605 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			605 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The LowerSwitch transformation rewrites switch instructions with a sequence
 | 
						|
// of branches, which allows targets to get away with not implementing the
 | 
						|
// switch instruction until it is convenient.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/LowerSwitch.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/LazyValueInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/ConstantRange.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "lower-switch"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  struct IntRange {
 | 
						|
    int64_t Low, High;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
// Return true iff R is covered by Ranges.
 | 
						|
bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) {
 | 
						|
  // Note: Ranges must be sorted, non-overlapping and non-adjacent.
 | 
						|
 | 
						|
  // Find the first range whose High field is >= R.High,
 | 
						|
  // then check if the Low field is <= R.Low. If so, we
 | 
						|
  // have a Range that covers R.
 | 
						|
  auto I = llvm::lower_bound(
 | 
						|
      Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
 | 
						|
  return I != Ranges.end() && I->Low <= R.Low;
 | 
						|
}
 | 
						|
 | 
						|
struct CaseRange {
 | 
						|
  ConstantInt *Low;
 | 
						|
  ConstantInt *High;
 | 
						|
  BasicBlock *BB;
 | 
						|
 | 
						|
  CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
 | 
						|
      : Low(low), High(high), BB(bb) {}
 | 
						|
};
 | 
						|
 | 
						|
using CaseVector = std::vector<CaseRange>;
 | 
						|
using CaseItr = std::vector<CaseRange>::iterator;
 | 
						|
 | 
						|
/// The comparison function for sorting the switch case values in the vector.
 | 
						|
/// WARNING: Case ranges should be disjoint!
 | 
						|
struct CaseCmp {
 | 
						|
  bool operator()(const CaseRange &C1, const CaseRange &C2) {
 | 
						|
    const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low);
 | 
						|
    const ConstantInt *CI2 = cast<const ConstantInt>(C2.High);
 | 
						|
    return CI1->getValue().slt(CI2->getValue());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Used for debugging purposes.
 | 
						|
LLVM_ATTRIBUTE_USED
 | 
						|
raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) {
 | 
						|
  O << "[";
 | 
						|
 | 
						|
  for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) {
 | 
						|
    O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
 | 
						|
    if (++B != E)
 | 
						|
      O << ", ";
 | 
						|
  }
 | 
						|
 | 
						|
  return O << "]";
 | 
						|
}
 | 
						|
 | 
						|
/// Update the first occurrence of the "switch statement" BB in the PHI
 | 
						|
/// node with the "new" BB. The other occurrences will:
 | 
						|
///
 | 
						|
/// 1) Be updated by subsequent calls to this function.  Switch statements may
 | 
						|
/// have more than one outcoming edge into the same BB if they all have the same
 | 
						|
/// value. When the switch statement is converted these incoming edges are now
 | 
						|
/// coming from multiple BBs.
 | 
						|
/// 2) Removed if subsequent incoming values now share the same case, i.e.,
 | 
						|
/// multiple outcome edges are condensed into one. This is necessary to keep the
 | 
						|
/// number of phi values equal to the number of branches to SuccBB.
 | 
						|
void FixPhis(
 | 
						|
    BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
 | 
						|
    const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
 | 
						|
  for (auto &I : SuccBB->phis()) {
 | 
						|
    PHINode *PN = cast<PHINode>(&I);
 | 
						|
 | 
						|
    // Only update the first occurrence if NewBB exists.
 | 
						|
    unsigned Idx = 0, E = PN->getNumIncomingValues();
 | 
						|
    unsigned LocalNumMergedCases = NumMergedCases;
 | 
						|
    for (; Idx != E && NewBB; ++Idx) {
 | 
						|
      if (PN->getIncomingBlock(Idx) == OrigBB) {
 | 
						|
        PN->setIncomingBlock(Idx, NewBB);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Skip the updated incoming block so that it will not be removed.
 | 
						|
    if (NewBB)
 | 
						|
      ++Idx;
 | 
						|
 | 
						|
    // Remove additional occurrences coming from condensed cases and keep the
 | 
						|
    // number of incoming values equal to the number of branches to SuccBB.
 | 
						|
    SmallVector<unsigned, 8> Indices;
 | 
						|
    for (; LocalNumMergedCases > 0 && Idx < E; ++Idx)
 | 
						|
      if (PN->getIncomingBlock(Idx) == OrigBB) {
 | 
						|
        Indices.push_back(Idx);
 | 
						|
        LocalNumMergedCases--;
 | 
						|
      }
 | 
						|
    // Remove incoming values in the reverse order to prevent invalidating
 | 
						|
    // *successive* index.
 | 
						|
    for (unsigned III : llvm::reverse(Indices))
 | 
						|
      PN->removeIncomingValue(III);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create a new leaf block for the binary lookup tree. It checks if the
 | 
						|
/// switch's value == the case's value. If not, then it jumps to the default
 | 
						|
/// branch. At this point in the tree, the value can't be another valid case
 | 
						|
/// value, so the jump to the "default" branch is warranted.
 | 
						|
BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound,
 | 
						|
                         ConstantInt *UpperBound, BasicBlock *OrigBlock,
 | 
						|
                         BasicBlock *Default) {
 | 
						|
  Function *F = OrigBlock->getParent();
 | 
						|
  BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
 | 
						|
  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
 | 
						|
 | 
						|
  // Emit comparison
 | 
						|
  ICmpInst *Comp = nullptr;
 | 
						|
  if (Leaf.Low == Leaf.High) {
 | 
						|
    // Make the seteq instruction...
 | 
						|
    Comp =
 | 
						|
        new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf");
 | 
						|
  } else {
 | 
						|
    // Make range comparison
 | 
						|
    if (Leaf.Low == LowerBound) {
 | 
						|
      // Val >= Min && Val <= Hi --> Val <= Hi
 | 
						|
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
 | 
						|
                          "SwitchLeaf");
 | 
						|
    } else if (Leaf.High == UpperBound) {
 | 
						|
      // Val <= Max && Val >= Lo --> Val >= Lo
 | 
						|
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
 | 
						|
                          "SwitchLeaf");
 | 
						|
    } else if (Leaf.Low->isZero()) {
 | 
						|
      // Val >= 0 && Val <= Hi --> Val <=u Hi
 | 
						|
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
 | 
						|
                          "SwitchLeaf");
 | 
						|
    } else {
 | 
						|
      // Emit V-Lo <=u Hi-Lo
 | 
						|
      Constant *NegLo = ConstantExpr::getNeg(Leaf.Low);
 | 
						|
      Instruction *Add = BinaryOperator::CreateAdd(
 | 
						|
          Val, NegLo, Val->getName() + ".off", NewLeaf);
 | 
						|
      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
 | 
						|
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
 | 
						|
                          "SwitchLeaf");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make the conditional branch...
 | 
						|
  BasicBlock *Succ = Leaf.BB;
 | 
						|
  BranchInst::Create(Succ, Default, Comp, NewLeaf);
 | 
						|
 | 
						|
  // Update the PHI incoming value/block for the default.
 | 
						|
  for (auto &I : Default->phis()) {
 | 
						|
    PHINode *PN = cast<PHINode>(&I);
 | 
						|
    auto *V = PN->getIncomingValueForBlock(OrigBlock);
 | 
						|
    PN->addIncoming(V, NewLeaf);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there were any PHI nodes in this successor, rewrite one entry
 | 
						|
  // from OrigBlock to come from NewLeaf.
 | 
						|
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    // Remove all but one incoming entries from the cluster
 | 
						|
    uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue();
 | 
						|
    for (uint64_t j = 0; j < Range; ++j) {
 | 
						|
      PN->removeIncomingValue(OrigBlock);
 | 
						|
    }
 | 
						|
 | 
						|
    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
 | 
						|
    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
 | 
						|
    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
 | 
						|
  }
 | 
						|
 | 
						|
  return NewLeaf;
 | 
						|
}
 | 
						|
 | 
						|
/// Convert the switch statement into a binary lookup of the case values.
 | 
						|
/// The function recursively builds this tree. LowerBound and UpperBound are
 | 
						|
/// used to keep track of the bounds for Val that have already been checked by
 | 
						|
/// a block emitted by one of the previous calls to switchConvert in the call
 | 
						|
/// stack.
 | 
						|
BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
 | 
						|
                          ConstantInt *UpperBound, Value *Val,
 | 
						|
                          BasicBlock *Predecessor, BasicBlock *OrigBlock,
 | 
						|
                          BasicBlock *Default,
 | 
						|
                          const std::vector<IntRange> &UnreachableRanges) {
 | 
						|
  assert(LowerBound && UpperBound && "Bounds must be initialized");
 | 
						|
  unsigned Size = End - Begin;
 | 
						|
 | 
						|
  if (Size == 1) {
 | 
						|
    // Check if the Case Range is perfectly squeezed in between
 | 
						|
    // already checked Upper and Lower bounds. If it is then we can avoid
 | 
						|
    // emitting the code that checks if the value actually falls in the range
 | 
						|
    // because the bounds already tell us so.
 | 
						|
    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
 | 
						|
      unsigned NumMergedCases = 0;
 | 
						|
      NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
 | 
						|
      FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
 | 
						|
      return Begin->BB;
 | 
						|
    }
 | 
						|
    return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
 | 
						|
                        Default);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Mid = Size / 2;
 | 
						|
  std::vector<CaseRange> LHS(Begin, Begin + Mid);
 | 
						|
  LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
 | 
						|
  std::vector<CaseRange> RHS(Begin + Mid, End);
 | 
						|
  LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
 | 
						|
 | 
						|
  CaseRange &Pivot = *(Begin + Mid);
 | 
						|
  LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
 | 
						|
                    << Pivot.High->getValue() << "]\n");
 | 
						|
 | 
						|
  // NewLowerBound here should never be the integer minimal value.
 | 
						|
  // This is because it is computed from a case range that is never
 | 
						|
  // the smallest, so there is always a case range that has at least
 | 
						|
  // a smaller value.
 | 
						|
  ConstantInt *NewLowerBound = Pivot.Low;
 | 
						|
 | 
						|
  // Because NewLowerBound is never the smallest representable integer
 | 
						|
  // it is safe here to subtract one.
 | 
						|
  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
 | 
						|
                                                NewLowerBound->getValue() - 1);
 | 
						|
 | 
						|
  if (!UnreachableRanges.empty()) {
 | 
						|
    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
 | 
						|
    int64_t GapLow = LHS.back().High->getSExtValue() + 1;
 | 
						|
    int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
 | 
						|
    IntRange Gap = { GapLow, GapHigh };
 | 
						|
    if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
 | 
						|
      NewUpperBound = LHS.back().High;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
 | 
						|
                    << NewUpperBound->getSExtValue() << "]\n"
 | 
						|
                    << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
 | 
						|
                    << ", " << UpperBound->getSExtValue() << "]\n");
 | 
						|
 | 
						|
  // Create a new node that checks if the value is < pivot. Go to the
 | 
						|
  // left branch if it is and right branch if not.
 | 
						|
  Function* F = OrigBlock->getParent();
 | 
						|
  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
 | 
						|
 | 
						|
  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
 | 
						|
                                Val, Pivot.Low, "Pivot");
 | 
						|
 | 
						|
  BasicBlock *LBranch =
 | 
						|
      SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val,
 | 
						|
                    NewNode, OrigBlock, Default, UnreachableRanges);
 | 
						|
  BasicBlock *RBranch =
 | 
						|
      SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val,
 | 
						|
                    NewNode, OrigBlock, Default, UnreachableRanges);
 | 
						|
 | 
						|
  F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
 | 
						|
  NewNode->getInstList().push_back(Comp);
 | 
						|
 | 
						|
  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
 | 
						|
  return NewNode;
 | 
						|
}
 | 
						|
 | 
						|
/// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
 | 
						|
/// \post \p Cases wouldn't contain references to \p SI's default BB.
 | 
						|
/// \returns Number of \p SI's cases that do not reference \p SI's default BB.
 | 
						|
unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) {
 | 
						|
  unsigned NumSimpleCases = 0;
 | 
						|
 | 
						|
  // Start with "simple" cases
 | 
						|
  for (auto Case : SI->cases()) {
 | 
						|
    if (Case.getCaseSuccessor() == SI->getDefaultDest())
 | 
						|
      continue;
 | 
						|
    Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
 | 
						|
                              Case.getCaseSuccessor()));
 | 
						|
    ++NumSimpleCases;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::sort(Cases, CaseCmp());
 | 
						|
 | 
						|
  // Merge case into clusters
 | 
						|
  if (Cases.size() >= 2) {
 | 
						|
    CaseItr I = Cases.begin();
 | 
						|
    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
 | 
						|
      int64_t nextValue = J->Low->getSExtValue();
 | 
						|
      int64_t currentValue = I->High->getSExtValue();
 | 
						|
      BasicBlock* nextBB = J->BB;
 | 
						|
      BasicBlock* currentBB = I->BB;
 | 
						|
 | 
						|
      // If the two neighboring cases go to the same destination, merge them
 | 
						|
      // into a single case.
 | 
						|
      assert(nextValue > currentValue && "Cases should be strictly ascending");
 | 
						|
      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
 | 
						|
        I->High = J->High;
 | 
						|
        // FIXME: Combine branch weights.
 | 
						|
      } else if (++I != J) {
 | 
						|
        *I = *J;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Cases.erase(std::next(I), Cases.end());
 | 
						|
  }
 | 
						|
 | 
						|
  return NumSimpleCases;
 | 
						|
}
 | 
						|
 | 
						|
/// Replace the specified switch instruction with a sequence of chained if-then
 | 
						|
/// insts in a balanced binary search.
 | 
						|
void ProcessSwitchInst(SwitchInst *SI,
 | 
						|
                       SmallPtrSetImpl<BasicBlock *> &DeleteList,
 | 
						|
                       AssumptionCache *AC, LazyValueInfo *LVI) {
 | 
						|
  BasicBlock *OrigBlock = SI->getParent();
 | 
						|
  Function *F = OrigBlock->getParent();
 | 
						|
  Value *Val = SI->getCondition();  // The value we are switching on...
 | 
						|
  BasicBlock* Default = SI->getDefaultDest();
 | 
						|
 | 
						|
  // Don't handle unreachable blocks. If there are successors with phis, this
 | 
						|
  // would leave them behind with missing predecessors.
 | 
						|
  if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
 | 
						|
      OrigBlock->getSinglePredecessor() == OrigBlock) {
 | 
						|
    DeleteList.insert(OrigBlock);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Prepare cases vector.
 | 
						|
  CaseVector Cases;
 | 
						|
  const unsigned NumSimpleCases = Clusterify(Cases, SI);
 | 
						|
  LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
 | 
						|
                    << ". Total non-default cases: " << NumSimpleCases
 | 
						|
                    << "\nCase clusters: " << Cases << "\n");
 | 
						|
 | 
						|
  // If there is only the default destination, just branch.
 | 
						|
  if (Cases.empty()) {
 | 
						|
    BranchInst::Create(Default, OrigBlock);
 | 
						|
    // Remove all the references from Default's PHIs to OrigBlock, but one.
 | 
						|
    FixPhis(Default, OrigBlock, OrigBlock);
 | 
						|
    SI->eraseFromParent();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ConstantInt *LowerBound = nullptr;
 | 
						|
  ConstantInt *UpperBound = nullptr;
 | 
						|
  bool DefaultIsUnreachableFromSwitch = false;
 | 
						|
 | 
						|
  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
 | 
						|
    // Make the bounds tightly fitted around the case value range, because we
 | 
						|
    // know that the value passed to the switch must be exactly one of the case
 | 
						|
    // values.
 | 
						|
    LowerBound = Cases.front().Low;
 | 
						|
    UpperBound = Cases.back().High;
 | 
						|
    DefaultIsUnreachableFromSwitch = true;
 | 
						|
  } else {
 | 
						|
    // Constraining the range of the value being switched over helps eliminating
 | 
						|
    // unreachable BBs and minimizing the number of `add` instructions
 | 
						|
    // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
 | 
						|
    // LowerSwitch isn't as good, and also much more expensive in terms of
 | 
						|
    // compile time for the following reasons:
 | 
						|
    // 1. it processes many kinds of instructions, not just switches;
 | 
						|
    // 2. even if limited to icmp instructions only, it will have to process
 | 
						|
    //    roughly C icmp's per switch, where C is the number of cases in the
 | 
						|
    //    switch, while LowerSwitch only needs to call LVI once per switch.
 | 
						|
    const DataLayout &DL = F->getParent()->getDataLayout();
 | 
						|
    KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
 | 
						|
    // TODO Shouldn't this create a signed range?
 | 
						|
    ConstantRange KnownBitsRange =
 | 
						|
        ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
 | 
						|
    const ConstantRange LVIRange = LVI->getConstantRange(Val, SI);
 | 
						|
    ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
 | 
						|
    // We delegate removal of unreachable non-default cases to other passes. In
 | 
						|
    // the unlikely event that some of them survived, we just conservatively
 | 
						|
    // maintain the invariant that all the cases lie between the bounds. This
 | 
						|
    // may, however, still render the default case effectively unreachable.
 | 
						|
    APInt Low = Cases.front().Low->getValue();
 | 
						|
    APInt High = Cases.back().High->getValue();
 | 
						|
    APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
 | 
						|
    APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
 | 
						|
 | 
						|
    LowerBound = ConstantInt::get(SI->getContext(), Min);
 | 
						|
    UpperBound = ConstantInt::get(SI->getContext(), Max);
 | 
						|
    DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<IntRange> UnreachableRanges;
 | 
						|
 | 
						|
  if (DefaultIsUnreachableFromSwitch) {
 | 
						|
    DenseMap<BasicBlock *, unsigned> Popularity;
 | 
						|
    unsigned MaxPop = 0;
 | 
						|
    BasicBlock *PopSucc = nullptr;
 | 
						|
 | 
						|
    IntRange R = {std::numeric_limits<int64_t>::min(),
 | 
						|
                  std::numeric_limits<int64_t>::max()};
 | 
						|
    UnreachableRanges.push_back(R);
 | 
						|
    for (const auto &I : Cases) {
 | 
						|
      int64_t Low = I.Low->getSExtValue();
 | 
						|
      int64_t High = I.High->getSExtValue();
 | 
						|
 | 
						|
      IntRange &LastRange = UnreachableRanges.back();
 | 
						|
      if (LastRange.Low == Low) {
 | 
						|
        // There is nothing left of the previous range.
 | 
						|
        UnreachableRanges.pop_back();
 | 
						|
      } else {
 | 
						|
        // Terminate the previous range.
 | 
						|
        assert(Low > LastRange.Low);
 | 
						|
        LastRange.High = Low - 1;
 | 
						|
      }
 | 
						|
      if (High != std::numeric_limits<int64_t>::max()) {
 | 
						|
        IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
 | 
						|
        UnreachableRanges.push_back(R);
 | 
						|
      }
 | 
						|
 | 
						|
      // Count popularity.
 | 
						|
      int64_t N = High - Low + 1;
 | 
						|
      unsigned &Pop = Popularity[I.BB];
 | 
						|
      if ((Pop += N) > MaxPop) {
 | 
						|
        MaxPop = Pop;
 | 
						|
        PopSucc = I.BB;
 | 
						|
      }
 | 
						|
    }
 | 
						|
#ifndef NDEBUG
 | 
						|
    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
 | 
						|
    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      assert(I->Low <= I->High);
 | 
						|
      auto Next = I + 1;
 | 
						|
      if (Next != E) {
 | 
						|
        assert(Next->Low > I->High);
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    // As the default block in the switch is unreachable, update the PHI nodes
 | 
						|
    // (remove all of the references to the default block) to reflect this.
 | 
						|
    const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
 | 
						|
    for (unsigned I = 0; I < NumDefaultEdges; ++I)
 | 
						|
      Default->removePredecessor(OrigBlock);
 | 
						|
 | 
						|
    // Use the most popular block as the new default, reducing the number of
 | 
						|
    // cases.
 | 
						|
    assert(MaxPop > 0 && PopSucc);
 | 
						|
    Default = PopSucc;
 | 
						|
    llvm::erase_if(Cases,
 | 
						|
                   [PopSucc](const CaseRange &R) { return R.BB == PopSucc; });
 | 
						|
 | 
						|
    // If there are no cases left, just branch.
 | 
						|
    if (Cases.empty()) {
 | 
						|
      BranchInst::Create(Default, OrigBlock);
 | 
						|
      SI->eraseFromParent();
 | 
						|
      // As all the cases have been replaced with a single branch, only keep
 | 
						|
      // one entry in the PHI nodes.
 | 
						|
      for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
 | 
						|
        PopSucc->removePredecessor(OrigBlock);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the condition was a PHI node with the switch block as a predecessor
 | 
						|
    // removing predecessors may have caused the condition to be erased.
 | 
						|
    // Getting the condition value again here protects against that.
 | 
						|
    Val = SI->getCondition();
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *SwitchBlock =
 | 
						|
      SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
 | 
						|
                    OrigBlock, OrigBlock, Default, UnreachableRanges);
 | 
						|
 | 
						|
  // We have added incoming values for newly-created predecessors in
 | 
						|
  // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to
 | 
						|
  // remove the incoming values from OrigBlock. There might be a special case
 | 
						|
  // that SwitchBlock is the same as Default, under which the PHIs in Default
 | 
						|
  // are fixed inside SwitchConvert().
 | 
						|
  if (SwitchBlock != Default)
 | 
						|
    FixPhis(Default, OrigBlock, nullptr);
 | 
						|
 | 
						|
  // Branch to our shiny new if-then stuff...
 | 
						|
  BranchInst::Create(SwitchBlock, OrigBlock);
 | 
						|
 | 
						|
  // We are now done with the switch instruction, delete it.
 | 
						|
  BasicBlock *OldDefault = SI->getDefaultDest();
 | 
						|
  OrigBlock->getInstList().erase(SI);
 | 
						|
 | 
						|
  // If the Default block has no more predecessors just add it to DeleteList.
 | 
						|
  if (pred_empty(OldDefault))
 | 
						|
    DeleteList.insert(OldDefault);
 | 
						|
}
 | 
						|
 | 
						|
bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) {
 | 
						|
  bool Changed = false;
 | 
						|
  SmallPtrSet<BasicBlock *, 8> DeleteList;
 | 
						|
 | 
						|
  // We use make_early_inc_range here so that we don't traverse new blocks.
 | 
						|
  for (BasicBlock &Cur : llvm::make_early_inc_range(F)) {
 | 
						|
    // If the block is a dead Default block that will be deleted later, don't
 | 
						|
    // waste time processing it.
 | 
						|
    if (DeleteList.count(&Cur))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) {
 | 
						|
      Changed = true;
 | 
						|
      ProcessSwitchInst(SI, DeleteList, AC, LVI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (BasicBlock *BB : DeleteList) {
 | 
						|
    LVI->eraseBlock(BB);
 | 
						|
    DeleteDeadBlock(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Replace all SwitchInst instructions with chained branch instructions.
 | 
						|
class LowerSwitchLegacyPass : public FunctionPass {
 | 
						|
public:
 | 
						|
  // Pass identification, replacement for typeid
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  LowerSwitchLegacyPass() : FunctionPass(ID) {
 | 
						|
    initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<LazyValueInfoWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char LowerSwitchLegacyPass::ID = 0;
 | 
						|
 | 
						|
// Publicly exposed interface to pass...
 | 
						|
char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",
 | 
						|
                      "Lower SwitchInst's to branches", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",
 | 
						|
                    "Lower SwitchInst's to branches", false, false)
 | 
						|
 | 
						|
// createLowerSwitchPass - Interface to this file...
 | 
						|
FunctionPass *llvm::createLowerSwitchPass() {
 | 
						|
  return new LowerSwitchLegacyPass();
 | 
						|
}
 | 
						|
 | 
						|
bool LowerSwitchLegacyPass::runOnFunction(Function &F) {
 | 
						|
  LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
 | 
						|
  auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
 | 
						|
  AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
 | 
						|
  return LowerSwitch(F, LVI, AC);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses LowerSwitchPass::run(Function &F,
 | 
						|
                                       FunctionAnalysisManager &AM) {
 | 
						|
  LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
 | 
						|
  AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F);
 | 
						|
  return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none()
 | 
						|
                                 : PreservedAnalyses::all();
 | 
						|
}
 |