185 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the SSAUpdaterBulk class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
 | 
						|
#include "llvm/Analysis/IteratedDominanceFrontier.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "ssaupdaterbulk"
 | 
						|
 | 
						|
/// Helper function for finding a block which should have a value for the given
 | 
						|
/// user. For PHI-nodes this block is the corresponding predecessor, for other
 | 
						|
/// instructions it's their parent block.
 | 
						|
static BasicBlock *getUserBB(Use *U) {
 | 
						|
  auto *User = cast<Instruction>(U->getUser());
 | 
						|
 | 
						|
  if (auto *UserPN = dyn_cast<PHINode>(User))
 | 
						|
    return UserPN->getIncomingBlock(*U);
 | 
						|
  else
 | 
						|
    return User->getParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Add a new variable to the SSA rewriter. This needs to be called before
 | 
						|
/// AddAvailableValue or AddUse calls.
 | 
						|
unsigned SSAUpdaterBulk::AddVariable(StringRef Name, Type *Ty) {
 | 
						|
  unsigned Var = Rewrites.size();
 | 
						|
  LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = "
 | 
						|
                    << *Ty << ", Name = " << Name << "\n");
 | 
						|
  RewriteInfo RI(Name, Ty);
 | 
						|
  Rewrites.push_back(RI);
 | 
						|
  return Var;
 | 
						|
}
 | 
						|
 | 
						|
/// Indicate that a rewritten value is available in the specified block with the
 | 
						|
/// specified value.
 | 
						|
void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) {
 | 
						|
  assert(Var < Rewrites.size() && "Variable not found!");
 | 
						|
  LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var
 | 
						|
                    << ": added new available value" << *V << " in "
 | 
						|
                    << BB->getName() << "\n");
 | 
						|
  Rewrites[Var].Defines[BB] = V;
 | 
						|
}
 | 
						|
 | 
						|
/// Record a use of the symbolic value. This use will be updated with a
 | 
						|
/// rewritten value when RewriteAllUses is called.
 | 
						|
void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) {
 | 
						|
  assert(Var < Rewrites.size() && "Variable not found!");
 | 
						|
  LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get()
 | 
						|
                    << " in " << getUserBB(U)->getName() << "\n");
 | 
						|
  Rewrites[Var].Uses.push_back(U);
 | 
						|
}
 | 
						|
 | 
						|
// Compute value at the given block BB. We either should already know it, or we
 | 
						|
// should be able to recursively reach it going up dominator tree.
 | 
						|
Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R,
 | 
						|
                                      DominatorTree *DT) {
 | 
						|
  if (!R.Defines.count(BB)) {
 | 
						|
    if (DT->isReachableFromEntry(BB) && PredCache.get(BB).size()) {
 | 
						|
      BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock();
 | 
						|
      Value *V = computeValueAt(IDom, R, DT);
 | 
						|
      R.Defines[BB] = V;
 | 
						|
    } else
 | 
						|
      R.Defines[BB] = UndefValue::get(R.Ty);
 | 
						|
  }
 | 
						|
  return R.Defines[BB];
 | 
						|
}
 | 
						|
 | 
						|
/// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks.
 | 
						|
/// This is basically a subgraph limited by DefBlocks and UsingBlocks.
 | 
						|
static void
 | 
						|
ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks,
 | 
						|
                    const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
 | 
						|
                    SmallPtrSetImpl<BasicBlock *> &LiveInBlocks,
 | 
						|
                    PredIteratorCache &PredCache) {
 | 
						|
  // To determine liveness, we must iterate through the predecessors of blocks
 | 
						|
  // where the def is live.  Blocks are added to the worklist if we need to
 | 
						|
  // check their predecessors.  Start with all the using blocks.
 | 
						|
  SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(),
 | 
						|
                                                    UsingBlocks.end());
 | 
						|
 | 
						|
  // Now that we have a set of blocks where the phi is live-in, recursively add
 | 
						|
  // their predecessors until we find the full region the value is live.
 | 
						|
  while (!LiveInBlockWorklist.empty()) {
 | 
						|
    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
 | 
						|
 | 
						|
    // The block really is live in here, insert it into the set.  If already in
 | 
						|
    // the set, then it has already been processed.
 | 
						|
    if (!LiveInBlocks.insert(BB).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Since the value is live into BB, it is either defined in a predecessor or
 | 
						|
    // live into it to.  Add the preds to the worklist unless they are a
 | 
						|
    // defining block.
 | 
						|
    for (BasicBlock *P : PredCache.get(BB)) {
 | 
						|
      // The value is not live into a predecessor if it defines the value.
 | 
						|
      if (DefBlocks.count(P))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Otherwise it is, add to the worklist.
 | 
						|
      LiveInBlockWorklist.push_back(P);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Perform all the necessary updates, including new PHI-nodes insertion and the
 | 
						|
/// requested uses update.
 | 
						|
void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT,
 | 
						|
                                    SmallVectorImpl<PHINode *> *InsertedPHIs) {
 | 
						|
  for (auto &R : Rewrites) {
 | 
						|
    // Compute locations for new phi-nodes.
 | 
						|
    // For that we need to initialize DefBlocks from definitions in R.Defines,
 | 
						|
    // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use
 | 
						|
    // this set for computing iterated dominance frontier (IDF).
 | 
						|
    // The IDF blocks are the blocks where we need to insert new phi-nodes.
 | 
						|
    ForwardIDFCalculator IDF(*DT);
 | 
						|
    LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size()
 | 
						|
                      << " use(s)\n");
 | 
						|
 | 
						|
    SmallPtrSet<BasicBlock *, 2> DefBlocks;
 | 
						|
    for (auto &Def : R.Defines)
 | 
						|
      DefBlocks.insert(Def.first);
 | 
						|
    IDF.setDefiningBlocks(DefBlocks);
 | 
						|
 | 
						|
    SmallPtrSet<BasicBlock *, 2> UsingBlocks;
 | 
						|
    for (Use *U : R.Uses)
 | 
						|
      UsingBlocks.insert(getUserBB(U));
 | 
						|
 | 
						|
    SmallVector<BasicBlock *, 32> IDFBlocks;
 | 
						|
    SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
 | 
						|
    ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache);
 | 
						|
    IDF.resetLiveInBlocks();
 | 
						|
    IDF.setLiveInBlocks(LiveInBlocks);
 | 
						|
    IDF.calculate(IDFBlocks);
 | 
						|
 | 
						|
    // We've computed IDF, now insert new phi-nodes there.
 | 
						|
    SmallVector<PHINode *, 4> InsertedPHIsForVar;
 | 
						|
    for (auto *FrontierBB : IDFBlocks) {
 | 
						|
      IRBuilder<> B(FrontierBB, FrontierBB->begin());
 | 
						|
      PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name);
 | 
						|
      R.Defines[FrontierBB] = PN;
 | 
						|
      InsertedPHIsForVar.push_back(PN);
 | 
						|
      if (InsertedPHIs)
 | 
						|
        InsertedPHIs->push_back(PN);
 | 
						|
    }
 | 
						|
 | 
						|
    // Fill in arguments of the inserted PHIs.
 | 
						|
    for (auto *PN : InsertedPHIsForVar) {
 | 
						|
      BasicBlock *PBB = PN->getParent();
 | 
						|
      for (BasicBlock *Pred : PredCache.get(PBB))
 | 
						|
        PN->addIncoming(computeValueAt(Pred, R, DT), Pred);
 | 
						|
    }
 | 
						|
 | 
						|
    // Rewrite actual uses with the inserted definitions.
 | 
						|
    SmallPtrSet<Use *, 4> ProcessedUses;
 | 
						|
    for (Use *U : R.Uses) {
 | 
						|
      if (!ProcessedUses.insert(U).second)
 | 
						|
        continue;
 | 
						|
      Value *V = computeValueAt(getUserBB(U), R, DT);
 | 
						|
      Value *OldVal = U->get();
 | 
						|
      assert(OldVal && "Invalid use!");
 | 
						|
      // Notify that users of the existing value that it is being replaced.
 | 
						|
      if (OldVal != V && OldVal->hasValueHandle())
 | 
						|
        ValueHandleBase::ValueIsRAUWd(OldVal, V);
 | 
						|
      LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V
 | 
						|
                        << "\n");
 | 
						|
      U->set(V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |