4055 lines
		
	
	
		
			145 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4055 lines
		
	
	
		
			145 KiB
		
	
	
	
		
			C++
		
	
	
	
//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the library calls simplifier. It does not implement
 | 
						|
// any pass, but can't be used by other passes to do simplifications.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
 | 
						|
#include "llvm/ADT/APSInt.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/SizeOpts.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
 | 
						|
                         cl::init(false),
 | 
						|
                         cl::desc("Enable unsafe double to float "
 | 
						|
                                  "shrinking for math lib calls"));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool ignoreCallingConv(LibFunc Func) {
 | 
						|
  return Func == LibFunc_abs || Func == LibFunc_labs ||
 | 
						|
         Func == LibFunc_llabs || Func == LibFunc_strlen;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if it is only used in equality comparisons with With.
 | 
						|
static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
 | 
						|
  for (User *U : V->users()) {
 | 
						|
    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
 | 
						|
      if (IC->isEquality() && IC->getOperand(1) == With)
 | 
						|
        continue;
 | 
						|
    // Unknown instruction.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool callHasFloatingPointArgument(const CallInst *CI) {
 | 
						|
  return any_of(CI->operands(), [](const Use &OI) {
 | 
						|
    return OI->getType()->isFloatingPointTy();
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
static bool callHasFP128Argument(const CallInst *CI) {
 | 
						|
  return any_of(CI->operands(), [](const Use &OI) {
 | 
						|
    return OI->getType()->isFP128Ty();
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
// Convert the entire string Str representing an integer in Base, up to
 | 
						|
// the terminating nul if present, to a constant according to the rules
 | 
						|
// of strtoul[l] or, when AsSigned is set, of strtol[l].  On success
 | 
						|
// return the result, otherwise null.
 | 
						|
// The function assumes the string is encoded in ASCII and carefully
 | 
						|
// avoids converting sequences (including "") that the corresponding
 | 
						|
// library call might fail and set errno for.
 | 
						|
static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
 | 
						|
                              uint64_t Base, bool AsSigned, IRBuilderBase &B) {
 | 
						|
  if (Base < 2 || Base > 36)
 | 
						|
    if (Base != 0)
 | 
						|
      // Fail for an invalid base (required by POSIX).
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
  // Current offset into the original string to reflect in EndPtr.
 | 
						|
  size_t Offset = 0;
 | 
						|
  // Strip leading whitespace.
 | 
						|
  for ( ; Offset != Str.size(); ++Offset)
 | 
						|
    if (!isSpace((unsigned char)Str[Offset])) {
 | 
						|
      Str = Str.substr(Offset);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  if (Str.empty())
 | 
						|
    // Fail for empty subject sequences (POSIX allows but doesn't require
 | 
						|
    // strtol[l]/strtoul[l] to fail with EINVAL).
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Strip but remember the sign.
 | 
						|
  bool Negate = Str[0] == '-';
 | 
						|
  if (Str[0] == '-' || Str[0] == '+') {
 | 
						|
    Str = Str.drop_front();
 | 
						|
    if (Str.empty())
 | 
						|
      // Fail for a sign with nothing after it.
 | 
						|
      return nullptr;
 | 
						|
    ++Offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set Max to the absolute value of the minimum (for signed), or
 | 
						|
  // to the maximum (for unsigned) value representable in the type.
 | 
						|
  Type *RetTy = CI->getType();
 | 
						|
  unsigned NBits = RetTy->getPrimitiveSizeInBits();
 | 
						|
  uint64_t Max = AsSigned && Negate ? 1 : 0;
 | 
						|
  Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits);
 | 
						|
 | 
						|
  // Autodetect Base if it's zero and consume the "0x" prefix.
 | 
						|
  if (Str.size() > 1) {
 | 
						|
    if (Str[0] == '0') {
 | 
						|
      if (toUpper((unsigned char)Str[1]) == 'X') {
 | 
						|
        if (Str.size() == 2 || (Base && Base != 16))
 | 
						|
          // Fail if Base doesn't allow the "0x" prefix or for the prefix
 | 
						|
          // alone that implementations like BSD set errno to EINVAL for.
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        Str = Str.drop_front(2);
 | 
						|
        Offset += 2;
 | 
						|
        Base = 16;
 | 
						|
      }
 | 
						|
      else if (Base == 0)
 | 
						|
        Base = 8;
 | 
						|
    } else if (Base == 0)
 | 
						|
      Base = 10;
 | 
						|
  }
 | 
						|
  else if (Base == 0)
 | 
						|
    Base = 10;
 | 
						|
 | 
						|
  // Convert the rest of the subject sequence, not including the sign,
 | 
						|
  // to its uint64_t representation (this assumes the source character
 | 
						|
  // set is ASCII).
 | 
						|
  uint64_t Result = 0;
 | 
						|
  for (unsigned i = 0; i != Str.size(); ++i) {
 | 
						|
    unsigned char DigVal = Str[i];
 | 
						|
    if (isDigit(DigVal))
 | 
						|
      DigVal = DigVal - '0';
 | 
						|
    else {
 | 
						|
      DigVal = toUpper(DigVal);
 | 
						|
      if (isAlpha(DigVal))
 | 
						|
        DigVal = DigVal - 'A' + 10;
 | 
						|
      else
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (DigVal >= Base)
 | 
						|
      // Fail if the digit is not valid in the Base.
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Add the digit and fail if the result is not representable in
 | 
						|
    // the (unsigned form of the) destination type.
 | 
						|
    bool VFlow;
 | 
						|
    Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow);
 | 
						|
    if (VFlow || Result > Max)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (EndPtr) {
 | 
						|
    // Store the pointer to the end.
 | 
						|
    Value *Off = B.getInt64(Offset + Str.size());
 | 
						|
    Value *StrBeg = CI->getArgOperand(0);
 | 
						|
    Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
 | 
						|
    B.CreateStore(StrEnd, EndPtr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Negate)
 | 
						|
    // Unsigned negation doesn't overflow.
 | 
						|
    Result = -Result;
 | 
						|
 | 
						|
  return ConstantInt::get(RetTy, Result);
 | 
						|
}
 | 
						|
 | 
						|
static bool isOnlyUsedInComparisonWithZero(Value *V) {
 | 
						|
  for (User *U : V->users()) {
 | 
						|
    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
 | 
						|
      if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
 | 
						|
        if (C->isNullValue())
 | 
						|
          continue;
 | 
						|
    // Unknown instruction.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
 | 
						|
                                 const DataLayout &DL) {
 | 
						|
  if (!isOnlyUsedInComparisonWithZero(CI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void annotateDereferenceableBytes(CallInst *CI,
 | 
						|
                                         ArrayRef<unsigned> ArgNos,
 | 
						|
                                         uint64_t DereferenceableBytes) {
 | 
						|
  const Function *F = CI->getCaller();
 | 
						|
  if (!F)
 | 
						|
    return;
 | 
						|
  for (unsigned ArgNo : ArgNos) {
 | 
						|
    uint64_t DerefBytes = DereferenceableBytes;
 | 
						|
    unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
 | 
						|
    if (!llvm::NullPointerIsDefined(F, AS) ||
 | 
						|
        CI->paramHasAttr(ArgNo, Attribute::NonNull))
 | 
						|
      DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
 | 
						|
                            DereferenceableBytes);
 | 
						|
 | 
						|
    if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
 | 
						|
      CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
 | 
						|
      if (!llvm::NullPointerIsDefined(F, AS) ||
 | 
						|
          CI->paramHasAttr(ArgNo, Attribute::NonNull))
 | 
						|
        CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
 | 
						|
      CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
 | 
						|
                                  CI->getContext(), DerefBytes));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
 | 
						|
                                         ArrayRef<unsigned> ArgNos) {
 | 
						|
  Function *F = CI->getCaller();
 | 
						|
  if (!F)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned ArgNo : ArgNos) {
 | 
						|
    if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
 | 
						|
      CI->addParamAttr(ArgNo, Attribute::NoUndef);
 | 
						|
 | 
						|
    if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
 | 
						|
      continue;
 | 
						|
    unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
 | 
						|
    if (llvm::NullPointerIsDefined(F, AS))
 | 
						|
      continue;
 | 
						|
 | 
						|
    CI->addParamAttr(ArgNo, Attribute::NonNull);
 | 
						|
    annotateDereferenceableBytes(CI, ArgNo, 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
 | 
						|
                               Value *Size, const DataLayout &DL) {
 | 
						|
  if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
 | 
						|
    annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
 | 
						|
    annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
 | 
						|
  } else if (isKnownNonZero(Size, DL)) {
 | 
						|
    annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
 | 
						|
    const APInt *X, *Y;
 | 
						|
    uint64_t DerefMin = 1;
 | 
						|
    if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
 | 
						|
      DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
 | 
						|
      annotateDereferenceableBytes(CI, ArgNos, DerefMin);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Copy CallInst "flags" like musttail, notail, and tail. Return New param for
 | 
						|
// easier chaining. Calls to emit* and B.createCall should probably be wrapped
 | 
						|
// in this function when New is created to replace Old. Callers should take
 | 
						|
// care to check Old.isMustTailCall() if they aren't replacing Old directly
 | 
						|
// with New.
 | 
						|
static Value *copyFlags(const CallInst &Old, Value *New) {
 | 
						|
  assert(!Old.isMustTailCall() && "do not copy musttail call flags");
 | 
						|
  assert(!Old.isNoTailCall() && "do not copy notail call flags");
 | 
						|
  if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
 | 
						|
    NewCI->setTailCallKind(Old.getTailCallKind());
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
// Helper to avoid truncating the length if size_t is 32-bits.
 | 
						|
static StringRef substr(StringRef Str, uint64_t Len) {
 | 
						|
  return Len >= Str.size() ? Str : Str.substr(0, Len);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// String and Memory Library Call Optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // Extract some information from the instruction
 | 
						|
  Value *Dst = CI->getArgOperand(0);
 | 
						|
  Value *Src = CI->getArgOperand(1);
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
 | 
						|
 | 
						|
  // See if we can get the length of the input string.
 | 
						|
  uint64_t Len = GetStringLength(Src);
 | 
						|
  if (Len)
 | 
						|
    annotateDereferenceableBytes(CI, 1, Len);
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
  --Len; // Unbias length.
 | 
						|
 | 
						|
  // Handle the simple, do-nothing case: strcat(x, "") -> x
 | 
						|
  if (Len == 0)
 | 
						|
    return Dst;
 | 
						|
 | 
						|
  return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
 | 
						|
                                           IRBuilderBase &B) {
 | 
						|
  // We need to find the end of the destination string.  That's where the
 | 
						|
  // memory is to be moved to. We just generate a call to strlen.
 | 
						|
  Value *DstLen = emitStrLen(Dst, B, DL, TLI);
 | 
						|
  if (!DstLen)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Now that we have the destination's length, we must index into the
 | 
						|
  // destination's pointer to get the actual memcpy destination (end of
 | 
						|
  // the string .. we're concatenating).
 | 
						|
  Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
 | 
						|
 | 
						|
  // We have enough information to now generate the memcpy call to do the
 | 
						|
  // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
 | 
						|
  B.CreateMemCpy(
 | 
						|
      CpyDst, Align(1), Src, Align(1),
 | 
						|
      ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
 | 
						|
  return Dst;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // Extract some information from the instruction.
 | 
						|
  Value *Dst = CI->getArgOperand(0);
 | 
						|
  Value *Src = CI->getArgOperand(1);
 | 
						|
  Value *Size = CI->getArgOperand(2);
 | 
						|
  uint64_t Len;
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
  if (isKnownNonZero(Size, DL))
 | 
						|
    annotateNonNullNoUndefBasedOnAccess(CI, 1);
 | 
						|
 | 
						|
  // We don't do anything if length is not constant.
 | 
						|
  ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
 | 
						|
  if (LengthArg) {
 | 
						|
    Len = LengthArg->getZExtValue();
 | 
						|
    // strncat(x, c, 0) -> x
 | 
						|
    if (!Len)
 | 
						|
      return Dst;
 | 
						|
  } else {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we can get the length of the input string.
 | 
						|
  uint64_t SrcLen = GetStringLength(Src);
 | 
						|
  if (SrcLen) {
 | 
						|
    annotateDereferenceableBytes(CI, 1, SrcLen);
 | 
						|
    --SrcLen; // Unbias length.
 | 
						|
  } else {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // strncat(x, "", c) -> x
 | 
						|
  if (SrcLen == 0)
 | 
						|
    return Dst;
 | 
						|
 | 
						|
  // We don't optimize this case.
 | 
						|
  if (Len < SrcLen)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // strncat(x, s, c) -> strcat(x, s)
 | 
						|
  // s is constant so the strcat can be optimized further.
 | 
						|
  return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
 | 
						|
}
 | 
						|
 | 
						|
// Helper to transform memchr(S, C, N) == S to N && *S == C and, when
 | 
						|
// NBytes is null, strchr(S, C) to *S == C.  A precondition of the function
 | 
						|
// is that either S is dereferenceable or the value of N is nonzero.
 | 
						|
static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
 | 
						|
                                  IRBuilderBase &B, const DataLayout &DL)
 | 
						|
{
 | 
						|
  Value *Src = CI->getArgOperand(0);
 | 
						|
  Value *CharVal = CI->getArgOperand(1);
 | 
						|
 | 
						|
  // Fold memchr(A, C, N) == A to N && *A == C.
 | 
						|
  Type *CharTy = B.getInt8Ty();
 | 
						|
  Value *Char0 = B.CreateLoad(CharTy, Src);
 | 
						|
  CharVal = B.CreateTrunc(CharVal, CharTy);
 | 
						|
  Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
 | 
						|
 | 
						|
  if (NBytes) {
 | 
						|
    Value *Zero = ConstantInt::get(NBytes->getType(), 0);
 | 
						|
    Value *And = B.CreateICmpNE(NBytes, Zero);
 | 
						|
    Cmp = B.CreateLogicalAnd(And, Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *NullPtr = Constant::getNullValue(CI->getType());
 | 
						|
  return B.CreateSelect(Cmp, Src, NullPtr);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *SrcStr = CI->getArgOperand(0);
 | 
						|
  Value *CharVal = CI->getArgOperand(1);
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
 | 
						|
  if (isOnlyUsedInEqualityComparison(CI, SrcStr))
 | 
						|
    return memChrToCharCompare(CI, nullptr, B, DL);
 | 
						|
 | 
						|
  // If the second operand is non-constant, see if we can compute the length
 | 
						|
  // of the input string and turn this into memchr.
 | 
						|
  ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
 | 
						|
  if (!CharC) {
 | 
						|
    uint64_t Len = GetStringLength(SrcStr);
 | 
						|
    if (Len)
 | 
						|
      annotateDereferenceableBytes(CI, 0, Len);
 | 
						|
    else
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    Function *Callee = CI->getCalledFunction();
 | 
						|
    FunctionType *FT = Callee->getFunctionType();
 | 
						|
    if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    return copyFlags(
 | 
						|
        *CI,
 | 
						|
        emitMemChr(SrcStr, CharVal, // include nul.
 | 
						|
                   ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
 | 
						|
                   DL, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  if (CharC->isZero()) {
 | 
						|
    Value *NullPtr = Constant::getNullValue(CI->getType());
 | 
						|
    if (isOnlyUsedInEqualityComparison(CI, NullPtr))
 | 
						|
      // Pre-empt the transformation to strlen below and fold
 | 
						|
      // strchr(A, '\0') == null to false.
 | 
						|
      return B.CreateIntToPtr(B.getTrue(), CI->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, the character is a constant, see if the first argument is
 | 
						|
  // a string literal.  If so, we can constant fold.
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(SrcStr, Str)) {
 | 
						|
    if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
 | 
						|
      if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
 | 
						|
        return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the offset, make sure to handle the case when we're searching for
 | 
						|
  // zero (a weird way to spell strlen).
 | 
						|
  size_t I = (0xFF & CharC->getSExtValue()) == 0
 | 
						|
                 ? Str.size()
 | 
						|
                 : Str.find(CharC->getSExtValue());
 | 
						|
  if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // strchr(s+n,c)  -> gep(s+n+i,c)
 | 
						|
  return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *SrcStr = CI->getArgOperand(0);
 | 
						|
  Value *CharVal = CI->getArgOperand(1);
 | 
						|
  ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(SrcStr, Str)) {
 | 
						|
    // strrchr(s, 0) -> strchr(s, 0)
 | 
						|
    if (CharC && CharC->isZero())
 | 
						|
      return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to expand strrchr to the memrchr nonstandard extension if it's
 | 
						|
  // available, or simply fail otherwise.
 | 
						|
  uint64_t NBytes = Str.size() + 1;   // Include the terminating nul.
 | 
						|
  Type *IntPtrType = DL.getIntPtrType(CI->getContext());
 | 
						|
  Value *Size = ConstantInt::get(IntPtrType, NBytes);
 | 
						|
  return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
 | 
						|
  if (Str1P == Str2P) // strcmp(x,x)  -> 0
 | 
						|
    return ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
  StringRef Str1, Str2;
 | 
						|
  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
 | 
						|
  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
 | 
						|
 | 
						|
  // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
 | 
						|
  if (HasStr1 && HasStr2)
 | 
						|
    return ConstantInt::get(CI->getType(), Str1.compare(Str2));
 | 
						|
 | 
						|
  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
 | 
						|
    return B.CreateNeg(B.CreateZExt(
 | 
						|
        B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
 | 
						|
 | 
						|
  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
 | 
						|
    return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
 | 
						|
                        CI->getType());
 | 
						|
 | 
						|
  // strcmp(P, "x") -> memcmp(P, "x", 2)
 | 
						|
  uint64_t Len1 = GetStringLength(Str1P);
 | 
						|
  if (Len1)
 | 
						|
    annotateDereferenceableBytes(CI, 0, Len1);
 | 
						|
  uint64_t Len2 = GetStringLength(Str2P);
 | 
						|
  if (Len2)
 | 
						|
    annotateDereferenceableBytes(CI, 1, Len2);
 | 
						|
 | 
						|
  if (Len1 && Len2) {
 | 
						|
    return copyFlags(
 | 
						|
        *CI, emitMemCmp(Str1P, Str2P,
 | 
						|
                        ConstantInt::get(DL.getIntPtrType(CI->getContext()),
 | 
						|
                                         std::min(Len1, Len2)),
 | 
						|
                        B, DL, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  // strcmp to memcmp
 | 
						|
  if (!HasStr1 && HasStr2) {
 | 
						|
    if (canTransformToMemCmp(CI, Str1P, Len2, DL))
 | 
						|
      return copyFlags(
 | 
						|
          *CI,
 | 
						|
          emitMemCmp(Str1P, Str2P,
 | 
						|
                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
 | 
						|
                     B, DL, TLI));
 | 
						|
  } else if (HasStr1 && !HasStr2) {
 | 
						|
    if (canTransformToMemCmp(CI, Str2P, Len1, DL))
 | 
						|
      return copyFlags(
 | 
						|
          *CI,
 | 
						|
          emitMemCmp(Str1P, Str2P,
 | 
						|
                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
 | 
						|
                     B, DL, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
 | 
						|
// arrays LHS and RHS and nonconstant Size.
 | 
						|
static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
 | 
						|
                                    Value *Size, bool StrNCmp,
 | 
						|
                                    IRBuilderBase &B, const DataLayout &DL);
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Str1P = CI->getArgOperand(0);
 | 
						|
  Value *Str2P = CI->getArgOperand(1);
 | 
						|
  Value *Size = CI->getArgOperand(2);
 | 
						|
  if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
 | 
						|
    return ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
  if (isKnownNonZero(Size, DL))
 | 
						|
    annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
 | 
						|
  // Get the length argument if it is constant.
 | 
						|
  uint64_t Length;
 | 
						|
  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
 | 
						|
    Length = LengthArg->getZExtValue();
 | 
						|
  else
 | 
						|
    return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
 | 
						|
 | 
						|
  if (Length == 0) // strncmp(x,y,0)   -> 0
 | 
						|
    return ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
  if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
 | 
						|
    return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
 | 
						|
 | 
						|
  StringRef Str1, Str2;
 | 
						|
  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
 | 
						|
  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
 | 
						|
 | 
						|
  // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
 | 
						|
  if (HasStr1 && HasStr2) {
 | 
						|
    // Avoid truncating the 64-bit Length to 32 bits in ILP32.
 | 
						|
    StringRef SubStr1 = substr(Str1, Length);
 | 
						|
    StringRef SubStr2 = substr(Str2, Length);
 | 
						|
    return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
 | 
						|
  }
 | 
						|
 | 
						|
  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
 | 
						|
    return B.CreateNeg(B.CreateZExt(
 | 
						|
        B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
 | 
						|
 | 
						|
  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
 | 
						|
    return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
 | 
						|
                        CI->getType());
 | 
						|
 | 
						|
  uint64_t Len1 = GetStringLength(Str1P);
 | 
						|
  if (Len1)
 | 
						|
    annotateDereferenceableBytes(CI, 0, Len1);
 | 
						|
  uint64_t Len2 = GetStringLength(Str2P);
 | 
						|
  if (Len2)
 | 
						|
    annotateDereferenceableBytes(CI, 1, Len2);
 | 
						|
 | 
						|
  // strncmp to memcmp
 | 
						|
  if (!HasStr1 && HasStr2) {
 | 
						|
    Len2 = std::min(Len2, Length);
 | 
						|
    if (canTransformToMemCmp(CI, Str1P, Len2, DL))
 | 
						|
      return copyFlags(
 | 
						|
          *CI,
 | 
						|
          emitMemCmp(Str1P, Str2P,
 | 
						|
                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
 | 
						|
                     B, DL, TLI));
 | 
						|
  } else if (HasStr1 && !HasStr2) {
 | 
						|
    Len1 = std::min(Len1, Length);
 | 
						|
    if (canTransformToMemCmp(CI, Str2P, Len1, DL))
 | 
						|
      return copyFlags(
 | 
						|
          *CI,
 | 
						|
          emitMemCmp(Str1P, Str2P,
 | 
						|
                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
 | 
						|
                     B, DL, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Src = CI->getArgOperand(0);
 | 
						|
  ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | 
						|
  uint64_t SrcLen = GetStringLength(Src);
 | 
						|
  if (SrcLen && Size) {
 | 
						|
    annotateDereferenceableBytes(CI, 0, SrcLen);
 | 
						|
    if (SrcLen <= Size->getZExtValue() + 1)
 | 
						|
      return copyFlags(*CI, emitStrDup(Src, B, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
 | 
						|
  if (Dst == Src) // strcpy(x,x)  -> x
 | 
						|
    return Src;
 | 
						|
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
 | 
						|
  // See if we can get the length of the input string.
 | 
						|
  uint64_t Len = GetStringLength(Src);
 | 
						|
  if (Len)
 | 
						|
    annotateDereferenceableBytes(CI, 1, Len);
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We have enough information to now generate the memcpy call to do the
 | 
						|
  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
 | 
						|
  CallInst *NewCI =
 | 
						|
      B.CreateMemCpy(Dst, Align(1), Src, Align(1),
 | 
						|
                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
 | 
						|
  NewCI->setAttributes(CI->getAttributes());
 | 
						|
  NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
  copyFlags(*CI, NewCI);
 | 
						|
  return Dst;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
 | 
						|
 | 
						|
  // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
 | 
						|
  if (CI->use_empty())
 | 
						|
    return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
 | 
						|
 | 
						|
  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
 | 
						|
    Value *StrLen = emitStrLen(Src, B, DL, TLI);
 | 
						|
    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // See if we can get the length of the input string.
 | 
						|
  uint64_t Len = GetStringLength(Src);
 | 
						|
  if (Len)
 | 
						|
    annotateDereferenceableBytes(CI, 1, Len);
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *PT = Callee->getFunctionType()->getParamType(0);
 | 
						|
  Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
 | 
						|
  Value *DstEnd = B.CreateInBoundsGEP(
 | 
						|
      B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
 | 
						|
 | 
						|
  // We have enough information to now generate the memcpy call to do the
 | 
						|
  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
 | 
						|
  CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
 | 
						|
  NewCI->setAttributes(CI->getAttributes());
 | 
						|
  NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
  copyFlags(*CI, NewCI);
 | 
						|
  return DstEnd;
 | 
						|
}
 | 
						|
 | 
						|
// Optimize a call to size_t strlcpy(char*, const char*, size_t).
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Size = CI->getArgOperand(2);
 | 
						|
  if (isKnownNonZero(Size, DL))
 | 
						|
    // Like snprintf, the function stores into the destination only when
 | 
						|
    // the size argument is nonzero.
 | 
						|
    annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
  // The function reads the source argument regardless of Size (it returns
 | 
						|
  // its length).
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, 1);
 | 
						|
 | 
						|
  uint64_t NBytes;
 | 
						|
  if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
 | 
						|
    NBytes = SizeC->getZExtValue();
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Dst = CI->getArgOperand(0);
 | 
						|
  Value *Src = CI->getArgOperand(1);
 | 
						|
  if (NBytes <= 1) {
 | 
						|
    if (NBytes == 1)
 | 
						|
      // For a call to strlcpy(D, S, 1) first store a nul in *D.
 | 
						|
      B.CreateStore(B.getInt8(0), Dst);
 | 
						|
 | 
						|
    // Transform strlcpy(D, S, 0) to a call to strlen(S).
 | 
						|
    return copyFlags(*CI, emitStrLen(Src, B, DL, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to determine the length of the source, substituting its size
 | 
						|
  // when it's not nul-terminated (as it's required to be) to avoid
 | 
						|
  // reading past its end.
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(Src, Str, 0, /*TrimAtNul=*/false))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  uint64_t SrcLen = Str.find('\0');
 | 
						|
  // Set if the terminating nul should be copied by the call to memcpy
 | 
						|
  // below.
 | 
						|
  bool NulTerm = SrcLen < NBytes;
 | 
						|
 | 
						|
  if (NulTerm)
 | 
						|
    // Overwrite NBytes with the number of bytes to copy, including
 | 
						|
    // the terminating nul.
 | 
						|
    NBytes = SrcLen + 1;
 | 
						|
  else {
 | 
						|
    // Set the length of the source for the function to return to its
 | 
						|
    // size, and cap NBytes at the same.
 | 
						|
    SrcLen = std::min(SrcLen, uint64_t(Str.size()));
 | 
						|
    NBytes = std::min(NBytes - 1, SrcLen);
 | 
						|
  }
 | 
						|
 | 
						|
  if (SrcLen == 0) {
 | 
						|
    // Transform strlcpy(D, "", N) to (*D = '\0, 0).
 | 
						|
    B.CreateStore(B.getInt8(0), Dst);
 | 
						|
    return ConstantInt::get(CI->getType(), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Type *PT = Callee->getFunctionType()->getParamType(0);
 | 
						|
  // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
 | 
						|
  // bound on strlen(S) + 1 and N, optionally followed by a nul store to
 | 
						|
  // D[N' - 1] if necessary.
 | 
						|
  CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
 | 
						|
                        ConstantInt::get(DL.getIntPtrType(PT), NBytes));
 | 
						|
  NewCI->setAttributes(CI->getAttributes());
 | 
						|
  NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
  copyFlags(*CI, NewCI);
 | 
						|
 | 
						|
  if (!NulTerm) {
 | 
						|
    Value *EndOff = ConstantInt::get(CI->getType(), NBytes);
 | 
						|
    Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff);
 | 
						|
    B.CreateStore(B.getInt8(0), EndPtr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Like snprintf, strlcpy returns the number of nonzero bytes that would
 | 
						|
  // have been copied if the bound had been sufficiently big (which in this
 | 
						|
  // case is strlen(Src)).
 | 
						|
  return ConstantInt::get(CI->getType(), SrcLen);
 | 
						|
}
 | 
						|
 | 
						|
// Optimize a call to strncpy.
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Dst = CI->getArgOperand(0);
 | 
						|
  Value *Src = CI->getArgOperand(1);
 | 
						|
  Value *Size = CI->getArgOperand(2);
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
  if (isKnownNonZero(Size, DL))
 | 
						|
    annotateNonNullNoUndefBasedOnAccess(CI, 1);
 | 
						|
 | 
						|
  uint64_t Len;
 | 
						|
  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
 | 
						|
    Len = LengthArg->getZExtValue();
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // strncpy(x, y, 0) -> x
 | 
						|
  if (Len == 0)
 | 
						|
    return Dst;
 | 
						|
 | 
						|
  // See if we can get the length of the input string.
 | 
						|
  uint64_t SrcLen = GetStringLength(Src);
 | 
						|
  if (SrcLen) {
 | 
						|
    annotateDereferenceableBytes(CI, 1, SrcLen);
 | 
						|
    --SrcLen; // Unbias length.
 | 
						|
  } else {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SrcLen == 0) {
 | 
						|
    // strncpy(x, "", y) -> memset(x, '\0', y)
 | 
						|
    Align MemSetAlign =
 | 
						|
        CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
 | 
						|
    CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
 | 
						|
    AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
 | 
						|
    NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
 | 
						|
        CI->getContext(), 0, ArgAttrs));
 | 
						|
    copyFlags(*CI, NewCI);
 | 
						|
    return Dst;
 | 
						|
  }
 | 
						|
 | 
						|
  // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
 | 
						|
  if (Len > SrcLen + 1) {
 | 
						|
    if (Len <= 128) {
 | 
						|
      StringRef Str;
 | 
						|
      if (!getConstantStringInfo(Src, Str))
 | 
						|
        return nullptr;
 | 
						|
      std::string SrcStr = Str.str();
 | 
						|
      SrcStr.resize(Len, '\0');
 | 
						|
      Src = B.CreateGlobalString(SrcStr, "str");
 | 
						|
    } else {
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Type *PT = Callee->getFunctionType()->getParamType(0);
 | 
						|
  // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
 | 
						|
  CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
 | 
						|
                                   ConstantInt::get(DL.getIntPtrType(PT), Len));
 | 
						|
  NewCI->setAttributes(CI->getAttributes());
 | 
						|
  NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
  copyFlags(*CI, NewCI);
 | 
						|
  return Dst;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
 | 
						|
                                               unsigned CharSize,
 | 
						|
                                               Value *Bound) {
 | 
						|
  Value *Src = CI->getArgOperand(0);
 | 
						|
  Type *CharTy = B.getIntNTy(CharSize);
 | 
						|
 | 
						|
  if (isOnlyUsedInZeroEqualityComparison(CI) &&
 | 
						|
      (!Bound || isKnownNonZero(Bound, DL))) {
 | 
						|
    // Fold strlen:
 | 
						|
    //   strlen(x) != 0 --> *x != 0
 | 
						|
    //   strlen(x) == 0 --> *x == 0
 | 
						|
    // and likewise strnlen with constant N > 0:
 | 
						|
    //   strnlen(x, N) != 0 --> *x != 0
 | 
						|
    //   strnlen(x, N) == 0 --> *x == 0
 | 
						|
    return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
 | 
						|
                        CI->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Bound) {
 | 
						|
    if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
 | 
						|
      if (BoundCst->isZero())
 | 
						|
        // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
 | 
						|
        return ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
      if (BoundCst->isOne()) {
 | 
						|
        // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
 | 
						|
        Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
 | 
						|
        Value *ZeroChar = ConstantInt::get(CharTy, 0);
 | 
						|
        Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
 | 
						|
        return B.CreateZExt(Cmp, CI->getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (uint64_t Len = GetStringLength(Src, CharSize)) {
 | 
						|
    Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
 | 
						|
    // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
 | 
						|
    // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
 | 
						|
    if (Bound)
 | 
						|
      return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
 | 
						|
    return LenC;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Bound)
 | 
						|
    // Punt for strnlen for now.
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If s is a constant pointer pointing to a string literal, we can fold
 | 
						|
  // strlen(s + x) to strlen(s) - x, when x is known to be in the range
 | 
						|
  // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
 | 
						|
  // We only try to simplify strlen when the pointer s points to an array
 | 
						|
  // of i8. Otherwise, we would need to scale the offset x before doing the
 | 
						|
  // subtraction. This will make the optimization more complex, and it's not
 | 
						|
  // very useful because calling strlen for a pointer of other types is
 | 
						|
  // very uncommon.
 | 
						|
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
 | 
						|
    // TODO: Handle subobjects.
 | 
						|
    if (!isGEPBasedOnPointerToString(GEP, CharSize))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    ConstantDataArraySlice Slice;
 | 
						|
    if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
 | 
						|
      uint64_t NullTermIdx;
 | 
						|
      if (Slice.Array == nullptr) {
 | 
						|
        NullTermIdx = 0;
 | 
						|
      } else {
 | 
						|
        NullTermIdx = ~((uint64_t)0);
 | 
						|
        for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
 | 
						|
          if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
 | 
						|
            NullTermIdx = I;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // If the string does not have '\0', leave it to strlen to compute
 | 
						|
        // its length.
 | 
						|
        if (NullTermIdx == ~((uint64_t)0))
 | 
						|
          return nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      Value *Offset = GEP->getOperand(2);
 | 
						|
      KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
 | 
						|
      uint64_t ArrSize =
 | 
						|
             cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
 | 
						|
 | 
						|
      // If Offset is not provably in the range [0, NullTermIdx], we can still
 | 
						|
      // optimize if we can prove that the program has undefined behavior when
 | 
						|
      // Offset is outside that range. That is the case when GEP->getOperand(0)
 | 
						|
      // is a pointer to an object whose memory extent is NullTermIdx+1.
 | 
						|
      if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
 | 
						|
          (isa<GlobalVariable>(GEP->getOperand(0)) &&
 | 
						|
           NullTermIdx == ArrSize - 1)) {
 | 
						|
        Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
 | 
						|
        return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
 | 
						|
                           Offset);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // strlen(x?"foo":"bars") --> x ? 3 : 4
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
 | 
						|
    uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
 | 
						|
    uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
 | 
						|
    if (LenTrue && LenFalse) {
 | 
						|
      ORE.emit([&]() {
 | 
						|
        return OptimizationRemark("instcombine", "simplify-libcalls", CI)
 | 
						|
               << "folded strlen(select) to select of constants";
 | 
						|
      });
 | 
						|
      return B.CreateSelect(SI->getCondition(),
 | 
						|
                            ConstantInt::get(CI->getType(), LenTrue - 1),
 | 
						|
                            ConstantInt::get(CI->getType(), LenFalse - 1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  if (Value *V = optimizeStringLength(CI, B, 8))
 | 
						|
    return V;
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Bound = CI->getArgOperand(1);
 | 
						|
  if (Value *V = optimizeStringLength(CI, B, 8, Bound))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (isKnownNonZero(Bound, DL))
 | 
						|
    annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Module &M = *CI->getModule();
 | 
						|
  unsigned WCharSize = TLI->getWCharSize(M) * 8;
 | 
						|
  // We cannot perform this optimization without wchar_size metadata.
 | 
						|
  if (WCharSize == 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return optimizeStringLength(CI, B, WCharSize);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  StringRef S1, S2;
 | 
						|
  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | 
						|
  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | 
						|
 | 
						|
  // strpbrk(s, "") -> nullptr
 | 
						|
  // strpbrk("", s) -> nullptr
 | 
						|
  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // Constant folding.
 | 
						|
  if (HasS1 && HasS2) {
 | 
						|
    size_t I = S1.find_first_of(S2);
 | 
						|
    if (I == StringRef::npos) // No match.
 | 
						|
      return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
    return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
 | 
						|
                               B.getInt64(I), "strpbrk");
 | 
						|
  }
 | 
						|
 | 
						|
  // strpbrk(s, "a") -> strchr(s, 'a')
 | 
						|
  if (HasS2 && S2.size() == 1)
 | 
						|
    return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *EndPtr = CI->getArgOperand(1);
 | 
						|
  if (isa<ConstantPointerNull>(EndPtr)) {
 | 
						|
    // With a null EndPtr, this function won't capture the main argument.
 | 
						|
    // It would be readonly too, except that it still may write to errno.
 | 
						|
    CI->addParamAttr(0, Attribute::NoCapture);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  StringRef S1, S2;
 | 
						|
  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | 
						|
  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | 
						|
 | 
						|
  // strspn(s, "") -> 0
 | 
						|
  // strspn("", s) -> 0
 | 
						|
  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // Constant folding.
 | 
						|
  if (HasS1 && HasS2) {
 | 
						|
    size_t Pos = S1.find_first_not_of(S2);
 | 
						|
    if (Pos == StringRef::npos)
 | 
						|
      Pos = S1.size();
 | 
						|
    return ConstantInt::get(CI->getType(), Pos);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  StringRef S1, S2;
 | 
						|
  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | 
						|
  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | 
						|
 | 
						|
  // strcspn("", s) -> 0
 | 
						|
  if (HasS1 && S1.empty())
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // Constant folding.
 | 
						|
  if (HasS1 && HasS2) {
 | 
						|
    size_t Pos = S1.find_first_of(S2);
 | 
						|
    if (Pos == StringRef::npos)
 | 
						|
      Pos = S1.size();
 | 
						|
    return ConstantInt::get(CI->getType(), Pos);
 | 
						|
  }
 | 
						|
 | 
						|
  // strcspn(s, "") -> strlen(s)
 | 
						|
  if (HasS2 && S2.empty())
 | 
						|
    return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // fold strstr(x, x) -> x.
 | 
						|
  if (CI->getArgOperand(0) == CI->getArgOperand(1))
 | 
						|
    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
 | 
						|
 | 
						|
  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
 | 
						|
  if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
 | 
						|
    Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
 | 
						|
    if (!StrLen)
 | 
						|
      return nullptr;
 | 
						|
    Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                                 StrLen, B, DL, TLI);
 | 
						|
    if (!StrNCmp)
 | 
						|
      return nullptr;
 | 
						|
    for (User *U : llvm::make_early_inc_range(CI->users())) {
 | 
						|
      ICmpInst *Old = cast<ICmpInst>(U);
 | 
						|
      Value *Cmp =
 | 
						|
          B.CreateICmp(Old->getPredicate(), StrNCmp,
 | 
						|
                       ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
 | 
						|
      replaceAllUsesWith(Old, Cmp);
 | 
						|
    }
 | 
						|
    return CI;
 | 
						|
  }
 | 
						|
 | 
						|
  // See if either input string is a constant string.
 | 
						|
  StringRef SearchStr, ToFindStr;
 | 
						|
  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
 | 
						|
  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
 | 
						|
 | 
						|
  // fold strstr(x, "") -> x.
 | 
						|
  if (HasStr2 && ToFindStr.empty())
 | 
						|
    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
 | 
						|
 | 
						|
  // If both strings are known, constant fold it.
 | 
						|
  if (HasStr1 && HasStr2) {
 | 
						|
    size_t Offset = SearchStr.find(ToFindStr);
 | 
						|
 | 
						|
    if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
 | 
						|
      return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
    // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
 | 
						|
    Value *Result = castToCStr(CI->getArgOperand(0), B);
 | 
						|
    Result =
 | 
						|
        B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
 | 
						|
    return B.CreateBitCast(Result, CI->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // fold strstr(x, "y") -> strchr(x, 'y').
 | 
						|
  if (HasStr2 && ToFindStr.size() == 1) {
 | 
						|
    Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
 | 
						|
    return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *SrcStr = CI->getArgOperand(0);
 | 
						|
  Value *Size = CI->getArgOperand(2);
 | 
						|
  annotateNonNullAndDereferenceable(CI, 0, Size, DL);
 | 
						|
  Value *CharVal = CI->getArgOperand(1);
 | 
						|
  ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
 | 
						|
  Value *NullPtr = Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  if (LenC) {
 | 
						|
    if (LenC->isZero())
 | 
						|
      // Fold memrchr(x, y, 0) --> null.
 | 
						|
      return NullPtr;
 | 
						|
 | 
						|
    if (LenC->isOne()) {
 | 
						|
      // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
 | 
						|
      // constant or otherwise.
 | 
						|
      Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
 | 
						|
      // Slice off the character's high end bits.
 | 
						|
      CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
 | 
						|
      Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
 | 
						|
      return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Str.size() == 0)
 | 
						|
    // If the array is empty fold memrchr(A, C, N) to null for any value
 | 
						|
    // of C and N on the basis that the only valid value of N is zero
 | 
						|
    // (otherwise the call is undefined).
 | 
						|
    return NullPtr;
 | 
						|
 | 
						|
  uint64_t EndOff = UINT64_MAX;
 | 
						|
  if (LenC) {
 | 
						|
    EndOff = LenC->getZExtValue();
 | 
						|
    if (Str.size() < EndOff)
 | 
						|
      // Punt out-of-bounds accesses to sanitizers and/or libc.
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
 | 
						|
    // Fold memrchr(S, C, N) for a constant C.
 | 
						|
    size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
 | 
						|
    if (Pos == StringRef::npos)
 | 
						|
      // When the character is not in the source array fold the result
 | 
						|
      // to null regardless of Size.
 | 
						|
      return NullPtr;
 | 
						|
 | 
						|
    if (LenC)
 | 
						|
      // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
 | 
						|
      return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
 | 
						|
 | 
						|
    if (Str.find(Str[Pos]) == Pos) {
 | 
						|
      // When there is just a single occurrence of C in S, i.e., the one
 | 
						|
      // in Str[Pos], fold
 | 
						|
      //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
 | 
						|
      // for nonconstant N.
 | 
						|
      Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
 | 
						|
                                   "memrchr.cmp");
 | 
						|
      Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
 | 
						|
                                           B.getInt64(Pos), "memrchr.ptr_plus");
 | 
						|
      return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Truncate the string to search at most EndOff characters.
 | 
						|
  Str = Str.substr(0, EndOff);
 | 
						|
  if (Str.find_first_not_of(Str[0]) != StringRef::npos)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If the source array consists of all equal characters, then for any
 | 
						|
  // C and N (whether in bounds or not), fold memrchr(S, C, N) to
 | 
						|
  //   N != 0 && *S == C ? S + N - 1 : null
 | 
						|
  Type *SizeTy = Size->getType();
 | 
						|
  Type *Int8Ty = B.getInt8Ty();
 | 
						|
  Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
 | 
						|
  // Slice off the sought character's high end bits.
 | 
						|
  CharVal = B.CreateTrunc(CharVal, Int8Ty);
 | 
						|
  Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
 | 
						|
  Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
 | 
						|
  Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
 | 
						|
  Value *SrcPlus =
 | 
						|
      B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
 | 
						|
  return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *SrcStr = CI->getArgOperand(0);
 | 
						|
  Value *Size = CI->getArgOperand(2);
 | 
						|
 | 
						|
  if (isKnownNonZero(Size, DL)) {
 | 
						|
    annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
    if (isOnlyUsedInEqualityComparison(CI, SrcStr))
 | 
						|
      return memChrToCharCompare(CI, Size, B, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *CharVal = CI->getArgOperand(1);
 | 
						|
  ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
 | 
						|
  ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
 | 
						|
  Value *NullPtr = Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // memchr(x, y, 0) -> null
 | 
						|
  if (LenC) {
 | 
						|
    if (LenC->isZero())
 | 
						|
      return NullPtr;
 | 
						|
 | 
						|
    if (LenC->isOne()) {
 | 
						|
      // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
 | 
						|
      // constant or otherwise.
 | 
						|
      Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
 | 
						|
      // Slice off the character's high end bits.
 | 
						|
      CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
 | 
						|
      Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
 | 
						|
      return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (CharC) {
 | 
						|
    size_t Pos = Str.find(CharC->getZExtValue());
 | 
						|
    if (Pos == StringRef::npos)
 | 
						|
      // When the character is not in the source array fold the result
 | 
						|
      // to null regardless of Size.
 | 
						|
      return NullPtr;
 | 
						|
 | 
						|
    // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
 | 
						|
    // When the constant Size is less than or equal to the character
 | 
						|
    // position also fold the result to null.
 | 
						|
    Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
 | 
						|
                                 "memchr.cmp");
 | 
						|
    Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
 | 
						|
                                         "memchr.ptr");
 | 
						|
    return B.CreateSelect(Cmp, NullPtr, SrcPlus);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Str.size() == 0)
 | 
						|
    // If the array is empty fold memchr(A, C, N) to null for any value
 | 
						|
    // of C and N on the basis that the only valid value of N is zero
 | 
						|
    // (otherwise the call is undefined).
 | 
						|
    return NullPtr;
 | 
						|
 | 
						|
  if (LenC)
 | 
						|
    Str = substr(Str, LenC->getZExtValue());
 | 
						|
 | 
						|
  size_t Pos = Str.find_first_not_of(Str[0]);
 | 
						|
  if (Pos == StringRef::npos
 | 
						|
      || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
 | 
						|
    // If the source array consists of at most two consecutive sequences
 | 
						|
    // of the same characters, then for any C and N (whether in bounds or
 | 
						|
    // not), fold memchr(S, C, N) to
 | 
						|
    //   N != 0 && *S == C ? S : null
 | 
						|
    // or for the two sequences to:
 | 
						|
    //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
 | 
						|
    //   ^Sel2                   ^Sel1 are denoted above.
 | 
						|
    // The latter makes it also possible to fold strchr() calls with strings
 | 
						|
    // of the same characters.
 | 
						|
    Type *SizeTy = Size->getType();
 | 
						|
    Type *Int8Ty = B.getInt8Ty();
 | 
						|
 | 
						|
    // Slice off the sought character's high end bits.
 | 
						|
    CharVal = B.CreateTrunc(CharVal, Int8Ty);
 | 
						|
 | 
						|
    Value *Sel1 = NullPtr;
 | 
						|
    if (Pos != StringRef::npos) {
 | 
						|
      // Handle two consecutive sequences of the same characters.
 | 
						|
      Value *PosVal = ConstantInt::get(SizeTy, Pos);
 | 
						|
      Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
 | 
						|
      Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
 | 
						|
      Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
 | 
						|
      Value *And = B.CreateAnd(CEqSPos, NGtPos);
 | 
						|
      Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
 | 
						|
      Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
 | 
						|
    }
 | 
						|
 | 
						|
    Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
 | 
						|
    Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
 | 
						|
    Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
 | 
						|
    Value *And = B.CreateAnd(NNeZ, CEqS0);
 | 
						|
    return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!LenC) {
 | 
						|
    if (isOnlyUsedInEqualityComparison(CI, SrcStr))
 | 
						|
      // S is dereferenceable so it's safe to load from it and fold
 | 
						|
      //   memchr(S, C, N) == S to N && *S == C for any C and N.
 | 
						|
      // TODO: This is safe even even for nonconstant S.
 | 
						|
      return memChrToCharCompare(CI, Size, B, DL);
 | 
						|
 | 
						|
    // From now on we need a constant length and constant array.
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the char is variable but the input str and length are not we can turn
 | 
						|
  // this memchr call into a simple bit field test. Of course this only works
 | 
						|
  // when the return value is only checked against null.
 | 
						|
  //
 | 
						|
  // It would be really nice to reuse switch lowering here but we can't change
 | 
						|
  // the CFG at this point.
 | 
						|
  //
 | 
						|
  // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
 | 
						|
  // != 0
 | 
						|
  //   after bounds check.
 | 
						|
  if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  unsigned char Max =
 | 
						|
      *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
 | 
						|
                        reinterpret_cast<const unsigned char *>(Str.end()));
 | 
						|
 | 
						|
  // Make sure the bit field we're about to create fits in a register on the
 | 
						|
  // target.
 | 
						|
  // FIXME: On a 64 bit architecture this prevents us from using the
 | 
						|
  // interesting range of alpha ascii chars. We could do better by emitting
 | 
						|
  // two bitfields or shifting the range by 64 if no lower chars are used.
 | 
						|
  if (!DL.fitsInLegalInteger(Max + 1))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // For the bit field use a power-of-2 type with at least 8 bits to avoid
 | 
						|
  // creating unnecessary illegal types.
 | 
						|
  unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
 | 
						|
 | 
						|
  // Now build the bit field.
 | 
						|
  APInt Bitfield(Width, 0);
 | 
						|
  for (char C : Str)
 | 
						|
    Bitfield.setBit((unsigned char)C);
 | 
						|
  Value *BitfieldC = B.getInt(Bitfield);
 | 
						|
 | 
						|
  // Adjust width of "C" to the bitfield width, then mask off the high bits.
 | 
						|
  Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
 | 
						|
  C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
 | 
						|
 | 
						|
  // First check that the bit field access is within bounds.
 | 
						|
  Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
 | 
						|
                               "memchr.bounds");
 | 
						|
 | 
						|
  // Create code that checks if the given bit is set in the field.
 | 
						|
  Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
 | 
						|
  Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
 | 
						|
 | 
						|
  // Finally merge both checks and cast to pointer type. The inttoptr
 | 
						|
  // implicitly zexts the i1 to intptr type.
 | 
						|
  return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
 | 
						|
                          CI->getType());
 | 
						|
}
 | 
						|
 | 
						|
// Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
 | 
						|
// arrays LHS and RHS and nonconstant Size.
 | 
						|
static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
 | 
						|
                                    Value *Size, bool StrNCmp,
 | 
						|
                                    IRBuilderBase &B, const DataLayout &DL) {
 | 
						|
  if (LHS == RHS) // memcmp(s,s,x) -> 0
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  StringRef LStr, RStr;
 | 
						|
  if (!getConstantStringInfo(LHS, LStr, 0, /*TrimAtNul=*/false) ||
 | 
						|
      !getConstantStringInfo(RHS, RStr, 0, /*TrimAtNul=*/false))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If the contents of both constant arrays are known, fold a call to
 | 
						|
  // memcmp(A, B, N) to
 | 
						|
  //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
 | 
						|
  // where Pos is the first mismatch between A and B, determined below.
 | 
						|
 | 
						|
  uint64_t Pos = 0;
 | 
						|
  Value *Zero = ConstantInt::get(CI->getType(), 0);
 | 
						|
  for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
 | 
						|
    if (Pos == MinSize ||
 | 
						|
        (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
 | 
						|
      // One array is a leading part of the other of equal or greater
 | 
						|
      // size, or for strncmp, the arrays are equal strings.
 | 
						|
      // Fold the result to zero.  Size is assumed to be in bounds, since
 | 
						|
      // otherwise the call would be undefined.
 | 
						|
      return Zero;
 | 
						|
    }
 | 
						|
 | 
						|
    if (LStr[Pos] != RStr[Pos])
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Normalize the result.
 | 
						|
  typedef unsigned char UChar;
 | 
						|
  int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
 | 
						|
  Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
 | 
						|
  Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
 | 
						|
  Value *Res = ConstantInt::get(CI->getType(), IRes);
 | 
						|
  return B.CreateSelect(Cmp, Zero, Res);
 | 
						|
}
 | 
						|
 | 
						|
// Optimize a memcmp call CI with constant size Len.
 | 
						|
static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
 | 
						|
                                         uint64_t Len, IRBuilderBase &B,
 | 
						|
                                         const DataLayout &DL) {
 | 
						|
  if (Len == 0) // memcmp(s1,s2,0) -> 0
 | 
						|
    return Constant::getNullValue(CI->getType());
 | 
						|
 | 
						|
  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
 | 
						|
  if (Len == 1) {
 | 
						|
    Value *LHSV =
 | 
						|
        B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
 | 
						|
                     CI->getType(), "lhsv");
 | 
						|
    Value *RHSV =
 | 
						|
        B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
 | 
						|
                     CI->getType(), "rhsv");
 | 
						|
    return B.CreateSub(LHSV, RHSV, "chardiff");
 | 
						|
  }
 | 
						|
 | 
						|
  // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
 | 
						|
  // TODO: The case where both inputs are constants does not need to be limited
 | 
						|
  // to legal integers or equality comparison. See block below this.
 | 
						|
  if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
 | 
						|
    IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
 | 
						|
    unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
 | 
						|
 | 
						|
    // First, see if we can fold either argument to a constant.
 | 
						|
    Value *LHSV = nullptr;
 | 
						|
    if (auto *LHSC = dyn_cast<Constant>(LHS)) {
 | 
						|
      LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
 | 
						|
      LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
 | 
						|
    }
 | 
						|
    Value *RHSV = nullptr;
 | 
						|
    if (auto *RHSC = dyn_cast<Constant>(RHS)) {
 | 
						|
      RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
 | 
						|
      RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't generate unaligned loads. If either source is constant data,
 | 
						|
    // alignment doesn't matter for that source because there is no load.
 | 
						|
    if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
 | 
						|
        (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
 | 
						|
      if (!LHSV) {
 | 
						|
        Type *LHSPtrTy =
 | 
						|
            IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
 | 
						|
        LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
 | 
						|
      }
 | 
						|
      if (!RHSV) {
 | 
						|
        Type *RHSPtrTy =
 | 
						|
            IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
 | 
						|
        RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
 | 
						|
      }
 | 
						|
      return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Most simplifications for memcmp also apply to bcmp.
 | 
						|
Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
 | 
						|
                                                   IRBuilderBase &B) {
 | 
						|
  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
 | 
						|
  Value *Size = CI->getArgOperand(2);
 | 
						|
 | 
						|
  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
 | 
						|
 | 
						|
  if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Handle constant Size.
 | 
						|
  ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
 | 
						|
  if (!LenC)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Module *M = CI->getModule();
 | 
						|
  if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
 | 
						|
    return V;
 | 
						|
 | 
						|
  // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
 | 
						|
  // bcmp can be more efficient than memcmp because it only has to know that
 | 
						|
  // there is a difference, not how different one is to the other.
 | 
						|
  if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
 | 
						|
      isOnlyUsedInZeroEqualityComparison(CI)) {
 | 
						|
    Value *LHS = CI->getArgOperand(0);
 | 
						|
    Value *RHS = CI->getArgOperand(1);
 | 
						|
    Value *Size = CI->getArgOperand(2);
 | 
						|
    return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  return optimizeMemCmpBCmpCommon(CI, B);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Size = CI->getArgOperand(2);
 | 
						|
  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
 | 
						|
  if (isa<IntrinsicInst>(CI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
 | 
						|
  CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
 | 
						|
                                   CI->getArgOperand(1), Align(1), Size);
 | 
						|
  NewCI->setAttributes(CI->getAttributes());
 | 
						|
  NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
  copyFlags(*CI, NewCI);
 | 
						|
  return CI->getArgOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Dst = CI->getArgOperand(0);
 | 
						|
  Value *Src = CI->getArgOperand(1);
 | 
						|
  ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | 
						|
  ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
 | 
						|
  StringRef SrcStr;
 | 
						|
  if (CI->use_empty() && Dst == Src)
 | 
						|
    return Dst;
 | 
						|
  // memccpy(d, s, c, 0) -> nullptr
 | 
						|
  if (N) {
 | 
						|
    if (N->isNullValue())
 | 
						|
      return Constant::getNullValue(CI->getType());
 | 
						|
    if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
 | 
						|
                               /*TrimAtNul=*/false) ||
 | 
						|
        // TODO: Handle zeroinitializer.
 | 
						|
        !StopChar)
 | 
						|
      return nullptr;
 | 
						|
  } else {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Wrap arg 'c' of type int to char
 | 
						|
  size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
 | 
						|
  if (Pos == StringRef::npos) {
 | 
						|
    if (N->getZExtValue() <= SrcStr.size()) {
 | 
						|
      copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
 | 
						|
                                    CI->getArgOperand(3)));
 | 
						|
      return Constant::getNullValue(CI->getType());
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *NewN =
 | 
						|
      ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
 | 
						|
  // memccpy -> llvm.memcpy
 | 
						|
  copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
 | 
						|
  return Pos + 1 <= N->getZExtValue()
 | 
						|
             ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
 | 
						|
             : Constant::getNullValue(CI->getType());
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Dst = CI->getArgOperand(0);
 | 
						|
  Value *N = CI->getArgOperand(2);
 | 
						|
  // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
 | 
						|
  CallInst *NewCI =
 | 
						|
      B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
 | 
						|
  // Propagate attributes, but memcpy has no return value, so make sure that
 | 
						|
  // any return attributes are compliant.
 | 
						|
  // TODO: Attach return value attributes to the 1st operand to preserve them?
 | 
						|
  NewCI->setAttributes(CI->getAttributes());
 | 
						|
  NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
  copyFlags(*CI, NewCI);
 | 
						|
  return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Size = CI->getArgOperand(2);
 | 
						|
  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
 | 
						|
  if (isa<IntrinsicInst>(CI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
 | 
						|
  CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
 | 
						|
                                    CI->getArgOperand(1), Align(1), Size);
 | 
						|
  NewCI->setAttributes(CI->getAttributes());
 | 
						|
  NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
  copyFlags(*CI, NewCI);
 | 
						|
  return CI->getArgOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Value *Size = CI->getArgOperand(2);
 | 
						|
  annotateNonNullAndDereferenceable(CI, 0, Size, DL);
 | 
						|
  if (isa<IntrinsicInst>(CI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
 | 
						|
  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
 | 
						|
  CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
 | 
						|
  NewCI->setAttributes(CI->getAttributes());
 | 
						|
  NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
  copyFlags(*CI, NewCI);
 | 
						|
  return CI->getArgOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
 | 
						|
    return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Math Library Optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Replace a libcall \p CI with a call to intrinsic \p IID
 | 
						|
static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
 | 
						|
                               Intrinsic::ID IID) {
 | 
						|
  // Propagate fast-math flags from the existing call to the new call.
 | 
						|
  IRBuilderBase::FastMathFlagGuard Guard(B);
 | 
						|
  B.setFastMathFlags(CI->getFastMathFlags());
 | 
						|
 | 
						|
  Module *M = CI->getModule();
 | 
						|
  Value *V = CI->getArgOperand(0);
 | 
						|
  Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
 | 
						|
  CallInst *NewCall = B.CreateCall(F, V);
 | 
						|
  NewCall->takeName(CI);
 | 
						|
  return copyFlags(*CI, NewCall);
 | 
						|
}
 | 
						|
 | 
						|
/// Return a variant of Val with float type.
 | 
						|
/// Currently this works in two cases: If Val is an FPExtension of a float
 | 
						|
/// value to something bigger, simply return the operand.
 | 
						|
/// If Val is a ConstantFP but can be converted to a float ConstantFP without
 | 
						|
/// loss of precision do so.
 | 
						|
static Value *valueHasFloatPrecision(Value *Val) {
 | 
						|
  if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
 | 
						|
    Value *Op = Cast->getOperand(0);
 | 
						|
    if (Op->getType()->isFloatTy())
 | 
						|
      return Op;
 | 
						|
  }
 | 
						|
  if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
 | 
						|
    APFloat F = Const->getValueAPF();
 | 
						|
    bool losesInfo;
 | 
						|
    (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
 | 
						|
                    &losesInfo);
 | 
						|
    if (!losesInfo)
 | 
						|
      return ConstantFP::get(Const->getContext(), F);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Shrink double -> float functions.
 | 
						|
static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
 | 
						|
                               bool isBinary, const TargetLibraryInfo *TLI,
 | 
						|
                               bool isPrecise = false) {
 | 
						|
  Function *CalleeFn = CI->getCalledFunction();
 | 
						|
  if (!CI->getType()->isDoubleTy() || !CalleeFn)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If not all the uses of the function are converted to float, then bail out.
 | 
						|
  // This matters if the precision of the result is more important than the
 | 
						|
  // precision of the arguments.
 | 
						|
  if (isPrecise)
 | 
						|
    for (User *U : CI->users()) {
 | 
						|
      FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
 | 
						|
      if (!Cast || !Cast->getType()->isFloatTy())
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
  // If this is something like 'g((double) float)', convert to 'gf(float)'.
 | 
						|
  Value *V[2];
 | 
						|
  V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
 | 
						|
  V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
 | 
						|
  if (!V[0] || (isBinary && !V[1]))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If call isn't an intrinsic, check that it isn't within a function with the
 | 
						|
  // same name as the float version of this call, otherwise the result is an
 | 
						|
  // infinite loop.  For example, from MinGW-w64:
 | 
						|
  //
 | 
						|
  // float expf(float val) { return (float) exp((double) val); }
 | 
						|
  StringRef CalleeName = CalleeFn->getName();
 | 
						|
  bool IsIntrinsic = CalleeFn->isIntrinsic();
 | 
						|
  if (!IsIntrinsic) {
 | 
						|
    StringRef CallerName = CI->getFunction()->getName();
 | 
						|
    if (!CallerName.empty() && CallerName.back() == 'f' &&
 | 
						|
        CallerName.size() == (CalleeName.size() + 1) &&
 | 
						|
        CallerName.startswith(CalleeName))
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Propagate the math semantics from the current function to the new function.
 | 
						|
  IRBuilderBase::FastMathFlagGuard Guard(B);
 | 
						|
  B.setFastMathFlags(CI->getFastMathFlags());
 | 
						|
 | 
						|
  // g((double) float) -> (double) gf(float)
 | 
						|
  Value *R;
 | 
						|
  if (IsIntrinsic) {
 | 
						|
    Module *M = CI->getModule();
 | 
						|
    Intrinsic::ID IID = CalleeFn->getIntrinsicID();
 | 
						|
    Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
 | 
						|
    R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
 | 
						|
  } else {
 | 
						|
    AttributeList CalleeAttrs = CalleeFn->getAttributes();
 | 
						|
    R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
 | 
						|
                                         CalleeAttrs)
 | 
						|
                 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
 | 
						|
  }
 | 
						|
  return B.CreateFPExt(R, B.getDoubleTy());
 | 
						|
}
 | 
						|
 | 
						|
/// Shrink double -> float for unary functions.
 | 
						|
static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
 | 
						|
                                    const TargetLibraryInfo *TLI,
 | 
						|
                                    bool isPrecise = false) {
 | 
						|
  return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
 | 
						|
}
 | 
						|
 | 
						|
/// Shrink double -> float for binary functions.
 | 
						|
static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
 | 
						|
                                     const TargetLibraryInfo *TLI,
 | 
						|
                                     bool isPrecise = false) {
 | 
						|
  return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
 | 
						|
}
 | 
						|
 | 
						|
// cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
 | 
						|
Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  if (!CI->isFast())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Propagate fast-math flags from the existing call to new instructions.
 | 
						|
  IRBuilderBase::FastMathFlagGuard Guard(B);
 | 
						|
  B.setFastMathFlags(CI->getFastMathFlags());
 | 
						|
 | 
						|
  Value *Real, *Imag;
 | 
						|
  if (CI->arg_size() == 1) {
 | 
						|
    Value *Op = CI->getArgOperand(0);
 | 
						|
    assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
 | 
						|
    Real = B.CreateExtractValue(Op, 0, "real");
 | 
						|
    Imag = B.CreateExtractValue(Op, 1, "imag");
 | 
						|
  } else {
 | 
						|
    assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
 | 
						|
    Real = CI->getArgOperand(0);
 | 
						|
    Imag = CI->getArgOperand(1);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *RealReal = B.CreateFMul(Real, Real);
 | 
						|
  Value *ImagImag = B.CreateFMul(Imag, Imag);
 | 
						|
 | 
						|
  Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
 | 
						|
                                              CI->getType());
 | 
						|
  return copyFlags(
 | 
						|
      *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
 | 
						|
}
 | 
						|
 | 
						|
static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
 | 
						|
                                      IRBuilderBase &B) {
 | 
						|
  if (!isa<FPMathOperator>(Call))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  IRBuilderBase::FastMathFlagGuard Guard(B);
 | 
						|
  B.setFastMathFlags(Call->getFastMathFlags());
 | 
						|
 | 
						|
  // TODO: Can this be shared to also handle LLVM intrinsics?
 | 
						|
  Value *X;
 | 
						|
  switch (Func) {
 | 
						|
  case LibFunc_sin:
 | 
						|
  case LibFunc_sinf:
 | 
						|
  case LibFunc_sinl:
 | 
						|
  case LibFunc_tan:
 | 
						|
  case LibFunc_tanf:
 | 
						|
  case LibFunc_tanl:
 | 
						|
    // sin(-X) --> -sin(X)
 | 
						|
    // tan(-X) --> -tan(X)
 | 
						|
    if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
 | 
						|
      return B.CreateFNeg(
 | 
						|
          copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
 | 
						|
    break;
 | 
						|
  case LibFunc_cos:
 | 
						|
  case LibFunc_cosf:
 | 
						|
  case LibFunc_cosl:
 | 
						|
    // cos(-X) --> cos(X)
 | 
						|
    if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
 | 
						|
      return copyFlags(*Call,
 | 
						|
                       B.CreateCall(Call->getCalledFunction(), X, "cos"));
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Return a properly extended integer (DstWidth bits wide) if the operation is
 | 
						|
// an itofp.
 | 
						|
static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
 | 
						|
  if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
 | 
						|
    Value *Op = cast<Instruction>(I2F)->getOperand(0);
 | 
						|
    // Make sure that the exponent fits inside an "int" of size DstWidth,
 | 
						|
    // thus avoiding any range issues that FP has not.
 | 
						|
    unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
 | 
						|
    if (BitWidth < DstWidth ||
 | 
						|
        (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
 | 
						|
      return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
 | 
						|
                                  : B.CreateZExt(Op, B.getIntNTy(DstWidth));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
 | 
						|
/// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
 | 
						|
/// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
 | 
						|
Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
 | 
						|
  Module *M = Pow->getModule();
 | 
						|
  Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
 | 
						|
  AttributeList Attrs; // Attributes are only meaningful on the original call
 | 
						|
  Module *Mod = Pow->getModule();
 | 
						|
  Type *Ty = Pow->getType();
 | 
						|
  bool Ignored;
 | 
						|
 | 
						|
  // Evaluate special cases related to a nested function as the base.
 | 
						|
 | 
						|
  // pow(exp(x), y) -> exp(x * y)
 | 
						|
  // pow(exp2(x), y) -> exp2(x * y)
 | 
						|
  // If exp{,2}() is used only once, it is better to fold two transcendental
 | 
						|
  // math functions into one.  If used again, exp{,2}() would still have to be
 | 
						|
  // called with the original argument, then keep both original transcendental
 | 
						|
  // functions.  However, this transformation is only safe with fully relaxed
 | 
						|
  // math semantics, since, besides rounding differences, it changes overflow
 | 
						|
  // and underflow behavior quite dramatically.  For example:
 | 
						|
  //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
 | 
						|
  // Whereas:
 | 
						|
  //   exp(1000 * 0.001) = exp(1)
 | 
						|
  // TODO: Loosen the requirement for fully relaxed math semantics.
 | 
						|
  // TODO: Handle exp10() when more targets have it available.
 | 
						|
  CallInst *BaseFn = dyn_cast<CallInst>(Base);
 | 
						|
  if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
 | 
						|
    LibFunc LibFn;
 | 
						|
 | 
						|
    Function *CalleeFn = BaseFn->getCalledFunction();
 | 
						|
    if (CalleeFn &&
 | 
						|
        TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
 | 
						|
        isLibFuncEmittable(M, TLI, LibFn)) {
 | 
						|
      StringRef ExpName;
 | 
						|
      Intrinsic::ID ID;
 | 
						|
      Value *ExpFn;
 | 
						|
      LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
 | 
						|
 | 
						|
      switch (LibFn) {
 | 
						|
      default:
 | 
						|
        return nullptr;
 | 
						|
      case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
 | 
						|
        ExpName = TLI->getName(LibFunc_exp);
 | 
						|
        ID = Intrinsic::exp;
 | 
						|
        LibFnFloat = LibFunc_expf;
 | 
						|
        LibFnDouble = LibFunc_exp;
 | 
						|
        LibFnLongDouble = LibFunc_expl;
 | 
						|
        break;
 | 
						|
      case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
 | 
						|
        ExpName = TLI->getName(LibFunc_exp2);
 | 
						|
        ID = Intrinsic::exp2;
 | 
						|
        LibFnFloat = LibFunc_exp2f;
 | 
						|
        LibFnDouble = LibFunc_exp2;
 | 
						|
        LibFnLongDouble = LibFunc_exp2l;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Create new exp{,2}() with the product as its argument.
 | 
						|
      Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
 | 
						|
      ExpFn = BaseFn->doesNotAccessMemory()
 | 
						|
              ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
 | 
						|
                             FMul, ExpName)
 | 
						|
              : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
 | 
						|
                                     LibFnLongDouble, B,
 | 
						|
                                     BaseFn->getAttributes());
 | 
						|
 | 
						|
      // Since the new exp{,2}() is different from the original one, dead code
 | 
						|
      // elimination cannot be trusted to remove it, since it may have side
 | 
						|
      // effects (e.g., errno).  When the only consumer for the original
 | 
						|
      // exp{,2}() is pow(), then it has to be explicitly erased.
 | 
						|
      substituteInParent(BaseFn, ExpFn);
 | 
						|
      return ExpFn;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Evaluate special cases related to a constant base.
 | 
						|
 | 
						|
  const APFloat *BaseF;
 | 
						|
  if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // pow(2.0, itofp(x)) -> ldexp(1.0, x)
 | 
						|
  if (match(Base, m_SpecificFP(2.0)) &&
 | 
						|
      (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
 | 
						|
      hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
 | 
						|
    if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
 | 
						|
      return copyFlags(*Pow,
 | 
						|
                       emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
 | 
						|
                                             TLI, LibFunc_ldexp, LibFunc_ldexpf,
 | 
						|
                                             LibFunc_ldexpl, B, Attrs));
 | 
						|
  }
 | 
						|
 | 
						|
  // pow(2.0 ** n, x) -> exp2(n * x)
 | 
						|
  if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
 | 
						|
    APFloat BaseR = APFloat(1.0);
 | 
						|
    BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
 | 
						|
    BaseR = BaseR / *BaseF;
 | 
						|
    bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
 | 
						|
    const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
 | 
						|
    APSInt NI(64, false);
 | 
						|
    if ((IsInteger || IsReciprocal) &&
 | 
						|
        NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
 | 
						|
            APFloat::opOK &&
 | 
						|
        NI > 1 && NI.isPowerOf2()) {
 | 
						|
      double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
 | 
						|
      Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
 | 
						|
      if (Pow->doesNotAccessMemory())
 | 
						|
        return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
 | 
						|
                                                Mod, Intrinsic::exp2, Ty),
 | 
						|
                                            FMul, "exp2"));
 | 
						|
      else
 | 
						|
        return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
 | 
						|
                                                    LibFunc_exp2f,
 | 
						|
                                                    LibFunc_exp2l, B, Attrs));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // pow(10.0, x) -> exp10(x)
 | 
						|
  // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
 | 
						|
  if (match(Base, m_SpecificFP(10.0)) &&
 | 
						|
      hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
 | 
						|
    return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
 | 
						|
                                                LibFunc_exp10f, LibFunc_exp10l,
 | 
						|
                                                B, Attrs));
 | 
						|
 | 
						|
  // pow(x, y) -> exp2(log2(x) * y)
 | 
						|
  if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
 | 
						|
      !BaseF->isNegative()) {
 | 
						|
    // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
 | 
						|
    // Luckily optimizePow has already handled the x == 1 case.
 | 
						|
    assert(!match(Base, m_FPOne()) &&
 | 
						|
           "pow(1.0, y) should have been simplified earlier!");
 | 
						|
 | 
						|
    Value *Log = nullptr;
 | 
						|
    if (Ty->isFloatTy())
 | 
						|
      Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
 | 
						|
    else if (Ty->isDoubleTy())
 | 
						|
      Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
 | 
						|
 | 
						|
    if (Log) {
 | 
						|
      Value *FMul = B.CreateFMul(Log, Expo, "mul");
 | 
						|
      if (Pow->doesNotAccessMemory())
 | 
						|
        return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
 | 
						|
                                                Mod, Intrinsic::exp2, Ty),
 | 
						|
                                            FMul, "exp2"));
 | 
						|
      else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
 | 
						|
                          LibFunc_exp2l))
 | 
						|
        return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
 | 
						|
                                                    LibFunc_exp2f,
 | 
						|
                                                    LibFunc_exp2l, B, Attrs));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
 | 
						|
                          Module *M, IRBuilderBase &B,
 | 
						|
                          const TargetLibraryInfo *TLI) {
 | 
						|
  // If errno is never set, then use the intrinsic for sqrt().
 | 
						|
  if (NoErrno) {
 | 
						|
    Function *SqrtFn =
 | 
						|
        Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
 | 
						|
    return B.CreateCall(SqrtFn, V, "sqrt");
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, use the libcall for sqrt().
 | 
						|
  if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
 | 
						|
                 LibFunc_sqrtl))
 | 
						|
    // TODO: We also should check that the target can in fact lower the sqrt()
 | 
						|
    // libcall. We currently have no way to ask this question, so we ask if
 | 
						|
    // the target has a sqrt() libcall, which is not exactly the same.
 | 
						|
    return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
 | 
						|
                                LibFunc_sqrtl, B, Attrs);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Use square root in place of pow(x, +/-0.5).
 | 
						|
Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
 | 
						|
  Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
 | 
						|
  AttributeList Attrs; // Attributes are only meaningful on the original call
 | 
						|
  Module *Mod = Pow->getModule();
 | 
						|
  Type *Ty = Pow->getType();
 | 
						|
 | 
						|
  const APFloat *ExpoF;
 | 
						|
  if (!match(Expo, m_APFloat(ExpoF)) ||
 | 
						|
      (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
 | 
						|
  // so that requires fast-math-flags (afn or reassoc).
 | 
						|
  if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we have a pow() library call (accesses memory) and we can't guarantee
 | 
						|
  // that the base is not an infinity, give up:
 | 
						|
  // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
 | 
						|
  // errno), but sqrt(-Inf) is required by various standards to set errno.
 | 
						|
  if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
 | 
						|
      !isKnownNeverInfinity(Base, TLI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
 | 
						|
  if (!Sqrt)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Handle signed zero base by expanding to fabs(sqrt(x)).
 | 
						|
  if (!Pow->hasNoSignedZeros()) {
 | 
						|
    Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
 | 
						|
    Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
 | 
						|
  }
 | 
						|
 | 
						|
  Sqrt = copyFlags(*Pow, Sqrt);
 | 
						|
 | 
						|
  // Handle non finite base by expanding to
 | 
						|
  // (x == -infinity ? +infinity : sqrt(x)).
 | 
						|
  if (!Pow->hasNoInfs()) {
 | 
						|
    Value *PosInf = ConstantFP::getInfinity(Ty),
 | 
						|
          *NegInf = ConstantFP::getInfinity(Ty, true);
 | 
						|
    Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
 | 
						|
    Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the exponent is negative, then get the reciprocal.
 | 
						|
  if (ExpoF->isNegative())
 | 
						|
    Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
 | 
						|
 | 
						|
  return Sqrt;
 | 
						|
}
 | 
						|
 | 
						|
static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
 | 
						|
                                           IRBuilderBase &B) {
 | 
						|
  Value *Args[] = {Base, Expo};
 | 
						|
  Type *Types[] = {Base->getType(), Expo->getType()};
 | 
						|
  Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
 | 
						|
  return B.CreateCall(F, Args);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
 | 
						|
  Value *Base = Pow->getArgOperand(0);
 | 
						|
  Value *Expo = Pow->getArgOperand(1);
 | 
						|
  Function *Callee = Pow->getCalledFunction();
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  Type *Ty = Pow->getType();
 | 
						|
  Module *M = Pow->getModule();
 | 
						|
  bool AllowApprox = Pow->hasApproxFunc();
 | 
						|
  bool Ignored;
 | 
						|
 | 
						|
  // Propagate the math semantics from the call to any created instructions.
 | 
						|
  IRBuilderBase::FastMathFlagGuard Guard(B);
 | 
						|
  B.setFastMathFlags(Pow->getFastMathFlags());
 | 
						|
  // Evaluate special cases related to the base.
 | 
						|
 | 
						|
  // pow(1.0, x) -> 1.0
 | 
						|
  if (match(Base, m_FPOne()))
 | 
						|
    return Base;
 | 
						|
 | 
						|
  if (Value *Exp = replacePowWithExp(Pow, B))
 | 
						|
    return Exp;
 | 
						|
 | 
						|
  // Evaluate special cases related to the exponent.
 | 
						|
 | 
						|
  // pow(x, -1.0) -> 1.0 / x
 | 
						|
  if (match(Expo, m_SpecificFP(-1.0)))
 | 
						|
    return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
 | 
						|
 | 
						|
  // pow(x, +/-0.0) -> 1.0
 | 
						|
  if (match(Expo, m_AnyZeroFP()))
 | 
						|
    return ConstantFP::get(Ty, 1.0);
 | 
						|
 | 
						|
  // pow(x, 1.0) -> x
 | 
						|
  if (match(Expo, m_FPOne()))
 | 
						|
    return Base;
 | 
						|
 | 
						|
  // pow(x, 2.0) -> x * x
 | 
						|
  if (match(Expo, m_SpecificFP(2.0)))
 | 
						|
    return B.CreateFMul(Base, Base, "square");
 | 
						|
 | 
						|
  if (Value *Sqrt = replacePowWithSqrt(Pow, B))
 | 
						|
    return Sqrt;
 | 
						|
 | 
						|
  // If we can approximate pow:
 | 
						|
  // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
 | 
						|
  // pow(x, n) -> powi(x, n) if n is a constant signed integer value
 | 
						|
  const APFloat *ExpoF;
 | 
						|
  if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
 | 
						|
      !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
 | 
						|
    APFloat ExpoA(abs(*ExpoF));
 | 
						|
    APFloat ExpoI(*ExpoF);
 | 
						|
    Value *Sqrt = nullptr;
 | 
						|
    if (!ExpoA.isInteger()) {
 | 
						|
      APFloat Expo2 = ExpoA;
 | 
						|
      // To check if ExpoA is an integer + 0.5, we add it to itself. If there
 | 
						|
      // is no floating point exception and the result is an integer, then
 | 
						|
      // ExpoA == integer + 0.5
 | 
						|
      if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      if (!Expo2.isInteger())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) !=
 | 
						|
          APFloat::opInexact)
 | 
						|
        return nullptr;
 | 
						|
      if (!ExpoI.isInteger())
 | 
						|
        return nullptr;
 | 
						|
      ExpoF = &ExpoI;
 | 
						|
 | 
						|
      Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
 | 
						|
                         Pow->doesNotAccessMemory(), M, B, TLI);
 | 
						|
      if (!Sqrt)
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // 0.5 fraction is now optionally handled.
 | 
						|
    // Do pow -> powi for remaining integer exponent
 | 
						|
    APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
 | 
						|
    if (ExpoF->isInteger() &&
 | 
						|
        ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
 | 
						|
            APFloat::opOK) {
 | 
						|
      Value *PowI = copyFlags(
 | 
						|
          *Pow,
 | 
						|
          createPowWithIntegerExponent(
 | 
						|
              Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
 | 
						|
              M, B));
 | 
						|
 | 
						|
      if (PowI && Sqrt)
 | 
						|
        return B.CreateFMul(PowI, Sqrt);
 | 
						|
 | 
						|
      return PowI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // powf(x, itofp(y)) -> powi(x, y)
 | 
						|
  if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
 | 
						|
    if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
 | 
						|
      return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
 | 
						|
  }
 | 
						|
 | 
						|
  // Shrink pow() to powf() if the arguments are single precision,
 | 
						|
  // unless the result is expected to be double precision.
 | 
						|
  if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
 | 
						|
      hasFloatVersion(M, Name)) {
 | 
						|
    if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
 | 
						|
      return Shrunk;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Module *M = CI->getModule();
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  AttributeList Attrs; // Attributes are only meaningful on the original call
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
  if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
 | 
						|
      hasFloatVersion(M, Name))
 | 
						|
    Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
 | 
						|
 | 
						|
  Type *Ty = CI->getType();
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
 | 
						|
  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
 | 
						|
  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
 | 
						|
  if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
 | 
						|
      hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
 | 
						|
    if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
 | 
						|
      return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
 | 
						|
                                   LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
 | 
						|
                                   B, Attrs);
 | 
						|
  }
 | 
						|
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Module *M = CI->getModule();
 | 
						|
 | 
						|
  // If we can shrink the call to a float function rather than a double
 | 
						|
  // function, do that first.
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
 | 
						|
    if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
 | 
						|
      return Ret;
 | 
						|
 | 
						|
  // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
 | 
						|
  // the intrinsics for improved optimization (for example, vectorization).
 | 
						|
  // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
 | 
						|
  // From the C standard draft WG14/N1256:
 | 
						|
  // "Ideally, fmax would be sensitive to the sign of zero, for example
 | 
						|
  // fmax(-0.0, +0.0) would return +0; however, implementation in software
 | 
						|
  // might be impractical."
 | 
						|
  IRBuilderBase::FastMathFlagGuard Guard(B);
 | 
						|
  FastMathFlags FMF = CI->getFastMathFlags();
 | 
						|
  FMF.setNoSignedZeros();
 | 
						|
  B.setFastMathFlags(FMF);
 | 
						|
 | 
						|
  Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
 | 
						|
                                                           : Intrinsic::maxnum;
 | 
						|
  Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
 | 
						|
  return copyFlags(
 | 
						|
      *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
 | 
						|
  Function *LogFn = Log->getCalledFunction();
 | 
						|
  AttributeList Attrs; // Attributes are only meaningful on the original call
 | 
						|
  StringRef LogNm = LogFn->getName();
 | 
						|
  Intrinsic::ID LogID = LogFn->getIntrinsicID();
 | 
						|
  Module *Mod = Log->getModule();
 | 
						|
  Type *Ty = Log->getType();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
 | 
						|
  if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
 | 
						|
    Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
 | 
						|
 | 
						|
  // The earlier call must also be 'fast' in order to do these transforms.
 | 
						|
  CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
 | 
						|
  if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
 | 
						|
 | 
						|
  // This is only applicable to log(), log2(), log10().
 | 
						|
  if (TLI->getLibFunc(LogNm, LogLb))
 | 
						|
    switch (LogLb) {
 | 
						|
    case LibFunc_logf:
 | 
						|
      LogID = Intrinsic::log;
 | 
						|
      ExpLb = LibFunc_expf;
 | 
						|
      Exp2Lb = LibFunc_exp2f;
 | 
						|
      Exp10Lb = LibFunc_exp10f;
 | 
						|
      PowLb = LibFunc_powf;
 | 
						|
      break;
 | 
						|
    case LibFunc_log:
 | 
						|
      LogID = Intrinsic::log;
 | 
						|
      ExpLb = LibFunc_exp;
 | 
						|
      Exp2Lb = LibFunc_exp2;
 | 
						|
      Exp10Lb = LibFunc_exp10;
 | 
						|
      PowLb = LibFunc_pow;
 | 
						|
      break;
 | 
						|
    case LibFunc_logl:
 | 
						|
      LogID = Intrinsic::log;
 | 
						|
      ExpLb = LibFunc_expl;
 | 
						|
      Exp2Lb = LibFunc_exp2l;
 | 
						|
      Exp10Lb = LibFunc_exp10l;
 | 
						|
      PowLb = LibFunc_powl;
 | 
						|
      break;
 | 
						|
    case LibFunc_log2f:
 | 
						|
      LogID = Intrinsic::log2;
 | 
						|
      ExpLb = LibFunc_expf;
 | 
						|
      Exp2Lb = LibFunc_exp2f;
 | 
						|
      Exp10Lb = LibFunc_exp10f;
 | 
						|
      PowLb = LibFunc_powf;
 | 
						|
      break;
 | 
						|
    case LibFunc_log2:
 | 
						|
      LogID = Intrinsic::log2;
 | 
						|
      ExpLb = LibFunc_exp;
 | 
						|
      Exp2Lb = LibFunc_exp2;
 | 
						|
      Exp10Lb = LibFunc_exp10;
 | 
						|
      PowLb = LibFunc_pow;
 | 
						|
      break;
 | 
						|
    case LibFunc_log2l:
 | 
						|
      LogID = Intrinsic::log2;
 | 
						|
      ExpLb = LibFunc_expl;
 | 
						|
      Exp2Lb = LibFunc_exp2l;
 | 
						|
      Exp10Lb = LibFunc_exp10l;
 | 
						|
      PowLb = LibFunc_powl;
 | 
						|
      break;
 | 
						|
    case LibFunc_log10f:
 | 
						|
      LogID = Intrinsic::log10;
 | 
						|
      ExpLb = LibFunc_expf;
 | 
						|
      Exp2Lb = LibFunc_exp2f;
 | 
						|
      Exp10Lb = LibFunc_exp10f;
 | 
						|
      PowLb = LibFunc_powf;
 | 
						|
      break;
 | 
						|
    case LibFunc_log10:
 | 
						|
      LogID = Intrinsic::log10;
 | 
						|
      ExpLb = LibFunc_exp;
 | 
						|
      Exp2Lb = LibFunc_exp2;
 | 
						|
      Exp10Lb = LibFunc_exp10;
 | 
						|
      PowLb = LibFunc_pow;
 | 
						|
      break;
 | 
						|
    case LibFunc_log10l:
 | 
						|
      LogID = Intrinsic::log10;
 | 
						|
      ExpLb = LibFunc_expl;
 | 
						|
      Exp2Lb = LibFunc_exp2l;
 | 
						|
      Exp10Lb = LibFunc_exp10l;
 | 
						|
      PowLb = LibFunc_powl;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return Ret;
 | 
						|
    }
 | 
						|
  else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
 | 
						|
           LogID == Intrinsic::log10) {
 | 
						|
    if (Ty->getScalarType()->isFloatTy()) {
 | 
						|
      ExpLb = LibFunc_expf;
 | 
						|
      Exp2Lb = LibFunc_exp2f;
 | 
						|
      Exp10Lb = LibFunc_exp10f;
 | 
						|
      PowLb = LibFunc_powf;
 | 
						|
    } else if (Ty->getScalarType()->isDoubleTy()) {
 | 
						|
      ExpLb = LibFunc_exp;
 | 
						|
      Exp2Lb = LibFunc_exp2;
 | 
						|
      Exp10Lb = LibFunc_exp10;
 | 
						|
      PowLb = LibFunc_pow;
 | 
						|
    } else
 | 
						|
      return Ret;
 | 
						|
  } else
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  IRBuilderBase::FastMathFlagGuard Guard(B);
 | 
						|
  B.setFastMathFlags(FastMathFlags::getFast());
 | 
						|
 | 
						|
  Intrinsic::ID ArgID = Arg->getIntrinsicID();
 | 
						|
  LibFunc ArgLb = NotLibFunc;
 | 
						|
  TLI->getLibFunc(*Arg, ArgLb);
 | 
						|
 | 
						|
  // log(pow(x,y)) -> y*log(x)
 | 
						|
  if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
 | 
						|
    Value *LogX =
 | 
						|
        Log->doesNotAccessMemory()
 | 
						|
            ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
 | 
						|
                           Arg->getOperand(0), "log")
 | 
						|
            : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs);
 | 
						|
    Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
 | 
						|
    // Since pow() may have side effects, e.g. errno,
 | 
						|
    // dead code elimination may not be trusted to remove it.
 | 
						|
    substituteInParent(Arg, MulY);
 | 
						|
    return MulY;
 | 
						|
  }
 | 
						|
 | 
						|
  // log(exp{,2,10}(y)) -> y*log({e,2,10})
 | 
						|
  // TODO: There is no exp10() intrinsic yet.
 | 
						|
  if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
 | 
						|
           ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
 | 
						|
    Constant *Eul;
 | 
						|
    if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
 | 
						|
      // FIXME: Add more precise value of e for long double.
 | 
						|
      Eul = ConstantFP::get(Log->getType(), numbers::e);
 | 
						|
    else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
 | 
						|
      Eul = ConstantFP::get(Log->getType(), 2.0);
 | 
						|
    else
 | 
						|
      Eul = ConstantFP::get(Log->getType(), 10.0);
 | 
						|
    Value *LogE = Log->doesNotAccessMemory()
 | 
						|
                      ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
 | 
						|
                                     Eul, "log")
 | 
						|
                      : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs);
 | 
						|
    Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
 | 
						|
    // Since exp() may have side effects, e.g. errno,
 | 
						|
    // dead code elimination may not be trusted to remove it.
 | 
						|
    substituteInParent(Arg, MulY);
 | 
						|
    return MulY;
 | 
						|
  }
 | 
						|
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Module *M = CI->getModule();
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
  // TODO: Once we have a way (other than checking for the existince of the
 | 
						|
  // libcall) to tell whether our target can lower @llvm.sqrt, relax the
 | 
						|
  // condition below.
 | 
						|
  if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
 | 
						|
      (Callee->getName() == "sqrt" ||
 | 
						|
       Callee->getIntrinsicID() == Intrinsic::sqrt))
 | 
						|
    Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
 | 
						|
 | 
						|
  if (!CI->isFast())
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
 | 
						|
  if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // We're looking for a repeated factor in a multiplication tree,
 | 
						|
  // so we can do this fold: sqrt(x * x) -> fabs(x);
 | 
						|
  // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
 | 
						|
  Value *Op0 = I->getOperand(0);
 | 
						|
  Value *Op1 = I->getOperand(1);
 | 
						|
  Value *RepeatOp = nullptr;
 | 
						|
  Value *OtherOp = nullptr;
 | 
						|
  if (Op0 == Op1) {
 | 
						|
    // Simple match: the operands of the multiply are identical.
 | 
						|
    RepeatOp = Op0;
 | 
						|
  } else {
 | 
						|
    // Look for a more complicated pattern: one of the operands is itself
 | 
						|
    // a multiply, so search for a common factor in that multiply.
 | 
						|
    // Note: We don't bother looking any deeper than this first level or for
 | 
						|
    // variations of this pattern because instcombine's visitFMUL and/or the
 | 
						|
    // reassociation pass should give us this form.
 | 
						|
    Value *OtherMul0, *OtherMul1;
 | 
						|
    if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
 | 
						|
      // Pattern: sqrt((x * y) * z)
 | 
						|
      if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
 | 
						|
        // Matched: sqrt((x * x) * z)
 | 
						|
        RepeatOp = OtherMul0;
 | 
						|
        OtherOp = Op1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!RepeatOp)
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // Fast math flags for any created instructions should match the sqrt
 | 
						|
  // and multiply.
 | 
						|
  IRBuilderBase::FastMathFlagGuard Guard(B);
 | 
						|
  B.setFastMathFlags(I->getFastMathFlags());
 | 
						|
 | 
						|
  // If we found a repeated factor, hoist it out of the square root and
 | 
						|
  // replace it with the fabs of that factor.
 | 
						|
  Type *ArgType = I->getType();
 | 
						|
  Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
 | 
						|
  Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
 | 
						|
  if (OtherOp) {
 | 
						|
    // If we found a non-repeated factor, we still need to get its square
 | 
						|
    // root. We then multiply that by the value that was simplified out
 | 
						|
    // of the square root calculation.
 | 
						|
    Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
 | 
						|
    Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
 | 
						|
    return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
 | 
						|
  }
 | 
						|
  return copyFlags(*CI, FabsCall);
 | 
						|
}
 | 
						|
 | 
						|
// TODO: Generalize to handle any trig function and its inverse.
 | 
						|
Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Module *M = CI->getModule();
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  Value *Ret = nullptr;
 | 
						|
  StringRef Name = Callee->getName();
 | 
						|
  if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
 | 
						|
    Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
 | 
						|
 | 
						|
  Value *Op1 = CI->getArgOperand(0);
 | 
						|
  auto *OpC = dyn_cast<CallInst>(Op1);
 | 
						|
  if (!OpC)
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // Both calls must be 'fast' in order to remove them.
 | 
						|
  if (!CI->isFast() || !OpC->isFast())
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // tan(atan(x)) -> x
 | 
						|
  // tanf(atanf(x)) -> x
 | 
						|
  // tanl(atanl(x)) -> x
 | 
						|
  LibFunc Func;
 | 
						|
  Function *F = OpC->getCalledFunction();
 | 
						|
  if (F && TLI->getLibFunc(F->getName(), Func) &&
 | 
						|
      isLibFuncEmittable(M, TLI, Func) &&
 | 
						|
      ((Func == LibFunc_atan && Callee->getName() == "tan") ||
 | 
						|
       (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
 | 
						|
       (Func == LibFunc_atanl && Callee->getName() == "tanl")))
 | 
						|
    Ret = OpC->getArgOperand(0);
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool isTrigLibCall(CallInst *CI) {
 | 
						|
  // We can only hope to do anything useful if we can ignore things like errno
 | 
						|
  // and floating-point exceptions.
 | 
						|
  // We already checked the prototype.
 | 
						|
  return CI->hasFnAttr(Attribute::NoUnwind) &&
 | 
						|
         CI->hasFnAttr(Attribute::ReadNone);
 | 
						|
}
 | 
						|
 | 
						|
static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
 | 
						|
                             bool UseFloat, Value *&Sin, Value *&Cos,
 | 
						|
                             Value *&SinCos, const TargetLibraryInfo *TLI) {
 | 
						|
  Module *M = OrigCallee->getParent();
 | 
						|
  Type *ArgTy = Arg->getType();
 | 
						|
  Type *ResTy;
 | 
						|
  StringRef Name;
 | 
						|
 | 
						|
  Triple T(OrigCallee->getParent()->getTargetTriple());
 | 
						|
  if (UseFloat) {
 | 
						|
    Name = "__sincospif_stret";
 | 
						|
 | 
						|
    assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
 | 
						|
    // x86_64 can't use {float, float} since that would be returned in both
 | 
						|
    // xmm0 and xmm1, which isn't what a real struct would do.
 | 
						|
    ResTy = T.getArch() == Triple::x86_64
 | 
						|
                ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
 | 
						|
                : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
 | 
						|
  } else {
 | 
						|
    Name = "__sincospi_stret";
 | 
						|
    ResTy = StructType::get(ArgTy, ArgTy);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isLibFuncEmittable(M, TLI, Name))
 | 
						|
    return false;
 | 
						|
  LibFunc TheLibFunc;
 | 
						|
  TLI->getLibFunc(Name, TheLibFunc);
 | 
						|
  FunctionCallee Callee = getOrInsertLibFunc(
 | 
						|
      M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
 | 
						|
 | 
						|
  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
 | 
						|
    // If the argument is an instruction, it must dominate all uses so put our
 | 
						|
    // sincos call there.
 | 
						|
    B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
 | 
						|
  } else {
 | 
						|
    // Otherwise (e.g. for a constant) the beginning of the function is as
 | 
						|
    // good a place as any.
 | 
						|
    BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
 | 
						|
    B.SetInsertPoint(&EntryBB, EntryBB.begin());
 | 
						|
  }
 | 
						|
 | 
						|
  SinCos = B.CreateCall(Callee, Arg, "sincospi");
 | 
						|
 | 
						|
  if (SinCos->getType()->isStructTy()) {
 | 
						|
    Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
 | 
						|
    Cos = B.CreateExtractValue(SinCos, 1, "cospi");
 | 
						|
  } else {
 | 
						|
    Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
 | 
						|
                                 "sinpi");
 | 
						|
    Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
 | 
						|
                                 "cospi");
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // Make sure the prototype is as expected, otherwise the rest of the
 | 
						|
  // function is probably invalid and likely to abort.
 | 
						|
  if (!isTrigLibCall(CI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Arg = CI->getArgOperand(0);
 | 
						|
  SmallVector<CallInst *, 1> SinCalls;
 | 
						|
  SmallVector<CallInst *, 1> CosCalls;
 | 
						|
  SmallVector<CallInst *, 1> SinCosCalls;
 | 
						|
 | 
						|
  bool IsFloat = Arg->getType()->isFloatTy();
 | 
						|
 | 
						|
  // Look for all compatible sinpi, cospi and sincospi calls with the same
 | 
						|
  // argument. If there are enough (in some sense) we can make the
 | 
						|
  // substitution.
 | 
						|
  Function *F = CI->getFunction();
 | 
						|
  for (User *U : Arg->users())
 | 
						|
    classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
 | 
						|
 | 
						|
  // It's only worthwhile if both sinpi and cospi are actually used.
 | 
						|
  if (SinCalls.empty() || CosCalls.empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Sin, *Cos, *SinCos;
 | 
						|
  if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
 | 
						|
                        SinCos, TLI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
 | 
						|
                                 Value *Res) {
 | 
						|
    for (CallInst *C : Calls)
 | 
						|
      replaceAllUsesWith(C, Res);
 | 
						|
  };
 | 
						|
 | 
						|
  replaceTrigInsts(SinCalls, Sin);
 | 
						|
  replaceTrigInsts(CosCalls, Cos);
 | 
						|
  replaceTrigInsts(SinCosCalls, SinCos);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void LibCallSimplifier::classifyArgUse(
 | 
						|
    Value *Val, Function *F, bool IsFloat,
 | 
						|
    SmallVectorImpl<CallInst *> &SinCalls,
 | 
						|
    SmallVectorImpl<CallInst *> &CosCalls,
 | 
						|
    SmallVectorImpl<CallInst *> &SinCosCalls) {
 | 
						|
  CallInst *CI = dyn_cast<CallInst>(Val);
 | 
						|
  Module *M = CI->getModule();
 | 
						|
 | 
						|
  if (!CI || CI->use_empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't consider calls in other functions.
 | 
						|
  if (CI->getFunction() != F)
 | 
						|
    return;
 | 
						|
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  LibFunc Func;
 | 
						|
  if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
 | 
						|
      !isLibFuncEmittable(M, TLI, Func) ||
 | 
						|
      !isTrigLibCall(CI))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (IsFloat) {
 | 
						|
    if (Func == LibFunc_sinpif)
 | 
						|
      SinCalls.push_back(CI);
 | 
						|
    else if (Func == LibFunc_cospif)
 | 
						|
      CosCalls.push_back(CI);
 | 
						|
    else if (Func == LibFunc_sincospif_stret)
 | 
						|
      SinCosCalls.push_back(CI);
 | 
						|
  } else {
 | 
						|
    if (Func == LibFunc_sinpi)
 | 
						|
      SinCalls.push_back(CI);
 | 
						|
    else if (Func == LibFunc_cospi)
 | 
						|
      CosCalls.push_back(CI);
 | 
						|
    else if (Func == LibFunc_sincospi_stret)
 | 
						|
      SinCosCalls.push_back(CI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Integer Library Call Optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // All variants of ffs return int which need not be 32 bits wide.
 | 
						|
  // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
 | 
						|
  Type *RetType = CI->getType();
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
  Type *ArgType = Op->getType();
 | 
						|
  Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
 | 
						|
                                          Intrinsic::cttz, ArgType);
 | 
						|
  Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
 | 
						|
  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
 | 
						|
  V = B.CreateIntCast(V, RetType, false);
 | 
						|
 | 
						|
  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
 | 
						|
  return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0));
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // All variants of fls return int which need not be 32 bits wide.
 | 
						|
  // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
  Type *ArgType = Op->getType();
 | 
						|
  Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
 | 
						|
                                          Intrinsic::ctlz, ArgType);
 | 
						|
  Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
 | 
						|
  V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
 | 
						|
                  V);
 | 
						|
  return B.CreateIntCast(V, CI->getType(), false);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // abs(x) -> x <s 0 ? -x : x
 | 
						|
  // The negation has 'nsw' because abs of INT_MIN is undefined.
 | 
						|
  Value *X = CI->getArgOperand(0);
 | 
						|
  Value *IsNeg = B.CreateIsNeg(X);
 | 
						|
  Value *NegX = B.CreateNSWNeg(X, "neg");
 | 
						|
  return B.CreateSelect(IsNeg, NegX, X);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // isdigit(c) -> (c-'0') <u 10
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
  Type *ArgType = Op->getType();
 | 
						|
  Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp");
 | 
						|
  Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit");
 | 
						|
  return B.CreateZExt(Op, CI->getType());
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // isascii(c) -> c <u 128
 | 
						|
  Value *Op = CI->getArgOperand(0);
 | 
						|
  Type *ArgType = Op->getType();
 | 
						|
  Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii");
 | 
						|
  return B.CreateZExt(Op, CI->getType());
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // toascii(c) -> c & 0x7f
 | 
						|
  return B.CreateAnd(CI->getArgOperand(0),
 | 
						|
                     ConstantInt::get(CI->getType(), 0x7F));
 | 
						|
}
 | 
						|
 | 
						|
// Fold calls to atoi, atol, and atoll.
 | 
						|
Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  CI->addParamAttr(0, Attribute::NoCapture);
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B);
 | 
						|
}
 | 
						|
 | 
						|
// Fold calls to strtol, strtoll, strtoul, and strtoull.
 | 
						|
Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
 | 
						|
                                           bool AsSigned) {
 | 
						|
  Value *EndPtr = CI->getArgOperand(1);
 | 
						|
  if (isa<ConstantPointerNull>(EndPtr)) {
 | 
						|
    // With a null EndPtr, this function won't capture the main argument.
 | 
						|
    // It would be readonly too, except that it still may write to errno.
 | 
						|
    CI->addParamAttr(0, Attribute::NoCapture);
 | 
						|
    EndPtr = nullptr;
 | 
						|
  } else if (!isKnownNonZero(EndPtr, DL))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
 | 
						|
    return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Formatting and IO Library Call Optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
 | 
						|
                                                 int StreamArg) {
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  // Error reporting calls should be cold, mark them as such.
 | 
						|
  // This applies even to non-builtin calls: it is only a hint and applies to
 | 
						|
  // functions that the frontend might not understand as builtins.
 | 
						|
 | 
						|
  // This heuristic was suggested in:
 | 
						|
  // Improving Static Branch Prediction in a Compiler
 | 
						|
  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
 | 
						|
  // Proceedings of PACT'98, Oct. 1998, IEEE
 | 
						|
  if (!CI->hasFnAttr(Attribute::Cold) &&
 | 
						|
      isReportingError(Callee, CI, StreamArg)) {
 | 
						|
    CI->addFnAttr(Attribute::Cold);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
 | 
						|
  if (!Callee || !Callee->isDeclaration())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (StreamArg < 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // These functions might be considered cold, but only if their stream
 | 
						|
  // argument is stderr.
 | 
						|
 | 
						|
  if (StreamArg >= (int)CI->arg_size())
 | 
						|
    return false;
 | 
						|
  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
 | 
						|
  if (!LI)
 | 
						|
    return false;
 | 
						|
  GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
 | 
						|
  if (!GV || !GV->isDeclaration())
 | 
						|
    return false;
 | 
						|
  return GV->getName() == "stderr";
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // Check for a fixed format string.
 | 
						|
  StringRef FormatStr;
 | 
						|
  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Empty format string -> noop.
 | 
						|
  if (FormatStr.empty()) // Tolerate printf's declared void.
 | 
						|
    return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
  // Do not do any of the following transformations if the printf return value
 | 
						|
  // is used, in general the printf return value is not compatible with either
 | 
						|
  // putchar() or puts().
 | 
						|
  if (!CI->use_empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *IntTy = CI->getType();
 | 
						|
  // printf("x") -> putchar('x'), even for "%" and "%%".
 | 
						|
  if (FormatStr.size() == 1 || FormatStr == "%%") {
 | 
						|
    // Convert the character to unsigned char before passing it to putchar
 | 
						|
    // to avoid host-specific sign extension in the IR.  Putchar converts
 | 
						|
    // it to unsigned char regardless.
 | 
						|
    Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]);
 | 
						|
    return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to remove call or emit putchar/puts.
 | 
						|
  if (FormatStr == "%s" && CI->arg_size() > 1) {
 | 
						|
    StringRef OperandStr;
 | 
						|
    if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
 | 
						|
      return nullptr;
 | 
						|
    // printf("%s", "") --> NOP
 | 
						|
    if (OperandStr.empty())
 | 
						|
      return (Value *)CI;
 | 
						|
    // printf("%s", "a") --> putchar('a')
 | 
						|
    if (OperandStr.size() == 1) {
 | 
						|
      // Convert the character to unsigned char before passing it to putchar
 | 
						|
      // to avoid host-specific sign extension in the IR.  Putchar converts
 | 
						|
      // it to unsigned char regardless.
 | 
						|
      Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]);
 | 
						|
      return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
 | 
						|
    }
 | 
						|
    // printf("%s", str"\n") --> puts(str)
 | 
						|
    if (OperandStr.back() == '\n') {
 | 
						|
      OperandStr = OperandStr.drop_back();
 | 
						|
      Value *GV = B.CreateGlobalString(OperandStr, "str");
 | 
						|
      return copyFlags(*CI, emitPutS(GV, B, TLI));
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // printf("foo\n") --> puts("foo")
 | 
						|
  if (FormatStr.back() == '\n' &&
 | 
						|
      !FormatStr.contains('%')) { // No format characters.
 | 
						|
    // Create a string literal with no \n on it.  We expect the constant merge
 | 
						|
    // pass to be run after this pass, to merge duplicate strings.
 | 
						|
    FormatStr = FormatStr.drop_back();
 | 
						|
    Value *GV = B.CreateGlobalString(FormatStr, "str");
 | 
						|
    return copyFlags(*CI, emitPutS(GV, B, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Optimize specific format strings.
 | 
						|
  // printf("%c", chr) --> putchar(chr)
 | 
						|
  if (FormatStr == "%c" && CI->arg_size() > 1 &&
 | 
						|
      CI->getArgOperand(1)->getType()->isIntegerTy()) {
 | 
						|
    // Convert the argument to the type expected by putchar, i.e., int, which
 | 
						|
    // need not be 32 bits wide but which is the same as printf's return type.
 | 
						|
    Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false);
 | 
						|
    return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  // printf("%s\n", str) --> puts(str)
 | 
						|
  if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
 | 
						|
      CI->getArgOperand(1)->getType()->isPointerTy())
 | 
						|
    return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
 | 
						|
 | 
						|
  Module *M = CI->getModule();
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  FunctionType *FT = Callee->getFunctionType();
 | 
						|
  if (Value *V = optimizePrintFString(CI, B)) {
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // printf(format, ...) -> iprintf(format, ...) if no floating point
 | 
						|
  // arguments.
 | 
						|
  if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
 | 
						|
      !callHasFloatingPointArgument(CI)) {
 | 
						|
    FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
 | 
						|
                                                  Callee->getAttributes());
 | 
						|
    CallInst *New = cast<CallInst>(CI->clone());
 | 
						|
    New->setCalledFunction(IPrintFFn);
 | 
						|
    B.Insert(New);
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
 | 
						|
  // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
 | 
						|
  // arguments.
 | 
						|
  if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
 | 
						|
      !callHasFP128Argument(CI)) {
 | 
						|
    auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
 | 
						|
                                            Callee->getAttributes());
 | 
						|
    CallInst *New = cast<CallInst>(CI->clone());
 | 
						|
    New->setCalledFunction(SmallPrintFFn);
 | 
						|
    B.Insert(New);
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
 | 
						|
                                                IRBuilderBase &B) {
 | 
						|
  // Check for a fixed format string.
 | 
						|
  StringRef FormatStr;
 | 
						|
  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we just have a format string (nothing else crazy) transform it.
 | 
						|
  Value *Dest = CI->getArgOperand(0);
 | 
						|
  if (CI->arg_size() == 2) {
 | 
						|
    // Make sure there's no % in the constant array.  We could try to handle
 | 
						|
    // %% -> % in the future if we cared.
 | 
						|
    if (FormatStr.contains('%'))
 | 
						|
      return nullptr; // we found a format specifier, bail out.
 | 
						|
 | 
						|
    // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
 | 
						|
    B.CreateMemCpy(
 | 
						|
        Dest, Align(1), CI->getArgOperand(1), Align(1),
 | 
						|
        ConstantInt::get(DL.getIntPtrType(CI->getContext()),
 | 
						|
                         FormatStr.size() + 1)); // Copy the null byte.
 | 
						|
    return ConstantInt::get(CI->getType(), FormatStr.size());
 | 
						|
  }
 | 
						|
 | 
						|
  // The remaining optimizations require the format string to be "%s" or "%c"
 | 
						|
  // and have an extra operand.
 | 
						|
  if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Decode the second character of the format string.
 | 
						|
  if (FormatStr[1] == 'c') {
 | 
						|
    // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
 | 
						|
    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
 | 
						|
      return nullptr;
 | 
						|
    Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
 | 
						|
    Value *Ptr = castToCStr(Dest, B);
 | 
						|
    B.CreateStore(V, Ptr);
 | 
						|
    Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
 | 
						|
    B.CreateStore(B.getInt8(0), Ptr);
 | 
						|
 | 
						|
    return ConstantInt::get(CI->getType(), 1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (FormatStr[1] == 's') {
 | 
						|
    // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
 | 
						|
    // strlen(str)+1)
 | 
						|
    if (!CI->getArgOperand(2)->getType()->isPointerTy())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (CI->use_empty())
 | 
						|
      // sprintf(dest, "%s", str) -> strcpy(dest, str)
 | 
						|
      return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
 | 
						|
 | 
						|
    uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
 | 
						|
    if (SrcLen) {
 | 
						|
      B.CreateMemCpy(
 | 
						|
          Dest, Align(1), CI->getArgOperand(2), Align(1),
 | 
						|
          ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
 | 
						|
      // Returns total number of characters written without null-character.
 | 
						|
      return ConstantInt::get(CI->getType(), SrcLen - 1);
 | 
						|
    } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
 | 
						|
      // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
 | 
						|
      // Handle mismatched pointer types (goes away with typeless pointers?).
 | 
						|
      V = B.CreatePointerCast(V, B.getInt8PtrTy());
 | 
						|
      Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
 | 
						|
      Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
 | 
						|
      return B.CreateIntCast(PtrDiff, CI->getType(), false);
 | 
						|
    }
 | 
						|
 | 
						|
    bool OptForSize = CI->getFunction()->hasOptSize() ||
 | 
						|
                      llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
 | 
						|
                                                  PGSOQueryType::IRPass);
 | 
						|
    if (OptForSize)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
 | 
						|
    if (!Len)
 | 
						|
      return nullptr;
 | 
						|
    Value *IncLen =
 | 
						|
        B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
 | 
						|
    B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
 | 
						|
 | 
						|
    // The sprintf result is the unincremented number of bytes in the string.
 | 
						|
    return B.CreateIntCast(Len, CI->getType(), false);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Module *M = CI->getModule();
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  FunctionType *FT = Callee->getFunctionType();
 | 
						|
  if (Value *V = optimizeSPrintFString(CI, B)) {
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
 | 
						|
  // point arguments.
 | 
						|
  if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
 | 
						|
      !callHasFloatingPointArgument(CI)) {
 | 
						|
    FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
 | 
						|
                                                   FT, Callee->getAttributes());
 | 
						|
    CallInst *New = cast<CallInst>(CI->clone());
 | 
						|
    New->setCalledFunction(SIPrintFFn);
 | 
						|
    B.Insert(New);
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
 | 
						|
  // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
 | 
						|
  // floating point arguments.
 | 
						|
  if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
 | 
						|
      !callHasFP128Argument(CI)) {
 | 
						|
    auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
 | 
						|
                                             Callee->getAttributes());
 | 
						|
    CallInst *New = cast<CallInst>(CI->clone());
 | 
						|
    New->setCalledFunction(SmallSPrintFFn);
 | 
						|
    B.Insert(New);
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Transform an snprintf call CI with the bound N to format the string Str
 | 
						|
// either to a call to memcpy, or to single character a store, or to nothing,
 | 
						|
// and fold the result to a constant.  A nonnull StrArg refers to the string
 | 
						|
// argument being formatted.  Otherwise the call is one with N < 2 and
 | 
						|
// the "%c" directive to format a single character.
 | 
						|
Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg,
 | 
						|
                                             StringRef Str, uint64_t N,
 | 
						|
                                             IRBuilderBase &B) {
 | 
						|
  assert(StrArg || (N < 2 && Str.size() == 1));
 | 
						|
 | 
						|
  unsigned IntBits = TLI->getIntSize();
 | 
						|
  uint64_t IntMax = maxIntN(IntBits);
 | 
						|
  if (Str.size() > IntMax)
 | 
						|
    // Bail if the string is longer than INT_MAX.  POSIX requires
 | 
						|
    // implementations to set errno to EOVERFLOW in this case, in
 | 
						|
    // addition to when N is larger than that (checked by the caller).
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *StrLen = ConstantInt::get(CI->getType(), Str.size());
 | 
						|
  if (N == 0)
 | 
						|
    return StrLen;
 | 
						|
 | 
						|
  // Set to the number of bytes to copy fron StrArg which is also
 | 
						|
  // the offset of the terinating nul.
 | 
						|
  uint64_t NCopy;
 | 
						|
  if (N > Str.size())
 | 
						|
    // Copy the full string, including the terminating nul (which must
 | 
						|
    // be present regardless of the bound).
 | 
						|
    NCopy = Str.size() + 1;
 | 
						|
  else
 | 
						|
    NCopy = N - 1;
 | 
						|
 | 
						|
  Value *DstArg = CI->getArgOperand(0);
 | 
						|
  if (NCopy && StrArg)
 | 
						|
    // Transform the call to lvm.memcpy(dst, fmt, N).
 | 
						|
    copyFlags(
 | 
						|
         *CI,
 | 
						|
          B.CreateMemCpy(
 | 
						|
                         DstArg, Align(1), StrArg, Align(1),
 | 
						|
              ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy)));
 | 
						|
 | 
						|
  if (N > Str.size())
 | 
						|
    // Return early when the whole format string, including the final nul,
 | 
						|
    // has been copied.
 | 
						|
    return StrLen;
 | 
						|
 | 
						|
  // Otherwise, when truncating the string append a terminating nul.
 | 
						|
  Type *Int8Ty = B.getInt8Ty();
 | 
						|
  Value *NulOff = B.getIntN(IntBits, NCopy);
 | 
						|
  Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr");
 | 
						|
  B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd);
 | 
						|
  return StrLen;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
 | 
						|
                                                 IRBuilderBase &B) {
 | 
						|
  // Check for size
 | 
						|
  ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | 
						|
  if (!Size)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  uint64_t N = Size->getZExtValue();
 | 
						|
  uint64_t IntMax = maxIntN(TLI->getIntSize());
 | 
						|
  if (N > IntMax)
 | 
						|
    // Bail if the bound exceeds INT_MAX.  POSIX requires implementations
 | 
						|
    // to set errno to EOVERFLOW in this case.
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *DstArg = CI->getArgOperand(0);
 | 
						|
  Value *FmtArg = CI->getArgOperand(2);
 | 
						|
 | 
						|
  // Check for a fixed format string.
 | 
						|
  StringRef FormatStr;
 | 
						|
  if (!getConstantStringInfo(FmtArg, FormatStr))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we just have a format string (nothing else crazy) transform it.
 | 
						|
  if (CI->arg_size() == 3) {
 | 
						|
    if (FormatStr.contains('%'))
 | 
						|
      // Bail if the format string contains a directive and there are
 | 
						|
      // no arguments.  We could handle "%%" in the future.
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B);
 | 
						|
  }
 | 
						|
 | 
						|
  // The remaining optimizations require the format string to be "%s" or "%c"
 | 
						|
  // and have an extra operand.
 | 
						|
  if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Decode the second character of the format string.
 | 
						|
  if (FormatStr[1] == 'c') {
 | 
						|
    if (N <= 1) {
 | 
						|
      // Use an arbitary string of length 1 to transform the call into
 | 
						|
      // either a nul store (N == 1) or a no-op (N == 0) and fold it
 | 
						|
      // to one.
 | 
						|
      StringRef CharStr("*");
 | 
						|
      return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B);
 | 
						|
    }
 | 
						|
 | 
						|
    // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
 | 
						|
    if (!CI->getArgOperand(3)->getType()->isIntegerTy())
 | 
						|
      return nullptr;
 | 
						|
    Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
 | 
						|
    Value *Ptr = castToCStr(DstArg, B);
 | 
						|
    B.CreateStore(V, Ptr);
 | 
						|
    Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
 | 
						|
    B.CreateStore(B.getInt8(0), Ptr);
 | 
						|
    return ConstantInt::get(CI->getType(), 1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (FormatStr[1] != 's')
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *StrArg = CI->getArgOperand(3);
 | 
						|
  // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
 | 
						|
  StringRef Str;
 | 
						|
  if (!getConstantStringInfo(StrArg, Str))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return emitSnPrintfMemCpy(CI, StrArg, Str, N, B);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  if (Value *V = optimizeSnPrintFString(CI, B)) {
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isKnownNonZero(CI->getOperand(1), DL))
 | 
						|
    annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
 | 
						|
                                                IRBuilderBase &B) {
 | 
						|
  optimizeErrorReporting(CI, B, 0);
 | 
						|
 | 
						|
  // All the optimizations depend on the format string.
 | 
						|
  StringRef FormatStr;
 | 
						|
  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Do not do any of the following transformations if the fprintf return
 | 
						|
  // value is used, in general the fprintf return value is not compatible
 | 
						|
  // with fwrite(), fputc() or fputs().
 | 
						|
  if (!CI->use_empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
 | 
						|
  if (CI->arg_size() == 2) {
 | 
						|
    // Could handle %% -> % if we cared.
 | 
						|
    if (FormatStr.contains('%'))
 | 
						|
      return nullptr; // We found a format specifier.
 | 
						|
 | 
						|
    return copyFlags(
 | 
						|
        *CI, emitFWrite(CI->getArgOperand(1),
 | 
						|
                        ConstantInt::get(DL.getIntPtrType(CI->getContext()),
 | 
						|
                                         FormatStr.size()),
 | 
						|
                        CI->getArgOperand(0), B, DL, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  // The remaining optimizations require the format string to be "%s" or "%c"
 | 
						|
  // and have an extra operand.
 | 
						|
  if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Decode the second character of the format string.
 | 
						|
  if (FormatStr[1] == 'c') {
 | 
						|
    // fprintf(F, "%c", chr) --> fputc(chr, F)
 | 
						|
    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
 | 
						|
      return nullptr;
 | 
						|
    return copyFlags(
 | 
						|
        *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  if (FormatStr[1] == 's') {
 | 
						|
    // fprintf(F, "%s", str) --> fputs(str, F)
 | 
						|
    if (!CI->getArgOperand(2)->getType()->isPointerTy())
 | 
						|
      return nullptr;
 | 
						|
    return copyFlags(
 | 
						|
        *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  Module *M = CI->getModule();
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  FunctionType *FT = Callee->getFunctionType();
 | 
						|
  if (Value *V = optimizeFPrintFString(CI, B)) {
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
 | 
						|
  // floating point arguments.
 | 
						|
  if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
 | 
						|
      !callHasFloatingPointArgument(CI)) {
 | 
						|
    FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
 | 
						|
                                                   FT, Callee->getAttributes());
 | 
						|
    CallInst *New = cast<CallInst>(CI->clone());
 | 
						|
    New->setCalledFunction(FIPrintFFn);
 | 
						|
    B.Insert(New);
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
 | 
						|
  // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
 | 
						|
  // 128-bit floating point arguments.
 | 
						|
  if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
 | 
						|
      !callHasFP128Argument(CI)) {
 | 
						|
    auto SmallFPrintFFn =
 | 
						|
        getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
 | 
						|
                           Callee->getAttributes());
 | 
						|
    CallInst *New = cast<CallInst>(CI->clone());
 | 
						|
    New->setCalledFunction(SmallFPrintFFn);
 | 
						|
    B.Insert(New);
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  optimizeErrorReporting(CI, B, 3);
 | 
						|
 | 
						|
  // Get the element size and count.
 | 
						|
  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | 
						|
  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | 
						|
  if (SizeC && CountC) {
 | 
						|
    uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
 | 
						|
 | 
						|
    // If this is writing zero records, remove the call (it's a noop).
 | 
						|
    if (Bytes == 0)
 | 
						|
      return ConstantInt::get(CI->getType(), 0);
 | 
						|
 | 
						|
    // If this is writing one byte, turn it into fputc.
 | 
						|
    // This optimisation is only valid, if the return value is unused.
 | 
						|
    if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
 | 
						|
      Value *Char = B.CreateLoad(B.getInt8Ty(),
 | 
						|
                                 castToCStr(CI->getArgOperand(0), B), "char");
 | 
						|
      Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
 | 
						|
      return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  optimizeErrorReporting(CI, B, 1);
 | 
						|
 | 
						|
  // Don't rewrite fputs to fwrite when optimising for size because fwrite
 | 
						|
  // requires more arguments and thus extra MOVs are required.
 | 
						|
  bool OptForSize = CI->getFunction()->hasOptSize() ||
 | 
						|
                    llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
 | 
						|
                                                PGSOQueryType::IRPass);
 | 
						|
  if (OptForSize)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We can't optimize if return value is used.
 | 
						|
  if (!CI->use_empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // fputs(s,F) --> fwrite(s,strlen(s),1,F)
 | 
						|
  uint64_t Len = GetStringLength(CI->getArgOperand(0));
 | 
						|
  if (!Len)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Known to have no uses (see above).
 | 
						|
  return copyFlags(
 | 
						|
      *CI,
 | 
						|
      emitFWrite(CI->getArgOperand(0),
 | 
						|
                 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
 | 
						|
                 CI->getArgOperand(1), B, DL, TLI));
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  annotateNonNullNoUndefBasedOnAccess(CI, 0);
 | 
						|
  if (!CI->use_empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check for a constant string.
 | 
						|
  // puts("") -> putchar('\n')
 | 
						|
  StringRef Str;
 | 
						|
  if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) {
 | 
						|
    // putchar takes an argument of the same type as puts returns, i.e.,
 | 
						|
    // int, which need not be 32 bits wide.
 | 
						|
    Type *IntTy = CI->getType();
 | 
						|
    return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
 | 
						|
  // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
 | 
						|
  return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
 | 
						|
                                        CI->getArgOperand(0), Align(1),
 | 
						|
                                        CI->getArgOperand(2)));
 | 
						|
}
 | 
						|
 | 
						|
bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
 | 
						|
  SmallString<20> FloatFuncName = FuncName;
 | 
						|
  FloatFuncName += 'f';
 | 
						|
  return isLibFuncEmittable(M, TLI, FloatFuncName);
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
 | 
						|
                                                      IRBuilderBase &Builder) {
 | 
						|
  Module *M = CI->getModule();
 | 
						|
  LibFunc Func;
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  // Check for string/memory library functions.
 | 
						|
  if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
 | 
						|
    // Make sure we never change the calling convention.
 | 
						|
    assert(
 | 
						|
        (ignoreCallingConv(Func) ||
 | 
						|
         TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
 | 
						|
        "Optimizing string/memory libcall would change the calling convention");
 | 
						|
    switch (Func) {
 | 
						|
    case LibFunc_strcat:
 | 
						|
      return optimizeStrCat(CI, Builder);
 | 
						|
    case LibFunc_strncat:
 | 
						|
      return optimizeStrNCat(CI, Builder);
 | 
						|
    case LibFunc_strchr:
 | 
						|
      return optimizeStrChr(CI, Builder);
 | 
						|
    case LibFunc_strrchr:
 | 
						|
      return optimizeStrRChr(CI, Builder);
 | 
						|
    case LibFunc_strcmp:
 | 
						|
      return optimizeStrCmp(CI, Builder);
 | 
						|
    case LibFunc_strncmp:
 | 
						|
      return optimizeStrNCmp(CI, Builder);
 | 
						|
    case LibFunc_strcpy:
 | 
						|
      return optimizeStrCpy(CI, Builder);
 | 
						|
    case LibFunc_stpcpy:
 | 
						|
      return optimizeStpCpy(CI, Builder);
 | 
						|
    case LibFunc_strlcpy:
 | 
						|
      return optimizeStrLCpy(CI, Builder);
 | 
						|
    case LibFunc_strncpy:
 | 
						|
      return optimizeStrNCpy(CI, Builder);
 | 
						|
    case LibFunc_strlen:
 | 
						|
      return optimizeStrLen(CI, Builder);
 | 
						|
    case LibFunc_strnlen:
 | 
						|
      return optimizeStrNLen(CI, Builder);
 | 
						|
    case LibFunc_strpbrk:
 | 
						|
      return optimizeStrPBrk(CI, Builder);
 | 
						|
    case LibFunc_strndup:
 | 
						|
      return optimizeStrNDup(CI, Builder);
 | 
						|
    case LibFunc_strtol:
 | 
						|
    case LibFunc_strtod:
 | 
						|
    case LibFunc_strtof:
 | 
						|
    case LibFunc_strtoul:
 | 
						|
    case LibFunc_strtoll:
 | 
						|
    case LibFunc_strtold:
 | 
						|
    case LibFunc_strtoull:
 | 
						|
      return optimizeStrTo(CI, Builder);
 | 
						|
    case LibFunc_strspn:
 | 
						|
      return optimizeStrSpn(CI, Builder);
 | 
						|
    case LibFunc_strcspn:
 | 
						|
      return optimizeStrCSpn(CI, Builder);
 | 
						|
    case LibFunc_strstr:
 | 
						|
      return optimizeStrStr(CI, Builder);
 | 
						|
    case LibFunc_memchr:
 | 
						|
      return optimizeMemChr(CI, Builder);
 | 
						|
    case LibFunc_memrchr:
 | 
						|
      return optimizeMemRChr(CI, Builder);
 | 
						|
    case LibFunc_bcmp:
 | 
						|
      return optimizeBCmp(CI, Builder);
 | 
						|
    case LibFunc_memcmp:
 | 
						|
      return optimizeMemCmp(CI, Builder);
 | 
						|
    case LibFunc_memcpy:
 | 
						|
      return optimizeMemCpy(CI, Builder);
 | 
						|
    case LibFunc_memccpy:
 | 
						|
      return optimizeMemCCpy(CI, Builder);
 | 
						|
    case LibFunc_mempcpy:
 | 
						|
      return optimizeMemPCpy(CI, Builder);
 | 
						|
    case LibFunc_memmove:
 | 
						|
      return optimizeMemMove(CI, Builder);
 | 
						|
    case LibFunc_memset:
 | 
						|
      return optimizeMemSet(CI, Builder);
 | 
						|
    case LibFunc_realloc:
 | 
						|
      return optimizeRealloc(CI, Builder);
 | 
						|
    case LibFunc_wcslen:
 | 
						|
      return optimizeWcslen(CI, Builder);
 | 
						|
    case LibFunc_bcopy:
 | 
						|
      return optimizeBCopy(CI, Builder);
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
 | 
						|
                                                       LibFunc Func,
 | 
						|
                                                       IRBuilderBase &Builder) {
 | 
						|
  const Module *M = CI->getModule();
 | 
						|
 | 
						|
  // Don't optimize calls that require strict floating point semantics.
 | 
						|
  if (CI->isStrictFP())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Value *V = optimizeTrigReflections(CI, Func, Builder))
 | 
						|
    return V;
 | 
						|
 | 
						|
  switch (Func) {
 | 
						|
  case LibFunc_sinpif:
 | 
						|
  case LibFunc_sinpi:
 | 
						|
  case LibFunc_cospif:
 | 
						|
  case LibFunc_cospi:
 | 
						|
    return optimizeSinCosPi(CI, Builder);
 | 
						|
  case LibFunc_powf:
 | 
						|
  case LibFunc_pow:
 | 
						|
  case LibFunc_powl:
 | 
						|
    return optimizePow(CI, Builder);
 | 
						|
  case LibFunc_exp2l:
 | 
						|
  case LibFunc_exp2:
 | 
						|
  case LibFunc_exp2f:
 | 
						|
    return optimizeExp2(CI, Builder);
 | 
						|
  case LibFunc_fabsf:
 | 
						|
  case LibFunc_fabs:
 | 
						|
  case LibFunc_fabsl:
 | 
						|
    return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
 | 
						|
  case LibFunc_sqrtf:
 | 
						|
  case LibFunc_sqrt:
 | 
						|
  case LibFunc_sqrtl:
 | 
						|
    return optimizeSqrt(CI, Builder);
 | 
						|
  case LibFunc_logf:
 | 
						|
  case LibFunc_log:
 | 
						|
  case LibFunc_logl:
 | 
						|
  case LibFunc_log10f:
 | 
						|
  case LibFunc_log10:
 | 
						|
  case LibFunc_log10l:
 | 
						|
  case LibFunc_log1pf:
 | 
						|
  case LibFunc_log1p:
 | 
						|
  case LibFunc_log1pl:
 | 
						|
  case LibFunc_log2f:
 | 
						|
  case LibFunc_log2:
 | 
						|
  case LibFunc_log2l:
 | 
						|
  case LibFunc_logbf:
 | 
						|
  case LibFunc_logb:
 | 
						|
  case LibFunc_logbl:
 | 
						|
    return optimizeLog(CI, Builder);
 | 
						|
  case LibFunc_tan:
 | 
						|
  case LibFunc_tanf:
 | 
						|
  case LibFunc_tanl:
 | 
						|
    return optimizeTan(CI, Builder);
 | 
						|
  case LibFunc_ceil:
 | 
						|
    return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
 | 
						|
  case LibFunc_floor:
 | 
						|
    return replaceUnaryCall(CI, Builder, Intrinsic::floor);
 | 
						|
  case LibFunc_round:
 | 
						|
    return replaceUnaryCall(CI, Builder, Intrinsic::round);
 | 
						|
  case LibFunc_roundeven:
 | 
						|
    return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
 | 
						|
  case LibFunc_nearbyint:
 | 
						|
    return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
 | 
						|
  case LibFunc_rint:
 | 
						|
    return replaceUnaryCall(CI, Builder, Intrinsic::rint);
 | 
						|
  case LibFunc_trunc:
 | 
						|
    return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
 | 
						|
  case LibFunc_acos:
 | 
						|
  case LibFunc_acosh:
 | 
						|
  case LibFunc_asin:
 | 
						|
  case LibFunc_asinh:
 | 
						|
  case LibFunc_atan:
 | 
						|
  case LibFunc_atanh:
 | 
						|
  case LibFunc_cbrt:
 | 
						|
  case LibFunc_cosh:
 | 
						|
  case LibFunc_exp:
 | 
						|
  case LibFunc_exp10:
 | 
						|
  case LibFunc_expm1:
 | 
						|
  case LibFunc_cos:
 | 
						|
  case LibFunc_sin:
 | 
						|
  case LibFunc_sinh:
 | 
						|
  case LibFunc_tanh:
 | 
						|
    if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
 | 
						|
      return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
 | 
						|
    return nullptr;
 | 
						|
  case LibFunc_copysign:
 | 
						|
    if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
 | 
						|
      return optimizeBinaryDoubleFP(CI, Builder, TLI);
 | 
						|
    return nullptr;
 | 
						|
  case LibFunc_fminf:
 | 
						|
  case LibFunc_fmin:
 | 
						|
  case LibFunc_fminl:
 | 
						|
  case LibFunc_fmaxf:
 | 
						|
  case LibFunc_fmax:
 | 
						|
  case LibFunc_fmaxl:
 | 
						|
    return optimizeFMinFMax(CI, Builder);
 | 
						|
  case LibFunc_cabs:
 | 
						|
  case LibFunc_cabsf:
 | 
						|
  case LibFunc_cabsl:
 | 
						|
    return optimizeCAbs(CI, Builder);
 | 
						|
  default:
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
 | 
						|
  Module *M = CI->getModule();
 | 
						|
  assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
 | 
						|
 | 
						|
  // TODO: Split out the code below that operates on FP calls so that
 | 
						|
  //       we can all non-FP calls with the StrictFP attribute to be
 | 
						|
  //       optimized.
 | 
						|
  if (CI->isNoBuiltin())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  LibFunc Func;
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
 | 
						|
 | 
						|
  SmallVector<OperandBundleDef, 2> OpBundles;
 | 
						|
  CI->getOperandBundlesAsDefs(OpBundles);
 | 
						|
 | 
						|
  IRBuilderBase::OperandBundlesGuard Guard(Builder);
 | 
						|
  Builder.setDefaultOperandBundles(OpBundles);
 | 
						|
 | 
						|
  // Command-line parameter overrides instruction attribute.
 | 
						|
  // This can't be moved to optimizeFloatingPointLibCall() because it may be
 | 
						|
  // used by the intrinsic optimizations.
 | 
						|
  if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
 | 
						|
    UnsafeFPShrink = EnableUnsafeFPShrink;
 | 
						|
  else if (isa<FPMathOperator>(CI) && CI->isFast())
 | 
						|
    UnsafeFPShrink = true;
 | 
						|
 | 
						|
  // First, check for intrinsics.
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
 | 
						|
    if (!IsCallingConvC)
 | 
						|
      return nullptr;
 | 
						|
    // The FP intrinsics have corresponding constrained versions so we don't
 | 
						|
    // need to check for the StrictFP attribute here.
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    case Intrinsic::pow:
 | 
						|
      return optimizePow(CI, Builder);
 | 
						|
    case Intrinsic::exp2:
 | 
						|
      return optimizeExp2(CI, Builder);
 | 
						|
    case Intrinsic::log:
 | 
						|
    case Intrinsic::log2:
 | 
						|
    case Intrinsic::log10:
 | 
						|
      return optimizeLog(CI, Builder);
 | 
						|
    case Intrinsic::sqrt:
 | 
						|
      return optimizeSqrt(CI, Builder);
 | 
						|
    case Intrinsic::memset:
 | 
						|
      return optimizeMemSet(CI, Builder);
 | 
						|
    case Intrinsic::memcpy:
 | 
						|
      return optimizeMemCpy(CI, Builder);
 | 
						|
    case Intrinsic::memmove:
 | 
						|
      return optimizeMemMove(CI, Builder);
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Also try to simplify calls to fortified library functions.
 | 
						|
  if (Value *SimplifiedFortifiedCI =
 | 
						|
          FortifiedSimplifier.optimizeCall(CI, Builder)) {
 | 
						|
    // Try to further simplify the result.
 | 
						|
    CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
 | 
						|
    if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
 | 
						|
      // Ensure that SimplifiedCI's uses are complete, since some calls have
 | 
						|
      // their uses analyzed.
 | 
						|
      replaceAllUsesWith(CI, SimplifiedCI);
 | 
						|
 | 
						|
      // Set insertion point to SimplifiedCI to guarantee we reach all uses
 | 
						|
      // we might replace later on.
 | 
						|
      IRBuilderBase::InsertPointGuard Guard(Builder);
 | 
						|
      Builder.SetInsertPoint(SimplifiedCI);
 | 
						|
      if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
 | 
						|
        // If we were able to further simplify, remove the now redundant call.
 | 
						|
        substituteInParent(SimplifiedCI, V);
 | 
						|
        return V;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return SimplifiedFortifiedCI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Then check for known library functions.
 | 
						|
  if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
 | 
						|
    // We never change the calling convention.
 | 
						|
    if (!ignoreCallingConv(Func) && !IsCallingConvC)
 | 
						|
      return nullptr;
 | 
						|
    if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
 | 
						|
      return V;
 | 
						|
    if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
 | 
						|
      return V;
 | 
						|
    switch (Func) {
 | 
						|
    case LibFunc_ffs:
 | 
						|
    case LibFunc_ffsl:
 | 
						|
    case LibFunc_ffsll:
 | 
						|
      return optimizeFFS(CI, Builder);
 | 
						|
    case LibFunc_fls:
 | 
						|
    case LibFunc_flsl:
 | 
						|
    case LibFunc_flsll:
 | 
						|
      return optimizeFls(CI, Builder);
 | 
						|
    case LibFunc_abs:
 | 
						|
    case LibFunc_labs:
 | 
						|
    case LibFunc_llabs:
 | 
						|
      return optimizeAbs(CI, Builder);
 | 
						|
    case LibFunc_isdigit:
 | 
						|
      return optimizeIsDigit(CI, Builder);
 | 
						|
    case LibFunc_isascii:
 | 
						|
      return optimizeIsAscii(CI, Builder);
 | 
						|
    case LibFunc_toascii:
 | 
						|
      return optimizeToAscii(CI, Builder);
 | 
						|
    case LibFunc_atoi:
 | 
						|
    case LibFunc_atol:
 | 
						|
    case LibFunc_atoll:
 | 
						|
      return optimizeAtoi(CI, Builder);
 | 
						|
    case LibFunc_strtol:
 | 
						|
    case LibFunc_strtoll:
 | 
						|
      return optimizeStrToInt(CI, Builder, /*AsSigned=*/true);
 | 
						|
    case LibFunc_strtoul:
 | 
						|
    case LibFunc_strtoull:
 | 
						|
      return optimizeStrToInt(CI, Builder, /*AsSigned=*/false);
 | 
						|
    case LibFunc_printf:
 | 
						|
      return optimizePrintF(CI, Builder);
 | 
						|
    case LibFunc_sprintf:
 | 
						|
      return optimizeSPrintF(CI, Builder);
 | 
						|
    case LibFunc_snprintf:
 | 
						|
      return optimizeSnPrintF(CI, Builder);
 | 
						|
    case LibFunc_fprintf:
 | 
						|
      return optimizeFPrintF(CI, Builder);
 | 
						|
    case LibFunc_fwrite:
 | 
						|
      return optimizeFWrite(CI, Builder);
 | 
						|
    case LibFunc_fputs:
 | 
						|
      return optimizeFPuts(CI, Builder);
 | 
						|
    case LibFunc_puts:
 | 
						|
      return optimizePuts(CI, Builder);
 | 
						|
    case LibFunc_perror:
 | 
						|
      return optimizeErrorReporting(CI, Builder);
 | 
						|
    case LibFunc_vfprintf:
 | 
						|
    case LibFunc_fiprintf:
 | 
						|
      return optimizeErrorReporting(CI, Builder, 0);
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
LibCallSimplifier::LibCallSimplifier(
 | 
						|
    const DataLayout &DL, const TargetLibraryInfo *TLI,
 | 
						|
    OptimizationRemarkEmitter &ORE,
 | 
						|
    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
 | 
						|
    function_ref<void(Instruction *, Value *)> Replacer,
 | 
						|
    function_ref<void(Instruction *)> Eraser)
 | 
						|
    : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
 | 
						|
      Replacer(Replacer), Eraser(Eraser) {}
 | 
						|
 | 
						|
void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
 | 
						|
  // Indirect through the replacer used in this instance.
 | 
						|
  Replacer(I, With);
 | 
						|
}
 | 
						|
 | 
						|
void LibCallSimplifier::eraseFromParent(Instruction *I) {
 | 
						|
  Eraser(I);
 | 
						|
}
 | 
						|
 | 
						|
// TODO:
 | 
						|
//   Additional cases that we need to add to this file:
 | 
						|
//
 | 
						|
// cbrt:
 | 
						|
//   * cbrt(expN(X))  -> expN(x/3)
 | 
						|
//   * cbrt(sqrt(x))  -> pow(x,1/6)
 | 
						|
//   * cbrt(cbrt(x))  -> pow(x,1/9)
 | 
						|
//
 | 
						|
// exp, expf, expl:
 | 
						|
//   * exp(log(x))  -> x
 | 
						|
//
 | 
						|
// log, logf, logl:
 | 
						|
//   * log(exp(x))   -> x
 | 
						|
//   * log(exp(y))   -> y*log(e)
 | 
						|
//   * log(exp10(y)) -> y*log(10)
 | 
						|
//   * log(sqrt(x))  -> 0.5*log(x)
 | 
						|
//
 | 
						|
// pow, powf, powl:
 | 
						|
//   * pow(sqrt(x),y) -> pow(x,y*0.5)
 | 
						|
//   * pow(pow(x,y),z)-> pow(x,y*z)
 | 
						|
//
 | 
						|
// signbit:
 | 
						|
//   * signbit(cnst) -> cnst'
 | 
						|
//   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
 | 
						|
//
 | 
						|
// sqrt, sqrtf, sqrtl:
 | 
						|
//   * sqrt(expN(x))  -> expN(x*0.5)
 | 
						|
//   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
 | 
						|
//   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
 | 
						|
//
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Fortified Library Call Optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool
 | 
						|
FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
 | 
						|
                                                    unsigned ObjSizeOp,
 | 
						|
                                                    Optional<unsigned> SizeOp,
 | 
						|
                                                    Optional<unsigned> StrOp,
 | 
						|
                                                    Optional<unsigned> FlagOp) {
 | 
						|
  // If this function takes a flag argument, the implementation may use it to
 | 
						|
  // perform extra checks. Don't fold into the non-checking variant.
 | 
						|
  if (FlagOp) {
 | 
						|
    ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
 | 
						|
    if (!Flag || !Flag->isZero())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (ConstantInt *ObjSizeCI =
 | 
						|
          dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
 | 
						|
    if (ObjSizeCI->isMinusOne())
 | 
						|
      return true;
 | 
						|
    // If the object size wasn't -1 (unknown), bail out if we were asked to.
 | 
						|
    if (OnlyLowerUnknownSize)
 | 
						|
      return false;
 | 
						|
    if (StrOp) {
 | 
						|
      uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
 | 
						|
      // If the length is 0 we don't know how long it is and so we can't
 | 
						|
      // remove the check.
 | 
						|
      if (Len)
 | 
						|
        annotateDereferenceableBytes(CI, *StrOp, Len);
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
      return ObjSizeCI->getZExtValue() >= Len;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SizeOp) {
 | 
						|
      if (ConstantInt *SizeCI =
 | 
						|
              dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
 | 
						|
        return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
 | 
						|
                                                     IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 2)) {
 | 
						|
    CallInst *NewCI =
 | 
						|
        B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
 | 
						|
                       Align(1), CI->getArgOperand(2));
 | 
						|
    NewCI->setAttributes(CI->getAttributes());
 | 
						|
    NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
    copyFlags(*CI, NewCI);
 | 
						|
    return CI->getArgOperand(0);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
 | 
						|
                                                      IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 2)) {
 | 
						|
    CallInst *NewCI =
 | 
						|
        B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
 | 
						|
                        Align(1), CI->getArgOperand(2));
 | 
						|
    NewCI->setAttributes(CI->getAttributes());
 | 
						|
    NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
    copyFlags(*CI, NewCI);
 | 
						|
    return CI->getArgOperand(0);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
 | 
						|
                                                     IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 2)) {
 | 
						|
    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
 | 
						|
    CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
 | 
						|
                                     CI->getArgOperand(2), Align(1));
 | 
						|
    NewCI->setAttributes(CI->getAttributes());
 | 
						|
    NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
    copyFlags(*CI, NewCI);
 | 
						|
    return CI->getArgOperand(0);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
 | 
						|
                                                      IRBuilderBase &B) {
 | 
						|
  const DataLayout &DL = CI->getModule()->getDataLayout();
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 2))
 | 
						|
    if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                                  CI->getArgOperand(2), B, DL, TLI)) {
 | 
						|
      CallInst *NewCI = cast<CallInst>(Call);
 | 
						|
      NewCI->setAttributes(CI->getAttributes());
 | 
						|
      NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
 | 
						|
      return copyFlags(*CI, NewCI);
 | 
						|
    }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
 | 
						|
                                                      IRBuilderBase &B,
 | 
						|
                                                      LibFunc Func) {
 | 
						|
  const DataLayout &DL = CI->getModule()->getDataLayout();
 | 
						|
  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
 | 
						|
        *ObjSize = CI->getArgOperand(2);
 | 
						|
 | 
						|
  // __stpcpy_chk(x,x,...)  -> x+strlen(x)
 | 
						|
  if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
 | 
						|
    Value *StrLen = emitStrLen(Src, B, DL, TLI);
 | 
						|
    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If a) we don't have any length information, or b) we know this will
 | 
						|
  // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
 | 
						|
  // st[rp]cpy_chk call which may fail at runtime if the size is too long.
 | 
						|
  // TODO: It might be nice to get a maximum length out of the possible
 | 
						|
  // string lengths for varying.
 | 
						|
  if (isFortifiedCallFoldable(CI, 2, None, 1)) {
 | 
						|
    if (Func == LibFunc_strcpy_chk)
 | 
						|
      return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
 | 
						|
    else
 | 
						|
      return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  if (OnlyLowerUnknownSize)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
 | 
						|
  uint64_t Len = GetStringLength(Src);
 | 
						|
  if (Len)
 | 
						|
    annotateDereferenceableBytes(CI, 1, Len);
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // FIXME: There is really no guarantee that sizeof(size_t) is equal to
 | 
						|
  // sizeof(int*) for every target. So the assumption used here to derive the
 | 
						|
  // SizeTBits based on the size of an integer pointer in address space zero
 | 
						|
  // isn't always valid.
 | 
						|
  Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0);
 | 
						|
  Value *LenV = ConstantInt::get(SizeTTy, Len);
 | 
						|
  Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
 | 
						|
  // If the function was an __stpcpy_chk, and we were able to fold it into
 | 
						|
  // a __memcpy_chk, we still need to return the correct end pointer.
 | 
						|
  if (Ret && Func == LibFunc_stpcpy_chk)
 | 
						|
    return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
 | 
						|
                               ConstantInt::get(SizeTTy, Len - 1));
 | 
						|
  return copyFlags(*CI, cast<CallInst>(Ret));
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
 | 
						|
                                                     IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 1, None, 0))
 | 
						|
    return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
 | 
						|
                                     CI->getModule()->getDataLayout(), TLI));
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
 | 
						|
                                                       IRBuilderBase &B,
 | 
						|
                                                       LibFunc Func) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 2)) {
 | 
						|
    if (Func == LibFunc_strncpy_chk)
 | 
						|
      return copyFlags(*CI,
 | 
						|
                       emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                                   CI->getArgOperand(2), B, TLI));
 | 
						|
    else
 | 
						|
      return copyFlags(*CI,
 | 
						|
                       emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                                   CI->getArgOperand(2), B, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
 | 
						|
                                                      IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 4, 3))
 | 
						|
    return copyFlags(
 | 
						|
        *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                         CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
 | 
						|
                                                       IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
 | 
						|
    SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
 | 
						|
    return copyFlags(*CI,
 | 
						|
                     emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                                  CI->getArgOperand(4), VariadicArgs, B, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
 | 
						|
                                                      IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
 | 
						|
    SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
 | 
						|
    return copyFlags(*CI,
 | 
						|
                     emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
 | 
						|
                                 VariadicArgs, B, TLI));
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
 | 
						|
                                                     IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 2))
 | 
						|
    return copyFlags(
 | 
						|
        *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
 | 
						|
                                                   IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3))
 | 
						|
    return copyFlags(*CI,
 | 
						|
                     emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                                 CI->getArgOperand(2), B, TLI));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
 | 
						|
                                                      IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3))
 | 
						|
    return copyFlags(*CI,
 | 
						|
                     emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                                 CI->getArgOperand(2), B, TLI));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
 | 
						|
                                                      IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3))
 | 
						|
    return copyFlags(*CI,
 | 
						|
                     emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                                 CI->getArgOperand(2), B, TLI));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
 | 
						|
                                                        IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
 | 
						|
    return copyFlags(
 | 
						|
        *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
 | 
						|
                           CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
 | 
						|
                                                       IRBuilderBase &B) {
 | 
						|
  if (isFortifiedCallFoldable(CI, 2, None, None, 1))
 | 
						|
    return copyFlags(*CI,
 | 
						|
                     emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
 | 
						|
                                  CI->getArgOperand(4), B, TLI));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
 | 
						|
                                                IRBuilderBase &Builder) {
 | 
						|
  // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
 | 
						|
  // Some clang users checked for _chk libcall availability using:
 | 
						|
  //   __has_builtin(__builtin___memcpy_chk)
 | 
						|
  // When compiling with -fno-builtin, this is always true.
 | 
						|
  // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
 | 
						|
  // end up with fortified libcalls, which isn't acceptable in a freestanding
 | 
						|
  // environment which only provides their non-fortified counterparts.
 | 
						|
  //
 | 
						|
  // Until we change clang and/or teach external users to check for availability
 | 
						|
  // differently, disregard the "nobuiltin" attribute and TLI::has.
 | 
						|
  //
 | 
						|
  // PR23093.
 | 
						|
 | 
						|
  LibFunc Func;
 | 
						|
  Function *Callee = CI->getCalledFunction();
 | 
						|
  bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
 | 
						|
 | 
						|
  SmallVector<OperandBundleDef, 2> OpBundles;
 | 
						|
  CI->getOperandBundlesAsDefs(OpBundles);
 | 
						|
 | 
						|
  IRBuilderBase::OperandBundlesGuard Guard(Builder);
 | 
						|
  Builder.setDefaultOperandBundles(OpBundles);
 | 
						|
 | 
						|
  // First, check that this is a known library functions and that the prototype
 | 
						|
  // is correct.
 | 
						|
  if (!TLI->getLibFunc(*Callee, Func))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We never change the calling convention.
 | 
						|
  if (!ignoreCallingConv(Func) && !IsCallingConvC)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  switch (Func) {
 | 
						|
  case LibFunc_memcpy_chk:
 | 
						|
    return optimizeMemCpyChk(CI, Builder);
 | 
						|
  case LibFunc_mempcpy_chk:
 | 
						|
    return optimizeMemPCpyChk(CI, Builder);
 | 
						|
  case LibFunc_memmove_chk:
 | 
						|
    return optimizeMemMoveChk(CI, Builder);
 | 
						|
  case LibFunc_memset_chk:
 | 
						|
    return optimizeMemSetChk(CI, Builder);
 | 
						|
  case LibFunc_stpcpy_chk:
 | 
						|
  case LibFunc_strcpy_chk:
 | 
						|
    return optimizeStrpCpyChk(CI, Builder, Func);
 | 
						|
  case LibFunc_strlen_chk:
 | 
						|
    return optimizeStrLenChk(CI, Builder);
 | 
						|
  case LibFunc_stpncpy_chk:
 | 
						|
  case LibFunc_strncpy_chk:
 | 
						|
    return optimizeStrpNCpyChk(CI, Builder, Func);
 | 
						|
  case LibFunc_memccpy_chk:
 | 
						|
    return optimizeMemCCpyChk(CI, Builder);
 | 
						|
  case LibFunc_snprintf_chk:
 | 
						|
    return optimizeSNPrintfChk(CI, Builder);
 | 
						|
  case LibFunc_sprintf_chk:
 | 
						|
    return optimizeSPrintfChk(CI, Builder);
 | 
						|
  case LibFunc_strcat_chk:
 | 
						|
    return optimizeStrCatChk(CI, Builder);
 | 
						|
  case LibFunc_strlcat_chk:
 | 
						|
    return optimizeStrLCat(CI, Builder);
 | 
						|
  case LibFunc_strncat_chk:
 | 
						|
    return optimizeStrNCatChk(CI, Builder);
 | 
						|
  case LibFunc_strlcpy_chk:
 | 
						|
    return optimizeStrLCpyChk(CI, Builder);
 | 
						|
  case LibFunc_vsnprintf_chk:
 | 
						|
    return optimizeVSNPrintfChk(CI, Builder);
 | 
						|
  case LibFunc_vsprintf_chk:
 | 
						|
    return optimizeVSPrintfChk(CI, Builder);
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
 | 
						|
    const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
 | 
						|
    : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
 |