation unit if the predicate passed to it is false. If the
 | 
						|
            // predicate is a constant false, then we know the guard will bail
 | 
						|
            // out of the current compile unconditionally, so all code following
 | 
						|
            // it is dead.
 | 
						|
            //
 | 
						|
            // Note: unlike in llvm.assume, it is not "obviously profitable" for
 | 
						|
            // guards to treat `undef` as `false` since a guard on `undef` can
 | 
						|
            // still be useful for widening.
 | 
						|
            if (match(CI->getArgOperand(0), m_Zero()))
 | 
						|
              if (!isa<UnreachableInst>(CI->getNextNode())) {
 | 
						|
                changeToUnreachable(CI->getNextNode(), false, DTU);
 | 
						|
                Changed = true;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
          }
 | 
						|
        } else if ((isa<ConstantPointerNull>(Callee) &&
 | 
						|
                    !NullPointerIsDefined(CI->getFunction())) ||
 | 
						|
                   isa<UndefValue>(Callee)) {
 | 
						|
          changeToUnreachable(CI, false, DTU);
 | 
						|
          Changed = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (CI->doesNotReturn() && !CI->isMustTailCall()) {
 | 
						|
          // If we found a call to a no-return function, insert an unreachable
 | 
						|
          // instruction after it.  Make sure there isn't *already* one there
 | 
						|
          // though.
 | 
						|
          if (!isa<UnreachableInst>(CI->getNextNode())) {
 | 
						|
            // Don't insert a call to llvm.trap right before the unreachable.
 | 
						|
            changeToUnreachable(CI->getNextNode(), false, DTU);
 | 
						|
            Changed = true;
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
 | 
						|
        // Store to undef and store to null are undefined and used to signal
 | 
						|
        // that they should be changed to unreachable by passes that can't
 | 
						|
        // modify the CFG.
 | 
						|
 | 
						|
        // Don't touch volatile stores.
 | 
						|
        if (SI->isVolatile()) continue;
 | 
						|
 | 
						|
        Value *Ptr = SI->getOperand(1);
 | 
						|
 | 
						|
        if (isa<UndefValue>(Ptr) ||
 | 
						|
            (isa<ConstantPointerNull>(Ptr) &&
 | 
						|
             !NullPointerIsDefined(SI->getFunction(),
 | 
						|
                                   SI->getPointerAddressSpace()))) {
 | 
						|
          changeToUnreachable(SI, false, DTU);
 | 
						|
          Changed = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *Terminator = BB->getTerminator();
 | 
						|
    if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
 | 
						|
      // Turn invokes that call 'nounwind' functions into ordinary calls.
 | 
						|
      Value *Callee = II->getCalledOperand();
 | 
						|
      if ((isa<ConstantPointerNull>(Callee) &&
 | 
						|
           !NullPointerIsDefined(BB->getParent())) ||
 | 
						|
          isa<UndefValue>(Callee)) {
 | 
						|
        changeToUnreachable(II, false, DTU);
 | 
						|
        Changed = true;
 | 
						|
      } else {
 | 
						|
        if (II->doesNotReturn() &&
 | 
						|
            !isa<UnreachableInst>(II->getNormalDest()->front())) {
 | 
						|
          // If we found an invoke of a no-return function,
 | 
						|
          // create a new empty basic block with an `unreachable` terminator,
 | 
						|
          // and set it as the normal destination for the invoke,
 | 
						|
          // unless that is already the case.
 | 
						|
          // Note that the original normal destination could have other uses.
 | 
						|
          BasicBlock *OrigNormalDest = II->getNormalDest();
 | 
						|
          OrigNormalDest->removePredecessor(II->getParent());
 | 
						|
          LLVMContext &Ctx = II->getContext();
 | 
						|
          BasicBlock *UnreachableNormalDest = BasicBlock::Create(
 | 
						|
              Ctx, OrigNormalDest->getName() + ".unreachable",
 | 
						|
              II->getFunction(), OrigNormalDest);
 | 
						|
          new UnreachableInst(Ctx, UnreachableNormalDest);
 | 
						|
          II->setNormalDest(UnreachableNormalDest);
 | 
						|
          if (DTU)
 | 
						|
            DTU->applyUpdates(
 | 
						|
                {{DominatorTree::Delete, BB, OrigNormalDest},
 | 
						|
                 {DominatorTree::Insert, BB, UnreachableNormalDest}});
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
        if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
 | 
						|
          if (II->use_empty() && !II->mayHaveSideEffects()) {
 | 
						|
            // jump to the normal destination branch.
 | 
						|
            BasicBlock *NormalDestBB = II->getNormalDest();
 | 
						|
            BasicBlock *UnwindDestBB = II->getUnwindDest();
 | 
						|
            BranchInst::Create(NormalDestBB, II);
 | 
						|
            UnwindDestBB->removePredecessor(II->getParent());
 | 
						|
            II->eraseFromParent();
 | 
						|
            if (DTU)
 | 
						|
              DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
 | 
						|
          } else
 | 
						|
            changeToCall(II, DTU);
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
 | 
						|
      // Remove catchpads which cannot be reached.
 | 
						|
      struct CatchPadDenseMapInfo {
 | 
						|
        static CatchPadInst *getEmptyKey() {
 | 
						|
          return DenseMapInfo<CatchPadInst *>::getEmptyKey();
 | 
						|
        }
 | 
						|
 | 
						|
        static CatchPadInst *getTombstoneKey() {
 | 
						|
          return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
 | 
						|
        }
 | 
						|
 | 
						|
        static unsigned getHashValue(CatchPadInst *CatchPad) {
 | 
						|
          return static_cast<unsigned>(hash_combine_range(
 | 
						|
              CatchPad->value_op_begin(), CatchPad->value_op_end()));
 | 
						|
        }
 | 
						|
 | 
						|
        static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
 | 
						|
          if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
 | 
						|
              RHS == getEmptyKey() || RHS == getTombstoneKey())
 | 
						|
            return LHS == RHS;
 | 
						|
          return LHS->isIdenticalTo(RHS);
 | 
						|
        }
 | 
						|
      };
 | 
						|
 | 
						|
      SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
 | 
						|
      // Set of unique CatchPads.
 | 
						|
      SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
 | 
						|
                    CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
 | 
						|
          HandlerSet;
 | 
						|
      detail::DenseSetEmpty Empty;
 | 
						|
      for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
 | 
						|
                                             E = CatchSwitch->handler_end();
 | 
						|
           I != E; ++I) {
 | 
						|
        BasicBlock *HandlerBB = *I;
 | 
						|
        if (DTU)
 | 
						|
          ++NumPerSuccessorCases[HandlerBB];
 | 
						|
        auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
 | 
						|
        if (!HandlerSet.insert({CatchPad, Empty}).second) {
 | 
						|
          if (DTU)
 | 
						|
            --NumPerSuccessorCases[HandlerBB];
 | 
						|
          CatchSwitch->removeHandler(I);
 | 
						|
          --I;
 | 
						|
          --E;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (DTU) {
 | 
						|
        std::vector<DominatorTree::UpdateType> Updates;
 | 
						|
        for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
 | 
						|
          if (I.second == 0)
 | 
						|
            Updates.push_back({DominatorTree::Delete, BB, I.first});
 | 
						|
        DTU->applyUpdates(Updates);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
 | 
						|
    for (BasicBlock *Successor : successors(BB))
 | 
						|
      if (Reachable.insert(Successor).second)
 | 
						|
        Worklist.push_back(Successor);
 | 
						|
  } while (!Worklist.empty());
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
 | 
						|
  Instruction *TI = BB->getTerminator();
 | 
						|
 | 
						|
  if (auto *II = dyn_cast<InvokeInst>(TI)) {
 | 
						|
    changeToCall(II, DTU);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *NewTI;
 | 
						|
  BasicBlock *UnwindDest;
 | 
						|
 | 
						|
  if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
 | 
						|
    NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
 | 
						|
    UnwindDest = CRI->getUnwindDest();
 | 
						|
  } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
 | 
						|
    auto *NewCatchSwitch = CatchSwitchInst::Create(
 | 
						|
        CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
 | 
						|
        CatchSwitch->getName(), CatchSwitch);
 | 
						|
    for (BasicBlock *PadBB : CatchSwitch->handlers())
 | 
						|
      NewCatchSwitch->addHandler(PadBB);
 | 
						|
 | 
						|
    NewTI = NewCatchSwitch;
 | 
						|
    UnwindDest = CatchSwitch->getUnwindDest();
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Could not find unwind successor");
 | 
						|
  }
 | 
						|
 | 
						|
  NewTI->takeName(TI);
 | 
						|
  NewTI->setDebugLoc(TI->getDebugLoc());
 | 
						|
  UnwindDest->removePredecessor(BB);
 | 
						|
  TI->replaceAllUsesWith(NewTI);
 | 
						|
  TI->eraseFromParent();
 | 
						|
  if (DTU)
 | 
						|
    DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
 | 
						|
}
 | 
						|
 | 
						|
/// removeUnreachableBlocks - Remove blocks that are not reachable, even
 | 
						|
/// if they are in a dead cycle.  Return true if a change was made, false
 | 
						|
/// otherwise.
 | 
						|
bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
 | 
						|
                                   MemorySSAUpdater *MSSAU) {
 | 
						|
  SmallPtrSet<BasicBlock *, 16> Reachable;
 | 
						|
  bool Changed = markAliveBlocks(F, Reachable, DTU);
 | 
						|
 | 
						|
  // If there are unreachable blocks in the CFG...
 | 
						|
  if (Reachable.size() == F.size())
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  assert(Reachable.size() < F.size());
 | 
						|
 | 
						|
  // Are there any blocks left to actually delete?
 | 
						|
  SmallSetVector<BasicBlock *, 8> BlocksToRemove;
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    // Skip reachable basic blocks
 | 
						|
    if (Reachable.count(&BB))
 | 
						|
      continue;
 | 
						|
    // Skip already-deleted blocks
 | 
						|
    if (DTU && DTU->isBBPendingDeletion(&BB))
 | 
						|
      continue;
 | 
						|
    BlocksToRemove.insert(&BB);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BlocksToRemove.empty())
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
  NumRemoved += BlocksToRemove.size();
 | 
						|
 | 
						|
  if (MSSAU)
 | 
						|
    MSSAU->removeBlocks(BlocksToRemove);
 | 
						|
 | 
						|
  DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::combineMetadata(Instruction *K, const Instruction *J,
 | 
						|
                           ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
 | 
						|
  K->dropUnknownNonDebugMetadata(KnownIDs);
 | 
						|
  K->getAllMetadataOtherThanDebugLoc(Metadata);
 | 
						|
  for (const auto &MD : Metadata) {
 | 
						|
    unsigned Kind = MD.first;
 | 
						|
    MDNode *JMD = J->getMetadata(Kind);
 | 
						|
    MDNode *KMD = MD.second;
 | 
						|
 | 
						|
    switch (Kind) {
 | 
						|
      default:
 | 
						|
        K->setMetadata(Kind, nullptr); // Remove unknown metadata
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_dbg:
 | 
						|
        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
 | 
						|
      case LLVMContext::MD_tbaa:
 | 
						|
        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_alias_scope:
 | 
						|
        K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_noalias:
 | 
						|
      case LLVMContext::MD_mem_parallel_loop_access:
 | 
						|
        K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_access_group:
 | 
						|
        K->setMetadata(LLVMContext::MD_access_group,
 | 
						|
                       intersectAccessGroups(K, J));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_range:
 | 
						|
 | 
						|
        // If K does move, use most generic range. Otherwise keep the range of
 | 
						|
        // K.
 | 
						|
        if (DoesKMove)
 | 
						|
          // FIXME: If K does move, we should drop the range info and nonnull.
 | 
						|
          //        Currently this function is used with DoesKMove in passes
 | 
						|
          //        doing hoisting/sinking and the current behavior of using the
 | 
						|
          //        most generic range is correct in those cases.
 | 
						|
          K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_fpmath:
 | 
						|
        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_invariant_load:
 | 
						|
        // Only set the !invariant.load if it is present in both instructions.
 | 
						|
        K->setMetadata(Kind, JMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_nonnull:
 | 
						|
        // If K does move, keep nonull if it is present in both instructions.
 | 
						|
        if (DoesKMove)
 | 
						|
          K->setMetadata(Kind, JMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_invariant_group:
 | 
						|
        // Preserve !invariant.group in K.
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_align:
 | 
						|
        K->setMetadata(Kind,
 | 
						|
          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_dereferenceable:
 | 
						|
      case LLVMContext::MD_dereferenceable_or_null:
 | 
						|
        K->setMetadata(Kind,
 | 
						|
          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_preserve_access_index:
 | 
						|
        // Preserve !preserve.access.index in K.
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Set !invariant.group from J if J has it. If both instructions have it
 | 
						|
  // then we will just pick it from J - even when they are different.
 | 
						|
  // Also make sure that K is load or store - f.e. combining bitcast with load
 | 
						|
  // could produce bitcast with invariant.group metadata, which is invalid.
 | 
						|
  // FIXME: we should try to preserve both invariant.group md if they are
 | 
						|
  // different, but right now instruction can only have one invariant.group.
 | 
						|
  if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
 | 
						|
    if (isa<LoadInst>(K) || isa<StoreInst>(K))
 | 
						|
      K->setMetadata(LLVMContext::MD_invariant_group, JMD);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
 | 
						|
                                 bool KDominatesJ) {
 | 
						|
  unsigned KnownIDs[] = {
 | 
						|
      LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
 | 
						|
      LLVMContext::MD_noalias,         LLVMContext::MD_range,
 | 
						|
      LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
 | 
						|
      LLVMContext::MD_invariant_group, LLVMContext::MD_align,
 | 
						|
      LLVMContext::MD_dereferenceable,
 | 
						|
      LLVMContext::MD_dereferenceable_or_null,
 | 
						|
      LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
 | 
						|
  combineMetadata(K, J, KnownIDs, KDominatesJ);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
 | 
						|
  Source.getAllMetadata(MD);
 | 
						|
  MDBuilder MDB(Dest.getContext());
 | 
						|
  Type *NewType = Dest.getType();
 | 
						|
  const DataLayout &DL = Source.getModule()->getDataLayout();
 | 
						|
  for (const auto &MDPair : MD) {
 | 
						|
    unsigned ID = MDPair.first;
 | 
						|
    MDNode *N = MDPair.second;
 | 
						|
    // Note, essentially every kind of metadata should be preserved here! This
 | 
						|
    // routine is supposed to clone a load instruction changing *only its type*.
 | 
						|
    // The only metadata it makes sense to drop is metadata which is invalidated
 | 
						|
    // when the pointer type changes. This should essentially never be the case
 | 
						|
    // in LLVM, but we explicitly switch over only known metadata to be
 | 
						|
    // conservatively correct. If you are adding metadata to LLVM which pertains
 | 
						|
    // to loads, you almost certainly want to add it here.
 | 
						|
    switch (ID) {
 | 
						|
    case LLVMContext::MD_dbg:
 | 
						|
    case LLVMContext::MD_tbaa:
 | 
						|
    case LLVMContext::MD_prof:
 | 
						|
    case LLVMContext::MD_fpmath:
 | 
						|
    case LLVMContext::MD_tbaa_struct:
 | 
						|
    case LLVMContext::MD_invariant_load:
 | 
						|
    case LLVMContext::MD_alias_scope:
 | 
						|
    case LLVMContext::MD_noalias:
 | 
						|
    case LLVMContext::MD_nontemporal:
 | 
						|
    case LLVMContext::MD_mem_parallel_loop_access:
 | 
						|
    case LLVMContext::MD_access_group:
 | 
						|
      // All of these directly apply.
 | 
						|
      Dest.setMetadata(ID, N);
 | 
						|
      break;
 | 
						|
 | 
						|
    case LLVMContext::MD_nonnull:
 | 
						|
      copyNonnullMetadata(Source, N, Dest);
 | 
						|
      break;
 | 
						|
 | 
						|
    case LLVMContext::MD_align:
 | 
						|
    case LLVMContext::MD_dereferenceable:
 | 
						|
    case LLVMContext::MD_dereferenceable_or_null:
 | 
						|
      // These only directly apply if the new type is also a pointer.
 | 
						|
      if (NewType->isPointerTy())
 | 
						|
        Dest.setMetadata(ID, N);
 | 
						|
      break;
 | 
						|
 | 
						|
    case LLVMContext::MD_range:
 | 
						|
      copyRangeMetadata(DL, Source, N, Dest);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
 | 
						|
  auto *ReplInst = dyn_cast<Instruction>(Repl);
 | 
						|
  if (!ReplInst)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Patch the replacement so that it is not more restrictive than the value
 | 
						|
  // being replaced.
 | 
						|
  // Note that if 'I' is a load being replaced by some operation,
 | 
						|
  // for example, by an arithmetic operation, then andIRFlags()
 | 
						|
  // would just erase all math flags from the original arithmetic
 | 
						|
  // operation, which is clearly not wanted and not needed.
 | 
						|
  if (!isa<LoadInst>(I))
 | 
						|
    ReplInst->andIRFlags(I);
 | 
						|
 | 
						|
  // FIXME: If both the original and replacement value are part of the
 | 
						|
  // same control-flow region (meaning that the execution of one
 | 
						|
  // guarantees the execution of the other), then we can combine the
 | 
						|
  // noalias scopes here and do better than the general conservative
 | 
						|
  // answer used in combineMetadata().
 | 
						|
 | 
						|
  // In general, GVN unifies expressions over different control-flow
 | 
						|
  // regions, and so we need a conservative combination of the noalias
 | 
						|
  // scopes.
 | 
						|
  static const unsigned KnownIDs[] = {
 | 
						|
      LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
 | 
						|
      LLVMContext::MD_noalias,         LLVMContext::MD_range,
 | 
						|
      LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
 | 
						|
      LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
 | 
						|
      LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
 | 
						|
  combineMetadata(ReplInst, I, KnownIDs, false);
 | 
						|
}
 | 
						|
 | 
						|
template <typename RootType, typename DominatesFn>
 | 
						|
static unsigned replaceDominatedUsesWith(Value *From, Value *To,
 | 
						|
                                         const RootType &Root,
 | 
						|
                                         const DominatesFn &Dominates) {
 | 
						|
  assert(From->getType() == To->getType());
 | 
						|
 | 
						|
  unsigned Count = 0;
 | 
						|
  for (Use &U : llvm::make_early_inc_range(From->uses())) {
 | 
						|
    if (!Dominates(Root, U))
 | 
						|
      continue;
 | 
						|
    U.set(To);
 | 
						|
    LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
 | 
						|
                      << "' as " << *To << " in " << *U << "\n");
 | 
						|
    ++Count;
 | 
						|
  }
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
 | 
						|
   assert(From->getType() == To->getType());
 | 
						|
   auto *BB = From->getParent();
 | 
						|
   unsigned Count = 0;
 | 
						|
 | 
						|
   for (Use &U : llvm::make_early_inc_range(From->uses())) {
 | 
						|
    auto *I = cast<Instruction>(U.getUser());
 | 
						|
    if (I->getParent() == BB)
 | 
						|
      continue;
 | 
						|
    U.set(To);
 | 
						|
    ++Count;
 | 
						|
  }
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
 | 
						|
                                        DominatorTree &DT,
 | 
						|
                                        const BasicBlockEdge &Root) {
 | 
						|
  auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
 | 
						|
    return DT.dominates(Root, U);
 | 
						|
  };
 | 
						|
  return ::replaceDominatedUsesWith(From, To, Root, Dominates);
 | 
						|
}
 | 
						|
 | 
						|
unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
 | 
						|
                                        DominatorTree &DT,
 | 
						|
                                        const BasicBlock *BB) {
 | 
						|
  auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
 | 
						|
    return DT.dominates(BB, U);
 | 
						|
  };
 | 
						|
  return ::replaceDominatedUsesWith(From, To, BB, Dominates);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::callsGCLeafFunction(const CallBase *Call,
 | 
						|
                               const TargetLibraryInfo &TLI) {
 | 
						|
  // Check if the function is specifically marked as a gc leaf function.
 | 
						|
  if (Call->hasFnAttr("gc-leaf-function"))
 | 
						|
    return true;
 | 
						|
  if (const Function *F = Call->getCalledFunction()) {
 | 
						|
    if (F->hasFnAttribute("gc-leaf-function"))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (auto IID = F->getIntrinsicID()) {
 | 
						|
      // Most LLVM intrinsics do not take safepoints.
 | 
						|
      return IID != Intrinsic::experimental_gc_statepoint &&
 | 
						|
             IID != Intrinsic::experimental_deoptimize &&
 | 
						|
             IID != Intrinsic::memcpy_element_unordered_atomic &&
 | 
						|
             IID != Intrinsic::memmove_element_unordered_atomic;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Lib calls can be materialized by some passes, and won't be
 | 
						|
  // marked as 'gc-leaf-function.' All available Libcalls are
 | 
						|
  // GC-leaf.
 | 
						|
  LibFunc LF;
 | 
						|
  if (TLI.getLibFunc(*Call, LF)) {
 | 
						|
    return TLI.has(LF);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
 | 
						|
                               LoadInst &NewLI) {
 | 
						|
  auto *NewTy = NewLI.getType();
 | 
						|
 | 
						|
  // This only directly applies if the new type is also a pointer.
 | 
						|
  if (NewTy->isPointerTy()) {
 | 
						|
    NewLI.setMetadata(LLVMContext::MD_nonnull, N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The only other translation we can do is to integral loads with !range
 | 
						|
  // metadata.
 | 
						|
  if (!NewTy->isIntegerTy())
 | 
						|
    return;
 | 
						|
 | 
						|
  MDBuilder MDB(NewLI.getContext());
 | 
						|
  const Value *Ptr = OldLI.getPointerOperand();
 | 
						|
  auto *ITy = cast<IntegerType>(NewTy);
 | 
						|
  auto *NullInt = ConstantExpr::getPtrToInt(
 | 
						|
      ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
 | 
						|
  auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
 | 
						|
  NewLI.setMetadata(LLVMContext::MD_range,
 | 
						|
                    MDB.createRange(NonNullInt, NullInt));
 | 
						|
}
 | 
						|
 | 
						|
void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
 | 
						|
                             MDNode *N, LoadInst &NewLI) {
 | 
						|
  auto *NewTy = NewLI.getType();
 | 
						|
 | 
						|
  // Give up unless it is converted to a pointer where there is a single very
 | 
						|
  // valuable mapping we can do reliably.
 | 
						|
  // FIXME: It would be nice to propagate this in more ways, but the type
 | 
						|
  // conversions make it hard.
 | 
						|
  if (!NewTy->isPointerTy())
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
 | 
						|
  if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
 | 
						|
    MDNode *NN = MDNode::get(OldLI.getContext(), None);
 | 
						|
    NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void llvm::dropDebugUsers(Instruction &I) {
 | 
						|
  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
 | 
						|
  findDbgUsers(DbgUsers, &I);
 | 
						|
  for (auto *DII : DbgUsers)
 | 
						|
    DII->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
 | 
						|
                                    BasicBlock *BB) {
 | 
						|
  // Since we are moving the instructions out of its basic block, we do not
 | 
						|
  // retain their original debug locations (DILocations) and debug intrinsic
 | 
						|
  // instructions.
 | 
						|
  //
 | 
						|
  // Doing so would degrade the debugging experience and adversely affect the
 | 
						|
  // accuracy of profiling information.
 | 
						|
  //
 | 
						|
  // Currently, when hoisting the instructions, we take the following actions:
 | 
						|
  // - Remove their debug intrinsic instructions.
 | 
						|
  // - Set their debug locations to the values from the insertion point.
 | 
						|
  //
 | 
						|
  // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
 | 
						|
  // need to be deleted, is because there will not be any instructions with a
 | 
						|
  // DILocation in either branch left after performing the transformation. We
 | 
						|
  // can only insert a dbg.value after the two branches are joined again.
 | 
						|
  //
 | 
						|
  // See PR38762, PR39243 for more details.
 | 
						|
  //
 | 
						|
  // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
 | 
						|
  // encode predicated DIExpressions that yield different results on different
 | 
						|
  // code paths.
 | 
						|
 | 
						|
  for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
 | 
						|
    Instruction *I = &*II;
 | 
						|
    I->dropUndefImplyingAttrsAndUnknownMetadata();
 | 
						|
    if (I->isUsedByMetadata())
 | 
						|
      dropDebugUsers(*I);
 | 
						|
    if (I->isDebugOrPseudoInst()) {
 | 
						|
      // Remove DbgInfo and pseudo probe Intrinsics.
 | 
						|
      II = I->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    I->setDebugLoc(InsertPt->getDebugLoc());
 | 
						|
    ++II;
 | 
						|
  }
 | 
						|
  DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
 | 
						|
                                 BB->begin(),
 | 
						|
                                 BB->getTerminator()->getIterator());
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// A potential constituent of a bitreverse or bswap expression. See
 | 
						|
/// collectBitParts for a fuller explanation.
 | 
						|
struct BitPart {
 | 
						|
  BitPart(Value *P, unsigned BW) : Provider(P) {
 | 
						|
    Provenance.resize(BW);
 | 
						|
  }
 | 
						|
 | 
						|
  /// The Value that this is a bitreverse/bswap of.
 | 
						|
  Value *Provider;
 | 
						|
 | 
						|
  /// The "provenance" of each bit. Provenance[A] = B means that bit A
 | 
						|
  /// in Provider becomes bit B in the result of this expression.
 | 
						|
  SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
 | 
						|
 | 
						|
  enum { Unset = -1 };
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Analyze the specified subexpression and see if it is capable of providing
 | 
						|
/// pieces of a bswap or bitreverse. The subexpression provides a potential
 | 
						|
/// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
 | 
						|
/// the output of the expression came from a corresponding bit in some other
 | 
						|
/// value. This function is recursive, and the end result is a mapping of
 | 
						|
/// bitnumber to bitnumber. It is the caller's responsibility to validate that
 | 
						|
/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
 | 
						|
///
 | 
						|
/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
 | 
						|
/// that the expression deposits the low byte of %X into the high byte of the
 | 
						|
/// result and that all other bits are zero. This expression is accepted and a
 | 
						|
/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
 | 
						|
/// [0-7].
 | 
						|
///
 | 
						|
/// For vector types, all analysis is performed at the per-element level. No
 | 
						|
/// cross-element analysis is supported (shuffle/insertion/reduction), and all
 | 
						|
/// constant masks must be splatted across all elements.
 | 
						|
///
 | 
						|
/// To avoid revisiting values, the BitPart results are memoized into the
 | 
						|
/// provided map. To avoid unnecessary copying of BitParts, BitParts are
 | 
						|
/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
 | 
						|
/// store BitParts objects, not pointers. As we need the concept of a nullptr
 | 
						|
/// BitParts (Value has been analyzed and the analysis failed), we an Optional
 | 
						|
/// type instead to provide the same functionality.
 | 
						|
///
 | 
						|
/// Because we pass around references into \c BPS, we must use a container that
 | 
						|
/// does not invalidate internal references (std::map instead of DenseMap).
 | 
						|
static const Optional<BitPart> &
 | 
						|
collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
 | 
						|
                std::map<Value *, Optional<BitPart>> &BPS, int Depth,
 | 
						|
                bool &FoundRoot) {
 | 
						|
  auto I = BPS.find(V);
 | 
						|
  if (I != BPS.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  auto &Result = BPS[V] = None;
 | 
						|
  auto BitWidth = V->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
  // Can't do integer/elements > 128 bits.
 | 
						|
  if (BitWidth > 128)
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // Prevent stack overflow by limiting the recursion depth
 | 
						|
  if (Depth == BitPartRecursionMaxDepth) {
 | 
						|
    LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *I = dyn_cast<Instruction>(V)) {
 | 
						|
    Value *X, *Y;
 | 
						|
    const APInt *C;
 | 
						|
 | 
						|
    // If this is an or instruction, it may be an inner node of the bswap.
 | 
						|
    if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
 | 
						|
      // Check we have both sources and they are from the same provider.
 | 
						|
      const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
 | 
						|
                                      Depth + 1, FoundRoot);
 | 
						|
      if (!A || !A->Provider)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
 | 
						|
                                      Depth + 1, FoundRoot);
 | 
						|
      if (!B || A->Provider != B->Provider)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      // Try and merge the two together.
 | 
						|
      Result = BitPart(A->Provider, BitWidth);
 | 
						|
      for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
 | 
						|
        if (A->Provenance[BitIdx] != BitPart::Unset &&
 | 
						|
            B->Provenance[BitIdx] != BitPart::Unset &&
 | 
						|
            A->Provenance[BitIdx] != B->Provenance[BitIdx])
 | 
						|
          return Result = None;
 | 
						|
 | 
						|
        if (A->Provenance[BitIdx] == BitPart::Unset)
 | 
						|
          Result->Provenance[BitIdx] = B->Provenance[BitIdx];
 | 
						|
        else
 | 
						|
          Result->Provenance[BitIdx] = A->Provenance[BitIdx];
 | 
						|
      }
 | 
						|
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a logical shift by a constant, recurse then shift the result.
 | 
						|
    if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
 | 
						|
      const APInt &BitShift = *C;
 | 
						|
 | 
						|
      // Ensure the shift amount is defined.
 | 
						|
      if (BitShift.uge(BitWidth))
 | 
						|
        return Result;
 | 
						|
 | 
						|
      // For bswap-only, limit shift amounts to whole bytes, for an early exit.
 | 
						|
      if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
 | 
						|
                                        Depth + 1, FoundRoot);
 | 
						|
      if (!Res)
 | 
						|
        return Result;
 | 
						|
      Result = Res;
 | 
						|
 | 
						|
      // Perform the "shift" on BitProvenance.
 | 
						|
      auto &P = Result->Provenance;
 | 
						|
      if (I->getOpcode() == Instruction::Shl) {
 | 
						|
        P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
 | 
						|
        P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
 | 
						|
      } else {
 | 
						|
        P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
 | 
						|
        P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
 | 
						|
      }
 | 
						|
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a logical 'and' with a mask that clears bits, recurse then
 | 
						|
    // unset the appropriate bits.
 | 
						|
    if (match(V, m_And(m_Value(X), m_APInt(C)))) {
 | 
						|
      const APInt &AndMask = *C;
 | 
						|
 | 
						|
      // Check that the mask allows a multiple of 8 bits for a bswap, for an
 | 
						|
      // early exit.
 | 
						|
      unsigned NumMaskedBits = AndMask.countPopulation();
 | 
						|
      if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
 | 
						|
                                        Depth + 1, FoundRoot);
 | 
						|
      if (!Res)
 | 
						|
        return Result;
 | 
						|
      Result = Res;
 | 
						|
 | 
						|
      for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
 | 
						|
        // If the AndMask is zero for this bit, clear the bit.
 | 
						|
        if (AndMask[BitIdx] == 0)
 | 
						|
          Result->Provenance[BitIdx] = BitPart::Unset;
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a zext instruction zero extend the result.
 | 
						|
    if (match(V, m_ZExt(m_Value(X)))) {
 | 
						|
      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
 | 
						|
                                        Depth + 1, FoundRoot);
 | 
						|
      if (!Res)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      Result = BitPart(Res->Provider, BitWidth);
 | 
						|
      auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
 | 
						|
      for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
 | 
						|
        Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
 | 
						|
      for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
 | 
						|
        Result->Provenance[BitIdx] = BitPart::Unset;
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a truncate instruction, extract the lower bits.
 | 
						|
    if (match(V, m_Trunc(m_Value(X)))) {
 | 
						|
      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
 | 
						|
                                        Depth + 1, FoundRoot);
 | 
						|
      if (!Res)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      Result = BitPart(Res->Provider, BitWidth);
 | 
						|
      for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
 | 
						|
        Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // BITREVERSE - most likely due to us previous matching a partial
 | 
						|
    // bitreverse.
 | 
						|
    if (match(V, m_BitReverse(m_Value(X)))) {
 | 
						|
      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
 | 
						|
                                        Depth + 1, FoundRoot);
 | 
						|
      if (!Res)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      Result = BitPart(Res->Provider, BitWidth);
 | 
						|
      for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
 | 
						|
        Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // BSWAP - most likely due to us previous matching a partial bswap.
 | 
						|
    if (match(V, m_BSwap(m_Value(X)))) {
 | 
						|
      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
 | 
						|
                                        Depth + 1, FoundRoot);
 | 
						|
      if (!Res)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      unsigned ByteWidth = BitWidth / 8;
 | 
						|
      Result = BitPart(Res->Provider, BitWidth);
 | 
						|
      for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
 | 
						|
        unsigned ByteBitOfs = ByteIdx * 8;
 | 
						|
        for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
 | 
						|
          Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
 | 
						|
              Res->Provenance[ByteBitOfs + BitIdx];
 | 
						|
      }
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
 | 
						|
    // amount (modulo).
 | 
						|
    // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
 | 
						|
    // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
 | 
						|
    if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
 | 
						|
        match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
 | 
						|
      // We can treat fshr as a fshl by flipping the modulo amount.
 | 
						|
      unsigned ModAmt = C->urem(BitWidth);
 | 
						|
      if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
 | 
						|
        ModAmt = BitWidth - ModAmt;
 | 
						|
 | 
						|
      // For bswap-only, limit shift amounts to whole bytes, for an early exit.
 | 
						|
      if (!MatchBitReversals && (ModAmt % 8) != 0)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      // Check we have both sources and they are from the same provider.
 | 
						|
      const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
 | 
						|
                                        Depth + 1, FoundRoot);
 | 
						|
      if (!LHS || !LHS->Provider)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
 | 
						|
                                        Depth + 1, FoundRoot);
 | 
						|
      if (!RHS || LHS->Provider != RHS->Provider)
 | 
						|
        return Result;
 | 
						|
 | 
						|
      unsigned StartBitRHS = BitWidth - ModAmt;
 | 
						|
      Result = BitPart(LHS->Provider, BitWidth);
 | 
						|
      for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
 | 
						|
        Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
 | 
						|
      for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
 | 
						|
        Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we've already found a root input value then we're never going to merge
 | 
						|
  // these back together.
 | 
						|
  if (FoundRoot)
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
 | 
						|
  // be the root input value to the bswap/bitreverse.
 | 
						|
  FoundRoot = true;
 | 
						|
  Result = BitPart(V, BitWidth);
 | 
						|
  for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
 | 
						|
    Result->Provenance[BitIdx] = BitIdx;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
 | 
						|
                                          unsigned BitWidth) {
 | 
						|
  if (From % 8 != To % 8)
 | 
						|
    return false;
 | 
						|
  // Convert from bit indices to byte indices and check for a byte reversal.
 | 
						|
  From >>= 3;
 | 
						|
  To >>= 3;
 | 
						|
  BitWidth >>= 3;
 | 
						|
  return From == BitWidth - To - 1;
 | 
						|
}
 | 
						|
 | 
						|
static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
 | 
						|
                                               unsigned BitWidth) {
 | 
						|
  return From == BitWidth - To - 1;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::recognizeBSwapOrBitReverseIdiom(
 | 
						|
    Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
 | 
						|
    SmallVectorImpl<Instruction *> &InsertedInsts) {
 | 
						|
  if (!match(I, m_Or(m_Value(), m_Value())) &&
 | 
						|
      !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
 | 
						|
      !match(I, m_FShr(m_Value(), m_Value(), m_Value())))
 | 
						|
    return false;
 | 
						|
  if (!MatchBSwaps && !MatchBitReversals)
 | 
						|
    return false;
 | 
						|
  Type *ITy = I->getType();
 | 
						|
  if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
 | 
						|
    return false;  // Can't do integer/elements > 128 bits.
 | 
						|
 | 
						|
  // Try to find all the pieces corresponding to the bswap.
 | 
						|
  bool FoundRoot = false;
 | 
						|
  std::map<Value *, Optional<BitPart>> BPS;
 | 
						|
  const auto &Res =
 | 
						|
      collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
 | 
						|
  if (!Res)
 | 
						|
    return false;
 | 
						|
  ArrayRef<int8_t> BitProvenance = Res->Provenance;
 | 
						|
  assert(all_of(BitProvenance,
 | 
						|
                [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
 | 
						|
         "Illegal bit provenance index");
 | 
						|
 | 
						|
  // If the upper bits are zero, then attempt to perform as a truncated op.
 | 
						|
  Type *DemandedTy = ITy;
 | 
						|
  if (BitProvenance.back() == BitPart::Unset) {
 | 
						|
    while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
 | 
						|
      BitProvenance = BitProvenance.drop_back();
 | 
						|
    if (BitProvenance.empty())
 | 
						|
      return false; // TODO - handle null value?
 | 
						|
    DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
 | 
						|
    if (auto *IVecTy = dyn_cast<VectorType>(ITy))
 | 
						|
      DemandedTy = VectorType::get(DemandedTy, IVecTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check BitProvenance hasn't found a source larger than the result type.
 | 
						|
  unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
 | 
						|
  if (DemandedBW > ITy->getScalarSizeInBits())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now, is the bit permutation correct for a bswap or a bitreverse? We can
 | 
						|
  // only byteswap values with an even number of bytes.
 | 
						|
  APInt DemandedMask = APInt::getAllOnes(DemandedBW);
 | 
						|
  bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
 | 
						|
  bool OKForBitReverse = MatchBitReversals;
 | 
						|
  for (unsigned BitIdx = 0;
 | 
						|
       (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
 | 
						|
    if (BitProvenance[BitIdx] == BitPart::Unset) {
 | 
						|
      DemandedMask.clearBit(BitIdx);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
 | 
						|
                                                DemandedBW);
 | 
						|
    OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
 | 
						|
                                                          BitIdx, DemandedBW);
 | 
						|
  }
 | 
						|
 | 
						|
  Intrinsic::ID Intrin;
 | 
						|
  if (OKForBSwap)
 | 
						|
    Intrin = Intrinsic::bswap;
 | 
						|
  else if (OKForBitReverse)
 | 
						|
    Intrin = Intrinsic::bitreverse;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
 | 
						|
  Value *Provider = Res->Provider;
 | 
						|
 | 
						|
  // We may need to truncate the provider.
 | 
						|
  if (DemandedTy != Provider->getType()) {
 | 
						|
    auto *Trunc =
 | 
						|
        CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
 | 
						|
    InsertedInsts.push_back(Trunc);
 | 
						|
    Provider = Trunc;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *Result = CallInst::Create(F, Provider, "rev", I);
 | 
						|
  InsertedInsts.push_back(Result);
 | 
						|
 | 
						|
  if (!DemandedMask.isAllOnes()) {
 | 
						|
    auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
 | 
						|
    Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
 | 
						|
    InsertedInsts.push_back(Result);
 | 
						|
  }
 | 
						|
 | 
						|
  // We may need to zeroextend back to the result type.
 | 
						|
  if (ITy != Result->getType()) {
 | 
						|
    auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
 | 
						|
    InsertedInsts.push_back(ExtInst);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// CodeGen has special handling for some string functions that may replace
 | 
						|
// them with target-specific intrinsics.  Since that'd skip our interceptors
 | 
						|
// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
 | 
						|
// we mark affected calls as NoBuiltin, which will disable optimization
 | 
						|
// in CodeGen.
 | 
						|
void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
 | 
						|
    CallInst *CI, const TargetLibraryInfo *TLI) {
 | 
						|
  Function *F = CI->getCalledFunction();
 | 
						|
  LibFunc Func;
 | 
						|
  if (F && !F->hasLocalLinkage() && F->hasName() &&
 | 
						|
      TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
 | 
						|
      !F->doesNotAccessMemory())
 | 
						|
    CI->addFnAttr(Attribute::NoBuiltin);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
 | 
						|
  // We can't have a PHI with a metadata type.
 | 
						|
  if (I->getOperand(OpIdx)->getType()->isMetadataTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Early exit.
 | 
						|
  if (!isa<Constant>(I->getOperand(OpIdx)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return true;
 | 
						|
  case Instruction::Call:
 | 
						|
  case Instruction::Invoke: {
 | 
						|
    const auto &CB = cast<CallBase>(*I);
 | 
						|
 | 
						|
    // Can't handle inline asm. Skip it.
 | 
						|
    if (CB.isInlineAsm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Constant bundle operands may need to retain their constant-ness for
 | 
						|
    // correctness.
 | 
						|
    if (CB.isBundleOperand(OpIdx))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (OpIdx < CB.arg_size()) {
 | 
						|
      // Some variadic intrinsics require constants in the variadic arguments,
 | 
						|
      // which currently aren't markable as immarg.
 | 
						|
      if (isa<IntrinsicInst>(CB) &&
 | 
						|
          OpIdx >= CB.getFunctionType()->getNumParams()) {
 | 
						|
        // This is known to be OK for stackmap.
 | 
						|
        return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
 | 
						|
      }
 | 
						|
 | 
						|
      // gcroot is a special case, since it requires a constant argument which
 | 
						|
      // isn't also required to be a simple ConstantInt.
 | 
						|
      if (CB.getIntrinsicID() == Intrinsic::gcroot)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Some intrinsic operands are required to be immediates.
 | 
						|
      return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
 | 
						|
    }
 | 
						|
 | 
						|
    // It is never allowed to replace the call argument to an intrinsic, but it
 | 
						|
    // may be possible for a call.
 | 
						|
    return !isa<IntrinsicInst>(CB);
 | 
						|
  }
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    // Shufflevector masks are constant.
 | 
						|
    return OpIdx != 2;
 | 
						|
  case Instruction::Switch:
 | 
						|
  case Instruction::ExtractValue:
 | 
						|
    // All operands apart from the first are constant.
 | 
						|
    return OpIdx == 0;
 | 
						|
  case Instruction::InsertValue:
 | 
						|
    // All operands apart from the first and the second are constant.
 | 
						|
    return OpIdx < 2;
 | 
						|
  case Instruction::Alloca:
 | 
						|
    // Static allocas (constant size in the entry block) are handled by
 | 
						|
    // prologue/epilogue insertion so they're free anyway. We definitely don't
 | 
						|
    // want to make them non-constant.
 | 
						|
    return !cast<AllocaInst>(I)->isStaticAlloca();
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    if (OpIdx == 0)
 | 
						|
      return true;
 | 
						|
    gep_type_iterator It = gep_type_begin(I);
 | 
						|
    for (auto E = std::next(It, OpIdx); It != E; ++It)
 | 
						|
      if (It.isStruct())
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::invertCondition(Value *Condition) {
 | 
						|
  // First: Check if it's a constant
 | 
						|
  if (Constant *C = dyn_cast<Constant>(Condition))
 | 
						|
    return ConstantExpr::getNot(C);
 | 
						|
 | 
						|
  // Second: If the condition is already inverted, return the original value
 | 
						|
  Value *NotCondition;
 | 
						|
  if (match(Condition, m_Not(m_Value(NotCondition))))
 | 
						|
    return NotCondition;
 | 
						|
 | 
						|
  BasicBlock *Parent = nullptr;
 | 
						|
  Instruction *Inst = dyn_cast<Instruction>(Condition);
 | 
						|
  if (Inst)
 | 
						|
    Parent = Inst->getParent();
 | 
						|
  else if (Argument *Arg = dyn_cast<Argument>(Condition))
 | 
						|
    Parent = &Arg->getParent()->getEntryBlock();
 | 
						|
  assert(Parent && "Unsupported condition to invert");
 | 
						|
 | 
						|
  // Third: Check all the users for an invert
 | 
						|
  for (User *U : Condition->users())
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(U))
 | 
						|
      if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
 | 
						|
        return I;
 | 
						|
 | 
						|
  // Last option: Create a new instruction
 | 
						|
  auto *Inverted =
 | 
						|
      BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
 | 
						|
  if (Inst && !isa<PHINode>(Inst))
 | 
						|
    Inverted->insertAfter(Inst);
 | 
						|
  else
 | 
						|
    Inverted->insertBefore(&*Parent->getFirstInsertionPt());
 | 
						|
  return Inverted;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::inferAttributesFromOthers(Function &F) {
 | 
						|
  // Note: We explicitly check for attributes rather than using cover functions
 | 
						|
  // because some of the cover functions include the logic being implemented.
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  // readnone + not convergent implies nosync
 | 
						|
  if (!F.hasFnAttribute(Attribute::NoSync) &&
 | 
						|
      F.doesNotAccessMemory() && !F.isConvergent()) {
 | 
						|
    F.setNoSync();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // readonly implies nofree
 | 
						|
  if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
 | 
						|
    F.setDoesNotFreeMemory();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // willreturn implies mustprogress
 | 
						|
  if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
 | 
						|
    F.setMustProgress();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: There are a bunch of cases of restrictive memory effects we
 | 
						|
  // can infer by inspecting arguments of argmemonly-ish functions.
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 |