551 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			551 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
 | 
						|
#include "llvm/Analysis/ProfileSummaryInfo.h"
 | 
						|
#include "llvm/Analysis/TypeMetadataUtils.h"
 | 
						|
#include "llvm/Bitcode/BitcodeWriter.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Object/ModuleSymbolTable.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/ScopedPrinter.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/Transforms/IPO/FunctionAttrs.h"
 | 
						|
#include "llvm/Transforms/IPO/FunctionImport.h"
 | 
						|
#include "llvm/Transforms/IPO/LowerTypeTests.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/ModuleUtils.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Promote each local-linkage entity defined by ExportM and used by ImportM by
 | 
						|
// changing visibility and appending the given ModuleId.
 | 
						|
void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
 | 
						|
                      SetVector<GlobalValue *> &PromoteExtra) {
 | 
						|
  DenseMap<const Comdat *, Comdat *> RenamedComdats;
 | 
						|
  for (auto &ExportGV : ExportM.global_values()) {
 | 
						|
    if (!ExportGV.hasLocalLinkage())
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto Name = ExportGV.getName();
 | 
						|
    GlobalValue *ImportGV = nullptr;
 | 
						|
    if (!PromoteExtra.count(&ExportGV)) {
 | 
						|
      ImportGV = ImportM.getNamedValue(Name);
 | 
						|
      if (!ImportGV)
 | 
						|
        continue;
 | 
						|
      ImportGV->removeDeadConstantUsers();
 | 
						|
      if (ImportGV->use_empty()) {
 | 
						|
        ImportGV->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    std::string NewName = (Name + ModuleId).str();
 | 
						|
 | 
						|
    if (const auto *C = ExportGV.getComdat())
 | 
						|
      if (C->getName() == Name)
 | 
						|
        RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
 | 
						|
 | 
						|
    ExportGV.setName(NewName);
 | 
						|
    ExportGV.setLinkage(GlobalValue::ExternalLinkage);
 | 
						|
    ExportGV.setVisibility(GlobalValue::HiddenVisibility);
 | 
						|
 | 
						|
    if (ImportGV) {
 | 
						|
      ImportGV->setName(NewName);
 | 
						|
      ImportGV->setVisibility(GlobalValue::HiddenVisibility);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!RenamedComdats.empty())
 | 
						|
    for (auto &GO : ExportM.global_objects())
 | 
						|
      if (auto *C = GO.getComdat()) {
 | 
						|
        auto Replacement = RenamedComdats.find(C);
 | 
						|
        if (Replacement != RenamedComdats.end())
 | 
						|
          GO.setComdat(Replacement->second);
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
// Promote all internal (i.e. distinct) type ids used by the module by replacing
 | 
						|
// them with external type ids formed using the module id.
 | 
						|
//
 | 
						|
// Note that this needs to be done before we clone the module because each clone
 | 
						|
// will receive its own set of distinct metadata nodes.
 | 
						|
void promoteTypeIds(Module &M, StringRef ModuleId) {
 | 
						|
  DenseMap<Metadata *, Metadata *> LocalToGlobal;
 | 
						|
  auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
 | 
						|
    Metadata *MD =
 | 
						|
        cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
 | 
						|
 | 
						|
    if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
 | 
						|
      Metadata *&GlobalMD = LocalToGlobal[MD];
 | 
						|
      if (!GlobalMD) {
 | 
						|
        std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
 | 
						|
        GlobalMD = MDString::get(M.getContext(), NewName);
 | 
						|
      }
 | 
						|
 | 
						|
      CI->setArgOperand(ArgNo,
 | 
						|
                        MetadataAsValue::get(M.getContext(), GlobalMD));
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  if (Function *TypeTestFunc =
 | 
						|
          M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
 | 
						|
    for (const Use &U : TypeTestFunc->uses()) {
 | 
						|
      auto CI = cast<CallInst>(U.getUser());
 | 
						|
      ExternalizeTypeId(CI, 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Function *TypeCheckedLoadFunc =
 | 
						|
          M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
 | 
						|
    for (const Use &U : TypeCheckedLoadFunc->uses()) {
 | 
						|
      auto CI = cast<CallInst>(U.getUser());
 | 
						|
      ExternalizeTypeId(CI, 2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (GlobalObject &GO : M.global_objects()) {
 | 
						|
    SmallVector<MDNode *, 1> MDs;
 | 
						|
    GO.getMetadata(LLVMContext::MD_type, MDs);
 | 
						|
 | 
						|
    GO.eraseMetadata(LLVMContext::MD_type);
 | 
						|
    for (auto MD : MDs) {
 | 
						|
      auto I = LocalToGlobal.find(MD->getOperand(1));
 | 
						|
      if (I == LocalToGlobal.end()) {
 | 
						|
        GO.addMetadata(LLVMContext::MD_type, *MD);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      GO.addMetadata(
 | 
						|
          LLVMContext::MD_type,
 | 
						|
          *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Drop unused globals, and drop type information from function declarations.
 | 
						|
// FIXME: If we made functions typeless then there would be no need to do this.
 | 
						|
void simplifyExternals(Module &M) {
 | 
						|
  FunctionType *EmptyFT =
 | 
						|
      FunctionType::get(Type::getVoidTy(M.getContext()), false);
 | 
						|
 | 
						|
  for (auto I = M.begin(), E = M.end(); I != E;) {
 | 
						|
    Function &F = *I++;
 | 
						|
    if (F.isDeclaration() && F.use_empty()) {
 | 
						|
      F.eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
 | 
						|
        // Changing the type of an intrinsic may invalidate the IR.
 | 
						|
        F.getName().startswith("llvm."))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Function *NewF =
 | 
						|
        Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
 | 
						|
                         F.getAddressSpace(), "", &M);
 | 
						|
    NewF->setVisibility(F.getVisibility());
 | 
						|
    NewF->takeName(&F);
 | 
						|
    F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
 | 
						|
    F.eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
 | 
						|
    GlobalVariable &GV = *I++;
 | 
						|
    if (GV.isDeclaration() && GV.use_empty()) {
 | 
						|
      GV.eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
filterModule(Module *M,
 | 
						|
             function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
 | 
						|
  std::vector<GlobalValue *> V;
 | 
						|
  for (GlobalValue &GV : M->global_values())
 | 
						|
    if (!ShouldKeepDefinition(&GV))
 | 
						|
      V.push_back(&GV);
 | 
						|
 | 
						|
  for (GlobalValue *GV : V)
 | 
						|
    if (!convertToDeclaration(*GV))
 | 
						|
      GV->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
 | 
						|
  if (auto *F = dyn_cast<Function>(C))
 | 
						|
    return Fn(F);
 | 
						|
  if (isa<GlobalValue>(C))
 | 
						|
    return;
 | 
						|
  for (Value *Op : C->operands())
 | 
						|
    forEachVirtualFunction(cast<Constant>(Op), Fn);
 | 
						|
}
 | 
						|
 | 
						|
// If it's possible to split M into regular and thin LTO parts, do so and write
 | 
						|
// a multi-module bitcode file with the two parts to OS. Otherwise, write only a
 | 
						|
// regular LTO bitcode file to OS.
 | 
						|
void splitAndWriteThinLTOBitcode(
 | 
						|
    raw_ostream &OS, raw_ostream *ThinLinkOS,
 | 
						|
    function_ref<AAResults &(Function &)> AARGetter, Module &M) {
 | 
						|
  std::string ModuleId = getUniqueModuleId(&M);
 | 
						|
  if (ModuleId.empty()) {
 | 
						|
    // We couldn't generate a module ID for this module, write it out as a
 | 
						|
    // regular LTO module with an index for summary-based dead stripping.
 | 
						|
    ProfileSummaryInfo PSI(M);
 | 
						|
    M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
 | 
						|
    ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
 | 
						|
    WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
 | 
						|
 | 
						|
    if (ThinLinkOS)
 | 
						|
      // We don't have a ThinLTO part, but still write the module to the
 | 
						|
      // ThinLinkOS if requested so that the expected output file is produced.
 | 
						|
      WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
 | 
						|
                         &Index);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  promoteTypeIds(M, ModuleId);
 | 
						|
 | 
						|
  // Returns whether a global or its associated global has attached type
 | 
						|
  // metadata. The former may participate in CFI or whole-program
 | 
						|
  // devirtualization, so they need to appear in the merged module instead of
 | 
						|
  // the thin LTO module. Similarly, globals that are associated with globals
 | 
						|
  // with type metadata need to appear in the merged module because they will
 | 
						|
  // reference the global's section directly.
 | 
						|
  auto HasTypeMetadata = [](const GlobalObject *GO) {
 | 
						|
    if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
 | 
						|
      if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
 | 
						|
        if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
 | 
						|
          if (AssocGO->hasMetadata(LLVMContext::MD_type))
 | 
						|
            return true;
 | 
						|
    return GO->hasMetadata(LLVMContext::MD_type);
 | 
						|
  };
 | 
						|
 | 
						|
  // Collect the set of virtual functions that are eligible for virtual constant
 | 
						|
  // propagation. Each eligible function must not access memory, must return
 | 
						|
  // an integer of width <=64 bits, must take at least one argument, must not
 | 
						|
  // use its first argument (assumed to be "this") and all arguments other than
 | 
						|
  // the first one must be of <=64 bit integer type.
 | 
						|
  //
 | 
						|
  // Note that we test whether this copy of the function is readnone, rather
 | 
						|
  // than testing function attributes, which must hold for any copy of the
 | 
						|
  // function, even a less optimized version substituted at link time. This is
 | 
						|
  // sound because the virtual constant propagation optimizations effectively
 | 
						|
  // inline all implementations of the virtual function into each call site,
 | 
						|
  // rather than using function attributes to perform local optimization.
 | 
						|
  DenseSet<const Function *> EligibleVirtualFns;
 | 
						|
  // If any member of a comdat lives in MergedM, put all members of that
 | 
						|
  // comdat in MergedM to keep the comdat together.
 | 
						|
  DenseSet<const Comdat *> MergedMComdats;
 | 
						|
  for (GlobalVariable &GV : M.globals())
 | 
						|
    if (HasTypeMetadata(&GV)) {
 | 
						|
      if (const auto *C = GV.getComdat())
 | 
						|
        MergedMComdats.insert(C);
 | 
						|
      forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
 | 
						|
        auto *RT = dyn_cast<IntegerType>(F->getReturnType());
 | 
						|
        if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
 | 
						|
            !F->arg_begin()->use_empty())
 | 
						|
          return;
 | 
						|
        for (auto &Arg : drop_begin(F->args(), 1)) {
 | 
						|
          auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
 | 
						|
          if (!ArgT || ArgT->getBitWidth() > 64)
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (!F->isDeclaration() &&
 | 
						|
            computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
 | 
						|
          EligibleVirtualFns.insert(F);
 | 
						|
      });
 | 
						|
    }
 | 
						|
 | 
						|
  ValueToValueMapTy VMap;
 | 
						|
  std::unique_ptr<Module> MergedM(
 | 
						|
      CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
 | 
						|
        if (const auto *C = GV->getComdat())
 | 
						|
          if (MergedMComdats.count(C))
 | 
						|
            return true;
 | 
						|
        if (auto *F = dyn_cast<Function>(GV))
 | 
						|
          return EligibleVirtualFns.count(F);
 | 
						|
        if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
 | 
						|
          return HasTypeMetadata(GVar);
 | 
						|
        return false;
 | 
						|
      }));
 | 
						|
  StripDebugInfo(*MergedM);
 | 
						|
  MergedM->setModuleInlineAsm("");
 | 
						|
 | 
						|
  for (Function &F : *MergedM)
 | 
						|
    if (!F.isDeclaration()) {
 | 
						|
      // Reset the linkage of all functions eligible for virtual constant
 | 
						|
      // propagation. The canonical definitions live in the thin LTO module so
 | 
						|
      // that they can be imported.
 | 
						|
      F.setLinkage(GlobalValue::AvailableExternallyLinkage);
 | 
						|
      F.setComdat(nullptr);
 | 
						|
    }
 | 
						|
 | 
						|
  SetVector<GlobalValue *> CfiFunctions;
 | 
						|
  for (auto &F : M)
 | 
						|
    if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
 | 
						|
      CfiFunctions.insert(&F);
 | 
						|
 | 
						|
  // Remove all globals with type metadata, globals with comdats that live in
 | 
						|
  // MergedM, and aliases pointing to such globals from the thin LTO module.
 | 
						|
  filterModule(&M, [&](const GlobalValue *GV) {
 | 
						|
    if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
 | 
						|
      if (HasTypeMetadata(GVar))
 | 
						|
        return false;
 | 
						|
    if (const auto *C = GV->getComdat())
 | 
						|
      if (MergedMComdats.count(C))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  });
 | 
						|
 | 
						|
  promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
 | 
						|
  promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
 | 
						|
 | 
						|
  auto &Ctx = MergedM->getContext();
 | 
						|
  SmallVector<MDNode *, 8> CfiFunctionMDs;
 | 
						|
  for (auto V : CfiFunctions) {
 | 
						|
    Function &F = *cast<Function>(V);
 | 
						|
    SmallVector<MDNode *, 2> Types;
 | 
						|
    F.getMetadata(LLVMContext::MD_type, Types);
 | 
						|
 | 
						|
    SmallVector<Metadata *, 4> Elts;
 | 
						|
    Elts.push_back(MDString::get(Ctx, F.getName()));
 | 
						|
    CfiFunctionLinkage Linkage;
 | 
						|
    if (lowertypetests::isJumpTableCanonical(&F))
 | 
						|
      Linkage = CFL_Definition;
 | 
						|
    else if (F.hasExternalWeakLinkage())
 | 
						|
      Linkage = CFL_WeakDeclaration;
 | 
						|
    else
 | 
						|
      Linkage = CFL_Declaration;
 | 
						|
    Elts.push_back(ConstantAsMetadata::get(
 | 
						|
        llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
 | 
						|
    for (auto Type : Types)
 | 
						|
      Elts.push_back(Type);
 | 
						|
    CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
 | 
						|
  }
 | 
						|
 | 
						|
  if(!CfiFunctionMDs.empty()) {
 | 
						|
    NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
 | 
						|
    for (auto MD : CfiFunctionMDs)
 | 
						|
      NMD->addOperand(MD);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<MDNode *, 8> FunctionAliases;
 | 
						|
  for (auto &A : M.aliases()) {
 | 
						|
    if (!isa<Function>(A.getAliasee()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto *F = cast<Function>(A.getAliasee());
 | 
						|
 | 
						|
    Metadata *Elts[] = {
 | 
						|
        MDString::get(Ctx, A.getName()),
 | 
						|
        MDString::get(Ctx, F->getName()),
 | 
						|
        ConstantAsMetadata::get(
 | 
						|
            ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
 | 
						|
        ConstantAsMetadata::get(
 | 
						|
            ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
 | 
						|
    };
 | 
						|
 | 
						|
    FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FunctionAliases.empty()) {
 | 
						|
    NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
 | 
						|
    for (auto MD : FunctionAliases)
 | 
						|
      NMD->addOperand(MD);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<MDNode *, 8> Symvers;
 | 
						|
  ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
 | 
						|
    Function *F = M.getFunction(Name);
 | 
						|
    if (!F || F->use_empty())
 | 
						|
      return;
 | 
						|
 | 
						|
    Symvers.push_back(MDTuple::get(
 | 
						|
        Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
 | 
						|
  });
 | 
						|
 | 
						|
  if (!Symvers.empty()) {
 | 
						|
    NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
 | 
						|
    for (auto MD : Symvers)
 | 
						|
      NMD->addOperand(MD);
 | 
						|
  }
 | 
						|
 | 
						|
  simplifyExternals(*MergedM);
 | 
						|
 | 
						|
  // FIXME: Try to re-use BSI and PFI from the original module here.
 | 
						|
  ProfileSummaryInfo PSI(M);
 | 
						|
  ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
 | 
						|
 | 
						|
  // Mark the merged module as requiring full LTO. We still want an index for
 | 
						|
  // it though, so that it can participate in summary-based dead stripping.
 | 
						|
  MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
 | 
						|
  ModuleSummaryIndex MergedMIndex =
 | 
						|
      buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
 | 
						|
 | 
						|
  SmallVector<char, 0> Buffer;
 | 
						|
 | 
						|
  BitcodeWriter W(Buffer);
 | 
						|
  // Save the module hash produced for the full bitcode, which will
 | 
						|
  // be used in the backends, and use that in the minimized bitcode
 | 
						|
  // produced for the full link.
 | 
						|
  ModuleHash ModHash = {{0}};
 | 
						|
  W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
 | 
						|
                /*GenerateHash=*/true, &ModHash);
 | 
						|
  W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
 | 
						|
  W.writeSymtab();
 | 
						|
  W.writeStrtab();
 | 
						|
  OS << Buffer;
 | 
						|
 | 
						|
  // If a minimized bitcode module was requested for the thin link, only
 | 
						|
  // the information that is needed by thin link will be written in the
 | 
						|
  // given OS (the merged module will be written as usual).
 | 
						|
  if (ThinLinkOS) {
 | 
						|
    Buffer.clear();
 | 
						|
    BitcodeWriter W2(Buffer);
 | 
						|
    StripDebugInfo(M);
 | 
						|
    W2.writeThinLinkBitcode(M, Index, ModHash);
 | 
						|
    W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
 | 
						|
                   &MergedMIndex);
 | 
						|
    W2.writeSymtab();
 | 
						|
    W2.writeStrtab();
 | 
						|
    *ThinLinkOS << Buffer;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Check if the LTO Unit splitting has been enabled.
 | 
						|
bool enableSplitLTOUnit(Module &M) {
 | 
						|
  bool EnableSplitLTOUnit = false;
 | 
						|
  if (auto *MD = mdconst::extract_or_null<ConstantInt>(
 | 
						|
          M.getModuleFlag("EnableSplitLTOUnit")))
 | 
						|
    EnableSplitLTOUnit = MD->getZExtValue();
 | 
						|
  return EnableSplitLTOUnit;
 | 
						|
}
 | 
						|
 | 
						|
// Returns whether this module needs to be split because it uses type metadata.
 | 
						|
bool hasTypeMetadata(Module &M) {
 | 
						|
  for (auto &GO : M.global_objects()) {
 | 
						|
    if (GO.hasMetadata(LLVMContext::MD_type))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
 | 
						|
                         function_ref<AAResults &(Function &)> AARGetter,
 | 
						|
                         Module &M, const ModuleSummaryIndex *Index) {
 | 
						|
  std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
 | 
						|
  // See if this module has any type metadata. If so, we try to split it
 | 
						|
  // or at least promote type ids to enable WPD.
 | 
						|
  if (hasTypeMetadata(M)) {
 | 
						|
    if (enableSplitLTOUnit(M))
 | 
						|
      return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
 | 
						|
    // Promote type ids as needed for index-based WPD.
 | 
						|
    std::string ModuleId = getUniqueModuleId(&M);
 | 
						|
    if (!ModuleId.empty()) {
 | 
						|
      promoteTypeIds(M, ModuleId);
 | 
						|
      // Need to rebuild the index so that it contains type metadata
 | 
						|
      // for the newly promoted type ids.
 | 
						|
      // FIXME: Probably should not bother building the index at all
 | 
						|
      // in the caller of writeThinLTOBitcode (which does so via the
 | 
						|
      // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
 | 
						|
      // anyway whenever there is type metadata (here or in
 | 
						|
      // splitAndWriteThinLTOBitcode). Just always build it once via the
 | 
						|
      // buildModuleSummaryIndex when Module(s) are ready.
 | 
						|
      ProfileSummaryInfo PSI(M);
 | 
						|
      NewIndex = std::make_unique<ModuleSummaryIndex>(
 | 
						|
          buildModuleSummaryIndex(M, nullptr, &PSI));
 | 
						|
      Index = NewIndex.get();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Write it out as an unsplit ThinLTO module.
 | 
						|
 | 
						|
  // Save the module hash produced for the full bitcode, which will
 | 
						|
  // be used in the backends, and use that in the minimized bitcode
 | 
						|
  // produced for the full link.
 | 
						|
  ModuleHash ModHash = {{0}};
 | 
						|
  WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
 | 
						|
                     /*GenerateHash=*/true, &ModHash);
 | 
						|
  // If a minimized bitcode module was requested for the thin link, only
 | 
						|
  // the information that is needed by thin link will be written in the
 | 
						|
  // given OS.
 | 
						|
  if (ThinLinkOS && Index)
 | 
						|
    WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
 | 
						|
}
 | 
						|
 | 
						|
class WriteThinLTOBitcode : public ModulePass {
 | 
						|
  raw_ostream &OS; // raw_ostream to print on
 | 
						|
  // The output stream on which to emit a minimized module for use
 | 
						|
  // just in the thin link, if requested.
 | 
						|
  raw_ostream *ThinLinkOS;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
  WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
 | 
						|
    initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
 | 
						|
      : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
 | 
						|
    initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
 | 
						|
 | 
						|
  bool runOnModule(Module &M) override {
 | 
						|
    const ModuleSummaryIndex *Index =
 | 
						|
        &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
 | 
						|
    writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesAll();
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<ModuleSummaryIndexWrapperPass>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
char WriteThinLTOBitcode::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
 | 
						|
                      "Write ThinLTO Bitcode", false, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
 | 
						|
                    "Write ThinLTO Bitcode", false, true)
 | 
						|
 | 
						|
ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
 | 
						|
                                                raw_ostream *ThinLinkOS) {
 | 
						|
  return new WriteThinLTOBitcode(Str, ThinLinkOS);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses
 | 
						|
llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
 | 
						|
  FunctionAnalysisManager &FAM =
 | 
						|
      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
 | 
						|
  writeThinLTOBitcode(OS, ThinLinkOS,
 | 
						|
                      [&FAM](Function &F) -> AAResults & {
 | 
						|
                        return FAM.getResult<AAManager>(F);
 | 
						|
                      },
 | 
						|
                      M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 |