6283 lines
		
	
	
		
			213 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6283 lines
		
	
	
		
			213 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implements C++ name mangling according to the Itanium C++ ABI,
 | |
| // which is used in GCC 3.2 and newer (and many compilers that are
 | |
| // ABI-compatible with GCC):
 | |
| //
 | |
| //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/Mangle.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclOpenMP.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprConcepts.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Basic/ABI.h"
 | |
| #include "clang/Basic/Module.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Retrieve the declaration context that should be used when mangling the given
 | |
| /// declaration.
 | |
| static const DeclContext *getEffectiveDeclContext(const Decl *D) {
 | |
|   // The ABI assumes that lambda closure types that occur within
 | |
|   // default arguments live in the context of the function. However, due to
 | |
|   // the way in which Clang parses and creates function declarations, this is
 | |
|   // not the case: the lambda closure type ends up living in the context
 | |
|   // where the function itself resides, because the function declaration itself
 | |
|   // had not yet been created. Fix the context here.
 | |
|   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|     if (RD->isLambda())
 | |
|       if (ParmVarDecl *ContextParam
 | |
|             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
 | |
|         return ContextParam->getDeclContext();
 | |
|   }
 | |
| 
 | |
|   // Perform the same check for block literals.
 | |
|   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
 | |
|     if (ParmVarDecl *ContextParam
 | |
|           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
 | |
|       return ContextParam->getDeclContext();
 | |
|   }
 | |
| 
 | |
|   const DeclContext *DC = D->getDeclContext();
 | |
|   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
 | |
|       isa<OMPDeclareMapperDecl>(DC)) {
 | |
|     return getEffectiveDeclContext(cast<Decl>(DC));
 | |
|   }
 | |
| 
 | |
|   if (const auto *VD = dyn_cast<VarDecl>(D))
 | |
|     if (VD->isExternC())
 | |
|       return VD->getASTContext().getTranslationUnitDecl();
 | |
| 
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | |
|     if (FD->isExternC())
 | |
|       return FD->getASTContext().getTranslationUnitDecl();
 | |
| 
 | |
|   return DC->getRedeclContext();
 | |
| }
 | |
| 
 | |
| static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
 | |
|   return getEffectiveDeclContext(cast<Decl>(DC));
 | |
| }
 | |
| 
 | |
| static bool isLocalContainerContext(const DeclContext *DC) {
 | |
|   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
 | |
| }
 | |
| 
 | |
| static const RecordDecl *GetLocalClassDecl(const Decl *D) {
 | |
|   const DeclContext *DC = getEffectiveDeclContext(D);
 | |
|   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
 | |
|     if (isLocalContainerContext(DC))
 | |
|       return dyn_cast<RecordDecl>(D);
 | |
|     D = cast<Decl>(DC);
 | |
|     DC = getEffectiveDeclContext(D);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static const FunctionDecl *getStructor(const FunctionDecl *fn) {
 | |
|   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
 | |
|     return ftd->getTemplatedDecl();
 | |
| 
 | |
|   return fn;
 | |
| }
 | |
| 
 | |
| static const NamedDecl *getStructor(const NamedDecl *decl) {
 | |
|   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
 | |
|   return (fn ? getStructor(fn) : decl);
 | |
| }
 | |
| 
 | |
| static bool isLambda(const NamedDecl *ND) {
 | |
|   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
 | |
|   if (!Record)
 | |
|     return false;
 | |
| 
 | |
|   return Record->isLambda();
 | |
| }
 | |
| 
 | |
| static const unsigned UnknownArity = ~0U;
 | |
| 
 | |
| class ItaniumMangleContextImpl : public ItaniumMangleContext {
 | |
|   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
 | |
|   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
 | |
|   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
 | |
| 
 | |
|   bool IsDevCtx = false;
 | |
|   bool NeedsUniqueInternalLinkageNames = false;
 | |
| 
 | |
| public:
 | |
|   explicit ItaniumMangleContextImpl(ASTContext &Context,
 | |
|                                     DiagnosticsEngine &Diags)
 | |
|       : ItaniumMangleContext(Context, Diags) {}
 | |
| 
 | |
|   /// @name Mangler Entry Points
 | |
|   /// @{
 | |
| 
 | |
|   bool shouldMangleCXXName(const NamedDecl *D) override;
 | |
|   bool shouldMangleStringLiteral(const StringLiteral *) override {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override;
 | |
|   void needsUniqueInternalLinkageNames() override {
 | |
|     NeedsUniqueInternalLinkageNames = true;
 | |
|   }
 | |
| 
 | |
|   bool isDeviceMangleContext() const override { return IsDevCtx; }
 | |
|   void setDeviceMangleContext(bool IsDev) override { IsDevCtx = IsDev; }
 | |
| 
 | |
|   void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
 | |
|   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
 | |
|                    raw_ostream &) override;
 | |
|   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
 | |
|                           const ThisAdjustment &ThisAdjustment,
 | |
|                           raw_ostream &) override;
 | |
|   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
 | |
|                                 raw_ostream &) override;
 | |
|   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
 | |
|   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
 | |
|   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
 | |
|                            const CXXRecordDecl *Type, raw_ostream &) override;
 | |
|   void mangleCXXRTTI(QualType T, raw_ostream &) override;
 | |
|   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
 | |
|   void mangleTypeName(QualType T, raw_ostream &) override;
 | |
| 
 | |
|   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
 | |
|   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
 | |
|   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
 | |
|   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
 | |
|   void mangleDynamicAtExitDestructor(const VarDecl *D,
 | |
|                                      raw_ostream &Out) override;
 | |
|   void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
 | |
|   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
 | |
|                                  raw_ostream &Out) override;
 | |
|   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
 | |
|                              raw_ostream &Out) override;
 | |
|   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
 | |
|   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
 | |
|                                        raw_ostream &) override;
 | |
| 
 | |
|   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
 | |
| 
 | |
|   void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
 | |
| 
 | |
|   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
 | |
|     // Lambda closure types are already numbered.
 | |
|     if (isLambda(ND))
 | |
|       return false;
 | |
| 
 | |
|     // Anonymous tags are already numbered.
 | |
|     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
 | |
|       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Use the canonical number for externally visible decls.
 | |
|     if (ND->isExternallyVisible()) {
 | |
|       unsigned discriminator = getASTContext().getManglingNumber(ND);
 | |
|       if (discriminator == 1)
 | |
|         return false;
 | |
|       disc = discriminator - 2;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Make up a reasonable number for internal decls.
 | |
|     unsigned &discriminator = Uniquifier[ND];
 | |
|     if (!discriminator) {
 | |
|       const DeclContext *DC = getEffectiveDeclContext(ND);
 | |
|       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
 | |
|     }
 | |
|     if (discriminator == 1)
 | |
|       return false;
 | |
|     disc = discriminator-2;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   std::string getLambdaString(const CXXRecordDecl *Lambda) override {
 | |
|     // This function matches the one in MicrosoftMangle, which returns
 | |
|     // the string that is used in lambda mangled names.
 | |
|     assert(Lambda->isLambda() && "RD must be a lambda!");
 | |
|     std::string Name("<lambda");
 | |
|     Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
 | |
|     unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
 | |
|     unsigned LambdaId;
 | |
|     const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
 | |
|     const FunctionDecl *Func =
 | |
|         Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
 | |
| 
 | |
|     if (Func) {
 | |
|       unsigned DefaultArgNo =
 | |
|           Func->getNumParams() - Parm->getFunctionScopeIndex();
 | |
|       Name += llvm::utostr(DefaultArgNo);
 | |
|       Name += "_";
 | |
|     }
 | |
| 
 | |
|     if (LambdaManglingNumber)
 | |
|       LambdaId = LambdaManglingNumber;
 | |
|     else
 | |
|       LambdaId = getAnonymousStructIdForDebugInfo(Lambda);
 | |
| 
 | |
|     Name += llvm::utostr(LambdaId);
 | |
|     Name += '>';
 | |
|     return Name;
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
| };
 | |
| 
 | |
| /// Manage the mangling of a single name.
 | |
| class CXXNameMangler {
 | |
|   ItaniumMangleContextImpl &Context;
 | |
|   raw_ostream &Out;
 | |
|   bool NullOut = false;
 | |
|   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
 | |
|   /// This mode is used when mangler creates another mangler recursively to
 | |
|   /// calculate ABI tags for the function return value or the variable type.
 | |
|   /// Also it is required to avoid infinite recursion in some cases.
 | |
|   bool DisableDerivedAbiTags = false;
 | |
| 
 | |
|   /// The "structor" is the top-level declaration being mangled, if
 | |
|   /// that's not a template specialization; otherwise it's the pattern
 | |
|   /// for that specialization.
 | |
|   const NamedDecl *Structor;
 | |
|   unsigned StructorType;
 | |
| 
 | |
|   /// The next substitution sequence number.
 | |
|   unsigned SeqID;
 | |
| 
 | |
|   class FunctionTypeDepthState {
 | |
|     unsigned Bits;
 | |
| 
 | |
|     enum { InResultTypeMask = 1 };
 | |
| 
 | |
|   public:
 | |
|     FunctionTypeDepthState() : Bits(0) {}
 | |
| 
 | |
|     /// The number of function types we're inside.
 | |
|     unsigned getDepth() const {
 | |
|       return Bits >> 1;
 | |
|     }
 | |
| 
 | |
|     /// True if we're in the return type of the innermost function type.
 | |
|     bool isInResultType() const {
 | |
|       return Bits & InResultTypeMask;
 | |
|     }
 | |
| 
 | |
|     FunctionTypeDepthState push() {
 | |
|       FunctionTypeDepthState tmp = *this;
 | |
|       Bits = (Bits & ~InResultTypeMask) + 2;
 | |
|       return tmp;
 | |
|     }
 | |
| 
 | |
|     void enterResultType() {
 | |
|       Bits |= InResultTypeMask;
 | |
|     }
 | |
| 
 | |
|     void leaveResultType() {
 | |
|       Bits &= ~InResultTypeMask;
 | |
|     }
 | |
| 
 | |
|     void pop(FunctionTypeDepthState saved) {
 | |
|       assert(getDepth() == saved.getDepth() + 1);
 | |
|       Bits = saved.Bits;
 | |
|     }
 | |
| 
 | |
|   } FunctionTypeDepth;
 | |
| 
 | |
|   // abi_tag is a gcc attribute, taking one or more strings called "tags".
 | |
|   // The goal is to annotate against which version of a library an object was
 | |
|   // built and to be able to provide backwards compatibility ("dual abi").
 | |
|   // For more information see docs/ItaniumMangleAbiTags.rst.
 | |
|   typedef SmallVector<StringRef, 4> AbiTagList;
 | |
| 
 | |
|   // State to gather all implicit and explicit tags used in a mangled name.
 | |
|   // Must always have an instance of this while emitting any name to keep
 | |
|   // track.
 | |
|   class AbiTagState final {
 | |
|   public:
 | |
|     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
 | |
|       Parent = LinkHead;
 | |
|       LinkHead = this;
 | |
|     }
 | |
| 
 | |
|     // No copy, no move.
 | |
|     AbiTagState(const AbiTagState &) = delete;
 | |
|     AbiTagState &operator=(const AbiTagState &) = delete;
 | |
| 
 | |
|     ~AbiTagState() { pop(); }
 | |
| 
 | |
|     void write(raw_ostream &Out, const NamedDecl *ND,
 | |
|                const AbiTagList *AdditionalAbiTags) {
 | |
|       ND = cast<NamedDecl>(ND->getCanonicalDecl());
 | |
|       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
 | |
|         assert(
 | |
|             !AdditionalAbiTags &&
 | |
|             "only function and variables need a list of additional abi tags");
 | |
|         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
 | |
|           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
 | |
|             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
 | |
|                                AbiTag->tags().end());
 | |
|           }
 | |
|           // Don't emit abi tags for namespaces.
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       AbiTagList TagList;
 | |
|       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
 | |
|         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
 | |
|                            AbiTag->tags().end());
 | |
|         TagList.insert(TagList.end(), AbiTag->tags().begin(),
 | |
|                        AbiTag->tags().end());
 | |
|       }
 | |
| 
 | |
|       if (AdditionalAbiTags) {
 | |
|         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
 | |
|                            AdditionalAbiTags->end());
 | |
|         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
 | |
|                        AdditionalAbiTags->end());
 | |
|       }
 | |
| 
 | |
|       llvm::sort(TagList);
 | |
|       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
 | |
| 
 | |
|       writeSortedUniqueAbiTags(Out, TagList);
 | |
|     }
 | |
| 
 | |
|     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
 | |
|     void setUsedAbiTags(const AbiTagList &AbiTags) {
 | |
|       UsedAbiTags = AbiTags;
 | |
|     }
 | |
| 
 | |
|     const AbiTagList &getEmittedAbiTags() const {
 | |
|       return EmittedAbiTags;
 | |
|     }
 | |
| 
 | |
|     const AbiTagList &getSortedUniqueUsedAbiTags() {
 | |
|       llvm::sort(UsedAbiTags);
 | |
|       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
 | |
|                         UsedAbiTags.end());
 | |
|       return UsedAbiTags;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     //! All abi tags used implicitly or explicitly.
 | |
|     AbiTagList UsedAbiTags;
 | |
|     //! All explicit abi tags (i.e. not from namespace).
 | |
|     AbiTagList EmittedAbiTags;
 | |
| 
 | |
|     AbiTagState *&LinkHead;
 | |
|     AbiTagState *Parent = nullptr;
 | |
| 
 | |
|     void pop() {
 | |
|       assert(LinkHead == this &&
 | |
|              "abi tag link head must point to us on destruction");
 | |
|       if (Parent) {
 | |
|         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
 | |
|                                    UsedAbiTags.begin(), UsedAbiTags.end());
 | |
|         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
 | |
|                                       EmittedAbiTags.begin(),
 | |
|                                       EmittedAbiTags.end());
 | |
|       }
 | |
|       LinkHead = Parent;
 | |
|     }
 | |
| 
 | |
|     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
 | |
|       for (const auto &Tag : AbiTags) {
 | |
|         EmittedAbiTags.push_back(Tag);
 | |
|         Out << "B";
 | |
|         Out << Tag.size();
 | |
|         Out << Tag;
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   AbiTagState *AbiTags = nullptr;
 | |
|   AbiTagState AbiTagsRoot;
 | |
| 
 | |
|   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
 | |
|   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
 | |
| 
 | |
|   ASTContext &getASTContext() const { return Context.getASTContext(); }
 | |
| 
 | |
| public:
 | |
|   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
 | |
|                  const NamedDecl *D = nullptr, bool NullOut_ = false)
 | |
|     : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
 | |
|       StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
 | |
|     // These can't be mangled without a ctor type or dtor type.
 | |
|     assert(!D || (!isa<CXXDestructorDecl>(D) &&
 | |
|                   !isa<CXXConstructorDecl>(D)));
 | |
|   }
 | |
|   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
 | |
|                  const CXXConstructorDecl *D, CXXCtorType Type)
 | |
|     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
 | |
|       SeqID(0), AbiTagsRoot(AbiTags) { }
 | |
|   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
 | |
|                  const CXXDestructorDecl *D, CXXDtorType Type)
 | |
|     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
 | |
|       SeqID(0), AbiTagsRoot(AbiTags) { }
 | |
| 
 | |
|   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
 | |
|       : Context(Outer.Context), Out(Out_), NullOut(false),
 | |
|         Structor(Outer.Structor), StructorType(Outer.StructorType),
 | |
|         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
 | |
|         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
 | |
| 
 | |
|   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
 | |
|       : Context(Outer.Context), Out(Out_), NullOut(true),
 | |
|         Structor(Outer.Structor), StructorType(Outer.StructorType),
 | |
|         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
 | |
|         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
 | |
| 
 | |
|   raw_ostream &getStream() { return Out; }
 | |
| 
 | |
|   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
 | |
|   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
 | |
| 
 | |
|   void mangle(GlobalDecl GD);
 | |
|   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
 | |
|   void mangleNumber(const llvm::APSInt &I);
 | |
|   void mangleNumber(int64_t Number);
 | |
|   void mangleFloat(const llvm::APFloat &F);
 | |
|   void mangleFunctionEncoding(GlobalDecl GD);
 | |
|   void mangleSeqID(unsigned SeqID);
 | |
|   void mangleName(GlobalDecl GD);
 | |
|   void mangleType(QualType T);
 | |
|   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
 | |
|   void mangleLambdaSig(const CXXRecordDecl *Lambda);
 | |
| 
 | |
| private:
 | |
| 
 | |
|   bool mangleSubstitution(const NamedDecl *ND);
 | |
|   bool mangleSubstitution(QualType T);
 | |
|   bool mangleSubstitution(TemplateName Template);
 | |
|   bool mangleSubstitution(uintptr_t Ptr);
 | |
| 
 | |
|   void mangleExistingSubstitution(TemplateName name);
 | |
| 
 | |
|   bool mangleStandardSubstitution(const NamedDecl *ND);
 | |
| 
 | |
|   void addSubstitution(const NamedDecl *ND) {
 | |
|     ND = cast<NamedDecl>(ND->getCanonicalDecl());
 | |
| 
 | |
|     addSubstitution(reinterpret_cast<uintptr_t>(ND));
 | |
|   }
 | |
|   void addSubstitution(QualType T);
 | |
|   void addSubstitution(TemplateName Template);
 | |
|   void addSubstitution(uintptr_t Ptr);
 | |
|   // Destructive copy substitutions from other mangler.
 | |
|   void extendSubstitutions(CXXNameMangler* Other);
 | |
| 
 | |
|   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
 | |
|                               bool recursive = false);
 | |
|   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
 | |
|                             DeclarationName name,
 | |
|                             const TemplateArgumentLoc *TemplateArgs,
 | |
|                             unsigned NumTemplateArgs,
 | |
|                             unsigned KnownArity = UnknownArity);
 | |
| 
 | |
|   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
 | |
| 
 | |
|   void mangleNameWithAbiTags(GlobalDecl GD,
 | |
|                              const AbiTagList *AdditionalAbiTags);
 | |
|   void mangleModuleName(const Module *M);
 | |
|   void mangleModuleNamePrefix(StringRef Name);
 | |
|   void mangleTemplateName(const TemplateDecl *TD,
 | |
|                           const TemplateArgument *TemplateArgs,
 | |
|                           unsigned NumTemplateArgs);
 | |
|   void mangleUnqualifiedName(GlobalDecl GD,
 | |
|                              const AbiTagList *AdditionalAbiTags) {
 | |
|     mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
 | |
|                           AdditionalAbiTags);
 | |
|   }
 | |
|   void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
 | |
|                              unsigned KnownArity,
 | |
|                              const AbiTagList *AdditionalAbiTags);
 | |
|   void mangleUnscopedName(GlobalDecl GD,
 | |
|                           const AbiTagList *AdditionalAbiTags);
 | |
|   void mangleUnscopedTemplateName(GlobalDecl GD,
 | |
|                                   const AbiTagList *AdditionalAbiTags);
 | |
|   void mangleSourceName(const IdentifierInfo *II);
 | |
|   void mangleRegCallName(const IdentifierInfo *II);
 | |
|   void mangleDeviceStubName(const IdentifierInfo *II);
 | |
|   void mangleSourceNameWithAbiTags(
 | |
|       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
 | |
|   void mangleLocalName(GlobalDecl GD,
 | |
|                        const AbiTagList *AdditionalAbiTags);
 | |
|   void mangleBlockForPrefix(const BlockDecl *Block);
 | |
|   void mangleUnqualifiedBlock(const BlockDecl *Block);
 | |
|   void mangleTemplateParamDecl(const NamedDecl *Decl);
 | |
|   void mangleLambda(const CXXRecordDecl *Lambda);
 | |
|   void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
 | |
|                         const AbiTagList *AdditionalAbiTags,
 | |
|                         bool NoFunction=false);
 | |
|   void mangleNestedName(const TemplateDecl *TD,
 | |
|                         const TemplateArgument *TemplateArgs,
 | |
|                         unsigned NumTemplateArgs);
 | |
|   void manglePrefix(NestedNameSpecifier *qualifier);
 | |
|   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
 | |
|   void manglePrefix(QualType type);
 | |
|   void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
 | |
|   void mangleTemplatePrefix(TemplateName Template);
 | |
|   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
 | |
|                                       StringRef Prefix = "");
 | |
|   void mangleOperatorName(DeclarationName Name, unsigned Arity);
 | |
|   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
 | |
|   void mangleVendorQualifier(StringRef qualifier);
 | |
|   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
 | |
|   void mangleRefQualifier(RefQualifierKind RefQualifier);
 | |
| 
 | |
|   void mangleObjCMethodName(const ObjCMethodDecl *MD);
 | |
| 
 | |
|   // Declare manglers for every type class.
 | |
| #define ABSTRACT_TYPE(CLASS, PARENT)
 | |
| #define NON_CANONICAL_TYPE(CLASS, PARENT)
 | |
| #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
| 
 | |
|   void mangleType(const TagType*);
 | |
|   void mangleType(TemplateName);
 | |
|   static StringRef getCallingConvQualifierName(CallingConv CC);
 | |
|   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
 | |
|   void mangleExtFunctionInfo(const FunctionType *T);
 | |
|   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
 | |
|                               const FunctionDecl *FD = nullptr);
 | |
|   void mangleNeonVectorType(const VectorType *T);
 | |
|   void mangleNeonVectorType(const DependentVectorType *T);
 | |
|   void mangleAArch64NeonVectorType(const VectorType *T);
 | |
|   void mangleAArch64NeonVectorType(const DependentVectorType *T);
 | |
|   void mangleAArch64FixedSveVectorType(const VectorType *T);
 | |
|   void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
 | |
| 
 | |
|   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
 | |
|   void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
 | |
|   void mangleFixedPointLiteral();
 | |
|   void mangleNullPointer(QualType T);
 | |
| 
 | |
|   void mangleMemberExprBase(const Expr *base, bool isArrow);
 | |
|   void mangleMemberExpr(const Expr *base, bool isArrow,
 | |
|                         NestedNameSpecifier *qualifier,
 | |
|                         NamedDecl *firstQualifierLookup,
 | |
|                         DeclarationName name,
 | |
|                         const TemplateArgumentLoc *TemplateArgs,
 | |
|                         unsigned NumTemplateArgs,
 | |
|                         unsigned knownArity);
 | |
|   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
 | |
|   void mangleInitListElements(const InitListExpr *InitList);
 | |
|   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
 | |
|                         bool AsTemplateArg = false);
 | |
|   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
 | |
|   void mangleCXXDtorType(CXXDtorType T);
 | |
| 
 | |
|   void mangleTemplateArgs(TemplateName TN,
 | |
|                           const TemplateArgumentLoc *TemplateArgs,
 | |
|                           unsigned NumTemplateArgs);
 | |
|   void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
 | |
|                           unsigned NumTemplateArgs);
 | |
|   void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
 | |
|   void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
 | |
|   void mangleTemplateArgExpr(const Expr *E);
 | |
|   void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
 | |
|                                 bool NeedExactType = false);
 | |
| 
 | |
|   void mangleTemplateParameter(unsigned Depth, unsigned Index);
 | |
| 
 | |
|   void mangleFunctionParam(const ParmVarDecl *parm);
 | |
| 
 | |
|   void writeAbiTags(const NamedDecl *ND,
 | |
|                     const AbiTagList *AdditionalAbiTags);
 | |
| 
 | |
|   // Returns sorted unique list of ABI tags.
 | |
|   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
 | |
|   // Returns sorted unique list of ABI tags.
 | |
|   AbiTagList makeVariableTypeTags(const VarDecl *VD);
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| static bool isInternalLinkageDecl(const NamedDecl *ND) {
 | |
|   if (ND && ND->getFormalLinkage() == InternalLinkage &&
 | |
|       !ND->isExternallyVisible() &&
 | |
|       getEffectiveDeclContext(ND)->isFileContext() &&
 | |
|       !ND->isInAnonymousNamespace())
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check if this Function Decl needs a unique internal linkage name.
 | |
| bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl(
 | |
|     const NamedDecl *ND) {
 | |
|   if (!NeedsUniqueInternalLinkageNames || !ND)
 | |
|     return false;
 | |
| 
 | |
|   const auto *FD = dyn_cast<FunctionDecl>(ND);
 | |
|   if (!FD)
 | |
|     return false;
 | |
| 
 | |
|   // For C functions without prototypes, return false as their
 | |
|   // names should not be mangled.
 | |
|   if (!FD->hasPrototype())
 | |
|     return false;
 | |
| 
 | |
|   if (isInternalLinkageDecl(ND))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
 | |
|   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
 | |
|   if (FD) {
 | |
|     LanguageLinkage L = FD->getLanguageLinkage();
 | |
|     // Overloadable functions need mangling.
 | |
|     if (FD->hasAttr<OverloadableAttr>())
 | |
|       return true;
 | |
| 
 | |
|     // "main" is not mangled.
 | |
|     if (FD->isMain())
 | |
|       return false;
 | |
| 
 | |
|     // The Windows ABI expects that we would never mangle "typical"
 | |
|     // user-defined entry points regardless of visibility or freestanding-ness.
 | |
|     //
 | |
|     // N.B. This is distinct from asking about "main".  "main" has a lot of
 | |
|     // special rules associated with it in the standard while these
 | |
|     // user-defined entry points are outside of the purview of the standard.
 | |
|     // For example, there can be only one definition for "main" in a standards
 | |
|     // compliant program; however nothing forbids the existence of wmain and
 | |
|     // WinMain in the same translation unit.
 | |
|     if (FD->isMSVCRTEntryPoint())
 | |
|       return false;
 | |
| 
 | |
|     // C++ functions and those whose names are not a simple identifier need
 | |
|     // mangling.
 | |
|     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
 | |
|       return true;
 | |
| 
 | |
|     // C functions are not mangled.
 | |
|     if (L == CLanguageLinkage)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, no mangling is done outside C++ mode.
 | |
|   if (!getASTContext().getLangOpts().CPlusPlus)
 | |
|     return false;
 | |
| 
 | |
|   const VarDecl *VD = dyn_cast<VarDecl>(D);
 | |
|   if (VD && !isa<DecompositionDecl>(D)) {
 | |
|     // C variables are not mangled.
 | |
|     if (VD->isExternC())
 | |
|       return false;
 | |
| 
 | |
|     // Variables at global scope with non-internal linkage are not mangled
 | |
|     const DeclContext *DC = getEffectiveDeclContext(D);
 | |
|     // Check for extern variable declared locally.
 | |
|     if (DC->isFunctionOrMethod() && D->hasLinkage())
 | |
|       while (!DC->isNamespace() && !DC->isTranslationUnit())
 | |
|         DC = getEffectiveParentContext(DC);
 | |
|     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
 | |
|         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
 | |
|         !isa<VarTemplateSpecializationDecl>(D))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
 | |
|                                   const AbiTagList *AdditionalAbiTags) {
 | |
|   assert(AbiTags && "require AbiTagState");
 | |
|   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleSourceNameWithAbiTags(
 | |
|     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
 | |
|   mangleSourceName(ND->getIdentifier());
 | |
|   writeAbiTags(ND, AdditionalAbiTags);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangle(GlobalDecl GD) {
 | |
|   // <mangled-name> ::= _Z <encoding>
 | |
|   //            ::= <data name>
 | |
|   //            ::= <special-name>
 | |
|   Out << "_Z";
 | |
|   if (isa<FunctionDecl>(GD.getDecl()))
 | |
|     mangleFunctionEncoding(GD);
 | |
|   else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
 | |
|                BindingDecl>(GD.getDecl()))
 | |
|     mangleName(GD);
 | |
|   else if (const IndirectFieldDecl *IFD =
 | |
|                dyn_cast<IndirectFieldDecl>(GD.getDecl()))
 | |
|     mangleName(IFD->getAnonField());
 | |
|   else
 | |
|     llvm_unreachable("unexpected kind of global decl");
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
 | |
|   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | |
|   // <encoding> ::= <function name> <bare-function-type>
 | |
| 
 | |
|   // Don't mangle in the type if this isn't a decl we should typically mangle.
 | |
|   if (!Context.shouldMangleDeclName(FD)) {
 | |
|     mangleName(GD);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
 | |
|   if (ReturnTypeAbiTags.empty()) {
 | |
|     // There are no tags for return type, the simplest case.
 | |
|     mangleName(GD);
 | |
|     mangleFunctionEncodingBareType(FD);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Mangle function name and encoding to temporary buffer.
 | |
|   // We have to output name and encoding to the same mangler to get the same
 | |
|   // substitution as it will be in final mangling.
 | |
|   SmallString<256> FunctionEncodingBuf;
 | |
|   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
 | |
|   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
 | |
|   // Output name of the function.
 | |
|   FunctionEncodingMangler.disableDerivedAbiTags();
 | |
|   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
 | |
| 
 | |
|   // Remember length of the function name in the buffer.
 | |
|   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
 | |
|   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
 | |
| 
 | |
|   // Get tags from return type that are not present in function name or
 | |
|   // encoding.
 | |
|   const AbiTagList &UsedAbiTags =
 | |
|       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
 | |
|   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
 | |
|   AdditionalAbiTags.erase(
 | |
|       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
 | |
|                           UsedAbiTags.begin(), UsedAbiTags.end(),
 | |
|                           AdditionalAbiTags.begin()),
 | |
|       AdditionalAbiTags.end());
 | |
| 
 | |
|   // Output name with implicit tags and function encoding from temporary buffer.
 | |
|   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
 | |
|   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
 | |
| 
 | |
|   // Function encoding could create new substitutions so we have to add
 | |
|   // temp mangled substitutions to main mangler.
 | |
|   extendSubstitutions(&FunctionEncodingMangler);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
 | |
|   if (FD->hasAttr<EnableIfAttr>()) {
 | |
|     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
 | |
|     Out << "Ua9enable_ifI";
 | |
|     for (AttrVec::const_iterator I = FD->getAttrs().begin(),
 | |
|                                  E = FD->getAttrs().end();
 | |
|          I != E; ++I) {
 | |
|       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
 | |
|       if (!EIA)
 | |
|         continue;
 | |
|       if (Context.getASTContext().getLangOpts().getClangABICompat() >
 | |
|           LangOptions::ClangABI::Ver11) {
 | |
|         mangleTemplateArgExpr(EIA->getCond());
 | |
|       } else {
 | |
|         // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
 | |
|         // even though <template-arg> should not include an X/E around
 | |
|         // <expr-primary>.
 | |
|         Out << 'X';
 | |
|         mangleExpression(EIA->getCond());
 | |
|         Out << 'E';
 | |
|       }
 | |
|     }
 | |
|     Out << 'E';
 | |
|     FunctionTypeDepth.pop(Saved);
 | |
|   }
 | |
| 
 | |
|   // When mangling an inheriting constructor, the bare function type used is
 | |
|   // that of the inherited constructor.
 | |
|   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
 | |
|     if (auto Inherited = CD->getInheritedConstructor())
 | |
|       FD = Inherited.getConstructor();
 | |
| 
 | |
|   // Whether the mangling of a function type includes the return type depends on
 | |
|   // the context and the nature of the function. The rules for deciding whether
 | |
|   // the return type is included are:
 | |
|   //
 | |
|   //   1. Template functions (names or types) have return types encoded, with
 | |
|   //   the exceptions listed below.
 | |
|   //   2. Function types not appearing as part of a function name mangling,
 | |
|   //   e.g. parameters, pointer types, etc., have return type encoded, with the
 | |
|   //   exceptions listed below.
 | |
|   //   3. Non-template function names do not have return types encoded.
 | |
|   //
 | |
|   // The exceptions mentioned in (1) and (2) above, for which the return type is
 | |
|   // never included, are
 | |
|   //   1. Constructors.
 | |
|   //   2. Destructors.
 | |
|   //   3. Conversion operator functions, e.g. operator int.
 | |
|   bool MangleReturnType = false;
 | |
|   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
 | |
|     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
 | |
|           isa<CXXConversionDecl>(FD)))
 | |
|       MangleReturnType = true;
 | |
| 
 | |
|     // Mangle the type of the primary template.
 | |
|     FD = PrimaryTemplate->getTemplatedDecl();
 | |
|   }
 | |
| 
 | |
|   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
 | |
|                          MangleReturnType, FD);
 | |
| }
 | |
| 
 | |
| static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
 | |
|   while (isa<LinkageSpecDecl>(DC)) {
 | |
|     DC = getEffectiveParentContext(DC);
 | |
|   }
 | |
| 
 | |
|   return DC;
 | |
| }
 | |
| 
 | |
| /// Return whether a given namespace is the 'std' namespace.
 | |
| static bool isStd(const NamespaceDecl *NS) {
 | |
|   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
 | |
|                                 ->isTranslationUnit())
 | |
|     return false;
 | |
| 
 | |
|   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
 | |
|   return II && II->isStr("std");
 | |
| }
 | |
| 
 | |
| // isStdNamespace - Return whether a given decl context is a toplevel 'std'
 | |
| // namespace.
 | |
| static bool isStdNamespace(const DeclContext *DC) {
 | |
|   if (!DC->isNamespace())
 | |
|     return false;
 | |
| 
 | |
|   return isStd(cast<NamespaceDecl>(DC));
 | |
| }
 | |
| 
 | |
| static const GlobalDecl
 | |
| isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
 | |
|   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | |
|   // Check if we have a function template.
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
 | |
|     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
 | |
|       TemplateArgs = FD->getTemplateSpecializationArgs();
 | |
|       return GD.getWithDecl(TD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check if we have a class template.
 | |
|   if (const ClassTemplateSpecializationDecl *Spec =
 | |
|         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
 | |
|     TemplateArgs = &Spec->getTemplateArgs();
 | |
|     return GD.getWithDecl(Spec->getSpecializedTemplate());
 | |
|   }
 | |
| 
 | |
|   // Check if we have a variable template.
 | |
|   if (const VarTemplateSpecializationDecl *Spec =
 | |
|           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
 | |
|     TemplateArgs = &Spec->getTemplateArgs();
 | |
|     return GD.getWithDecl(Spec->getSpecializedTemplate());
 | |
|   }
 | |
| 
 | |
|   return GlobalDecl();
 | |
| }
 | |
| 
 | |
| static TemplateName asTemplateName(GlobalDecl GD) {
 | |
|   const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
 | |
|   return TemplateName(const_cast<TemplateDecl*>(TD));
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleName(GlobalDecl GD) {
 | |
|   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
 | |
|     // Variables should have implicit tags from its type.
 | |
|     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
 | |
|     if (VariableTypeAbiTags.empty()) {
 | |
|       // Simple case no variable type tags.
 | |
|       mangleNameWithAbiTags(VD, nullptr);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Mangle variable name to null stream to collect tags.
 | |
|     llvm::raw_null_ostream NullOutStream;
 | |
|     CXXNameMangler VariableNameMangler(*this, NullOutStream);
 | |
|     VariableNameMangler.disableDerivedAbiTags();
 | |
|     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
 | |
| 
 | |
|     // Get tags from variable type that are not present in its name.
 | |
|     const AbiTagList &UsedAbiTags =
 | |
|         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
 | |
|     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
 | |
|     AdditionalAbiTags.erase(
 | |
|         std::set_difference(VariableTypeAbiTags.begin(),
 | |
|                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
 | |
|                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
 | |
|         AdditionalAbiTags.end());
 | |
| 
 | |
|     // Output name with implicit tags.
 | |
|     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
 | |
|   } else {
 | |
|     mangleNameWithAbiTags(GD, nullptr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
 | |
|                                            const AbiTagList *AdditionalAbiTags) {
 | |
|   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | |
|   //  <name> ::= [<module-name>] <nested-name>
 | |
|   //         ::= [<module-name>] <unscoped-name>
 | |
|   //         ::= [<module-name>] <unscoped-template-name> <template-args>
 | |
|   //         ::= <local-name>
 | |
|   //
 | |
|   const DeclContext *DC = getEffectiveDeclContext(ND);
 | |
| 
 | |
|   // If this is an extern variable declared locally, the relevant DeclContext
 | |
|   // is that of the containing namespace, or the translation unit.
 | |
|   // FIXME: This is a hack; extern variables declared locally should have
 | |
|   // a proper semantic declaration context!
 | |
|   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
 | |
|     while (!DC->isNamespace() && !DC->isTranslationUnit())
 | |
|       DC = getEffectiveParentContext(DC);
 | |
|   else if (GetLocalClassDecl(ND)) {
 | |
|     mangleLocalName(GD, AdditionalAbiTags);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DC = IgnoreLinkageSpecDecls(DC);
 | |
| 
 | |
|   if (isLocalContainerContext(DC)) {
 | |
|     mangleLocalName(GD, AdditionalAbiTags);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Do not mangle the owning module for an external linkage declaration.
 | |
|   // This enables backwards-compatibility with non-modular code, and is
 | |
|   // a valid choice since conflicts are not permitted by C++ Modules TS
 | |
|   // [basic.def.odr]/6.2.
 | |
|   if (!ND->hasExternalFormalLinkage())
 | |
|     if (Module *M = ND->getOwningModuleForLinkage())
 | |
|       mangleModuleName(M);
 | |
| 
 | |
|   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
 | |
|     // Check if we have a template.
 | |
|     const TemplateArgumentList *TemplateArgs = nullptr;
 | |
|     if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
 | |
|       mangleUnscopedTemplateName(TD, AdditionalAbiTags);
 | |
|       mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     mangleUnscopedName(GD, AdditionalAbiTags);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   mangleNestedName(GD, DC, AdditionalAbiTags);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleModuleName(const Module *M) {
 | |
|   // Implement the C++ Modules TS name mangling proposal; see
 | |
|   //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
 | |
|   //
 | |
|   //   <module-name> ::= W <unscoped-name>+ E
 | |
|   //                 ::= W <module-subst> <unscoped-name>* E
 | |
|   Out << 'W';
 | |
|   mangleModuleNamePrefix(M->Name);
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
 | |
|   //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
 | |
|   //                 ::= W <seq-id - 10> _   # otherwise
 | |
|   auto It = ModuleSubstitutions.find(Name);
 | |
|   if (It != ModuleSubstitutions.end()) {
 | |
|     if (It->second < 10)
 | |
|       Out << '_' << static_cast<char>('0' + It->second);
 | |
|     else
 | |
|       Out << 'W' << (It->second - 10) << '_';
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Preserve hierarchy in module names rather than flattening
 | |
|   // them to strings; use Module*s as substitution keys.
 | |
|   auto Parts = Name.rsplit('.');
 | |
|   if (Parts.second.empty())
 | |
|     Parts.second = Parts.first;
 | |
|   else
 | |
|     mangleModuleNamePrefix(Parts.first);
 | |
| 
 | |
|   Out << Parts.second.size() << Parts.second;
 | |
|   ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
 | |
|                                         const TemplateArgument *TemplateArgs,
 | |
|                                         unsigned NumTemplateArgs) {
 | |
|   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
 | |
| 
 | |
|   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
 | |
|     mangleUnscopedTemplateName(TD, nullptr);
 | |
|     mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
 | |
|   } else {
 | |
|     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
 | |
|                                         const AbiTagList *AdditionalAbiTags) {
 | |
|   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | |
|   //  <unscoped-name> ::= <unqualified-name>
 | |
|   //                  ::= St <unqualified-name>   # ::std::
 | |
| 
 | |
|   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
 | |
|     Out << "St";
 | |
| 
 | |
|   mangleUnqualifiedName(GD, AdditionalAbiTags);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleUnscopedTemplateName(
 | |
|     GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
 | |
|   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
 | |
|   //     <unscoped-template-name> ::= <unscoped-name>
 | |
|   //                              ::= <substitution>
 | |
|   if (mangleSubstitution(ND))
 | |
|     return;
 | |
| 
 | |
|   // <template-template-param> ::= <template-param>
 | |
|   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
 | |
|     assert(!AdditionalAbiTags &&
 | |
|            "template template param cannot have abi tags");
 | |
|     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
 | |
|   } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
 | |
|     mangleUnscopedName(GD, AdditionalAbiTags);
 | |
|   } else {
 | |
|     mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
 | |
|   }
 | |
| 
 | |
|   addSubstitution(ND);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
 | |
|   // ABI:
 | |
|   //   Floating-point literals are encoded using a fixed-length
 | |
|   //   lowercase hexadecimal string corresponding to the internal
 | |
|   //   representation (IEEE on Itanium), high-order bytes first,
 | |
|   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
 | |
|   //   on Itanium.
 | |
|   // The 'without leading zeroes' thing seems to be an editorial
 | |
|   // mistake; see the discussion on cxx-abi-dev beginning on
 | |
|   // 2012-01-16.
 | |
| 
 | |
|   // Our requirements here are just barely weird enough to justify
 | |
|   // using a custom algorithm instead of post-processing APInt::toString().
 | |
| 
 | |
|   llvm::APInt valueBits = f.bitcastToAPInt();
 | |
|   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
 | |
|   assert(numCharacters != 0);
 | |
| 
 | |
|   // Allocate a buffer of the right number of characters.
 | |
|   SmallVector<char, 20> buffer(numCharacters);
 | |
| 
 | |
|   // Fill the buffer left-to-right.
 | |
|   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
 | |
|     // The bit-index of the next hex digit.
 | |
|     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
 | |
| 
 | |
|     // Project out 4 bits starting at 'digitIndex'.
 | |
|     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
 | |
|     hexDigit >>= (digitBitIndex % 64);
 | |
|     hexDigit &= 0xF;
 | |
| 
 | |
|     // Map that over to a lowercase hex digit.
 | |
|     static const char charForHex[16] = {
 | |
|       '0', '1', '2', '3', '4', '5', '6', '7',
 | |
|       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
 | |
|     };
 | |
|     buffer[stringIndex] = charForHex[hexDigit];
 | |
|   }
 | |
| 
 | |
|   Out.write(buffer.data(), numCharacters);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
 | |
|   Out << 'L';
 | |
|   mangleType(T);
 | |
|   mangleFloat(V);
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleFixedPointLiteral() {
 | |
|   DiagnosticsEngine &Diags = Context.getDiags();
 | |
|   unsigned DiagID = Diags.getCustomDiagID(
 | |
|       DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
 | |
|   Diags.Report(DiagID);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleNullPointer(QualType T) {
 | |
|   //  <expr-primary> ::= L <type> 0 E
 | |
|   Out << 'L';
 | |
|   mangleType(T);
 | |
|   Out << "0E";
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
 | |
|   if (Value.isSigned() && Value.isNegative()) {
 | |
|     Out << 'n';
 | |
|     Value.abs().print(Out, /*signed*/ false);
 | |
|   } else {
 | |
|     Value.print(Out, /*signed*/ false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleNumber(int64_t Number) {
 | |
|   //  <number> ::= [n] <non-negative decimal integer>
 | |
|   if (Number < 0) {
 | |
|     Out << 'n';
 | |
|     Number = -Number;
 | |
|   }
 | |
| 
 | |
|   Out << Number;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
 | |
|   //  <call-offset>  ::= h <nv-offset> _
 | |
|   //                 ::= v <v-offset> _
 | |
|   //  <nv-offset>    ::= <offset number>        # non-virtual base override
 | |
|   //  <v-offset>     ::= <offset number> _ <virtual offset number>
 | |
|   //                      # virtual base override, with vcall offset
 | |
|   if (!Virtual) {
 | |
|     Out << 'h';
 | |
|     mangleNumber(NonVirtual);
 | |
|     Out << '_';
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Out << 'v';
 | |
|   mangleNumber(NonVirtual);
 | |
|   Out << '_';
 | |
|   mangleNumber(Virtual);
 | |
|   Out << '_';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::manglePrefix(QualType type) {
 | |
|   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
 | |
|     if (!mangleSubstitution(QualType(TST, 0))) {
 | |
|       mangleTemplatePrefix(TST->getTemplateName());
 | |
| 
 | |
|       // FIXME: GCC does not appear to mangle the template arguments when
 | |
|       // the template in question is a dependent template name. Should we
 | |
|       // emulate that badness?
 | |
|       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
 | |
|                          TST->getNumArgs());
 | |
|       addSubstitution(QualType(TST, 0));
 | |
|     }
 | |
|   } else if (const auto *DTST =
 | |
|                  type->getAs<DependentTemplateSpecializationType>()) {
 | |
|     if (!mangleSubstitution(QualType(DTST, 0))) {
 | |
|       TemplateName Template = getASTContext().getDependentTemplateName(
 | |
|           DTST->getQualifier(), DTST->getIdentifier());
 | |
|       mangleTemplatePrefix(Template);
 | |
| 
 | |
|       // FIXME: GCC does not appear to mangle the template arguments when
 | |
|       // the template in question is a dependent template name. Should we
 | |
|       // emulate that badness?
 | |
|       mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
 | |
|       addSubstitution(QualType(DTST, 0));
 | |
|     }
 | |
|   } else {
 | |
|     // We use the QualType mangle type variant here because it handles
 | |
|     // substitutions.
 | |
|     mangleType(type);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
 | |
| ///
 | |
| /// \param recursive - true if this is being called recursively,
 | |
| ///   i.e. if there is more prefix "to the right".
 | |
| void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
 | |
|                                             bool recursive) {
 | |
| 
 | |
|   // x, ::x
 | |
|   // <unresolved-name> ::= [gs] <base-unresolved-name>
 | |
| 
 | |
|   // T::x / decltype(p)::x
 | |
|   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
 | |
| 
 | |
|   // T::N::x /decltype(p)::N::x
 | |
|   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
 | |
|   //                       <base-unresolved-name>
 | |
| 
 | |
|   // A::x, N::y, A<T>::z; "gs" means leading "::"
 | |
|   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
 | |
|   //                       <base-unresolved-name>
 | |
| 
 | |
|   switch (qualifier->getKind()) {
 | |
|   case NestedNameSpecifier::Global:
 | |
|     Out << "gs";
 | |
| 
 | |
|     // We want an 'sr' unless this is the entire NNS.
 | |
|     if (recursive)
 | |
|       Out << "sr";
 | |
| 
 | |
|     // We never want an 'E' here.
 | |
|     return;
 | |
| 
 | |
|   case NestedNameSpecifier::Super:
 | |
|     llvm_unreachable("Can't mangle __super specifier");
 | |
| 
 | |
|   case NestedNameSpecifier::Namespace:
 | |
|     if (qualifier->getPrefix())
 | |
|       mangleUnresolvedPrefix(qualifier->getPrefix(),
 | |
|                              /*recursive*/ true);
 | |
|     else
 | |
|       Out << "sr";
 | |
|     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
 | |
|     break;
 | |
|   case NestedNameSpecifier::NamespaceAlias:
 | |
|     if (qualifier->getPrefix())
 | |
|       mangleUnresolvedPrefix(qualifier->getPrefix(),
 | |
|                              /*recursive*/ true);
 | |
|     else
 | |
|       Out << "sr";
 | |
|     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
 | |
|     break;
 | |
| 
 | |
|   case NestedNameSpecifier::TypeSpec:
 | |
|   case NestedNameSpecifier::TypeSpecWithTemplate: {
 | |
|     const Type *type = qualifier->getAsType();
 | |
| 
 | |
|     // We only want to use an unresolved-type encoding if this is one of:
 | |
|     //   - a decltype
 | |
|     //   - a template type parameter
 | |
|     //   - a template template parameter with arguments
 | |
|     // In all of these cases, we should have no prefix.
 | |
|     if (qualifier->getPrefix()) {
 | |
|       mangleUnresolvedPrefix(qualifier->getPrefix(),
 | |
|                              /*recursive*/ true);
 | |
|     } else {
 | |
|       // Otherwise, all the cases want this.
 | |
|       Out << "sr";
 | |
|     }
 | |
| 
 | |
|     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
 | |
|       return;
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case NestedNameSpecifier::Identifier:
 | |
|     // Member expressions can have these without prefixes.
 | |
|     if (qualifier->getPrefix())
 | |
|       mangleUnresolvedPrefix(qualifier->getPrefix(),
 | |
|                              /*recursive*/ true);
 | |
|     else
 | |
|       Out << "sr";
 | |
| 
 | |
|     mangleSourceName(qualifier->getAsIdentifier());
 | |
|     // An Identifier has no type information, so we can't emit abi tags for it.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If this was the innermost part of the NNS, and we fell out to
 | |
|   // here, append an 'E'.
 | |
|   if (!recursive)
 | |
|     Out << 'E';
 | |
| }
 | |
| 
 | |
| /// Mangle an unresolved-name, which is generally used for names which
 | |
| /// weren't resolved to specific entities.
 | |
| void CXXNameMangler::mangleUnresolvedName(
 | |
|     NestedNameSpecifier *qualifier, DeclarationName name,
 | |
|     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
 | |
|     unsigned knownArity) {
 | |
|   if (qualifier) mangleUnresolvedPrefix(qualifier);
 | |
|   switch (name.getNameKind()) {
 | |
|     // <base-unresolved-name> ::= <simple-id>
 | |
|     case DeclarationName::Identifier:
 | |
|       mangleSourceName(name.getAsIdentifierInfo());
 | |
|       break;
 | |
|     // <base-unresolved-name> ::= dn <destructor-name>
 | |
|     case DeclarationName::CXXDestructorName:
 | |
|       Out << "dn";
 | |
|       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
 | |
|       break;
 | |
|     // <base-unresolved-name> ::= on <operator-name>
 | |
|     case DeclarationName::CXXConversionFunctionName:
 | |
|     case DeclarationName::CXXLiteralOperatorName:
 | |
|     case DeclarationName::CXXOperatorName:
 | |
|       Out << "on";
 | |
|       mangleOperatorName(name, knownArity);
 | |
|       break;
 | |
|     case DeclarationName::CXXConstructorName:
 | |
|       llvm_unreachable("Can't mangle a constructor name!");
 | |
|     case DeclarationName::CXXUsingDirective:
 | |
|       llvm_unreachable("Can't mangle a using directive name!");
 | |
|     case DeclarationName::CXXDeductionGuideName:
 | |
|       llvm_unreachable("Can't mangle a deduction guide name!");
 | |
|     case DeclarationName::ObjCMultiArgSelector:
 | |
|     case DeclarationName::ObjCOneArgSelector:
 | |
|     case DeclarationName::ObjCZeroArgSelector:
 | |
|       llvm_unreachable("Can't mangle Objective-C selector names here!");
 | |
|   }
 | |
| 
 | |
|   // The <simple-id> and on <operator-name> productions end in an optional
 | |
|   // <template-args>.
 | |
|   if (TemplateArgs)
 | |
|     mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
 | |
|                                            DeclarationName Name,
 | |
|                                            unsigned KnownArity,
 | |
|                                            const AbiTagList *AdditionalAbiTags) {
 | |
|   const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
 | |
|   unsigned Arity = KnownArity;
 | |
|   //  <unqualified-name> ::= <operator-name>
 | |
|   //                     ::= <ctor-dtor-name>
 | |
|   //                     ::= <source-name>
 | |
|   switch (Name.getNameKind()) {
 | |
|   case DeclarationName::Identifier: {
 | |
|     const IdentifierInfo *II = Name.getAsIdentifierInfo();
 | |
| 
 | |
|     // We mangle decomposition declarations as the names of their bindings.
 | |
|     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
 | |
|       // FIXME: Non-standard mangling for decomposition declarations:
 | |
|       //
 | |
|       //  <unqualified-name> ::= DC <source-name>* E
 | |
|       //
 | |
|       // These can never be referenced across translation units, so we do
 | |
|       // not need a cross-vendor mangling for anything other than demanglers.
 | |
|       // Proposed on cxx-abi-dev on 2016-08-12
 | |
|       Out << "DC";
 | |
|       for (auto *BD : DD->bindings())
 | |
|         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
 | |
|       Out << 'E';
 | |
|       writeAbiTags(ND, AdditionalAbiTags);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
 | |
|       // We follow MSVC in mangling GUID declarations as if they were variables
 | |
|       // with a particular reserved name. Continue the pretense here.
 | |
|       SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
 | |
|       llvm::raw_svector_ostream GUIDOS(GUID);
 | |
|       Context.mangleMSGuidDecl(GD, GUIDOS);
 | |
|       Out << GUID.size() << GUID;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
 | |
|       // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
 | |
|       Out << "TA";
 | |
|       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
 | |
|                                TPO->getValue(), /*TopLevel=*/true);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (II) {
 | |
|       // Match GCC's naming convention for internal linkage symbols, for
 | |
|       // symbols that are not actually visible outside of this TU. GCC
 | |
|       // distinguishes between internal and external linkage symbols in
 | |
|       // its mangling, to support cases like this that were valid C++ prior
 | |
|       // to DR426:
 | |
|       //
 | |
|       //   void test() { extern void foo(); }
 | |
|       //   static void foo();
 | |
|       //
 | |
|       // Don't bother with the L marker for names in anonymous namespaces; the
 | |
|       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
 | |
|       // matches GCC anyway, because GCC does not treat anonymous namespaces as
 | |
|       // implying internal linkage.
 | |
|       if (isInternalLinkageDecl(ND))
 | |
|         Out << 'L';
 | |
| 
 | |
|       auto *FD = dyn_cast<FunctionDecl>(ND);
 | |
|       bool IsRegCall = FD &&
 | |
|                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
 | |
|                            clang::CC_X86RegCall;
 | |
|       bool IsDeviceStub =
 | |
|           FD && FD->hasAttr<CUDAGlobalAttr>() &&
 | |
|           GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
 | |
|       if (IsDeviceStub)
 | |
|         mangleDeviceStubName(II);
 | |
|       else if (IsRegCall)
 | |
|         mangleRegCallName(II);
 | |
|       else
 | |
|         mangleSourceName(II);
 | |
| 
 | |
|       writeAbiTags(ND, AdditionalAbiTags);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, an anonymous entity.  We must have a declaration.
 | |
|     assert(ND && "mangling empty name without declaration");
 | |
| 
 | |
|     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
 | |
|       if (NS->isAnonymousNamespace()) {
 | |
|         // This is how gcc mangles these names.
 | |
|         Out << "12_GLOBAL__N_1";
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
 | |
|       // We must have an anonymous union or struct declaration.
 | |
|       const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
 | |
| 
 | |
|       // Itanium C++ ABI 5.1.2:
 | |
|       //
 | |
|       //   For the purposes of mangling, the name of an anonymous union is
 | |
|       //   considered to be the name of the first named data member found by a
 | |
|       //   pre-order, depth-first, declaration-order walk of the data members of
 | |
|       //   the anonymous union. If there is no such data member (i.e., if all of
 | |
|       //   the data members in the union are unnamed), then there is no way for
 | |
|       //   a program to refer to the anonymous union, and there is therefore no
 | |
|       //   need to mangle its name.
 | |
|       assert(RD->isAnonymousStructOrUnion()
 | |
|              && "Expected anonymous struct or union!");
 | |
|       const FieldDecl *FD = RD->findFirstNamedDataMember();
 | |
| 
 | |
|       // It's actually possible for various reasons for us to get here
 | |
|       // with an empty anonymous struct / union.  Fortunately, it
 | |
|       // doesn't really matter what name we generate.
 | |
|       if (!FD) break;
 | |
|       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
 | |
| 
 | |
|       mangleSourceName(FD->getIdentifier());
 | |
|       // Not emitting abi tags: internal name anyway.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Class extensions have no name as a category, and it's possible
 | |
|     // for them to be the semantic parent of certain declarations
 | |
|     // (primarily, tag decls defined within declarations).  Such
 | |
|     // declarations will always have internal linkage, so the name
 | |
|     // doesn't really matter, but we shouldn't crash on them.  For
 | |
|     // safety, just handle all ObjC containers here.
 | |
|     if (isa<ObjCContainerDecl>(ND))
 | |
|       break;
 | |
| 
 | |
|     // We must have an anonymous struct.
 | |
|     const TagDecl *TD = cast<TagDecl>(ND);
 | |
|     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
 | |
|       assert(TD->getDeclContext() == D->getDeclContext() &&
 | |
|              "Typedef should not be in another decl context!");
 | |
|       assert(D->getDeclName().getAsIdentifierInfo() &&
 | |
|              "Typedef was not named!");
 | |
|       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
 | |
|       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
 | |
|       // Explicit abi tags are still possible; take from underlying type, not
 | |
|       // from typedef.
 | |
|       writeAbiTags(TD, nullptr);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // <unnamed-type-name> ::= <closure-type-name>
 | |
|     //
 | |
|     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
 | |
|     // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
 | |
|     //     # Parameter types or 'v' for 'void'.
 | |
|     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
 | |
|       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
 | |
|         assert(!AdditionalAbiTags &&
 | |
|                "Lambda type cannot have additional abi tags");
 | |
|         mangleLambda(Record);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (TD->isExternallyVisible()) {
 | |
|       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
 | |
|       Out << "Ut";
 | |
|       if (UnnamedMangle > 1)
 | |
|         Out << UnnamedMangle - 2;
 | |
|       Out << '_';
 | |
|       writeAbiTags(TD, AdditionalAbiTags);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Get a unique id for the anonymous struct. If it is not a real output
 | |
|     // ID doesn't matter so use fake one.
 | |
|     unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
 | |
| 
 | |
|     // Mangle it as a source name in the form
 | |
|     // [n] $_<id>
 | |
|     // where n is the length of the string.
 | |
|     SmallString<8> Str;
 | |
|     Str += "$_";
 | |
|     Str += llvm::utostr(AnonStructId);
 | |
| 
 | |
|     Out << Str.size();
 | |
|     Out << Str;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case DeclarationName::ObjCZeroArgSelector:
 | |
|   case DeclarationName::ObjCOneArgSelector:
 | |
|   case DeclarationName::ObjCMultiArgSelector:
 | |
|     llvm_unreachable("Can't mangle Objective-C selector names here!");
 | |
| 
 | |
|   case DeclarationName::CXXConstructorName: {
 | |
|     const CXXRecordDecl *InheritedFrom = nullptr;
 | |
|     TemplateName InheritedTemplateName;
 | |
|     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
 | |
|     if (auto Inherited =
 | |
|             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
 | |
|       InheritedFrom = Inherited.getConstructor()->getParent();
 | |
|       InheritedTemplateName =
 | |
|           TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
 | |
|       InheritedTemplateArgs =
 | |
|           Inherited.getConstructor()->getTemplateSpecializationArgs();
 | |
|     }
 | |
| 
 | |
|     if (ND == Structor)
 | |
|       // If the named decl is the C++ constructor we're mangling, use the type
 | |
|       // we were given.
 | |
|       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
 | |
|     else
 | |
|       // Otherwise, use the complete constructor name. This is relevant if a
 | |
|       // class with a constructor is declared within a constructor.
 | |
|       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
 | |
| 
 | |
|     // FIXME: The template arguments are part of the enclosing prefix or
 | |
|     // nested-name, but it's more convenient to mangle them here.
 | |
|     if (InheritedTemplateArgs)
 | |
|       mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
 | |
| 
 | |
|     writeAbiTags(ND, AdditionalAbiTags);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case DeclarationName::CXXDestructorName:
 | |
|     if (ND == Structor)
 | |
|       // If the named decl is the C++ destructor we're mangling, use the type we
 | |
|       // were given.
 | |
|       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
 | |
|     else
 | |
|       // Otherwise, use the complete destructor name. This is relevant if a
 | |
|       // class with a destructor is declared within a destructor.
 | |
|       mangleCXXDtorType(Dtor_Complete);
 | |
|     writeAbiTags(ND, AdditionalAbiTags);
 | |
|     break;
 | |
| 
 | |
|   case DeclarationName::CXXOperatorName:
 | |
|     if (ND && Arity == UnknownArity) {
 | |
|       Arity = cast<FunctionDecl>(ND)->getNumParams();
 | |
| 
 | |
|       // If we have a member function, we need to include the 'this' pointer.
 | |
|       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
 | |
|         if (!MD->isStatic())
 | |
|           Arity++;
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case DeclarationName::CXXConversionFunctionName:
 | |
|   case DeclarationName::CXXLiteralOperatorName:
 | |
|     mangleOperatorName(Name, Arity);
 | |
|     writeAbiTags(ND, AdditionalAbiTags);
 | |
|     break;
 | |
| 
 | |
|   case DeclarationName::CXXDeductionGuideName:
 | |
|     llvm_unreachable("Can't mangle a deduction guide name!");
 | |
| 
 | |
|   case DeclarationName::CXXUsingDirective:
 | |
|     llvm_unreachable("Can't mangle a using directive name!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
 | |
|   // <source-name> ::= <positive length number> __regcall3__ <identifier>
 | |
|   // <number> ::= [n] <non-negative decimal integer>
 | |
|   // <identifier> ::= <unqualified source code identifier>
 | |
|   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
 | |
|       << II->getName();
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
 | |
|   // <source-name> ::= <positive length number> __device_stub__ <identifier>
 | |
|   // <number> ::= [n] <non-negative decimal integer>
 | |
|   // <identifier> ::= <unqualified source code identifier>
 | |
|   Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
 | |
|       << II->getName();
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
 | |
|   // <source-name> ::= <positive length number> <identifier>
 | |
|   // <number> ::= [n] <non-negative decimal integer>
 | |
|   // <identifier> ::= <unqualified source code identifier>
 | |
|   Out << II->getLength() << II->getName();
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleNestedName(GlobalDecl GD,
 | |
|                                       const DeclContext *DC,
 | |
|                                       const AbiTagList *AdditionalAbiTags,
 | |
|                                       bool NoFunction) {
 | |
|   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | |
|   // <nested-name>
 | |
|   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
 | |
|   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
 | |
|   //       <template-args> E
 | |
| 
 | |
|   Out << 'N';
 | |
|   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
 | |
|     Qualifiers MethodQuals = Method->getMethodQualifiers();
 | |
|     // We do not consider restrict a distinguishing attribute for overloading
 | |
|     // purposes so we must not mangle it.
 | |
|     MethodQuals.removeRestrict();
 | |
|     mangleQualifiers(MethodQuals);
 | |
|     mangleRefQualifier(Method->getRefQualifier());
 | |
|   }
 | |
| 
 | |
|   // Check if we have a template.
 | |
|   const TemplateArgumentList *TemplateArgs = nullptr;
 | |
|   if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
 | |
|     mangleTemplatePrefix(TD, NoFunction);
 | |
|     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
 | |
|   }
 | |
|   else {
 | |
|     manglePrefix(DC, NoFunction);
 | |
|     mangleUnqualifiedName(GD, AdditionalAbiTags);
 | |
|   }
 | |
| 
 | |
|   Out << 'E';
 | |
| }
 | |
| void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
 | |
|                                       const TemplateArgument *TemplateArgs,
 | |
|                                       unsigned NumTemplateArgs) {
 | |
|   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
 | |
| 
 | |
|   Out << 'N';
 | |
| 
 | |
|   mangleTemplatePrefix(TD);
 | |
|   mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
 | |
| 
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
 | |
|   GlobalDecl GD;
 | |
|   // The Itanium spec says:
 | |
|   // For entities in constructors and destructors, the mangling of the
 | |
|   // complete object constructor or destructor is used as the base function
 | |
|   // name, i.e. the C1 or D1 version.
 | |
|   if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
 | |
|     GD = GlobalDecl(CD, Ctor_Complete);
 | |
|   else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
 | |
|     GD = GlobalDecl(DD, Dtor_Complete);
 | |
|   else
 | |
|     GD = GlobalDecl(cast<FunctionDecl>(DC));
 | |
|   return GD;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleLocalName(GlobalDecl GD,
 | |
|                                      const AbiTagList *AdditionalAbiTags) {
 | |
|   const Decl *D = GD.getDecl();
 | |
|   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
 | |
|   //              := Z <function encoding> E s [<discriminator>]
 | |
|   // <local-name> := Z <function encoding> E d [ <parameter number> ]
 | |
|   //                 _ <entity name>
 | |
|   // <discriminator> := _ <non-negative number>
 | |
|   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
 | |
|   const RecordDecl *RD = GetLocalClassDecl(D);
 | |
|   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
 | |
| 
 | |
|   Out << 'Z';
 | |
| 
 | |
|   {
 | |
|     AbiTagState LocalAbiTags(AbiTags);
 | |
| 
 | |
|     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
 | |
|       mangleObjCMethodName(MD);
 | |
|     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
 | |
|       mangleBlockForPrefix(BD);
 | |
|     else
 | |
|       mangleFunctionEncoding(getParentOfLocalEntity(DC));
 | |
| 
 | |
|     // Implicit ABI tags (from namespace) are not available in the following
 | |
|     // entity; reset to actually emitted tags, which are available.
 | |
|     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
 | |
|   }
 | |
| 
 | |
|   Out << 'E';
 | |
| 
 | |
|   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
 | |
|   // be a bug that is fixed in trunk.
 | |
| 
 | |
|   if (RD) {
 | |
|     // The parameter number is omitted for the last parameter, 0 for the
 | |
|     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
 | |
|     // <entity name> will of course contain a <closure-type-name>: Its
 | |
|     // numbering will be local to the particular argument in which it appears
 | |
|     // -- other default arguments do not affect its encoding.
 | |
|     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
 | |
|     if (CXXRD && CXXRD->isLambda()) {
 | |
|       if (const ParmVarDecl *Parm
 | |
|               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
 | |
|         if (const FunctionDecl *Func
 | |
|               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
 | |
|           Out << 'd';
 | |
|           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
 | |
|           if (Num > 1)
 | |
|             mangleNumber(Num - 2);
 | |
|           Out << '_';
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Mangle the name relative to the closest enclosing function.
 | |
|     // equality ok because RD derived from ND above
 | |
|     if (D == RD)  {
 | |
|       mangleUnqualifiedName(RD, AdditionalAbiTags);
 | |
|     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
 | |
|       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
 | |
|       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
 | |
|       mangleUnqualifiedBlock(BD);
 | |
|     } else {
 | |
|       const NamedDecl *ND = cast<NamedDecl>(D);
 | |
|       mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
 | |
|                        true /*NoFunction*/);
 | |
|     }
 | |
|   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
 | |
|     // Mangle a block in a default parameter; see above explanation for
 | |
|     // lambdas.
 | |
|     if (const ParmVarDecl *Parm
 | |
|             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
 | |
|       if (const FunctionDecl *Func
 | |
|             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
 | |
|         Out << 'd';
 | |
|         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
 | |
|         if (Num > 1)
 | |
|           mangleNumber(Num - 2);
 | |
|         Out << '_';
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
 | |
|     mangleUnqualifiedBlock(BD);
 | |
|   } else {
 | |
|     mangleUnqualifiedName(GD, AdditionalAbiTags);
 | |
|   }
 | |
| 
 | |
|   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
 | |
|     unsigned disc;
 | |
|     if (Context.getNextDiscriminator(ND, disc)) {
 | |
|       if (disc < 10)
 | |
|         Out << '_' << disc;
 | |
|       else
 | |
|         Out << "__" << disc << '_';
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
 | |
|   if (GetLocalClassDecl(Block)) {
 | |
|     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
 | |
|     return;
 | |
|   }
 | |
|   const DeclContext *DC = getEffectiveDeclContext(Block);
 | |
|   if (isLocalContainerContext(DC)) {
 | |
|     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
 | |
|     return;
 | |
|   }
 | |
|   manglePrefix(getEffectiveDeclContext(Block));
 | |
|   mangleUnqualifiedBlock(Block);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
 | |
|   if (Decl *Context = Block->getBlockManglingContextDecl()) {
 | |
|     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
 | |
|         Context->getDeclContext()->isRecord()) {
 | |
|       const auto *ND = cast<NamedDecl>(Context);
 | |
|       if (ND->getIdentifier()) {
 | |
|         mangleSourceNameWithAbiTags(ND);
 | |
|         Out << 'M';
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have a block mangling number, use it.
 | |
|   unsigned Number = Block->getBlockManglingNumber();
 | |
|   // Otherwise, just make up a number. It doesn't matter what it is because
 | |
|   // the symbol in question isn't externally visible.
 | |
|   if (!Number)
 | |
|     Number = Context.getBlockId(Block, false);
 | |
|   else {
 | |
|     // Stored mangling numbers are 1-based.
 | |
|     --Number;
 | |
|   }
 | |
|   Out << "Ub";
 | |
|   if (Number > 0)
 | |
|     Out << Number - 1;
 | |
|   Out << '_';
 | |
| }
 | |
| 
 | |
| // <template-param-decl>
 | |
| //   ::= Ty                              # template type parameter
 | |
| //   ::= Tn <type>                       # template non-type parameter
 | |
| //   ::= Tt <template-param-decl>* E     # template template parameter
 | |
| //   ::= Tp <template-param-decl>        # template parameter pack
 | |
| void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
 | |
|   if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
 | |
|     if (Ty->isParameterPack())
 | |
|       Out << "Tp";
 | |
|     Out << "Ty";
 | |
|   } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
 | |
|     if (Tn->isExpandedParameterPack()) {
 | |
|       for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
 | |
|         Out << "Tn";
 | |
|         mangleType(Tn->getExpansionType(I));
 | |
|       }
 | |
|     } else {
 | |
|       QualType T = Tn->getType();
 | |
|       if (Tn->isParameterPack()) {
 | |
|         Out << "Tp";
 | |
|         if (auto *PackExpansion = T->getAs<PackExpansionType>())
 | |
|           T = PackExpansion->getPattern();
 | |
|       }
 | |
|       Out << "Tn";
 | |
|       mangleType(T);
 | |
|     }
 | |
|   } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
 | |
|     if (Tt->isExpandedParameterPack()) {
 | |
|       for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
 | |
|            ++I) {
 | |
|         Out << "Tt";
 | |
|         for (auto *Param : *Tt->getExpansionTemplateParameters(I))
 | |
|           mangleTemplateParamDecl(Param);
 | |
|         Out << "E";
 | |
|       }
 | |
|     } else {
 | |
|       if (Tt->isParameterPack())
 | |
|         Out << "Tp";
 | |
|       Out << "Tt";
 | |
|       for (auto *Param : *Tt->getTemplateParameters())
 | |
|         mangleTemplateParamDecl(Param);
 | |
|       Out << "E";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
 | |
|   // If the context of a closure type is an initializer for a class member
 | |
|   // (static or nonstatic), it is encoded in a qualified name with a final
 | |
|   // <prefix> of the form:
 | |
|   //
 | |
|   //   <data-member-prefix> := <member source-name> M
 | |
|   //
 | |
|   // Technically, the data-member-prefix is part of the <prefix>. However,
 | |
|   // since a closure type will always be mangled with a prefix, it's easier
 | |
|   // to emit that last part of the prefix here.
 | |
|   if (Decl *Context = Lambda->getLambdaContextDecl()) {
 | |
|     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
 | |
|         !isa<ParmVarDecl>(Context)) {
 | |
|       // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
 | |
|       // reasonable mangling here.
 | |
|       if (const IdentifierInfo *Name
 | |
|             = cast<NamedDecl>(Context)->getIdentifier()) {
 | |
|         mangleSourceName(Name);
 | |
|         const TemplateArgumentList *TemplateArgs = nullptr;
 | |
|         if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
 | |
|           mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
 | |
|         Out << 'M';
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Out << "Ul";
 | |
|   mangleLambdaSig(Lambda);
 | |
|   Out << "E";
 | |
| 
 | |
|   // The number is omitted for the first closure type with a given
 | |
|   // <lambda-sig> in a given context; it is n-2 for the nth closure type
 | |
|   // (in lexical order) with that same <lambda-sig> and context.
 | |
|   //
 | |
|   // The AST keeps track of the number for us.
 | |
|   //
 | |
|   // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
 | |
|   // and host-side compilations, an extra device mangle context may be created
 | |
|   // if the host-side CXX ABI has different numbering for lambda. In such case,
 | |
|   // if the mangle context is that device-side one, use the device-side lambda
 | |
|   // mangling number for this lambda.
 | |
|   unsigned Number = Context.isDeviceMangleContext()
 | |
|                         ? Lambda->getDeviceLambdaManglingNumber()
 | |
|                         : Lambda->getLambdaManglingNumber();
 | |
|   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
 | |
|   if (Number > 1)
 | |
|     mangleNumber(Number - 2);
 | |
|   Out << '_';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
 | |
|   for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
 | |
|     mangleTemplateParamDecl(D);
 | |
|   auto *Proto =
 | |
|       Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
 | |
|   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
 | |
|                          Lambda->getLambdaStaticInvoker());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
 | |
|   switch (qualifier->getKind()) {
 | |
|   case NestedNameSpecifier::Global:
 | |
|     // nothing
 | |
|     return;
 | |
| 
 | |
|   case NestedNameSpecifier::Super:
 | |
|     llvm_unreachable("Can't mangle __super specifier");
 | |
| 
 | |
|   case NestedNameSpecifier::Namespace:
 | |
|     mangleName(qualifier->getAsNamespace());
 | |
|     return;
 | |
| 
 | |
|   case NestedNameSpecifier::NamespaceAlias:
 | |
|     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
 | |
|     return;
 | |
| 
 | |
|   case NestedNameSpecifier::TypeSpec:
 | |
|   case NestedNameSpecifier::TypeSpecWithTemplate:
 | |
|     manglePrefix(QualType(qualifier->getAsType(), 0));
 | |
|     return;
 | |
| 
 | |
|   case NestedNameSpecifier::Identifier:
 | |
|     // Member expressions can have these without prefixes, but that
 | |
|     // should end up in mangleUnresolvedPrefix instead.
 | |
|     assert(qualifier->getPrefix());
 | |
|     manglePrefix(qualifier->getPrefix());
 | |
| 
 | |
|     mangleSourceName(qualifier->getAsIdentifier());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unexpected nested name specifier");
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
 | |
|   //  <prefix> ::= <prefix> <unqualified-name>
 | |
|   //           ::= <template-prefix> <template-args>
 | |
|   //           ::= <template-param>
 | |
|   //           ::= # empty
 | |
|   //           ::= <substitution>
 | |
| 
 | |
|   DC = IgnoreLinkageSpecDecls(DC);
 | |
| 
 | |
|   if (DC->isTranslationUnit())
 | |
|     return;
 | |
| 
 | |
|   if (NoFunction && isLocalContainerContext(DC))
 | |
|     return;
 | |
| 
 | |
|   assert(!isLocalContainerContext(DC));
 | |
| 
 | |
|   const NamedDecl *ND = cast<NamedDecl>(DC);
 | |
|   if (mangleSubstitution(ND))
 | |
|     return;
 | |
| 
 | |
|   // Check if we have a template.
 | |
|   const TemplateArgumentList *TemplateArgs = nullptr;
 | |
|   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
 | |
|     mangleTemplatePrefix(TD);
 | |
|     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
 | |
|   } else {
 | |
|     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
 | |
|     mangleUnqualifiedName(ND, nullptr);
 | |
|   }
 | |
| 
 | |
|   addSubstitution(ND);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
 | |
|   // <template-prefix> ::= <prefix> <template unqualified-name>
 | |
|   //                   ::= <template-param>
 | |
|   //                   ::= <substitution>
 | |
|   if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | |
|     return mangleTemplatePrefix(TD);
 | |
| 
 | |
|   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
 | |
|   assert(Dependent && "unexpected template name kind");
 | |
| 
 | |
|   // Clang 11 and before mangled the substitution for a dependent template name
 | |
|   // after already having emitted (a substitution for) the prefix.
 | |
|   bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
 | |
|                        LangOptions::ClangABI::Ver11;
 | |
|   if (!Clang11Compat && mangleSubstitution(Template))
 | |
|     return;
 | |
| 
 | |
|   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
 | |
|     manglePrefix(Qualifier);
 | |
| 
 | |
|   if (Clang11Compat && mangleSubstitution(Template))
 | |
|     return;
 | |
| 
 | |
|   if (const IdentifierInfo *Id = Dependent->getIdentifier())
 | |
|     mangleSourceName(Id);
 | |
|   else
 | |
|     mangleOperatorName(Dependent->getOperator(), UnknownArity);
 | |
| 
 | |
|   addSubstitution(Template);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
 | |
|                                           bool NoFunction) {
 | |
|   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
 | |
|   // <template-prefix> ::= <prefix> <template unqualified-name>
 | |
|   //                   ::= <template-param>
 | |
|   //                   ::= <substitution>
 | |
|   // <template-template-param> ::= <template-param>
 | |
|   //                               <substitution>
 | |
| 
 | |
|   if (mangleSubstitution(ND))
 | |
|     return;
 | |
| 
 | |
|   // <template-template-param> ::= <template-param>
 | |
|   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
 | |
|     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
 | |
|   } else {
 | |
|     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
 | |
|     if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
 | |
|       mangleUnqualifiedName(GD, nullptr);
 | |
|     else
 | |
|       mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
 | |
|   }
 | |
| 
 | |
|   addSubstitution(ND);
 | |
| }
 | |
| 
 | |
| /// Mangles a template name under the production <type>.  Required for
 | |
| /// template template arguments.
 | |
| ///   <type> ::= <class-enum-type>
 | |
| ///          ::= <template-param>
 | |
| ///          ::= <substitution>
 | |
| void CXXNameMangler::mangleType(TemplateName TN) {
 | |
|   if (mangleSubstitution(TN))
 | |
|     return;
 | |
| 
 | |
|   TemplateDecl *TD = nullptr;
 | |
| 
 | |
|   switch (TN.getKind()) {
 | |
|   case TemplateName::QualifiedTemplate:
 | |
|     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
 | |
|     goto HaveDecl;
 | |
| 
 | |
|   case TemplateName::Template:
 | |
|     TD = TN.getAsTemplateDecl();
 | |
|     goto HaveDecl;
 | |
| 
 | |
|   HaveDecl:
 | |
|     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
 | |
|       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
 | |
|     else
 | |
|       mangleName(TD);
 | |
|     break;
 | |
| 
 | |
|   case TemplateName::OverloadedTemplate:
 | |
|   case TemplateName::AssumedTemplate:
 | |
|     llvm_unreachable("can't mangle an overloaded template name as a <type>");
 | |
| 
 | |
|   case TemplateName::DependentTemplate: {
 | |
|     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
 | |
|     assert(Dependent->isIdentifier());
 | |
| 
 | |
|     // <class-enum-type> ::= <name>
 | |
|     // <name> ::= <nested-name>
 | |
|     mangleUnresolvedPrefix(Dependent->getQualifier());
 | |
|     mangleSourceName(Dependent->getIdentifier());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case TemplateName::SubstTemplateTemplateParm: {
 | |
|     // Substituted template parameters are mangled as the substituted
 | |
|     // template.  This will check for the substitution twice, which is
 | |
|     // fine, but we have to return early so that we don't try to *add*
 | |
|     // the substitution twice.
 | |
|     SubstTemplateTemplateParmStorage *subst
 | |
|       = TN.getAsSubstTemplateTemplateParm();
 | |
|     mangleType(subst->getReplacement());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case TemplateName::SubstTemplateTemplateParmPack: {
 | |
|     // FIXME: not clear how to mangle this!
 | |
|     // template <template <class> class T...> class A {
 | |
|     //   template <template <class> class U...> void foo(B<T,U> x...);
 | |
|     // };
 | |
|     Out << "_SUBSTPACK_";
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   addSubstitution(TN);
 | |
| }
 | |
| 
 | |
| bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
 | |
|                                                     StringRef Prefix) {
 | |
|   // Only certain other types are valid as prefixes;  enumerate them.
 | |
|   switch (Ty->getTypeClass()) {
 | |
|   case Type::Builtin:
 | |
|   case Type::Complex:
 | |
|   case Type::Adjusted:
 | |
|   case Type::Decayed:
 | |
|   case Type::Pointer:
 | |
|   case Type::BlockPointer:
 | |
|   case Type::LValueReference:
 | |
|   case Type::RValueReference:
 | |
|   case Type::MemberPointer:
 | |
|   case Type::ConstantArray:
 | |
|   case Type::IncompleteArray:
 | |
|   case Type::VariableArray:
 | |
|   case Type::DependentSizedArray:
 | |
|   case Type::DependentAddressSpace:
 | |
|   case Type::DependentVector:
 | |
|   case Type::DependentSizedExtVector:
 | |
|   case Type::Vector:
 | |
|   case Type::ExtVector:
 | |
|   case Type::ConstantMatrix:
 | |
|   case Type::DependentSizedMatrix:
 | |
|   case Type::FunctionProto:
 | |
|   case Type::FunctionNoProto:
 | |
|   case Type::Paren:
 | |
|   case Type::Attributed:
 | |
|   case Type::Auto:
 | |
|   case Type::DeducedTemplateSpecialization:
 | |
|   case Type::PackExpansion:
 | |
|   case Type::ObjCObject:
 | |
|   case Type::ObjCInterface:
 | |
|   case Type::ObjCObjectPointer:
 | |
|   case Type::ObjCTypeParam:
 | |
|   case Type::Atomic:
 | |
|   case Type::Pipe:
 | |
|   case Type::MacroQualified:
 | |
|   case Type::ExtInt:
 | |
|   case Type::DependentExtInt:
 | |
|     llvm_unreachable("type is illegal as a nested name specifier");
 | |
| 
 | |
|   case Type::SubstTemplateTypeParmPack:
 | |
|     // FIXME: not clear how to mangle this!
 | |
|     // template <class T...> class A {
 | |
|     //   template <class U...> void foo(decltype(T::foo(U())) x...);
 | |
|     // };
 | |
|     Out << "_SUBSTPACK_";
 | |
|     break;
 | |
| 
 | |
|   // <unresolved-type> ::= <template-param>
 | |
|   //                   ::= <decltype>
 | |
|   //                   ::= <template-template-param> <template-args>
 | |
|   // (this last is not official yet)
 | |
|   case Type::TypeOfExpr:
 | |
|   case Type::TypeOf:
 | |
|   case Type::Decltype:
 | |
|   case Type::TemplateTypeParm:
 | |
|   case Type::UnaryTransform:
 | |
|   case Type::SubstTemplateTypeParm:
 | |
|   unresolvedType:
 | |
|     // Some callers want a prefix before the mangled type.
 | |
|     Out << Prefix;
 | |
| 
 | |
|     // This seems to do everything we want.  It's not really
 | |
|     // sanctioned for a substituted template parameter, though.
 | |
|     mangleType(Ty);
 | |
| 
 | |
|     // We never want to print 'E' directly after an unresolved-type,
 | |
|     // so we return directly.
 | |
|     return true;
 | |
| 
 | |
|   case Type::Typedef:
 | |
|     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
 | |
|     break;
 | |
| 
 | |
|   case Type::UnresolvedUsing:
 | |
|     mangleSourceNameWithAbiTags(
 | |
|         cast<UnresolvedUsingType>(Ty)->getDecl());
 | |
|     break;
 | |
| 
 | |
|   case Type::Enum:
 | |
|   case Type::Record:
 | |
|     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
 | |
|     break;
 | |
| 
 | |
|   case Type::TemplateSpecialization: {
 | |
|     const TemplateSpecializationType *TST =
 | |
|         cast<TemplateSpecializationType>(Ty);
 | |
|     TemplateName TN = TST->getTemplateName();
 | |
|     switch (TN.getKind()) {
 | |
|     case TemplateName::Template:
 | |
|     case TemplateName::QualifiedTemplate: {
 | |
|       TemplateDecl *TD = TN.getAsTemplateDecl();
 | |
| 
 | |
|       // If the base is a template template parameter, this is an
 | |
|       // unresolved type.
 | |
|       assert(TD && "no template for template specialization type");
 | |
|       if (isa<TemplateTemplateParmDecl>(TD))
 | |
|         goto unresolvedType;
 | |
| 
 | |
|       mangleSourceNameWithAbiTags(TD);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TemplateName::OverloadedTemplate:
 | |
|     case TemplateName::AssumedTemplate:
 | |
|     case TemplateName::DependentTemplate:
 | |
|       llvm_unreachable("invalid base for a template specialization type");
 | |
| 
 | |
|     case TemplateName::SubstTemplateTemplateParm: {
 | |
|       SubstTemplateTemplateParmStorage *subst =
 | |
|           TN.getAsSubstTemplateTemplateParm();
 | |
|       mangleExistingSubstitution(subst->getReplacement());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TemplateName::SubstTemplateTemplateParmPack: {
 | |
|       // FIXME: not clear how to mangle this!
 | |
|       // template <template <class U> class T...> class A {
 | |
|       //   template <class U...> void foo(decltype(T<U>::foo) x...);
 | |
|       // };
 | |
|       Out << "_SUBSTPACK_";
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     // Note: we don't pass in the template name here. We are mangling the
 | |
|     // original source-level template arguments, so we shouldn't consider
 | |
|     // conversions to the corresponding template parameter.
 | |
|     // FIXME: Other compilers mangle partially-resolved template arguments in
 | |
|     // unresolved-qualifier-levels.
 | |
|     mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::InjectedClassName:
 | |
|     mangleSourceNameWithAbiTags(
 | |
|         cast<InjectedClassNameType>(Ty)->getDecl());
 | |
|     break;
 | |
| 
 | |
|   case Type::DependentName:
 | |
|     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
 | |
|     break;
 | |
| 
 | |
|   case Type::DependentTemplateSpecialization: {
 | |
|     const DependentTemplateSpecializationType *DTST =
 | |
|         cast<DependentTemplateSpecializationType>(Ty);
 | |
|     TemplateName Template = getASTContext().getDependentTemplateName(
 | |
|         DTST->getQualifier(), DTST->getIdentifier());
 | |
|     mangleSourceName(DTST->getIdentifier());
 | |
|     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::Elaborated:
 | |
|     return mangleUnresolvedTypeOrSimpleId(
 | |
|         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
 | |
|   switch (Name.getNameKind()) {
 | |
|   case DeclarationName::CXXConstructorName:
 | |
|   case DeclarationName::CXXDestructorName:
 | |
|   case DeclarationName::CXXDeductionGuideName:
 | |
|   case DeclarationName::CXXUsingDirective:
 | |
|   case DeclarationName::Identifier:
 | |
|   case DeclarationName::ObjCMultiArgSelector:
 | |
|   case DeclarationName::ObjCOneArgSelector:
 | |
|   case DeclarationName::ObjCZeroArgSelector:
 | |
|     llvm_unreachable("Not an operator name");
 | |
| 
 | |
|   case DeclarationName::CXXConversionFunctionName:
 | |
|     // <operator-name> ::= cv <type>    # (cast)
 | |
|     Out << "cv";
 | |
|     mangleType(Name.getCXXNameType());
 | |
|     break;
 | |
| 
 | |
|   case DeclarationName::CXXLiteralOperatorName:
 | |
|     Out << "li";
 | |
|     mangleSourceName(Name.getCXXLiteralIdentifier());
 | |
|     return;
 | |
| 
 | |
|   case DeclarationName::CXXOperatorName:
 | |
|     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
 | |
|   switch (OO) {
 | |
|   // <operator-name> ::= nw     # new
 | |
|   case OO_New: Out << "nw"; break;
 | |
|   //              ::= na        # new[]
 | |
|   case OO_Array_New: Out << "na"; break;
 | |
|   //              ::= dl        # delete
 | |
|   case OO_Delete: Out << "dl"; break;
 | |
|   //              ::= da        # delete[]
 | |
|   case OO_Array_Delete: Out << "da"; break;
 | |
|   //              ::= ps        # + (unary)
 | |
|   //              ::= pl        # + (binary or unknown)
 | |
|   case OO_Plus:
 | |
|     Out << (Arity == 1? "ps" : "pl"); break;
 | |
|   //              ::= ng        # - (unary)
 | |
|   //              ::= mi        # - (binary or unknown)
 | |
|   case OO_Minus:
 | |
|     Out << (Arity == 1? "ng" : "mi"); break;
 | |
|   //              ::= ad        # & (unary)
 | |
|   //              ::= an        # & (binary or unknown)
 | |
|   case OO_Amp:
 | |
|     Out << (Arity == 1? "ad" : "an"); break;
 | |
|   //              ::= de        # * (unary)
 | |
|   //              ::= ml        # * (binary or unknown)
 | |
|   case OO_Star:
 | |
|     // Use binary when unknown.
 | |
|     Out << (Arity == 1? "de" : "ml"); break;
 | |
|   //              ::= co        # ~
 | |
|   case OO_Tilde: Out << "co"; break;
 | |
|   //              ::= dv        # /
 | |
|   case OO_Slash: Out << "dv"; break;
 | |
|   //              ::= rm        # %
 | |
|   case OO_Percent: Out << "rm"; break;
 | |
|   //              ::= or        # |
 | |
|   case OO_Pipe: Out << "or"; break;
 | |
|   //              ::= eo        # ^
 | |
|   case OO_Caret: Out << "eo"; break;
 | |
|   //              ::= aS        # =
 | |
|   case OO_Equal: Out << "aS"; break;
 | |
|   //              ::= pL        # +=
 | |
|   case OO_PlusEqual: Out << "pL"; break;
 | |
|   //              ::= mI        # -=
 | |
|   case OO_MinusEqual: Out << "mI"; break;
 | |
|   //              ::= mL        # *=
 | |
|   case OO_StarEqual: Out << "mL"; break;
 | |
|   //              ::= dV        # /=
 | |
|   case OO_SlashEqual: Out << "dV"; break;
 | |
|   //              ::= rM        # %=
 | |
|   case OO_PercentEqual: Out << "rM"; break;
 | |
|   //              ::= aN        # &=
 | |
|   case OO_AmpEqual: Out << "aN"; break;
 | |
|   //              ::= oR        # |=
 | |
|   case OO_PipeEqual: Out << "oR"; break;
 | |
|   //              ::= eO        # ^=
 | |
|   case OO_CaretEqual: Out << "eO"; break;
 | |
|   //              ::= ls        # <<
 | |
|   case OO_LessLess: Out << "ls"; break;
 | |
|   //              ::= rs        # >>
 | |
|   case OO_GreaterGreater: Out << "rs"; break;
 | |
|   //              ::= lS        # <<=
 | |
|   case OO_LessLessEqual: Out << "lS"; break;
 | |
|   //              ::= rS        # >>=
 | |
|   case OO_GreaterGreaterEqual: Out << "rS"; break;
 | |
|   //              ::= eq        # ==
 | |
|   case OO_EqualEqual: Out << "eq"; break;
 | |
|   //              ::= ne        # !=
 | |
|   case OO_ExclaimEqual: Out << "ne"; break;
 | |
|   //              ::= lt        # <
 | |
|   case OO_Less: Out << "lt"; break;
 | |
|   //              ::= gt        # >
 | |
|   case OO_Greater: Out << "gt"; break;
 | |
|   //              ::= le        # <=
 | |
|   case OO_LessEqual: Out << "le"; break;
 | |
|   //              ::= ge        # >=
 | |
|   case OO_GreaterEqual: Out << "ge"; break;
 | |
|   //              ::= nt        # !
 | |
|   case OO_Exclaim: Out << "nt"; break;
 | |
|   //              ::= aa        # &&
 | |
|   case OO_AmpAmp: Out << "aa"; break;
 | |
|   //              ::= oo        # ||
 | |
|   case OO_PipePipe: Out << "oo"; break;
 | |
|   //              ::= pp        # ++
 | |
|   case OO_PlusPlus: Out << "pp"; break;
 | |
|   //              ::= mm        # --
 | |
|   case OO_MinusMinus: Out << "mm"; break;
 | |
|   //              ::= cm        # ,
 | |
|   case OO_Comma: Out << "cm"; break;
 | |
|   //              ::= pm        # ->*
 | |
|   case OO_ArrowStar: Out << "pm"; break;
 | |
|   //              ::= pt        # ->
 | |
|   case OO_Arrow: Out << "pt"; break;
 | |
|   //              ::= cl        # ()
 | |
|   case OO_Call: Out << "cl"; break;
 | |
|   //              ::= ix        # []
 | |
|   case OO_Subscript: Out << "ix"; break;
 | |
| 
 | |
|   //              ::= qu        # ?
 | |
|   // The conditional operator can't be overloaded, but we still handle it when
 | |
|   // mangling expressions.
 | |
|   case OO_Conditional: Out << "qu"; break;
 | |
|   // Proposal on cxx-abi-dev, 2015-10-21.
 | |
|   //              ::= aw        # co_await
 | |
|   case OO_Coawait: Out << "aw"; break;
 | |
|   // Proposed in cxx-abi github issue 43.
 | |
|   //              ::= ss        # <=>
 | |
|   case OO_Spaceship: Out << "ss"; break;
 | |
| 
 | |
|   case OO_None:
 | |
|   case NUM_OVERLOADED_OPERATORS:
 | |
|     llvm_unreachable("Not an overloaded operator");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
 | |
|   // Vendor qualifiers come first and if they are order-insensitive they must
 | |
|   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
 | |
| 
 | |
|   // <type> ::= U <addrspace-expr>
 | |
|   if (DAST) {
 | |
|     Out << "U2ASI";
 | |
|     mangleExpression(DAST->getAddrSpaceExpr());
 | |
|     Out << "E";
 | |
|   }
 | |
| 
 | |
|   // Address space qualifiers start with an ordinary letter.
 | |
|   if (Quals.hasAddressSpace()) {
 | |
|     // Address space extension:
 | |
|     //
 | |
|     //   <type> ::= U <target-addrspace>
 | |
|     //   <type> ::= U <OpenCL-addrspace>
 | |
|     //   <type> ::= U <CUDA-addrspace>
 | |
| 
 | |
|     SmallString<64> ASString;
 | |
|     LangAS AS = Quals.getAddressSpace();
 | |
| 
 | |
|     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
 | |
|       //  <target-addrspace> ::= "AS" <address-space-number>
 | |
|       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
 | |
|       if (TargetAS != 0)
 | |
|         ASString = "AS" + llvm::utostr(TargetAS);
 | |
|     } else {
 | |
|       switch (AS) {
 | |
|       default: llvm_unreachable("Not a language specific address space");
 | |
|       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
 | |
|       //                                "private"| "generic" | "device" |
 | |
|       //                                "host" ]
 | |
|       case LangAS::opencl_global:
 | |
|         ASString = "CLglobal";
 | |
|         break;
 | |
|       case LangAS::opencl_global_device:
 | |
|         ASString = "CLdevice";
 | |
|         break;
 | |
|       case LangAS::opencl_global_host:
 | |
|         ASString = "CLhost";
 | |
|         break;
 | |
|       case LangAS::opencl_local:
 | |
|         ASString = "CLlocal";
 | |
|         break;
 | |
|       case LangAS::opencl_constant:
 | |
|         ASString = "CLconstant";
 | |
|         break;
 | |
|       case LangAS::opencl_private:
 | |
|         ASString = "CLprivate";
 | |
|         break;
 | |
|       case LangAS::opencl_generic:
 | |
|         ASString = "CLgeneric";
 | |
|         break;
 | |
|       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
 | |
|       case LangAS::cuda_device:
 | |
|         ASString = "CUdevice";
 | |
|         break;
 | |
|       case LangAS::cuda_constant:
 | |
|         ASString = "CUconstant";
 | |
|         break;
 | |
|       case LangAS::cuda_shared:
 | |
|         ASString = "CUshared";
 | |
|         break;
 | |
|       //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
 | |
|       case LangAS::ptr32_sptr:
 | |
|         ASString = "ptr32_sptr";
 | |
|         break;
 | |
|       case LangAS::ptr32_uptr:
 | |
|         ASString = "ptr32_uptr";
 | |
|         break;
 | |
|       case LangAS::ptr64:
 | |
|         ASString = "ptr64";
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (!ASString.empty())
 | |
|       mangleVendorQualifier(ASString);
 | |
|   }
 | |
| 
 | |
|   // The ARC ownership qualifiers start with underscores.
 | |
|   // Objective-C ARC Extension:
 | |
|   //
 | |
|   //   <type> ::= U "__strong"
 | |
|   //   <type> ::= U "__weak"
 | |
|   //   <type> ::= U "__autoreleasing"
 | |
|   //
 | |
|   // Note: we emit __weak first to preserve the order as
 | |
|   // required by the Itanium ABI.
 | |
|   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
 | |
|     mangleVendorQualifier("__weak");
 | |
| 
 | |
|   // __unaligned (from -fms-extensions)
 | |
|   if (Quals.hasUnaligned())
 | |
|     mangleVendorQualifier("__unaligned");
 | |
| 
 | |
|   // Remaining ARC ownership qualifiers.
 | |
|   switch (Quals.getObjCLifetime()) {
 | |
|   case Qualifiers::OCL_None:
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Weak:
 | |
|     // Do nothing as we already handled this case above.
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Strong:
 | |
|     mangleVendorQualifier("__strong");
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     mangleVendorQualifier("__autoreleasing");
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     // The __unsafe_unretained qualifier is *not* mangled, so that
 | |
|     // __unsafe_unretained types in ARC produce the same manglings as the
 | |
|     // equivalent (but, naturally, unqualified) types in non-ARC, providing
 | |
|     // better ABI compatibility.
 | |
|     //
 | |
|     // It's safe to do this because unqualified 'id' won't show up
 | |
|     // in any type signatures that need to be mangled.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
 | |
|   if (Quals.hasRestrict())
 | |
|     Out << 'r';
 | |
|   if (Quals.hasVolatile())
 | |
|     Out << 'V';
 | |
|   if (Quals.hasConst())
 | |
|     Out << 'K';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleVendorQualifier(StringRef name) {
 | |
|   Out << 'U' << name.size() << name;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
 | |
|   // <ref-qualifier> ::= R                # lvalue reference
 | |
|   //                 ::= O                # rvalue-reference
 | |
|   switch (RefQualifier) {
 | |
|   case RQ_None:
 | |
|     break;
 | |
| 
 | |
|   case RQ_LValue:
 | |
|     Out << 'R';
 | |
|     break;
 | |
| 
 | |
|   case RQ_RValue:
 | |
|     Out << 'O';
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
 | |
|   Context.mangleObjCMethodNameAsSourceName(MD, Out);
 | |
| }
 | |
| 
 | |
| static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
 | |
|                                 ASTContext &Ctx) {
 | |
|   if (Quals)
 | |
|     return true;
 | |
|   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
 | |
|     return true;
 | |
|   if (Ty->isOpenCLSpecificType())
 | |
|     return true;
 | |
|   if (Ty->isBuiltinType())
 | |
|     return false;
 | |
|   // Through to Clang 6.0, we accidentally treated undeduced auto types as
 | |
|   // substitution candidates.
 | |
|   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
 | |
|       isa<AutoType>(Ty))
 | |
|     return false;
 | |
|   // A placeholder type for class template deduction is substitutable with
 | |
|   // its corresponding template name; this is handled specially when mangling
 | |
|   // the type.
 | |
|   if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
 | |
|     if (DeducedTST->getDeducedType().isNull())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(QualType T) {
 | |
|   // If our type is instantiation-dependent but not dependent, we mangle
 | |
|   // it as it was written in the source, removing any top-level sugar.
 | |
|   // Otherwise, use the canonical type.
 | |
|   //
 | |
|   // FIXME: This is an approximation of the instantiation-dependent name
 | |
|   // mangling rules, since we should really be using the type as written and
 | |
|   // augmented via semantic analysis (i.e., with implicit conversions and
 | |
|   // default template arguments) for any instantiation-dependent type.
 | |
|   // Unfortunately, that requires several changes to our AST:
 | |
|   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
 | |
|   //     uniqued, so that we can handle substitutions properly
 | |
|   //   - Default template arguments will need to be represented in the
 | |
|   //     TemplateSpecializationType, since they need to be mangled even though
 | |
|   //     they aren't written.
 | |
|   //   - Conversions on non-type template arguments need to be expressed, since
 | |
|   //     they can affect the mangling of sizeof/alignof.
 | |
|   //
 | |
|   // FIXME: This is wrong when mapping to the canonical type for a dependent
 | |
|   // type discards instantiation-dependent portions of the type, such as for:
 | |
|   //
 | |
|   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
 | |
|   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
 | |
|   //
 | |
|   // It's also wrong in the opposite direction when instantiation-dependent,
 | |
|   // canonically-equivalent types differ in some irrelevant portion of inner
 | |
|   // type sugar. In such cases, we fail to form correct substitutions, eg:
 | |
|   //
 | |
|   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
 | |
|   //
 | |
|   // We should instead canonicalize the non-instantiation-dependent parts,
 | |
|   // regardless of whether the type as a whole is dependent or instantiation
 | |
|   // dependent.
 | |
|   if (!T->isInstantiationDependentType() || T->isDependentType())
 | |
|     T = T.getCanonicalType();
 | |
|   else {
 | |
|     // Desugar any types that are purely sugar.
 | |
|     do {
 | |
|       // Don't desugar through template specialization types that aren't
 | |
|       // type aliases. We need to mangle the template arguments as written.
 | |
|       if (const TemplateSpecializationType *TST
 | |
|                                       = dyn_cast<TemplateSpecializationType>(T))
 | |
|         if (!TST->isTypeAlias())
 | |
|           break;
 | |
| 
 | |
|       // FIXME: We presumably shouldn't strip off ElaboratedTypes with
 | |
|       // instantation-dependent qualifiers. See
 | |
|       // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
 | |
| 
 | |
|       QualType Desugared
 | |
|         = T.getSingleStepDesugaredType(Context.getASTContext());
 | |
|       if (Desugared == T)
 | |
|         break;
 | |
| 
 | |
|       T = Desugared;
 | |
|     } while (true);
 | |
|   }
 | |
|   SplitQualType split = T.split();
 | |
|   Qualifiers quals = split.Quals;
 | |
|   const Type *ty = split.Ty;
 | |
| 
 | |
|   bool isSubstitutable =
 | |
|     isTypeSubstitutable(quals, ty, Context.getASTContext());
 | |
|   if (isSubstitutable && mangleSubstitution(T))
 | |
|     return;
 | |
| 
 | |
|   // If we're mangling a qualified array type, push the qualifiers to
 | |
|   // the element type.
 | |
|   if (quals && isa<ArrayType>(T)) {
 | |
|     ty = Context.getASTContext().getAsArrayType(T);
 | |
|     quals = Qualifiers();
 | |
| 
 | |
|     // Note that we don't update T: we want to add the
 | |
|     // substitution at the original type.
 | |
|   }
 | |
| 
 | |
|   if (quals || ty->isDependentAddressSpaceType()) {
 | |
|     if (const DependentAddressSpaceType *DAST =
 | |
|         dyn_cast<DependentAddressSpaceType>(ty)) {
 | |
|       SplitQualType splitDAST = DAST->getPointeeType().split();
 | |
|       mangleQualifiers(splitDAST.Quals, DAST);
 | |
|       mangleType(QualType(splitDAST.Ty, 0));
 | |
|     } else {
 | |
|       mangleQualifiers(quals);
 | |
| 
 | |
|       // Recurse:  even if the qualified type isn't yet substitutable,
 | |
|       // the unqualified type might be.
 | |
|       mangleType(QualType(ty, 0));
 | |
|     }
 | |
|   } else {
 | |
|     switch (ty->getTypeClass()) {
 | |
| #define ABSTRACT_TYPE(CLASS, PARENT)
 | |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) \
 | |
|     case Type::CLASS: \
 | |
|       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
 | |
|       return;
 | |
| #define TYPE(CLASS, PARENT) \
 | |
|     case Type::CLASS: \
 | |
|       mangleType(static_cast<const CLASS##Type*>(ty)); \
 | |
|       break;
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add the substitution.
 | |
|   if (isSubstitutable)
 | |
|     addSubstitution(T);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
 | |
|   if (!mangleStandardSubstitution(ND))
 | |
|     mangleName(ND);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const BuiltinType *T) {
 | |
|   //  <type>         ::= <builtin-type>
 | |
|   //  <builtin-type> ::= v  # void
 | |
|   //                 ::= w  # wchar_t
 | |
|   //                 ::= b  # bool
 | |
|   //                 ::= c  # char
 | |
|   //                 ::= a  # signed char
 | |
|   //                 ::= h  # unsigned char
 | |
|   //                 ::= s  # short
 | |
|   //                 ::= t  # unsigned short
 | |
|   //                 ::= i  # int
 | |
|   //                 ::= j  # unsigned int
 | |
|   //                 ::= l  # long
 | |
|   //                 ::= m  # unsigned long
 | |
|   //                 ::= x  # long long, __int64
 | |
|   //                 ::= y  # unsigned long long, __int64
 | |
|   //                 ::= n  # __int128
 | |
|   //                 ::= o  # unsigned __int128
 | |
|   //                 ::= f  # float
 | |
|   //                 ::= d  # double
 | |
|   //                 ::= e  # long double, __float80
 | |
|   //                 ::= g  # __float128
 | |
|   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
 | |
|   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
 | |
|   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
 | |
|   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
 | |
|   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
 | |
|   //                 ::= Di # char32_t
 | |
|   //                 ::= Ds # char16_t
 | |
|   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
 | |
|   //                 ::= u <source-name>    # vendor extended type
 | |
|   std::string type_name;
 | |
|   switch (T->getKind()) {
 | |
|   case BuiltinType::Void:
 | |
|     Out << 'v';
 | |
|     break;
 | |
|   case BuiltinType::Bool:
 | |
|     Out << 'b';
 | |
|     break;
 | |
|   case BuiltinType::Char_U:
 | |
|   case BuiltinType::Char_S:
 | |
|     Out << 'c';
 | |
|     break;
 | |
|   case BuiltinType::UChar:
 | |
|     Out << 'h';
 | |
|     break;
 | |
|   case BuiltinType::UShort:
 | |
|     Out << 't';
 | |
|     break;
 | |
|   case BuiltinType::UInt:
 | |
|     Out << 'j';
 | |
|     break;
 | |
|   case BuiltinType::ULong:
 | |
|     Out << 'm';
 | |
|     break;
 | |
|   case BuiltinType::ULongLong:
 | |
|     Out << 'y';
 | |
|     break;
 | |
|   case BuiltinType::UInt128:
 | |
|     Out << 'o';
 | |
|     break;
 | |
|   case BuiltinType::SChar:
 | |
|     Out << 'a';
 | |
|     break;
 | |
|   case BuiltinType::WChar_S:
 | |
|   case BuiltinType::WChar_U:
 | |
|     Out << 'w';
 | |
|     break;
 | |
|   case BuiltinType::Char8:
 | |
|     Out << "Du";
 | |
|     break;
 | |
|   case BuiltinType::Char16:
 | |
|     Out << "Ds";
 | |
|     break;
 | |
|   case BuiltinType::Char32:
 | |
|     Out << "Di";
 | |
|     break;
 | |
|   case BuiltinType::Short:
 | |
|     Out << 's';
 | |
|     break;
 | |
|   case BuiltinType::Int:
 | |
|     Out << 'i';
 | |
|     break;
 | |
|   case BuiltinType::Long:
 | |
|     Out << 'l';
 | |
|     break;
 | |
|   case BuiltinType::LongLong:
 | |
|     Out << 'x';
 | |
|     break;
 | |
|   case BuiltinType::Int128:
 | |
|     Out << 'n';
 | |
|     break;
 | |
|   case BuiltinType::Float16:
 | |
|     Out << "DF16_";
 | |
|     break;
 | |
|   case BuiltinType::ShortAccum:
 | |
|   case BuiltinType::Accum:
 | |
|   case BuiltinType::LongAccum:
 | |
|   case BuiltinType::UShortAccum:
 | |
|   case BuiltinType::UAccum:
 | |
|   case BuiltinType::ULongAccum:
 | |
|   case BuiltinType::ShortFract:
 | |
|   case BuiltinType::Fract:
 | |
|   case BuiltinType::LongFract:
 | |
|   case BuiltinType::UShortFract:
 | |
|   case BuiltinType::UFract:
 | |
|   case BuiltinType::ULongFract:
 | |
|   case BuiltinType::SatShortAccum:
 | |
|   case BuiltinType::SatAccum:
 | |
|   case BuiltinType::SatLongAccum:
 | |
|   case BuiltinType::SatUShortAccum:
 | |
|   case BuiltinType::SatUAccum:
 | |
|   case BuiltinType::SatULongAccum:
 | |
|   case BuiltinType::SatShortFract:
 | |
|   case BuiltinType::SatFract:
 | |
|   case BuiltinType::SatLongFract:
 | |
|   case BuiltinType::SatUShortFract:
 | |
|   case BuiltinType::SatUFract:
 | |
|   case BuiltinType::SatULongFract:
 | |
|     llvm_unreachable("Fixed point types are disabled for c++");
 | |
|   case BuiltinType::Half:
 | |
|     Out << "Dh";
 | |
|     break;
 | |
|   case BuiltinType::Float:
 | |
|     Out << 'f';
 | |
|     break;
 | |
|   case BuiltinType::Double:
 | |
|     Out << 'd';
 | |
|     break;
 | |
|   case BuiltinType::LongDouble: {
 | |
|     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
 | |
|                                    getASTContext().getLangOpts().OpenMPIsDevice
 | |
|                                ? getASTContext().getAuxTargetInfo()
 | |
|                                : &getASTContext().getTargetInfo();
 | |
|     Out << TI->getLongDoubleMangling();
 | |
|     break;
 | |
|   }
 | |
|   case BuiltinType::Float128: {
 | |
|     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
 | |
|                                    getASTContext().getLangOpts().OpenMPIsDevice
 | |
|                                ? getASTContext().getAuxTargetInfo()
 | |
|                                : &getASTContext().getTargetInfo();
 | |
|     Out << TI->getFloat128Mangling();
 | |
|     break;
 | |
|   }
 | |
|   case BuiltinType::BFloat16: {
 | |
|     const TargetInfo *TI = &getASTContext().getTargetInfo();
 | |
|     Out << TI->getBFloat16Mangling();
 | |
|     break;
 | |
|   }
 | |
|   case BuiltinType::NullPtr:
 | |
|     Out << "Dn";
 | |
|     break;
 | |
| 
 | |
| #define BUILTIN_TYPE(Id, SingletonId)
 | |
| #define PLACEHOLDER_TYPE(Id, SingletonId) \
 | |
|   case BuiltinType::Id:
 | |
| #include "clang/AST/BuiltinTypes.def"
 | |
|   case BuiltinType::Dependent:
 | |
|     if (!NullOut)
 | |
|       llvm_unreachable("mangling a placeholder type");
 | |
|     break;
 | |
|   case BuiltinType::ObjCId:
 | |
|     Out << "11objc_object";
 | |
|     break;
 | |
|   case BuiltinType::ObjCClass:
 | |
|     Out << "10objc_class";
 | |
|     break;
 | |
|   case BuiltinType::ObjCSel:
 | |
|     Out << "13objc_selector";
 | |
|     break;
 | |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
 | |
|   case BuiltinType::Id: \
 | |
|     type_name = "ocl_" #ImgType "_" #Suffix; \
 | |
|     Out << type_name.size() << type_name; \
 | |
|     break;
 | |
| #include "clang/Basic/OpenCLImageTypes.def"
 | |
|   case BuiltinType::OCLSampler:
 | |
|     Out << "11ocl_sampler";
 | |
|     break;
 | |
|   case BuiltinType::OCLEvent:
 | |
|     Out << "9ocl_event";
 | |
|     break;
 | |
|   case BuiltinType::OCLClkEvent:
 | |
|     Out << "12ocl_clkevent";
 | |
|     break;
 | |
|   case BuiltinType::OCLQueue:
 | |
|     Out << "9ocl_queue";
 | |
|     break;
 | |
|   case BuiltinType::OCLReserveID:
 | |
|     Out << "13ocl_reserveid";
 | |
|     break;
 | |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
 | |
|   case BuiltinType::Id: \
 | |
|     type_name = "ocl_" #ExtType; \
 | |
|     Out << type_name.size() << type_name; \
 | |
|     break;
 | |
| #include "clang/Basic/OpenCLExtensionTypes.def"
 | |
|   // The SVE types are effectively target-specific.  The mangling scheme
 | |
|   // is defined in the appendices to the Procedure Call Standard for the
 | |
|   // Arm Architecture.
 | |
| #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
 | |
|                         ElBits, IsSigned, IsFP, IsBF)                          \
 | |
|   case BuiltinType::Id:                                                        \
 | |
|     type_name = MangledName;                                                   \
 | |
|     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
 | |
|         << type_name;                                                          \
 | |
|     break;
 | |
| #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
 | |
|   case BuiltinType::Id:                                                        \
 | |
|     type_name = MangledName;                                                   \
 | |
|     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
 | |
|         << type_name;                                                          \
 | |
|     break;
 | |
| #include "clang/Basic/AArch64SVEACLETypes.def"
 | |
| #define PPC_VECTOR_TYPE(Name, Id, Size) \
 | |
|   case BuiltinType::Id: \
 | |
|     type_name = #Name; \
 | |
|     Out << 'u' << type_name.size() << type_name; \
 | |
|     break;
 | |
| #include "clang/Basic/PPCTypes.def"
 | |
|     // TODO: Check the mangling scheme for RISC-V V.
 | |
| #define RVV_TYPE(Name, Id, SingletonId)                                        \
 | |
|   case BuiltinType::Id:                                                        \
 | |
|     type_name = Name;                                                          \
 | |
|     Out << 'u' << type_name.size() << type_name;                               \
 | |
|     break;
 | |
| #include "clang/Basic/RISCVVTypes.def"
 | |
|   }
 | |
| }
 | |
| 
 | |
| StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
 | |
|   switch (CC) {
 | |
|   case CC_C:
 | |
|     return "";
 | |
| 
 | |
|   case CC_X86VectorCall:
 | |
|   case CC_X86Pascal:
 | |
|   case CC_X86RegCall:
 | |
|   case CC_AAPCS:
 | |
|   case CC_AAPCS_VFP:
 | |
|   case CC_AArch64VectorCall:
 | |
|   case CC_IntelOclBicc:
 | |
|   case CC_SpirFunction:
 | |
|   case CC_OpenCLKernel:
 | |
|   case CC_PreserveMost:
 | |
|   case CC_PreserveAll:
 | |
|     // FIXME: we should be mangling all of the above.
 | |
|     return "";
 | |
| 
 | |
|   case CC_X86ThisCall:
 | |
|     // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
 | |
|     // used explicitly. At this point, we don't have that much information in
 | |
|     // the AST, since clang tends to bake the convention into the canonical
 | |
|     // function type. thiscall only rarely used explicitly, so don't mangle it
 | |
|     // for now.
 | |
|     return "";
 | |
| 
 | |
|   case CC_X86StdCall:
 | |
|     return "stdcall";
 | |
|   case CC_X86FastCall:
 | |
|     return "fastcall";
 | |
|   case CC_X86_64SysV:
 | |
|     return "sysv_abi";
 | |
|   case CC_Win64:
 | |
|     return "ms_abi";
 | |
|   case CC_Swift:
 | |
|     return "swiftcall";
 | |
|   }
 | |
|   llvm_unreachable("bad calling convention");
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
 | |
|   // Fast path.
 | |
|   if (T->getExtInfo() == FunctionType::ExtInfo())
 | |
|     return;
 | |
| 
 | |
|   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
 | |
|   // This will get more complicated in the future if we mangle other
 | |
|   // things here; but for now, since we mangle ns_returns_retained as
 | |
|   // a qualifier on the result type, we can get away with this:
 | |
|   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
 | |
|   if (!CCQualifier.empty())
 | |
|     mangleVendorQualifier(CCQualifier);
 | |
| 
 | |
|   // FIXME: regparm
 | |
|   // FIXME: noreturn
 | |
| }
 | |
| 
 | |
| void
 | |
| CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
 | |
|   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
 | |
| 
 | |
|   // Note that these are *not* substitution candidates.  Demanglers might
 | |
|   // have trouble with this if the parameter type is fully substituted.
 | |
| 
 | |
|   switch (PI.getABI()) {
 | |
|   case ParameterABI::Ordinary:
 | |
|     break;
 | |
| 
 | |
|   // All of these start with "swift", so they come before "ns_consumed".
 | |
|   case ParameterABI::SwiftContext:
 | |
|   case ParameterABI::SwiftErrorResult:
 | |
|   case ParameterABI::SwiftIndirectResult:
 | |
|     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (PI.isConsumed())
 | |
|     mangleVendorQualifier("ns_consumed");
 | |
| 
 | |
|   if (PI.isNoEscape())
 | |
|     mangleVendorQualifier("noescape");
 | |
| }
 | |
| 
 | |
| // <type>          ::= <function-type>
 | |
| // <function-type> ::= [<CV-qualifiers>] F [Y]
 | |
| //                      <bare-function-type> [<ref-qualifier>] E
 | |
| void CXXNameMangler::mangleType(const FunctionProtoType *T) {
 | |
|   mangleExtFunctionInfo(T);
 | |
| 
 | |
|   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
 | |
|   // e.g. "const" in "int (A::*)() const".
 | |
|   mangleQualifiers(T->getMethodQuals());
 | |
| 
 | |
|   // Mangle instantiation-dependent exception-specification, if present,
 | |
|   // per cxx-abi-dev proposal on 2016-10-11.
 | |
|   if (T->hasInstantiationDependentExceptionSpec()) {
 | |
|     if (isComputedNoexcept(T->getExceptionSpecType())) {
 | |
|       Out << "DO";
 | |
|       mangleExpression(T->getNoexceptExpr());
 | |
|       Out << "E";
 | |
|     } else {
 | |
|       assert(T->getExceptionSpecType() == EST_Dynamic);
 | |
|       Out << "Dw";
 | |
|       for (auto ExceptTy : T->exceptions())
 | |
|         mangleType(ExceptTy);
 | |
|       Out << "E";
 | |
|     }
 | |
|   } else if (T->isNothrow()) {
 | |
|     Out << "Do";
 | |
|   }
 | |
| 
 | |
|   Out << 'F';
 | |
| 
 | |
|   // FIXME: We don't have enough information in the AST to produce the 'Y'
 | |
|   // encoding for extern "C" function types.
 | |
|   mangleBareFunctionType(T, /*MangleReturnType=*/true);
 | |
| 
 | |
|   // Mangle the ref-qualifier, if present.
 | |
|   mangleRefQualifier(T->getRefQualifier());
 | |
| 
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
 | |
|   // Function types without prototypes can arise when mangling a function type
 | |
|   // within an overloadable function in C. We mangle these as the absence of any
 | |
|   // parameter types (not even an empty parameter list).
 | |
|   Out << 'F';
 | |
| 
 | |
|   FunctionTypeDepthState saved = FunctionTypeDepth.push();
 | |
| 
 | |
|   FunctionTypeDepth.enterResultType();
 | |
|   mangleType(T->getReturnType());
 | |
|   FunctionTypeDepth.leaveResultType();
 | |
| 
 | |
|   FunctionTypeDepth.pop(saved);
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
 | |
|                                             bool MangleReturnType,
 | |
|                                             const FunctionDecl *FD) {
 | |
|   // Record that we're in a function type.  See mangleFunctionParam
 | |
|   // for details on what we're trying to achieve here.
 | |
|   FunctionTypeDepthState saved = FunctionTypeDepth.push();
 | |
| 
 | |
|   // <bare-function-type> ::= <signature type>+
 | |
|   if (MangleReturnType) {
 | |
|     FunctionTypeDepth.enterResultType();
 | |
| 
 | |
|     // Mangle ns_returns_retained as an order-sensitive qualifier here.
 | |
|     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
 | |
|       mangleVendorQualifier("ns_returns_retained");
 | |
| 
 | |
|     // Mangle the return type without any direct ARC ownership qualifiers.
 | |
|     QualType ReturnTy = Proto->getReturnType();
 | |
|     if (ReturnTy.getObjCLifetime()) {
 | |
|       auto SplitReturnTy = ReturnTy.split();
 | |
|       SplitReturnTy.Quals.removeObjCLifetime();
 | |
|       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
 | |
|     }
 | |
|     mangleType(ReturnTy);
 | |
| 
 | |
|     FunctionTypeDepth.leaveResultType();
 | |
|   }
 | |
| 
 | |
|   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
 | |
|     //   <builtin-type> ::= v   # void
 | |
|     Out << 'v';
 | |
| 
 | |
|     FunctionTypeDepth.pop(saved);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(!FD || FD->getNumParams() == Proto->getNumParams());
 | |
|   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
 | |
|     // Mangle extended parameter info as order-sensitive qualifiers here.
 | |
|     if (Proto->hasExtParameterInfos() && FD == nullptr) {
 | |
|       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
 | |
|     }
 | |
| 
 | |
|     // Mangle the type.
 | |
|     QualType ParamTy = Proto->getParamType(I);
 | |
|     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
 | |
| 
 | |
|     if (FD) {
 | |
|       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
 | |
|         // Attr can only take 1 character, so we can hardcode the length below.
 | |
|         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
 | |
|         if (Attr->isDynamic())
 | |
|           Out << "U25pass_dynamic_object_size" << Attr->getType();
 | |
|         else
 | |
|           Out << "U17pass_object_size" << Attr->getType();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   FunctionTypeDepth.pop(saved);
 | |
| 
 | |
|   // <builtin-type>      ::= z  # ellipsis
 | |
|   if (Proto->isVariadic())
 | |
|     Out << 'z';
 | |
| }
 | |
| 
 | |
| // <type>            ::= <class-enum-type>
 | |
| // <class-enum-type> ::= <name>
 | |
| void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
 | |
|   mangleName(T->getDecl());
 | |
| }
 | |
| 
 | |
| // <type>            ::= <class-enum-type>
 | |
| // <class-enum-type> ::= <name>
 | |
| void CXXNameMangler::mangleType(const EnumType *T) {
 | |
|   mangleType(static_cast<const TagType*>(T));
 | |
| }
 | |
| void CXXNameMangler::mangleType(const RecordType *T) {
 | |
|   mangleType(static_cast<const TagType*>(T));
 | |
| }
 | |
| void CXXNameMangler::mangleType(const TagType *T) {
 | |
|   mangleName(T->getDecl());
 | |
| }
 | |
| 
 | |
| // <type>       ::= <array-type>
 | |
| // <array-type> ::= A <positive dimension number> _ <element type>
 | |
| //              ::= A [<dimension expression>] _ <element type>
 | |
| void CXXNameMangler::mangleType(const ConstantArrayType *T) {
 | |
|   Out << 'A' << T->getSize() << '_';
 | |
|   mangleType(T->getElementType());
 | |
| }
 | |
| void CXXNameMangler::mangleType(const VariableArrayType *T) {
 | |
|   Out << 'A';
 | |
|   // decayed vla types (size 0) will just be skipped.
 | |
|   if (T->getSizeExpr())
 | |
|     mangleExpression(T->getSizeExpr());
 | |
|   Out << '_';
 | |
|   mangleType(T->getElementType());
 | |
| }
 | |
| void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
 | |
|   Out << 'A';
 | |
|   mangleExpression(T->getSizeExpr());
 | |
|   Out << '_';
 | |
|   mangleType(T->getElementType());
 | |
| }
 | |
| void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
 | |
|   Out << "A_";
 | |
|   mangleType(T->getElementType());
 | |
| }
 | |
| 
 | |
| // <type>                   ::= <pointer-to-member-type>
 | |
| // <pointer-to-member-type> ::= M <class type> <member type>
 | |
| void CXXNameMangler::mangleType(const MemberPointerType *T) {
 | |
|   Out << 'M';
 | |
|   mangleType(QualType(T->getClass(), 0));
 | |
|   QualType PointeeType = T->getPointeeType();
 | |
|   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
 | |
|     mangleType(FPT);
 | |
| 
 | |
|     // Itanium C++ ABI 5.1.8:
 | |
|     //
 | |
|     //   The type of a non-static member function is considered to be different,
 | |
|     //   for the purposes of substitution, from the type of a namespace-scope or
 | |
|     //   static member function whose type appears similar. The types of two
 | |
|     //   non-static member functions are considered to be different, for the
 | |
|     //   purposes of substitution, if the functions are members of different
 | |
|     //   classes. In other words, for the purposes of substitution, the class of
 | |
|     //   which the function is a member is considered part of the type of
 | |
|     //   function.
 | |
| 
 | |
|     // Given that we already substitute member function pointers as a
 | |
|     // whole, the net effect of this rule is just to unconditionally
 | |
|     // suppress substitution on the function type in a member pointer.
 | |
|     // We increment the SeqID here to emulate adding an entry to the
 | |
|     // substitution table.
 | |
|     ++SeqID;
 | |
|   } else
 | |
|     mangleType(PointeeType);
 | |
| }
 | |
| 
 | |
| // <type>           ::= <template-param>
 | |
| void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
 | |
|   mangleTemplateParameter(T->getDepth(), T->getIndex());
 | |
| }
 | |
| 
 | |
| // <type>           ::= <template-param>
 | |
| void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
 | |
|   // FIXME: not clear how to mangle this!
 | |
|   // template <class T...> class A {
 | |
|   //   template <class U...> void foo(T(*)(U) x...);
 | |
|   // };
 | |
|   Out << "_SUBSTPACK_";
 | |
| }
 | |
| 
 | |
| // <type> ::= P <type>   # pointer-to
 | |
| void CXXNameMangler::mangleType(const PointerType *T) {
 | |
|   Out << 'P';
 | |
|   mangleType(T->getPointeeType());
 | |
| }
 | |
| void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
 | |
|   Out << 'P';
 | |
|   mangleType(T->getPointeeType());
 | |
| }
 | |
| 
 | |
| // <type> ::= R <type>   # reference-to
 | |
| void CXXNameMangler::mangleType(const LValueReferenceType *T) {
 | |
|   Out << 'R';
 | |
|   mangleType(T->getPointeeType());
 | |
| }
 | |
| 
 | |
| // <type> ::= O <type>   # rvalue reference-to (C++0x)
 | |
| void CXXNameMangler::mangleType(const RValueReferenceType *T) {
 | |
|   Out << 'O';
 | |
|   mangleType(T->getPointeeType());
 | |
| }
 | |
| 
 | |
| // <type> ::= C <type>   # complex pair (C 2000)
 | |
| void CXXNameMangler::mangleType(const ComplexType *T) {
 | |
|   Out << 'C';
 | |
|   mangleType(T->getElementType());
 | |
| }
 | |
| 
 | |
| // ARM's ABI for Neon vector types specifies that they should be mangled as
 | |
| // if they are structs (to match ARM's initial implementation).  The
 | |
| // vector type must be one of the special types predefined by ARM.
 | |
| void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
 | |
|   QualType EltType = T->getElementType();
 | |
|   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
 | |
|   const char *EltName = nullptr;
 | |
|   if (T->getVectorKind() == VectorType::NeonPolyVector) {
 | |
|     switch (cast<BuiltinType>(EltType)->getKind()) {
 | |
|     case BuiltinType::SChar:
 | |
|     case BuiltinType::UChar:
 | |
|       EltName = "poly8_t";
 | |
|       break;
 | |
|     case BuiltinType::Short:
 | |
|     case BuiltinType::UShort:
 | |
|       EltName = "poly16_t";
 | |
|       break;
 | |
|     case BuiltinType::LongLong:
 | |
|     case BuiltinType::ULongLong:
 | |
|       EltName = "poly64_t";
 | |
|       break;
 | |
|     default: llvm_unreachable("unexpected Neon polynomial vector element type");
 | |
|     }
 | |
|   } else {
 | |
|     switch (cast<BuiltinType>(EltType)->getKind()) {
 | |
|     case BuiltinType::SChar:     EltName = "int8_t"; break;
 | |
|     case BuiltinType::UChar:     EltName = "uint8_t"; break;
 | |
|     case BuiltinType::Short:     EltName = "int16_t"; break;
 | |
|     case BuiltinType::UShort:    EltName = "uint16_t"; break;
 | |
|     case BuiltinType::Int:       EltName = "int32_t"; break;
 | |
|     case BuiltinType::UInt:      EltName = "uint32_t"; break;
 | |
|     case BuiltinType::LongLong:  EltName = "int64_t"; break;
 | |
|     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
 | |
|     case BuiltinType::Double:    EltName = "float64_t"; break;
 | |
|     case BuiltinType::Float:     EltName = "float32_t"; break;
 | |
|     case BuiltinType::Half:      EltName = "float16_t"; break;
 | |
|     case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
 | |
|     default:
 | |
|       llvm_unreachable("unexpected Neon vector element type");
 | |
|     }
 | |
|   }
 | |
|   const char *BaseName = nullptr;
 | |
|   unsigned BitSize = (T->getNumElements() *
 | |
|                       getASTContext().getTypeSize(EltType));
 | |
|   if (BitSize == 64)
 | |
|     BaseName = "__simd64_";
 | |
|   else {
 | |
|     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
 | |
|     BaseName = "__simd128_";
 | |
|   }
 | |
|   Out << strlen(BaseName) + strlen(EltName);
 | |
|   Out << BaseName << EltName;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
 | |
|   DiagnosticsEngine &Diags = Context.getDiags();
 | |
|   unsigned DiagID = Diags.getCustomDiagID(
 | |
|       DiagnosticsEngine::Error,
 | |
|       "cannot mangle this dependent neon vector type yet");
 | |
|   Diags.Report(T->getAttributeLoc(), DiagID);
 | |
| }
 | |
| 
 | |
| static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
 | |
|   switch (EltType->getKind()) {
 | |
|   case BuiltinType::SChar:
 | |
|     return "Int8";
 | |
|   case BuiltinType::Short:
 | |
|     return "Int16";
 | |
|   case BuiltinType::Int:
 | |
|     return "Int32";
 | |
|   case BuiltinType::Long:
 | |
|   case BuiltinType::LongLong:
 | |
|     return "Int64";
 | |
|   case BuiltinType::UChar:
 | |
|     return "Uint8";
 | |
|   case BuiltinType::UShort:
 | |
|     return "Uint16";
 | |
|   case BuiltinType::UInt:
 | |
|     return "Uint32";
 | |
|   case BuiltinType::ULong:
 | |
|   case BuiltinType::ULongLong:
 | |
|     return "Uint64";
 | |
|   case BuiltinType::Half:
 | |
|     return "Float16";
 | |
|   case BuiltinType::Float:
 | |
|     return "Float32";
 | |
|   case BuiltinType::Double:
 | |
|     return "Float64";
 | |
|   case BuiltinType::BFloat16:
 | |
|     return "Bfloat16";
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected vector element base type");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // AArch64's ABI for Neon vector types specifies that they should be mangled as
 | |
| // the equivalent internal name. The vector type must be one of the special
 | |
| // types predefined by ARM.
 | |
| void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
 | |
|   QualType EltType = T->getElementType();
 | |
|   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
 | |
|   unsigned BitSize =
 | |
|       (T->getNumElements() * getASTContext().getTypeSize(EltType));
 | |
|   (void)BitSize; // Silence warning.
 | |
| 
 | |
|   assert((BitSize == 64 || BitSize == 128) &&
 | |
|          "Neon vector type not 64 or 128 bits");
 | |
| 
 | |
|   StringRef EltName;
 | |
|   if (T->getVectorKind() == VectorType::NeonPolyVector) {
 | |
|     switch (cast<BuiltinType>(EltType)->getKind()) {
 | |
|     case BuiltinType::UChar:
 | |
|       EltName = "Poly8";
 | |
|       break;
 | |
|     case BuiltinType::UShort:
 | |
|       EltName = "Poly16";
 | |
|       break;
 | |
|     case BuiltinType::ULong:
 | |
|     case BuiltinType::ULongLong:
 | |
|       EltName = "Poly64";
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("unexpected Neon polynomial vector element type");
 | |
|     }
 | |
|   } else
 | |
|     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
 | |
| 
 | |
|   std::string TypeName =
 | |
|       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
 | |
|   Out << TypeName.length() << TypeName;
 | |
| }
 | |
| void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
 | |
|   DiagnosticsEngine &Diags = Context.getDiags();
 | |
|   unsigned DiagID = Diags.getCustomDiagID(
 | |
|       DiagnosticsEngine::Error,
 | |
|       "cannot mangle this dependent neon vector type yet");
 | |
|   Diags.Report(T->getAttributeLoc(), DiagID);
 | |
| }
 | |
| 
 | |
| // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
 | |
| // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
 | |
| // type as the sizeless variants.
 | |
| //
 | |
| // The mangling scheme for VLS types is implemented as a "pseudo" template:
 | |
| //
 | |
| //   '__SVE_VLS<<type>, <vector length>>'
 | |
| //
 | |
| // Combining the existing SVE type and a specific vector length (in bits).
 | |
| // For example:
 | |
| //
 | |
| //   typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
 | |
| //
 | |
| // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
 | |
| //
 | |
| //   "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
 | |
| //
 | |
| //   i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
 | |
| //
 | |
| // The latest ACLE specification (00bet5) does not contain details of this
 | |
| // mangling scheme, it will be specified in the next revision. The mangling
 | |
| // scheme is otherwise defined in the appendices to the Procedure Call Standard
 | |
| // for the Arm Architecture, see
 | |
| // https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
 | |
| void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
 | |
|   assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
 | |
|           T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) &&
 | |
|          "expected fixed-length SVE vector!");
 | |
| 
 | |
|   QualType EltType = T->getElementType();
 | |
|   assert(EltType->isBuiltinType() &&
 | |
|          "expected builtin type for fixed-length SVE vector!");
 | |
| 
 | |
|   StringRef TypeName;
 | |
|   switch (cast<BuiltinType>(EltType)->getKind()) {
 | |
|   case BuiltinType::SChar:
 | |
|     TypeName = "__SVInt8_t";
 | |
|     break;
 | |
|   case BuiltinType::UChar: {
 | |
|     if (T->getVectorKind() == VectorType::SveFixedLengthDataVector)
 | |
|       TypeName = "__SVUint8_t";
 | |
|     else
 | |
|       TypeName = "__SVBool_t";
 | |
|     break;
 | |
|   }
 | |
|   case BuiltinType::Short:
 | |
|     TypeName = "__SVInt16_t";
 | |
|     break;
 | |
|   case BuiltinType::UShort:
 | |
|     TypeName = "__SVUint16_t";
 | |
|     break;
 | |
|   case BuiltinType::Int:
 | |
|     TypeName = "__SVInt32_t";
 | |
|     break;
 | |
|   case BuiltinType::UInt:
 | |
|     TypeName = "__SVUint32_t";
 | |
|     break;
 | |
|   case BuiltinType::Long:
 | |
|     TypeName = "__SVInt64_t";
 | |
|     break;
 | |
|   case BuiltinType::ULong:
 | |
|     TypeName = "__SVUint64_t";
 | |
|     break;
 | |
|   case BuiltinType::Half:
 | |
|     TypeName = "__SVFloat16_t";
 | |
|     break;
 | |
|   case BuiltinType::Float:
 | |
|     TypeName = "__SVFloat32_t";
 | |
|     break;
 | |
|   case BuiltinType::Double:
 | |
|     TypeName = "__SVFloat64_t";
 | |
|     break;
 | |
|   case BuiltinType::BFloat16:
 | |
|     TypeName = "__SVBfloat16_t";
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("unexpected element type for fixed-length SVE vector!");
 | |
|   }
 | |
| 
 | |
|   unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
 | |
| 
 | |
|   if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
 | |
|     VecSizeInBits *= 8;
 | |
| 
 | |
|   Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
 | |
|       << VecSizeInBits << "EE";
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleAArch64FixedSveVectorType(
 | |
|     const DependentVectorType *T) {
 | |
|   DiagnosticsEngine &Diags = Context.getDiags();
 | |
|   unsigned DiagID = Diags.getCustomDiagID(
 | |
|       DiagnosticsEngine::Error,
 | |
|       "cannot mangle this dependent fixed-length SVE vector type yet");
 | |
|   Diags.Report(T->getAttributeLoc(), DiagID);
 | |
| }
 | |
| 
 | |
| // GNU extension: vector types
 | |
| // <type>                  ::= <vector-type>
 | |
| // <vector-type>           ::= Dv <positive dimension number> _
 | |
| //                                    <extended element type>
 | |
| //                         ::= Dv [<dimension expression>] _ <element type>
 | |
| // <extended element type> ::= <element type>
 | |
| //                         ::= p # AltiVec vector pixel
 | |
| //                         ::= b # Altivec vector bool
 | |
| void CXXNameMangler::mangleType(const VectorType *T) {
 | |
|   if ((T->getVectorKind() == VectorType::NeonVector ||
 | |
|        T->getVectorKind() == VectorType::NeonPolyVector)) {
 | |
|     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
 | |
|     llvm::Triple::ArchType Arch =
 | |
|         getASTContext().getTargetInfo().getTriple().getArch();
 | |
|     if ((Arch == llvm::Triple::aarch64 ||
 | |
|          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
 | |
|       mangleAArch64NeonVectorType(T);
 | |
|     else
 | |
|       mangleNeonVectorType(T);
 | |
|     return;
 | |
|   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
 | |
|              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
 | |
|     mangleAArch64FixedSveVectorType(T);
 | |
|     return;
 | |
|   }
 | |
|   Out << "Dv" << T->getNumElements() << '_';
 | |
|   if (T->getVectorKind() == VectorType::AltiVecPixel)
 | |
|     Out << 'p';
 | |
|   else if (T->getVectorKind() == VectorType::AltiVecBool)
 | |
|     Out << 'b';
 | |
|   else
 | |
|     mangleType(T->getElementType());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const DependentVectorType *T) {
 | |
|   if ((T->getVectorKind() == VectorType::NeonVector ||
 | |
|        T->getVectorKind() == VectorType::NeonPolyVector)) {
 | |
|     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
 | |
|     llvm::Triple::ArchType Arch =
 | |
|         getASTContext().getTargetInfo().getTriple().getArch();
 | |
|     if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
 | |
|         !Target.isOSDarwin())
 | |
|       mangleAArch64NeonVectorType(T);
 | |
|     else
 | |
|       mangleNeonVectorType(T);
 | |
|     return;
 | |
|   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
 | |
|              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
 | |
|     mangleAArch64FixedSveVectorType(T);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Out << "Dv";
 | |
|   mangleExpression(T->getSizeExpr());
 | |
|   Out << '_';
 | |
|   if (T->getVectorKind() == VectorType::AltiVecPixel)
 | |
|     Out << 'p';
 | |
|   else if (T->getVectorKind() == VectorType::AltiVecBool)
 | |
|     Out << 'b';
 | |
|   else
 | |
|     mangleType(T->getElementType());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const ExtVectorType *T) {
 | |
|   mangleType(static_cast<const VectorType*>(T));
 | |
| }
 | |
| void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
 | |
|   Out << "Dv";
 | |
|   mangleExpression(T->getSizeExpr());
 | |
|   Out << '_';
 | |
|   mangleType(T->getElementType());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
 | |
|   // Mangle matrix types as a vendor extended type:
 | |
|   // u<Len>matrix_typeI<Rows><Columns><element type>E
 | |
| 
 | |
|   StringRef VendorQualifier = "matrix_type";
 | |
|   Out << "u" << VendorQualifier.size() << VendorQualifier;
 | |
| 
 | |
|   Out << "I";
 | |
|   auto &ASTCtx = getASTContext();
 | |
|   unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
 | |
|   llvm::APSInt Rows(BitWidth);
 | |
|   Rows = T->getNumRows();
 | |
|   mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
 | |
|   llvm::APSInt Columns(BitWidth);
 | |
|   Columns = T->getNumColumns();
 | |
|   mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
 | |
|   mangleType(T->getElementType());
 | |
|   Out << "E";
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
 | |
|   // Mangle matrix types as a vendor extended type:
 | |
|   // u<Len>matrix_typeI<row expr><column expr><element type>E
 | |
|   StringRef VendorQualifier = "matrix_type";
 | |
|   Out << "u" << VendorQualifier.size() << VendorQualifier;
 | |
| 
 | |
|   Out << "I";
 | |
|   mangleTemplateArgExpr(T->getRowExpr());
 | |
|   mangleTemplateArgExpr(T->getColumnExpr());
 | |
|   mangleType(T->getElementType());
 | |
|   Out << "E";
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
 | |
|   SplitQualType split = T->getPointeeType().split();
 | |
|   mangleQualifiers(split.Quals, T);
 | |
|   mangleType(QualType(split.Ty, 0));
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const PackExpansionType *T) {
 | |
|   // <type>  ::= Dp <type>          # pack expansion (C++0x)
 | |
|   Out << "Dp";
 | |
|   mangleType(T->getPattern());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
 | |
|   mangleSourceName(T->getDecl()->getIdentifier());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const ObjCObjectType *T) {
 | |
|   // Treat __kindof as a vendor extended type qualifier.
 | |
|   if (T->isKindOfType())
 | |
|     Out << "U8__kindof";
 | |
| 
 | |
|   if (!T->qual_empty()) {
 | |
|     // Mangle protocol qualifiers.
 | |
|     SmallString<64> QualStr;
 | |
|     llvm::raw_svector_ostream QualOS(QualStr);
 | |
|     QualOS << "objcproto";
 | |
|     for (const auto *I : T->quals()) {
 | |
|       StringRef name = I->getName();
 | |
|       QualOS << name.size() << name;
 | |
|     }
 | |
|     Out << 'U' << QualStr.size() << QualStr;
 | |
|   }
 | |
| 
 | |
|   mangleType(T->getBaseType());
 | |
| 
 | |
|   if (T->isSpecialized()) {
 | |
|     // Mangle type arguments as I <type>+ E
 | |
|     Out << 'I';
 | |
|     for (auto typeArg : T->getTypeArgs())
 | |
|       mangleType(typeArg);
 | |
|     Out << 'E';
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const BlockPointerType *T) {
 | |
|   Out << "U13block_pointer";
 | |
|   mangleType(T->getPointeeType());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
 | |
|   // Mangle injected class name types as if the user had written the
 | |
|   // specialization out fully.  It may not actually be possible to see
 | |
|   // this mangling, though.
 | |
|   mangleType(T->getInjectedSpecializationType());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
 | |
|   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
 | |
|     mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
 | |
|   } else {
 | |
|     if (mangleSubstitution(QualType(T, 0)))
 | |
|       return;
 | |
| 
 | |
|     mangleTemplatePrefix(T->getTemplateName());
 | |
| 
 | |
|     // FIXME: GCC does not appear to mangle the template arguments when
 | |
|     // the template in question is a dependent template name. Should we
 | |
|     // emulate that badness?
 | |
|     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
 | |
|     addSubstitution(QualType(T, 0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const DependentNameType *T) {
 | |
|   // Proposal by cxx-abi-dev, 2014-03-26
 | |
|   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
 | |
|   //                                 # dependent elaborated type specifier using
 | |
|   //                                 # 'typename'
 | |
|   //                   ::= Ts <name> # dependent elaborated type specifier using
 | |
|   //                                 # 'struct' or 'class'
 | |
|   //                   ::= Tu <name> # dependent elaborated type specifier using
 | |
|   //                                 # 'union'
 | |
|   //                   ::= Te <name> # dependent elaborated type specifier using
 | |
|   //                                 # 'enum'
 | |
|   switch (T->getKeyword()) {
 | |
|     case ETK_None:
 | |
|     case ETK_Typename:
 | |
|       break;
 | |
|     case ETK_Struct:
 | |
|     case ETK_Class:
 | |
|     case ETK_Interface:
 | |
|       Out << "Ts";
 | |
|       break;
 | |
|     case ETK_Union:
 | |
|       Out << "Tu";
 | |
|       break;
 | |
|     case ETK_Enum:
 | |
|       Out << "Te";
 | |
|       break;
 | |
|   }
 | |
|   // Typename types are always nested
 | |
|   Out << 'N';
 | |
|   manglePrefix(T->getQualifier());
 | |
|   mangleSourceName(T->getIdentifier());
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
 | |
|   // Dependently-scoped template types are nested if they have a prefix.
 | |
|   Out << 'N';
 | |
| 
 | |
|   // TODO: avoid making this TemplateName.
 | |
|   TemplateName Prefix =
 | |
|     getASTContext().getDependentTemplateName(T->getQualifier(),
 | |
|                                              T->getIdentifier());
 | |
|   mangleTemplatePrefix(Prefix);
 | |
| 
 | |
|   // FIXME: GCC does not appear to mangle the template arguments when
 | |
|   // the template in question is a dependent template name. Should we
 | |
|   // emulate that badness?
 | |
|   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const TypeOfType *T) {
 | |
|   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
 | |
|   // "extension with parameters" mangling.
 | |
|   Out << "u6typeof";
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const TypeOfExprType *T) {
 | |
|   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
 | |
|   // "extension with parameters" mangling.
 | |
|   Out << "u6typeof";
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const DecltypeType *T) {
 | |
|   Expr *E = T->getUnderlyingExpr();
 | |
| 
 | |
|   // type ::= Dt <expression> E  # decltype of an id-expression
 | |
|   //                             #   or class member access
 | |
|   //      ::= DT <expression> E  # decltype of an expression
 | |
| 
 | |
|   // This purports to be an exhaustive list of id-expressions and
 | |
|   // class member accesses.  Note that we do not ignore parentheses;
 | |
|   // parentheses change the semantics of decltype for these
 | |
|   // expressions (and cause the mangler to use the other form).
 | |
|   if (isa<DeclRefExpr>(E) ||
 | |
|       isa<MemberExpr>(E) ||
 | |
|       isa<UnresolvedLookupExpr>(E) ||
 | |
|       isa<DependentScopeDeclRefExpr>(E) ||
 | |
|       isa<CXXDependentScopeMemberExpr>(E) ||
 | |
|       isa<UnresolvedMemberExpr>(E))
 | |
|     Out << "Dt";
 | |
|   else
 | |
|     Out << "DT";
 | |
|   mangleExpression(E);
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const UnaryTransformType *T) {
 | |
|   // If this is dependent, we need to record that. If not, we simply
 | |
|   // mangle it as the underlying type since they are equivalent.
 | |
|   if (T->isDependentType()) {
 | |
|     Out << 'U';
 | |
| 
 | |
|     switch (T->getUTTKind()) {
 | |
|       case UnaryTransformType::EnumUnderlyingType:
 | |
|         Out << "3eut";
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mangleType(T->getBaseType());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const AutoType *T) {
 | |
|   assert(T->getDeducedType().isNull() &&
 | |
|          "Deduced AutoType shouldn't be handled here!");
 | |
|   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
 | |
|          "shouldn't need to mangle __auto_type!");
 | |
|   // <builtin-type> ::= Da # auto
 | |
|   //                ::= Dc # decltype(auto)
 | |
|   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
 | |
|   QualType Deduced = T->getDeducedType();
 | |
|   if (!Deduced.isNull())
 | |
|     return mangleType(Deduced);
 | |
| 
 | |
|   TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
 | |
|   assert(TD && "shouldn't form deduced TST unless we know we have a template");
 | |
| 
 | |
|   if (mangleSubstitution(TD))
 | |
|     return;
 | |
| 
 | |
|   mangleName(GlobalDecl(TD));
 | |
|   addSubstitution(TD);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const AtomicType *T) {
 | |
|   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
 | |
|   // (Until there's a standardized mangling...)
 | |
|   Out << "U7_Atomic";
 | |
|   mangleType(T->getValueType());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const PipeType *T) {
 | |
|   // Pipe type mangling rules are described in SPIR 2.0 specification
 | |
|   // A.1 Data types and A.3 Summary of changes
 | |
|   // <type> ::= 8ocl_pipe
 | |
|   Out << "8ocl_pipe";
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const ExtIntType *T) {
 | |
|   Out << "U7_ExtInt";
 | |
|   llvm::APSInt BW(32, true);
 | |
|   BW = T->getNumBits();
 | |
|   TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
 | |
|   mangleTemplateArgs(TemplateName(), &TA, 1);
 | |
|   if (T->isUnsigned())
 | |
|     Out << "j";
 | |
|   else
 | |
|     Out << "i";
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleType(const DependentExtIntType *T) {
 | |
|   Out << "U7_ExtInt";
 | |
|   TemplateArgument TA(T->getNumBitsExpr());
 | |
|   mangleTemplateArgs(TemplateName(), &TA, 1);
 | |
|   if (T->isUnsigned())
 | |
|     Out << "j";
 | |
|   else
 | |
|     Out << "i";
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleIntegerLiteral(QualType T,
 | |
|                                           const llvm::APSInt &Value) {
 | |
|   //  <expr-primary> ::= L <type> <value number> E # integer literal
 | |
|   Out << 'L';
 | |
| 
 | |
|   mangleType(T);
 | |
|   if (T->isBooleanType()) {
 | |
|     // Boolean values are encoded as 0/1.
 | |
|     Out << (Value.getBoolValue() ? '1' : '0');
 | |
|   } else {
 | |
|     mangleNumber(Value);
 | |
|   }
 | |
|   Out << 'E';
 | |
| 
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
 | |
|   // Ignore member expressions involving anonymous unions.
 | |
|   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
 | |
|     if (!RT->getDecl()->isAnonymousStructOrUnion())
 | |
|       break;
 | |
|     const auto *ME = dyn_cast<MemberExpr>(Base);
 | |
|     if (!ME)
 | |
|       break;
 | |
|     Base = ME->getBase();
 | |
|     IsArrow = ME->isArrow();
 | |
|   }
 | |
| 
 | |
|   if (Base->isImplicitCXXThis()) {
 | |
|     // Note: GCC mangles member expressions to the implicit 'this' as
 | |
|     // *this., whereas we represent them as this->. The Itanium C++ ABI
 | |
|     // does not specify anything here, so we follow GCC.
 | |
|     Out << "dtdefpT";
 | |
|   } else {
 | |
|     Out << (IsArrow ? "pt" : "dt");
 | |
|     mangleExpression(Base);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Mangles a member expression.
 | |
| void CXXNameMangler::mangleMemberExpr(const Expr *base,
 | |
|                                       bool isArrow,
 | |
|                                       NestedNameSpecifier *qualifier,
 | |
|                                       NamedDecl *firstQualifierLookup,
 | |
|                                       DeclarationName member,
 | |
|                                       const TemplateArgumentLoc *TemplateArgs,
 | |
|                                       unsigned NumTemplateArgs,
 | |
|                                       unsigned arity) {
 | |
|   // <expression> ::= dt <expression> <unresolved-name>
 | |
|   //              ::= pt <expression> <unresolved-name>
 | |
|   if (base)
 | |
|     mangleMemberExprBase(base, isArrow);
 | |
|   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
 | |
| }
 | |
| 
 | |
| /// Look at the callee of the given call expression and determine if
 | |
| /// it's a parenthesized id-expression which would have triggered ADL
 | |
| /// otherwise.
 | |
| static bool isParenthesizedADLCallee(const CallExpr *call) {
 | |
|   const Expr *callee = call->getCallee();
 | |
|   const Expr *fn = callee->IgnoreParens();
 | |
| 
 | |
|   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
 | |
|   // too, but for those to appear in the callee, it would have to be
 | |
|   // parenthesized.
 | |
|   if (callee == fn) return false;
 | |
| 
 | |
|   // Must be an unresolved lookup.
 | |
|   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
 | |
|   if (!lookup) return false;
 | |
| 
 | |
|   assert(!lookup->requiresADL());
 | |
| 
 | |
|   // Must be an unqualified lookup.
 | |
|   if (lookup->getQualifier()) return false;
 | |
| 
 | |
|   // Must not have found a class member.  Note that if one is a class
 | |
|   // member, they're all class members.
 | |
|   if (lookup->getNumDecls() > 0 &&
 | |
|       (*lookup->decls_begin())->isCXXClassMember())
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, ADL would have been triggered.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
 | |
|   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
 | |
|   Out << CastEncoding;
 | |
|   mangleType(ECE->getType());
 | |
|   mangleExpression(ECE->getSubExpr());
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
 | |
|   if (auto *Syntactic = InitList->getSyntacticForm())
 | |
|     InitList = Syntactic;
 | |
|   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
 | |
|     mangleExpression(InitList->getInit(i));
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
 | |
|                                       bool AsTemplateArg) {
 | |
|   // <expression> ::= <unary operator-name> <expression>
 | |
|   //              ::= <binary operator-name> <expression> <expression>
 | |
|   //              ::= <trinary operator-name> <expression> <expression> <expression>
 | |
|   //              ::= cv <type> expression           # conversion with one argument
 | |
|   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
 | |
|   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
 | |
|   //              ::= sc <type> <expression>         # static_cast<type> (expression)
 | |
|   //              ::= cc <type> <expression>         # const_cast<type> (expression)
 | |
|   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
 | |
|   //              ::= st <type>                      # sizeof (a type)
 | |
|   //              ::= at <type>                      # alignof (a type)
 | |
|   //              ::= <template-param>
 | |
|   //              ::= <function-param>
 | |
|   //              ::= fpT                            # 'this' expression (part of <function-param>)
 | |
|   //              ::= sr <type> <unqualified-name>                   # dependent name
 | |
|   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
 | |
|   //              ::= ds <expression> <expression>                   # expr.*expr
 | |
|   //              ::= sZ <template-param>                            # size of a parameter pack
 | |
|   //              ::= sZ <function-param>    # size of a function parameter pack
 | |
|   //              ::= u <source-name> <template-arg>* E # vendor extended expression
 | |
|   //              ::= <expr-primary>
 | |
|   // <expr-primary> ::= L <type> <value number> E    # integer literal
 | |
|   //                ::= L <type> <value float> E     # floating literal
 | |
|   //                ::= L <type> <string type> E     # string literal
 | |
|   //                ::= L <nullptr type> E           # nullptr literal "LDnE"
 | |
|   //                ::= L <pointer type> 0 E         # null pointer template argument
 | |
|   //                ::= L <type> <real-part float> _ <imag-part float> E    # complex floating point literal (C99); not used by clang
 | |
|   //                ::= L <mangled-name> E           # external name
 | |
|   QualType ImplicitlyConvertedToType;
 | |
| 
 | |
|   // A top-level expression that's not <expr-primary> needs to be wrapped in
 | |
|   // X...E in a template arg.
 | |
|   bool IsPrimaryExpr = true;
 | |
|   auto NotPrimaryExpr = [&] {
 | |
|     if (AsTemplateArg && IsPrimaryExpr)
 | |
|       Out << 'X';
 | |
|     IsPrimaryExpr = false;
 | |
|   };
 | |
| 
 | |
|   auto MangleDeclRefExpr = [&](const NamedDecl *D) {
 | |
|     switch (D->getKind()) {
 | |
|     default:
 | |
|       //  <expr-primary> ::= L <mangled-name> E # external name
 | |
|       Out << 'L';
 | |
|       mangle(D);
 | |
|       Out << 'E';
 | |
|       break;
 | |
| 
 | |
|     case Decl::ParmVar:
 | |
|       NotPrimaryExpr();
 | |
|       mangleFunctionParam(cast<ParmVarDecl>(D));
 | |
|       break;
 | |
| 
 | |
|     case Decl::EnumConstant: {
 | |
|       // <expr-primary>
 | |
|       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
 | |
|       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Decl::NonTypeTemplateParm:
 | |
|       NotPrimaryExpr();
 | |
|       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
 | |
|       mangleTemplateParameter(PD->getDepth(), PD->getIndex());
 | |
|       break;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // 'goto recurse' is used when handling a simple "unwrapping" node which
 | |
|   // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
 | |
|   // to be preserved.
 | |
| recurse:
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Expr::NoStmtClass:
 | |
| #define ABSTRACT_STMT(Type)
 | |
| #define EXPR(Type, Base)
 | |
| #define STMT(Type, Base) \
 | |
|   case Expr::Type##Class:
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|     // fallthrough
 | |
| 
 | |
|   // These all can only appear in local or variable-initialization
 | |
|   // contexts and so should never appear in a mangling.
 | |
|   case Expr::AddrLabelExprClass:
 | |
|   case Expr::DesignatedInitUpdateExprClass:
 | |
|   case Expr::ImplicitValueInitExprClass:
 | |
|   case Expr::ArrayInitLoopExprClass:
 | |
|   case Expr::ArrayInitIndexExprClass:
 | |
|   case Expr::NoInitExprClass:
 | |
|   case Expr::ParenListExprClass:
 | |
|   case Expr::LambdaExprClass:
 | |
|   case Expr::MSPropertyRefExprClass:
 | |
|   case Expr::MSPropertySubscriptExprClass:
 | |
|   case Expr::TypoExprClass: // This should no longer exist in the AST by now.
 | |
|   case Expr::RecoveryExprClass:
 | |
|   case Expr::OMPArraySectionExprClass:
 | |
|   case Expr::OMPArrayShapingExprClass:
 | |
|   case Expr::OMPIteratorExprClass:
 | |
|   case Expr::CXXInheritedCtorInitExprClass:
 | |
|     llvm_unreachable("unexpected statement kind");
 | |
| 
 | |
|   case Expr::ConstantExprClass:
 | |
|     E = cast<ConstantExpr>(E)->getSubExpr();
 | |
|     goto recurse;
 | |
| 
 | |
|   // FIXME: invent manglings for all these.
 | |
|   case Expr::BlockExprClass:
 | |
|   case Expr::ChooseExprClass:
 | |
|   case Expr::CompoundLiteralExprClass:
 | |
|   case Expr::ExtVectorElementExprClass:
 | |
|   case Expr::GenericSelectionExprClass:
 | |
|   case Expr::ObjCEncodeExprClass:
 | |
|   case Expr::ObjCIsaExprClass:
 | |
|   case Expr::ObjCIvarRefExprClass:
 | |
|   case Expr::ObjCMessageExprClass:
 | |
|   case Expr::ObjCPropertyRefExprClass:
 | |
|   case Expr::ObjCProtocolExprClass:
 | |
|   case Expr::ObjCSelectorExprClass:
 | |
|   case Expr::ObjCStringLiteralClass:
 | |
|   case Expr::ObjCBoxedExprClass:
 | |
|   case Expr::ObjCArrayLiteralClass:
 | |
|   case Expr::ObjCDictionaryLiteralClass:
 | |
|   case Expr::ObjCSubscriptRefExprClass:
 | |
|   case Expr::ObjCIndirectCopyRestoreExprClass:
 | |
|   case Expr::ObjCAvailabilityCheckExprClass:
 | |
|   case Expr::OffsetOfExprClass:
 | |
|   case Expr::PredefinedExprClass:
 | |
|   case Expr::ShuffleVectorExprClass:
 | |
|   case Expr::ConvertVectorExprClass:
 | |
|   case Expr::StmtExprClass:
 | |
|   case Expr::TypeTraitExprClass:
 | |
|   case Expr::RequiresExprClass:
 | |
|   case Expr::ArrayTypeTraitExprClass:
 | |
|   case Expr::ExpressionTraitExprClass:
 | |
|   case Expr::VAArgExprClass:
 | |
|   case Expr::CUDAKernelCallExprClass:
 | |
|   case Expr::AsTypeExprClass:
 | |
|   case Expr::PseudoObjectExprClass:
 | |
|   case Expr::AtomicExprClass:
 | |
|   case Expr::SourceLocExprClass:
 | |
|   case Expr::BuiltinBitCastExprClass:
 | |
|   {
 | |
|     NotPrimaryExpr();
 | |
|     if (!NullOut) {
 | |
|       // As bad as this diagnostic is, it's better than crashing.
 | |
|       DiagnosticsEngine &Diags = Context.getDiags();
 | |
|       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
 | |
|                                        "cannot yet mangle expression type %0");
 | |
|       Diags.Report(E->getExprLoc(), DiagID)
 | |
|         << E->getStmtClassName() << E->getSourceRange();
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXUuidofExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
 | |
|     // As of clang 12, uuidof uses the vendor extended expression
 | |
|     // mangling. Previously, it used a special-cased nonstandard extension.
 | |
|     if (Context.getASTContext().getLangOpts().getClangABICompat() >
 | |
|         LangOptions::ClangABI::Ver11) {
 | |
|       Out << "u8__uuidof";
 | |
|       if (UE->isTypeOperand())
 | |
|         mangleType(UE->getTypeOperand(Context.getASTContext()));
 | |
|       else
 | |
|         mangleTemplateArgExpr(UE->getExprOperand());
 | |
|       Out << 'E';
 | |
|     } else {
 | |
|       if (UE->isTypeOperand()) {
 | |
|         QualType UuidT = UE->getTypeOperand(Context.getASTContext());
 | |
|         Out << "u8__uuidoft";
 | |
|         mangleType(UuidT);
 | |
|       } else {
 | |
|         Expr *UuidExp = UE->getExprOperand();
 | |
|         Out << "u8__uuidofz";
 | |
|         mangleExpression(UuidExp);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Even gcc-4.5 doesn't mangle this.
 | |
|   case Expr::BinaryConditionalOperatorClass: {
 | |
|     NotPrimaryExpr();
 | |
|     DiagnosticsEngine &Diags = Context.getDiags();
 | |
|     unsigned DiagID =
 | |
|       Diags.getCustomDiagID(DiagnosticsEngine::Error,
 | |
|                 "?: operator with omitted middle operand cannot be mangled");
 | |
|     Diags.Report(E->getExprLoc(), DiagID)
 | |
|       << E->getStmtClassName() << E->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // These are used for internal purposes and cannot be meaningfully mangled.
 | |
|   case Expr::OpaqueValueExprClass:
 | |
|     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
 | |
| 
 | |
|   case Expr::InitListExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     Out << "il";
 | |
|     mangleInitListElements(cast<InitListExpr>(E));
 | |
|     Out << "E";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::DesignatedInitExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     auto *DIE = cast<DesignatedInitExpr>(E);
 | |
|     for (const auto &Designator : DIE->designators()) {
 | |
|       if (Designator.isFieldDesignator()) {
 | |
|         Out << "di";
 | |
|         mangleSourceName(Designator.getFieldName());
 | |
|       } else if (Designator.isArrayDesignator()) {
 | |
|         Out << "dx";
 | |
|         mangleExpression(DIE->getArrayIndex(Designator));
 | |
|       } else {
 | |
|         assert(Designator.isArrayRangeDesignator() &&
 | |
|                "unknown designator kind");
 | |
|         Out << "dX";
 | |
|         mangleExpression(DIE->getArrayRangeStart(Designator));
 | |
|         mangleExpression(DIE->getArrayRangeEnd(Designator));
 | |
|       }
 | |
|     }
 | |
|     mangleExpression(DIE->getInit());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXDefaultArgExprClass:
 | |
|     E = cast<CXXDefaultArgExpr>(E)->getExpr();
 | |
|     goto recurse;
 | |
| 
 | |
|   case Expr::CXXDefaultInitExprClass:
 | |
|     E = cast<CXXDefaultInitExpr>(E)->getExpr();
 | |
|     goto recurse;
 | |
| 
 | |
|   case Expr::CXXStdInitializerListExprClass:
 | |
|     E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
 | |
|     goto recurse;
 | |
| 
 | |
|   case Expr::SubstNonTypeTemplateParmExprClass:
 | |
|     E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
 | |
|     goto recurse;
 | |
| 
 | |
|   case Expr::UserDefinedLiteralClass:
 | |
|     // We follow g++'s approach of mangling a UDL as a call to the literal
 | |
|     // operator.
 | |
|   case Expr::CXXMemberCallExprClass: // fallthrough
 | |
|   case Expr::CallExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const CallExpr *CE = cast<CallExpr>(E);
 | |
| 
 | |
|     // <expression> ::= cp <simple-id> <expression>* E
 | |
|     // We use this mangling only when the call would use ADL except
 | |
|     // for being parenthesized.  Per discussion with David
 | |
|     // Vandervoorde, 2011.04.25.
 | |
|     if (isParenthesizedADLCallee(CE)) {
 | |
|       Out << "cp";
 | |
|       // The callee here is a parenthesized UnresolvedLookupExpr with
 | |
|       // no qualifier and should always get mangled as a <simple-id>
 | |
|       // anyway.
 | |
| 
 | |
|     // <expression> ::= cl <expression>* E
 | |
|     } else {
 | |
|       Out << "cl";
 | |
|     }
 | |
| 
 | |
|     unsigned CallArity = CE->getNumArgs();
 | |
|     for (const Expr *Arg : CE->arguments())
 | |
|       if (isa<PackExpansionExpr>(Arg))
 | |
|         CallArity = UnknownArity;
 | |
| 
 | |
|     mangleExpression(CE->getCallee(), CallArity);
 | |
|     for (const Expr *Arg : CE->arguments())
 | |
|       mangleExpression(Arg);
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXNewExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const CXXNewExpr *New = cast<CXXNewExpr>(E);
 | |
|     if (New->isGlobalNew()) Out << "gs";
 | |
|     Out << (New->isArray() ? "na" : "nw");
 | |
|     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
 | |
|            E = New->placement_arg_end(); I != E; ++I)
 | |
|       mangleExpression(*I);
 | |
|     Out << '_';
 | |
|     mangleType(New->getAllocatedType());
 | |
|     if (New->hasInitializer()) {
 | |
|       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
 | |
|         Out << "il";
 | |
|       else
 | |
|         Out << "pi";
 | |
|       const Expr *Init = New->getInitializer();
 | |
|       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
 | |
|         // Directly inline the initializers.
 | |
|         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
 | |
|                                                   E = CCE->arg_end();
 | |
|              I != E; ++I)
 | |
|           mangleExpression(*I);
 | |
|       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
 | |
|         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
 | |
|           mangleExpression(PLE->getExpr(i));
 | |
|       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
 | |
|                  isa<InitListExpr>(Init)) {
 | |
|         // Only take InitListExprs apart for list-initialization.
 | |
|         mangleInitListElements(cast<InitListExpr>(Init));
 | |
|       } else
 | |
|         mangleExpression(Init);
 | |
|     }
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXPseudoDestructorExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
 | |
|     if (const Expr *Base = PDE->getBase())
 | |
|       mangleMemberExprBase(Base, PDE->isArrow());
 | |
|     NestedNameSpecifier *Qualifier = PDE->getQualifier();
 | |
|     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
 | |
|       if (Qualifier) {
 | |
|         mangleUnresolvedPrefix(Qualifier,
 | |
|                                /*recursive=*/true);
 | |
|         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
 | |
|         Out << 'E';
 | |
|       } else {
 | |
|         Out << "sr";
 | |
|         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
 | |
|           Out << 'E';
 | |
|       }
 | |
|     } else if (Qualifier) {
 | |
|       mangleUnresolvedPrefix(Qualifier);
 | |
|     }
 | |
|     // <base-unresolved-name> ::= dn <destructor-name>
 | |
|     Out << "dn";
 | |
|     QualType DestroyedType = PDE->getDestroyedType();
 | |
|     mangleUnresolvedTypeOrSimpleId(DestroyedType);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::MemberExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const MemberExpr *ME = cast<MemberExpr>(E);
 | |
|     mangleMemberExpr(ME->getBase(), ME->isArrow(),
 | |
|                      ME->getQualifier(), nullptr,
 | |
|                      ME->getMemberDecl()->getDeclName(),
 | |
|                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
 | |
|                      Arity);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::UnresolvedMemberExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
 | |
|     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
 | |
|                      ME->isArrow(), ME->getQualifier(), nullptr,
 | |
|                      ME->getMemberName(),
 | |
|                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
 | |
|                      Arity);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXDependentScopeMemberExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const CXXDependentScopeMemberExpr *ME
 | |
|       = cast<CXXDependentScopeMemberExpr>(E);
 | |
|     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
 | |
|                      ME->isArrow(), ME->getQualifier(),
 | |
|                      ME->getFirstQualifierFoundInScope(),
 | |
|                      ME->getMember(),
 | |
|                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
 | |
|                      Arity);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::UnresolvedLookupExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
 | |
|     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
 | |
|                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
 | |
|                          Arity);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXUnresolvedConstructExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
 | |
|     unsigned N = CE->getNumArgs();
 | |
| 
 | |
|     if (CE->isListInitialization()) {
 | |
|       assert(N == 1 && "unexpected form for list initialization");
 | |
|       auto *IL = cast<InitListExpr>(CE->getArg(0));
 | |
|       Out << "tl";
 | |
|       mangleType(CE->getType());
 | |
|       mangleInitListElements(IL);
 | |
|       Out << "E";
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Out << "cv";
 | |
|     mangleType(CE->getType());
 | |
|     if (N != 1) Out << '_';
 | |
|     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
 | |
|     if (N != 1) Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXConstructExprClass: {
 | |
|     // An implicit cast is silent, thus may contain <expr-primary>.
 | |
|     const auto *CE = cast<CXXConstructExpr>(E);
 | |
|     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
 | |
|       assert(
 | |
|           CE->getNumArgs() >= 1 &&
 | |
|           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
 | |
|           "implicit CXXConstructExpr must have one argument");
 | |
|       E = cast<CXXConstructExpr>(E)->getArg(0);
 | |
|       goto recurse;
 | |
|     }
 | |
|     NotPrimaryExpr();
 | |
|     Out << "il";
 | |
|     for (auto *E : CE->arguments())
 | |
|       mangleExpression(E);
 | |
|     Out << "E";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXTemporaryObjectExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
 | |
|     unsigned N = CE->getNumArgs();
 | |
|     bool List = CE->isListInitialization();
 | |
| 
 | |
|     if (List)
 | |
|       Out << "tl";
 | |
|     else
 | |
|       Out << "cv";
 | |
|     mangleType(CE->getType());
 | |
|     if (!List && N != 1)
 | |
|       Out << '_';
 | |
|     if (CE->isStdInitListInitialization()) {
 | |
|       // We implicitly created a std::initializer_list<T> for the first argument
 | |
|       // of a constructor of type U in an expression of the form U{a, b, c}.
 | |
|       // Strip all the semantic gunk off the initializer list.
 | |
|       auto *SILE =
 | |
|           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
 | |
|       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
 | |
|       mangleInitListElements(ILE);
 | |
|     } else {
 | |
|       for (auto *E : CE->arguments())
 | |
|         mangleExpression(E);
 | |
|     }
 | |
|     if (List || N != 1)
 | |
|       Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXScalarValueInitExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     Out << "cv";
 | |
|     mangleType(E->getType());
 | |
|     Out << "_E";
 | |
|     break;
 | |
| 
 | |
|   case Expr::CXXNoexceptExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     Out << "nx";
 | |
|     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
 | |
|     break;
 | |
| 
 | |
|   case Expr::UnaryExprOrTypeTraitExprClass: {
 | |
|     // Non-instantiation-dependent traits are an <expr-primary> integer literal.
 | |
|     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
 | |
| 
 | |
|     if (!SAE->isInstantiationDependent()) {
 | |
|       // Itanium C++ ABI:
 | |
|       //   If the operand of a sizeof or alignof operator is not
 | |
|       //   instantiation-dependent it is encoded as an integer literal
 | |
|       //   reflecting the result of the operator.
 | |
|       //
 | |
|       //   If the result of the operator is implicitly converted to a known
 | |
|       //   integer type, that type is used for the literal; otherwise, the type
 | |
|       //   of std::size_t or std::ptrdiff_t is used.
 | |
|       QualType T = (ImplicitlyConvertedToType.isNull() ||
 | |
|                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
 | |
|                                                     : ImplicitlyConvertedToType;
 | |
|       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
 | |
|       mangleIntegerLiteral(T, V);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     NotPrimaryExpr(); // But otherwise, they are not.
 | |
| 
 | |
|     auto MangleAlignofSizeofArg = [&] {
 | |
|       if (SAE->isArgumentType()) {
 | |
|         Out << 't';
 | |
|         mangleType(SAE->getArgumentType());
 | |
|       } else {
 | |
|         Out << 'z';
 | |
|         mangleExpression(SAE->getArgumentExpr());
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     switch(SAE->getKind()) {
 | |
|     case UETT_SizeOf:
 | |
|       Out << 's';
 | |
|       MangleAlignofSizeofArg();
 | |
|       break;
 | |
|     case UETT_PreferredAlignOf:
 | |
|       // As of clang 12, we mangle __alignof__ differently than alignof. (They
 | |
|       // have acted differently since Clang 8, but were previously mangled the
 | |
|       // same.)
 | |
|       if (Context.getASTContext().getLangOpts().getClangABICompat() >
 | |
|           LangOptions::ClangABI::Ver11) {
 | |
|         Out << "u11__alignof__";
 | |
|         if (SAE->isArgumentType())
 | |
|           mangleType(SAE->getArgumentType());
 | |
|         else
 | |
|           mangleTemplateArgExpr(SAE->getArgumentExpr());
 | |
|         Out << 'E';
 | |
|         break;
 | |
|       }
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case UETT_AlignOf:
 | |
|       Out << 'a';
 | |
|       MangleAlignofSizeofArg();
 | |
|       break;
 | |
|     case UETT_VecStep: {
 | |
|       DiagnosticsEngine &Diags = Context.getDiags();
 | |
|       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
 | |
|                                      "cannot yet mangle vec_step expression");
 | |
|       Diags.Report(DiagID);
 | |
|       return;
 | |
|     }
 | |
|     case UETT_OpenMPRequiredSimdAlign: {
 | |
|       DiagnosticsEngine &Diags = Context.getDiags();
 | |
|       unsigned DiagID = Diags.getCustomDiagID(
 | |
|           DiagnosticsEngine::Error,
 | |
|           "cannot yet mangle __builtin_omp_required_simd_align expression");
 | |
|       Diags.Report(DiagID);
 | |
|       return;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXThrowExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
 | |
|     //  <expression> ::= tw <expression>  # throw expression
 | |
|     //               ::= tr               # rethrow
 | |
|     if (TE->getSubExpr()) {
 | |
|       Out << "tw";
 | |
|       mangleExpression(TE->getSubExpr());
 | |
|     } else {
 | |
|       Out << "tr";
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXTypeidExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
 | |
|     //  <expression> ::= ti <type>        # typeid (type)
 | |
|     //               ::= te <expression>  # typeid (expression)
 | |
|     if (TIE->isTypeOperand()) {
 | |
|       Out << "ti";
 | |
|       mangleType(TIE->getTypeOperand(Context.getASTContext()));
 | |
|     } else {
 | |
|       Out << "te";
 | |
|       mangleExpression(TIE->getExprOperand());
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXDeleteExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
 | |
|     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
 | |
|     //               ::= [gs] da <expression>  # [::] delete [] expr
 | |
|     if (DE->isGlobalDelete()) Out << "gs";
 | |
|     Out << (DE->isArrayForm() ? "da" : "dl");
 | |
|     mangleExpression(DE->getArgument());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::UnaryOperatorClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const UnaryOperator *UO = cast<UnaryOperator>(E);
 | |
|     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
 | |
|                        /*Arity=*/1);
 | |
|     mangleExpression(UO->getSubExpr());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::ArraySubscriptExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
 | |
| 
 | |
|     // Array subscript is treated as a syntactically weird form of
 | |
|     // binary operator.
 | |
|     Out << "ix";
 | |
|     mangleExpression(AE->getLHS());
 | |
|     mangleExpression(AE->getRHS());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::MatrixSubscriptExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
 | |
|     Out << "ixix";
 | |
|     mangleExpression(ME->getBase());
 | |
|     mangleExpression(ME->getRowIdx());
 | |
|     mangleExpression(ME->getColumnIdx());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CompoundAssignOperatorClass: // fallthrough
 | |
|   case Expr::BinaryOperatorClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const BinaryOperator *BO = cast<BinaryOperator>(E);
 | |
|     if (BO->getOpcode() == BO_PtrMemD)
 | |
|       Out << "ds";
 | |
|     else
 | |
|       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
 | |
|                          /*Arity=*/2);
 | |
|     mangleExpression(BO->getLHS());
 | |
|     mangleExpression(BO->getRHS());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXRewrittenBinaryOperatorClass: {
 | |
|     NotPrimaryExpr();
 | |
|     // The mangled form represents the original syntax.
 | |
|     CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
 | |
|         cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
 | |
|     mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
 | |
|                        /*Arity=*/2);
 | |
|     mangleExpression(Decomposed.LHS);
 | |
|     mangleExpression(Decomposed.RHS);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::ConditionalOperatorClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
 | |
|     mangleOperatorName(OO_Conditional, /*Arity=*/3);
 | |
|     mangleExpression(CO->getCond());
 | |
|     mangleExpression(CO->getLHS(), Arity);
 | |
|     mangleExpression(CO->getRHS(), Arity);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::ImplicitCastExprClass: {
 | |
|     ImplicitlyConvertedToType = E->getType();
 | |
|     E = cast<ImplicitCastExpr>(E)->getSubExpr();
 | |
|     goto recurse;
 | |
|   }
 | |
| 
 | |
|   case Expr::ObjCBridgedCastExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     // Mangle ownership casts as a vendor extended operator __bridge,
 | |
|     // __bridge_transfer, or __bridge_retain.
 | |
|     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
 | |
|     Out << "v1U" << Kind.size() << Kind;
 | |
|     mangleCastExpression(E, "cv");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CStyleCastExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     mangleCastExpression(E, "cv");
 | |
|     break;
 | |
| 
 | |
|   case Expr::CXXFunctionalCastExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
 | |
|     // FIXME: Add isImplicit to CXXConstructExpr.
 | |
|     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
 | |
|       if (CCE->getParenOrBraceRange().isInvalid())
 | |
|         Sub = CCE->getArg(0)->IgnoreImplicit();
 | |
|     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
 | |
|       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
 | |
|     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
 | |
|       Out << "tl";
 | |
|       mangleType(E->getType());
 | |
|       mangleInitListElements(IL);
 | |
|       Out << "E";
 | |
|     } else {
 | |
|       mangleCastExpression(E, "cv");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXStaticCastExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     mangleCastExpression(E, "sc");
 | |
|     break;
 | |
|   case Expr::CXXDynamicCastExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     mangleCastExpression(E, "dc");
 | |
|     break;
 | |
|   case Expr::CXXReinterpretCastExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     mangleCastExpression(E, "rc");
 | |
|     break;
 | |
|   case Expr::CXXConstCastExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     mangleCastExpression(E, "cc");
 | |
|     break;
 | |
|   case Expr::CXXAddrspaceCastExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     mangleCastExpression(E, "ac");
 | |
|     break;
 | |
| 
 | |
|   case Expr::CXXOperatorCallExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
 | |
|     unsigned NumArgs = CE->getNumArgs();
 | |
|     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
 | |
|     // (the enclosing MemberExpr covers the syntactic portion).
 | |
|     if (CE->getOperator() != OO_Arrow)
 | |
|       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
 | |
|     // Mangle the arguments.
 | |
|     for (unsigned i = 0; i != NumArgs; ++i)
 | |
|       mangleExpression(CE->getArg(i));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::ParenExprClass:
 | |
|     E = cast<ParenExpr>(E)->getSubExpr();
 | |
|     goto recurse;
 | |
| 
 | |
|   case Expr::ConceptSpecializationExprClass: {
 | |
|     //  <expr-primary> ::= L <mangled-name> E # external name
 | |
|     Out << "L_Z";
 | |
|     auto *CSE = cast<ConceptSpecializationExpr>(E);
 | |
|     mangleTemplateName(CSE->getNamedConcept(),
 | |
|                        CSE->getTemplateArguments().data(),
 | |
|                        CSE->getTemplateArguments().size());
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::DeclRefExprClass:
 | |
|     // MangleDeclRefExpr helper handles primary-vs-nonprimary
 | |
|     MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
 | |
|     break;
 | |
| 
 | |
|   case Expr::SubstNonTypeTemplateParmPackExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     // FIXME: not clear how to mangle this!
 | |
|     // template <unsigned N...> class A {
 | |
|     //   template <class U...> void foo(U (&x)[N]...);
 | |
|     // };
 | |
|     Out << "_SUBSTPACK_";
 | |
|     break;
 | |
| 
 | |
|   case Expr::FunctionParmPackExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     // FIXME: not clear how to mangle this!
 | |
|     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
 | |
|     Out << "v110_SUBSTPACK";
 | |
|     MangleDeclRefExpr(FPPE->getParameterPack());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::DependentScopeDeclRefExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
 | |
|     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
 | |
|                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
 | |
|                          Arity);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXBindTemporaryExprClass:
 | |
|     E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
 | |
|     goto recurse;
 | |
| 
 | |
|   case Expr::ExprWithCleanupsClass:
 | |
|     E = cast<ExprWithCleanups>(E)->getSubExpr();
 | |
|     goto recurse;
 | |
| 
 | |
|   case Expr::FloatingLiteralClass: {
 | |
|     // <expr-primary>
 | |
|     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
 | |
|     mangleFloatLiteral(FL->getType(), FL->getValue());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::FixedPointLiteralClass:
 | |
|     // Currently unimplemented -- might be <expr-primary> in future?
 | |
|     mangleFixedPointLiteral();
 | |
|     break;
 | |
| 
 | |
|   case Expr::CharacterLiteralClass:
 | |
|     // <expr-primary>
 | |
|     Out << 'L';
 | |
|     mangleType(E->getType());
 | |
|     Out << cast<CharacterLiteral>(E)->getValue();
 | |
|     Out << 'E';
 | |
|     break;
 | |
| 
 | |
|   // FIXME. __objc_yes/__objc_no are mangled same as true/false
 | |
|   case Expr::ObjCBoolLiteralExprClass:
 | |
|     // <expr-primary>
 | |
|     Out << "Lb";
 | |
|     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
 | |
|     Out << 'E';
 | |
|     break;
 | |
| 
 | |
|   case Expr::CXXBoolLiteralExprClass:
 | |
|     // <expr-primary>
 | |
|     Out << "Lb";
 | |
|     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
 | |
|     Out << 'E';
 | |
|     break;
 | |
| 
 | |
|   case Expr::IntegerLiteralClass: {
 | |
|     // <expr-primary>
 | |
|     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
 | |
|     if (E->getType()->isSignedIntegerType())
 | |
|       Value.setIsSigned(true);
 | |
|     mangleIntegerLiteral(E->getType(), Value);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::ImaginaryLiteralClass: {
 | |
|     // <expr-primary>
 | |
|     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
 | |
|     // Mangle as if a complex literal.
 | |
|     // Proposal from David Vandevoorde, 2010.06.30.
 | |
|     Out << 'L';
 | |
|     mangleType(E->getType());
 | |
|     if (const FloatingLiteral *Imag =
 | |
|           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
 | |
|       // Mangle a floating-point zero of the appropriate type.
 | |
|       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
 | |
|       Out << '_';
 | |
|       mangleFloat(Imag->getValue());
 | |
|     } else {
 | |
|       Out << "0_";
 | |
|       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
 | |
|       if (IE->getSubExpr()->getType()->isSignedIntegerType())
 | |
|         Value.setIsSigned(true);
 | |
|       mangleNumber(Value);
 | |
|     }
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::StringLiteralClass: {
 | |
|     // <expr-primary>
 | |
|     // Revised proposal from David Vandervoorde, 2010.07.15.
 | |
|     Out << 'L';
 | |
|     assert(isa<ConstantArrayType>(E->getType()));
 | |
|     mangleType(E->getType());
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::GNUNullExprClass:
 | |
|     // <expr-primary>
 | |
|     // Mangle as if an integer literal 0.
 | |
|     mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
 | |
|     break;
 | |
| 
 | |
|   case Expr::CXXNullPtrLiteralExprClass: {
 | |
|     // <expr-primary>
 | |
|     Out << "LDnE";
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::PackExpansionExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     Out << "sp";
 | |
|     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
 | |
|     break;
 | |
| 
 | |
|   case Expr::SizeOfPackExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     auto *SPE = cast<SizeOfPackExpr>(E);
 | |
|     if (SPE->isPartiallySubstituted()) {
 | |
|       Out << "sP";
 | |
|       for (const auto &A : SPE->getPartialArguments())
 | |
|         mangleTemplateArg(A, false);
 | |
|       Out << "E";
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Out << "sZ";
 | |
|     const NamedDecl *Pack = SPE->getPack();
 | |
|     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
 | |
|       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
 | |
|     else if (const NonTypeTemplateParmDecl *NTTP
 | |
|                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
 | |
|       mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
 | |
|     else if (const TemplateTemplateParmDecl *TempTP
 | |
|                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
 | |
|       mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
 | |
|     else
 | |
|       mangleFunctionParam(cast<ParmVarDecl>(Pack));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::MaterializeTemporaryExprClass:
 | |
|     E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
 | |
|     goto recurse;
 | |
| 
 | |
|   case Expr::CXXFoldExprClass: {
 | |
|     NotPrimaryExpr();
 | |
|     auto *FE = cast<CXXFoldExpr>(E);
 | |
|     if (FE->isLeftFold())
 | |
|       Out << (FE->getInit() ? "fL" : "fl");
 | |
|     else
 | |
|       Out << (FE->getInit() ? "fR" : "fr");
 | |
| 
 | |
|     if (FE->getOperator() == BO_PtrMemD)
 | |
|       Out << "ds";
 | |
|     else
 | |
|       mangleOperatorName(
 | |
|           BinaryOperator::getOverloadedOperator(FE->getOperator()),
 | |
|           /*Arity=*/2);
 | |
| 
 | |
|     if (FE->getLHS())
 | |
|       mangleExpression(FE->getLHS());
 | |
|     if (FE->getRHS())
 | |
|       mangleExpression(FE->getRHS());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXThisExprClass:
 | |
|     NotPrimaryExpr();
 | |
|     Out << "fpT";
 | |
|     break;
 | |
| 
 | |
|   case Expr::CoawaitExprClass:
 | |
|     // FIXME: Propose a non-vendor mangling.
 | |
|     NotPrimaryExpr();
 | |
|     Out << "v18co_await";
 | |
|     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
 | |
|     break;
 | |
| 
 | |
|   case Expr::DependentCoawaitExprClass:
 | |
|     // FIXME: Propose a non-vendor mangling.
 | |
|     NotPrimaryExpr();
 | |
|     Out << "v18co_await";
 | |
|     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
 | |
|     break;
 | |
| 
 | |
|   case Expr::CoyieldExprClass:
 | |
|     // FIXME: Propose a non-vendor mangling.
 | |
|     NotPrimaryExpr();
 | |
|     Out << "v18co_yield";
 | |
|     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (AsTemplateArg && !IsPrimaryExpr)
 | |
|     Out << 'E';
 | |
| }
 | |
| 
 | |
| /// Mangle an expression which refers to a parameter variable.
 | |
| ///
 | |
| /// <expression>     ::= <function-param>
 | |
| /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
 | |
| /// <function-param> ::= fp <top-level CV-qualifiers>
 | |
| ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
 | |
| /// <function-param> ::= fL <L-1 non-negative number>
 | |
| ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
 | |
| /// <function-param> ::= fL <L-1 non-negative number>
 | |
| ///                      p <top-level CV-qualifiers>
 | |
| ///                      <I-1 non-negative number> _         # L > 0, I > 0
 | |
| ///
 | |
| /// L is the nesting depth of the parameter, defined as 1 if the
 | |
| /// parameter comes from the innermost function prototype scope
 | |
| /// enclosing the current context, 2 if from the next enclosing
 | |
| /// function prototype scope, and so on, with one special case: if
 | |
| /// we've processed the full parameter clause for the innermost
 | |
| /// function type, then L is one less.  This definition conveniently
 | |
| /// makes it irrelevant whether a function's result type was written
 | |
| /// trailing or leading, but is otherwise overly complicated; the
 | |
| /// numbering was first designed without considering references to
 | |
| /// parameter in locations other than return types, and then the
 | |
| /// mangling had to be generalized without changing the existing
 | |
| /// manglings.
 | |
| ///
 | |
| /// I is the zero-based index of the parameter within its parameter
 | |
| /// declaration clause.  Note that the original ABI document describes
 | |
| /// this using 1-based ordinals.
 | |
| void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
 | |
|   unsigned parmDepth = parm->getFunctionScopeDepth();
 | |
|   unsigned parmIndex = parm->getFunctionScopeIndex();
 | |
| 
 | |
|   // Compute 'L'.
 | |
|   // parmDepth does not include the declaring function prototype.
 | |
|   // FunctionTypeDepth does account for that.
 | |
|   assert(parmDepth < FunctionTypeDepth.getDepth());
 | |
|   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
 | |
|   if (FunctionTypeDepth.isInResultType())
 | |
|     nestingDepth--;
 | |
| 
 | |
|   if (nestingDepth == 0) {
 | |
|     Out << "fp";
 | |
|   } else {
 | |
|     Out << "fL" << (nestingDepth - 1) << 'p';
 | |
|   }
 | |
| 
 | |
|   // Top-level qualifiers.  We don't have to worry about arrays here,
 | |
|   // because parameters declared as arrays should already have been
 | |
|   // transformed to have pointer type. FIXME: apparently these don't
 | |
|   // get mangled if used as an rvalue of a known non-class type?
 | |
|   assert(!parm->getType()->isArrayType()
 | |
|          && "parameter's type is still an array type?");
 | |
| 
 | |
|   if (const DependentAddressSpaceType *DAST =
 | |
|       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
 | |
|     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
 | |
|   } else {
 | |
|     mangleQualifiers(parm->getType().getQualifiers());
 | |
|   }
 | |
| 
 | |
|   // Parameter index.
 | |
|   if (parmIndex != 0) {
 | |
|     Out << (parmIndex - 1);
 | |
|   }
 | |
|   Out << '_';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
 | |
|                                        const CXXRecordDecl *InheritedFrom) {
 | |
|   // <ctor-dtor-name> ::= C1  # complete object constructor
 | |
|   //                  ::= C2  # base object constructor
 | |
|   //                  ::= CI1 <type> # complete inheriting constructor
 | |
|   //                  ::= CI2 <type> # base inheriting constructor
 | |
|   //
 | |
|   // In addition, C5 is a comdat name with C1 and C2 in it.
 | |
|   Out << 'C';
 | |
|   if (InheritedFrom)
 | |
|     Out << 'I';
 | |
|   switch (T) {
 | |
|   case Ctor_Complete:
 | |
|     Out << '1';
 | |
|     break;
 | |
|   case Ctor_Base:
 | |
|     Out << '2';
 | |
|     break;
 | |
|   case Ctor_Comdat:
 | |
|     Out << '5';
 | |
|     break;
 | |
|   case Ctor_DefaultClosure:
 | |
|   case Ctor_CopyingClosure:
 | |
|     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
 | |
|   }
 | |
|   if (InheritedFrom)
 | |
|     mangleName(InheritedFrom);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
 | |
|   // <ctor-dtor-name> ::= D0  # deleting destructor
 | |
|   //                  ::= D1  # complete object destructor
 | |
|   //                  ::= D2  # base object destructor
 | |
|   //
 | |
|   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
 | |
|   switch (T) {
 | |
|   case Dtor_Deleting:
 | |
|     Out << "D0";
 | |
|     break;
 | |
|   case Dtor_Complete:
 | |
|     Out << "D1";
 | |
|     break;
 | |
|   case Dtor_Base:
 | |
|     Out << "D2";
 | |
|     break;
 | |
|   case Dtor_Comdat:
 | |
|     Out << "D5";
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Helper to provide ancillary information on a template used to mangle its
 | |
| // arguments.
 | |
| struct TemplateArgManglingInfo {
 | |
|   TemplateDecl *ResolvedTemplate = nullptr;
 | |
|   bool SeenPackExpansionIntoNonPack = false;
 | |
|   const NamedDecl *UnresolvedExpandedPack = nullptr;
 | |
| 
 | |
|   TemplateArgManglingInfo(TemplateName TN) {
 | |
|     if (TemplateDecl *TD = TN.getAsTemplateDecl())
 | |
|       ResolvedTemplate = TD;
 | |
|   }
 | |
| 
 | |
|   /// Do we need to mangle template arguments with exactly correct types?
 | |
|   ///
 | |
|   /// This should be called exactly once for each parameter / argument pair, in
 | |
|   /// order.
 | |
|   bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
 | |
|     // We need correct types when the template-name is unresolved or when it
 | |
|     // names a template that is able to be overloaded.
 | |
|     if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
 | |
|       return true;
 | |
| 
 | |
|     // Move to the next parameter.
 | |
|     const NamedDecl *Param = UnresolvedExpandedPack;
 | |
|     if (!Param) {
 | |
|       assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
 | |
|              "no parameter for argument");
 | |
|       Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
 | |
| 
 | |
|       // If we reach an expanded parameter pack whose argument isn't in pack
 | |
|       // form, that means Sema couldn't figure out which arguments belonged to
 | |
|       // it, because it contains a pack expansion. Track the expanded pack for
 | |
|       // all further template arguments until we hit that pack expansion.
 | |
|       if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
 | |
|         assert(getExpandedPackSize(Param) &&
 | |
|                "failed to form pack argument for parameter pack");
 | |
|         UnresolvedExpandedPack = Param;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we encounter a pack argument that is expanded into a non-pack
 | |
|     // parameter, we can no longer track parameter / argument correspondence,
 | |
|     // and need to use exact types from this point onwards.
 | |
|     if (Arg.isPackExpansion() &&
 | |
|         (!Param->isParameterPack() || UnresolvedExpandedPack)) {
 | |
|       SeenPackExpansionIntoNonPack = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // We need exact types for function template arguments because they might be
 | |
|     // overloaded on template parameter type. As a special case, a member
 | |
|     // function template of a generic lambda is not overloadable.
 | |
|     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
 | |
|       auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
 | |
|       if (!RD || !RD->isGenericLambda())
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we only need a correct type if the parameter has a deduced
 | |
|     // type.
 | |
|     //
 | |
|     // Note: for an expanded parameter pack, getType() returns the type prior
 | |
|     // to expansion. We could ask for the expanded type with getExpansionType(),
 | |
|     // but it doesn't matter because substitution and expansion don't affect
 | |
|     // whether a deduced type appears in the type.
 | |
|     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
 | |
|     return NTTP && NTTP->getType()->getContainedDeducedType();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
 | |
|                                         const TemplateArgumentLoc *TemplateArgs,
 | |
|                                         unsigned NumTemplateArgs) {
 | |
|   // <template-args> ::= I <template-arg>+ E
 | |
|   Out << 'I';
 | |
|   TemplateArgManglingInfo Info(TN);
 | |
|   for (unsigned i = 0; i != NumTemplateArgs; ++i)
 | |
|     mangleTemplateArg(TemplateArgs[i].getArgument(),
 | |
|                       Info.needExactType(i, TemplateArgs[i].getArgument()));
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
 | |
|                                         const TemplateArgumentList &AL) {
 | |
|   // <template-args> ::= I <template-arg>+ E
 | |
|   Out << 'I';
 | |
|   TemplateArgManglingInfo Info(TN);
 | |
|   for (unsigned i = 0, e = AL.size(); i != e; ++i)
 | |
|     mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
 | |
|                                         const TemplateArgument *TemplateArgs,
 | |
|                                         unsigned NumTemplateArgs) {
 | |
|   // <template-args> ::= I <template-arg>+ E
 | |
|   Out << 'I';
 | |
|   TemplateArgManglingInfo Info(TN);
 | |
|   for (unsigned i = 0; i != NumTemplateArgs; ++i)
 | |
|     mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
 | |
|   // <template-arg> ::= <type>              # type or template
 | |
|   //                ::= X <expression> E    # expression
 | |
|   //                ::= <expr-primary>      # simple expressions
 | |
|   //                ::= J <template-arg>* E # argument pack
 | |
|   if (!A.isInstantiationDependent() || A.isDependent())
 | |
|     A = Context.getASTContext().getCanonicalTemplateArgument(A);
 | |
| 
 | |
|   switch (A.getKind()) {
 | |
|   case TemplateArgument::Null:
 | |
|     llvm_unreachable("Cannot mangle NULL template argument");
 | |
| 
 | |
|   case TemplateArgument::Type:
 | |
|     mangleType(A.getAsType());
 | |
|     break;
 | |
|   case TemplateArgument::Template:
 | |
|     // This is mangled as <type>.
 | |
|     mangleType(A.getAsTemplate());
 | |
|     break;
 | |
|   case TemplateArgument::TemplateExpansion:
 | |
|     // <type>  ::= Dp <type>          # pack expansion (C++0x)
 | |
|     Out << "Dp";
 | |
|     mangleType(A.getAsTemplateOrTemplatePattern());
 | |
|     break;
 | |
|   case TemplateArgument::Expression:
 | |
|     mangleTemplateArgExpr(A.getAsExpr());
 | |
|     break;
 | |
|   case TemplateArgument::Integral:
 | |
|     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
 | |
|     break;
 | |
|   case TemplateArgument::Declaration: {
 | |
|     //  <expr-primary> ::= L <mangled-name> E # external name
 | |
|     ValueDecl *D = A.getAsDecl();
 | |
| 
 | |
|     // Template parameter objects are modeled by reproducing a source form
 | |
|     // produced as if by aggregate initialization.
 | |
|     if (A.getParamTypeForDecl()->isRecordType()) {
 | |
|       auto *TPO = cast<TemplateParamObjectDecl>(D);
 | |
|       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
 | |
|                                TPO->getValue(), /*TopLevel=*/true,
 | |
|                                NeedExactType);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     ASTContext &Ctx = Context.getASTContext();
 | |
|     APValue Value;
 | |
|     if (D->isCXXInstanceMember())
 | |
|       // Simple pointer-to-member with no conversion.
 | |
|       Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
 | |
|     else if (D->getType()->isArrayType() &&
 | |
|              Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
 | |
|                                 A.getParamTypeForDecl()) &&
 | |
|              Ctx.getLangOpts().getClangABICompat() >
 | |
|                  LangOptions::ClangABI::Ver11)
 | |
|       // Build a value corresponding to this implicit array-to-pointer decay.
 | |
|       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
 | |
|                       {APValue::LValuePathEntry::ArrayIndex(0)},
 | |
|                       /*OnePastTheEnd=*/false);
 | |
|     else
 | |
|       // Regular pointer or reference to a declaration.
 | |
|       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
 | |
|                       ArrayRef<APValue::LValuePathEntry>(),
 | |
|                       /*OnePastTheEnd=*/false);
 | |
|     mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
 | |
|                              NeedExactType);
 | |
|     break;
 | |
|   }
 | |
|   case TemplateArgument::NullPtr: {
 | |
|     mangleNullPointer(A.getNullPtrType());
 | |
|     break;
 | |
|   }
 | |
|   case TemplateArgument::Pack: {
 | |
|     //  <template-arg> ::= J <template-arg>* E
 | |
|     Out << 'J';
 | |
|     for (const auto &P : A.pack_elements())
 | |
|       mangleTemplateArg(P, NeedExactType);
 | |
|     Out << 'E';
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
 | |
|   ASTContext &Ctx = Context.getASTContext();
 | |
|   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) {
 | |
|     mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
 | |
|   // correctly in cases where the template argument was
 | |
|   // constructed from an expression rather than an already-evaluated
 | |
|   // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
 | |
|   // 'Li0E'.
 | |
|   //
 | |
|   // We did special-case DeclRefExpr to attempt to DTRT for that one
 | |
|   // expression-kind, but while doing so, unfortunately handled ParmVarDecl
 | |
|   // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
 | |
|   // the proper 'Xfp_E'.
 | |
|   E = E->IgnoreParenImpCasts();
 | |
|   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
 | |
|     const ValueDecl *D = DRE->getDecl();
 | |
|     if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
 | |
|       Out << 'L';
 | |
|       mangle(D);
 | |
|       Out << 'E';
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   Out << 'X';
 | |
|   mangleExpression(E);
 | |
|   Out << 'E';
 | |
| }
 | |
| 
 | |
| /// Determine whether a given value is equivalent to zero-initialization for
 | |
| /// the purpose of discarding a trailing portion of a 'tl' mangling.
 | |
| ///
 | |
| /// Note that this is not in general equivalent to determining whether the
 | |
| /// value has an all-zeroes bit pattern.
 | |
| static bool isZeroInitialized(QualType T, const APValue &V) {
 | |
|   // FIXME: mangleValueInTemplateArg has quadratic time complexity in
 | |
|   // pathological cases due to using this, but it's a little awkward
 | |
|   // to do this in linear time in general.
 | |
|   switch (V.getKind()) {
 | |
|   case APValue::None:
 | |
|   case APValue::Indeterminate:
 | |
|   case APValue::AddrLabelDiff:
 | |
|     return false;
 | |
| 
 | |
|   case APValue::Struct: {
 | |
|     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
 | |
|     assert(RD && "unexpected type for record value");
 | |
|     unsigned I = 0;
 | |
|     for (const CXXBaseSpecifier &BS : RD->bases()) {
 | |
|       if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
 | |
|         return false;
 | |
|       ++I;
 | |
|     }
 | |
|     I = 0;
 | |
|     for (const FieldDecl *FD : RD->fields()) {
 | |
|       if (!FD->isUnnamedBitfield() &&
 | |
|           !isZeroInitialized(FD->getType(), V.getStructField(I)))
 | |
|         return false;
 | |
|       ++I;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case APValue::Union: {
 | |
|     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
 | |
|     assert(RD && "unexpected type for union value");
 | |
|     // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
 | |
|     for (const FieldDecl *FD : RD->fields()) {
 | |
|       if (!FD->isUnnamedBitfield())
 | |
|         return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
 | |
|                isZeroInitialized(FD->getType(), V.getUnionValue());
 | |
|     }
 | |
|     // If there are no fields (other than unnamed bitfields), the value is
 | |
|     // necessarily zero-initialized.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case APValue::Array: {
 | |
|     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
 | |
|     for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
 | |
|       if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
 | |
|         return false;
 | |
|     return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
 | |
|   }
 | |
| 
 | |
|   case APValue::Vector: {
 | |
|     const VectorType *VT = T->castAs<VectorType>();
 | |
|     for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
 | |
|       if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case APValue::Int:
 | |
|     return !V.getInt();
 | |
| 
 | |
|   case APValue::Float:
 | |
|     return V.getFloat().isPosZero();
 | |
| 
 | |
|   case APValue::FixedPoint:
 | |
|     return !V.getFixedPoint().getValue();
 | |
| 
 | |
|   case APValue::ComplexFloat:
 | |
|     return V.getComplexFloatReal().isPosZero() &&
 | |
|            V.getComplexFloatImag().isPosZero();
 | |
| 
 | |
|   case APValue::ComplexInt:
 | |
|     return !V.getComplexIntReal() && !V.getComplexIntImag();
 | |
| 
 | |
|   case APValue::LValue:
 | |
|     return V.isNullPointer();
 | |
| 
 | |
|   case APValue::MemberPointer:
 | |
|     return !V.getMemberPointerDecl();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled APValue::ValueKind enum");
 | |
| }
 | |
| 
 | |
| static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
 | |
|   QualType T = LV.getLValueBase().getType();
 | |
|   for (APValue::LValuePathEntry E : LV.getLValuePath()) {
 | |
|     if (const ArrayType *AT = Ctx.getAsArrayType(T))
 | |
|       T = AT->getElementType();
 | |
|     else if (const FieldDecl *FD =
 | |
|                  dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
 | |
|       T = FD->getType();
 | |
|     else
 | |
|       T = Ctx.getRecordType(
 | |
|           cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
 | |
|   }
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
 | |
|                                               bool TopLevel,
 | |
|                                               bool NeedExactType) {
 | |
|   // Ignore all top-level cv-qualifiers, to match GCC.
 | |
|   Qualifiers Quals;
 | |
|   T = getASTContext().getUnqualifiedArrayType(T, Quals);
 | |
| 
 | |
|   // A top-level expression that's not a primary expression is wrapped in X...E.
 | |
|   bool IsPrimaryExpr = true;
 | |
|   auto NotPrimaryExpr = [&] {
 | |
|     if (TopLevel && IsPrimaryExpr)
 | |
|       Out << 'X';
 | |
|     IsPrimaryExpr = false;
 | |
|   };
 | |
| 
 | |
|   // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
 | |
|   switch (V.getKind()) {
 | |
|   case APValue::None:
 | |
|   case APValue::Indeterminate:
 | |
|     Out << 'L';
 | |
|     mangleType(T);
 | |
|     Out << 'E';
 | |
|     break;
 | |
| 
 | |
|   case APValue::AddrLabelDiff:
 | |
|     llvm_unreachable("unexpected value kind in template argument");
 | |
| 
 | |
|   case APValue::Struct: {
 | |
|     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
 | |
|     assert(RD && "unexpected type for record value");
 | |
| 
 | |
|     // Drop trailing zero-initialized elements.
 | |
|     llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(),
 | |
|                                                     RD->field_end());
 | |
|     while (
 | |
|         !Fields.empty() &&
 | |
|         (Fields.back()->isUnnamedBitfield() ||
 | |
|          isZeroInitialized(Fields.back()->getType(),
 | |
|                            V.getStructField(Fields.back()->getFieldIndex())))) {
 | |
|       Fields.pop_back();
 | |
|     }
 | |
|     llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
 | |
|     if (Fields.empty()) {
 | |
|       while (!Bases.empty() &&
 | |
|              isZeroInitialized(Bases.back().getType(),
 | |
|                                V.getStructBase(Bases.size() - 1)))
 | |
|         Bases = Bases.drop_back();
 | |
|     }
 | |
| 
 | |
|     // <expression> ::= tl <type> <braced-expression>* E
 | |
|     NotPrimaryExpr();
 | |
|     Out << "tl";
 | |
|     mangleType(T);
 | |
|     for (unsigned I = 0, N = Bases.size(); I != N; ++I)
 | |
|       mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
 | |
|     for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
 | |
|       if (Fields[I]->isUnnamedBitfield())
 | |
|         continue;
 | |
|       mangleValueInTemplateArg(Fields[I]->getType(),
 | |
|                                V.getStructField(Fields[I]->getFieldIndex()),
 | |
|                                false);
 | |
|     }
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case APValue::Union: {
 | |
|     assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
 | |
|     const FieldDecl *FD = V.getUnionField();
 | |
| 
 | |
|     if (!FD) {
 | |
|       Out << 'L';
 | |
|       mangleType(T);
 | |
|       Out << 'E';
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // <braced-expression> ::= di <field source-name> <braced-expression>
 | |
|     NotPrimaryExpr();
 | |
|     Out << "tl";
 | |
|     mangleType(T);
 | |
|     if (!isZeroInitialized(T, V)) {
 | |
|       Out << "di";
 | |
|       mangleSourceName(FD->getIdentifier());
 | |
|       mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
 | |
|     }
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case APValue::Array: {
 | |
|     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
 | |
| 
 | |
|     NotPrimaryExpr();
 | |
|     Out << "tl";
 | |
|     mangleType(T);
 | |
| 
 | |
|     // Drop trailing zero-initialized elements.
 | |
|     unsigned N = V.getArraySize();
 | |
|     if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
 | |
|       N = V.getArrayInitializedElts();
 | |
|       while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
 | |
|         --N;
 | |
|     }
 | |
| 
 | |
|     for (unsigned I = 0; I != N; ++I) {
 | |
|       const APValue &Elem = I < V.getArrayInitializedElts()
 | |
|                                 ? V.getArrayInitializedElt(I)
 | |
|                                 : V.getArrayFiller();
 | |
|       mangleValueInTemplateArg(ElemT, Elem, false);
 | |
|     }
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case APValue::Vector: {
 | |
|     const VectorType *VT = T->castAs<VectorType>();
 | |
| 
 | |
|     NotPrimaryExpr();
 | |
|     Out << "tl";
 | |
|     mangleType(T);
 | |
|     unsigned N = V.getVectorLength();
 | |
|     while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
 | |
|       --N;
 | |
|     for (unsigned I = 0; I != N; ++I)
 | |
|       mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case APValue::Int:
 | |
|     mangleIntegerLiteral(T, V.getInt());
 | |
|     break;
 | |
| 
 | |
|   case APValue::Float:
 | |
|     mangleFloatLiteral(T, V.getFloat());
 | |
|     break;
 | |
| 
 | |
|   case APValue::FixedPoint:
 | |
|     mangleFixedPointLiteral();
 | |
|     break;
 | |
| 
 | |
|   case APValue::ComplexFloat: {
 | |
|     const ComplexType *CT = T->castAs<ComplexType>();
 | |
|     NotPrimaryExpr();
 | |
|     Out << "tl";
 | |
|     mangleType(T);
 | |
|     if (!V.getComplexFloatReal().isPosZero() ||
 | |
|         !V.getComplexFloatImag().isPosZero())
 | |
|       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
 | |
|     if (!V.getComplexFloatImag().isPosZero())
 | |
|       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case APValue::ComplexInt: {
 | |
|     const ComplexType *CT = T->castAs<ComplexType>();
 | |
|     NotPrimaryExpr();
 | |
|     Out << "tl";
 | |
|     mangleType(T);
 | |
|     if (V.getComplexIntReal().getBoolValue() ||
 | |
|         V.getComplexIntImag().getBoolValue())
 | |
|       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
 | |
|     if (V.getComplexIntImag().getBoolValue())
 | |
|       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
 | |
|     Out << 'E';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case APValue::LValue: {
 | |
|     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
 | |
|     assert((T->isPointerType() || T->isReferenceType()) &&
 | |
|            "unexpected type for LValue template arg");
 | |
| 
 | |
|     if (V.isNullPointer()) {
 | |
|       mangleNullPointer(T);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     APValue::LValueBase B = V.getLValueBase();
 | |
|     if (!B) {
 | |
|       // Non-standard mangling for integer cast to a pointer; this can only
 | |
|       // occur as an extension.
 | |
|       CharUnits Offset = V.getLValueOffset();
 | |
|       if (Offset.isZero()) {
 | |
|         // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
 | |
|         // a cast, because L <type> 0 E means something else.
 | |
|         NotPrimaryExpr();
 | |
|         Out << "rc";
 | |
|         mangleType(T);
 | |
|         Out << "Li0E";
 | |
|         if (TopLevel)
 | |
|           Out << 'E';
 | |
|       } else {
 | |
|         Out << "L";
 | |
|         mangleType(T);
 | |
|         Out << Offset.getQuantity() << 'E';
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     ASTContext &Ctx = Context.getASTContext();
 | |
| 
 | |
|     enum { Base, Offset, Path } Kind;
 | |
|     if (!V.hasLValuePath()) {
 | |
|       // Mangle as (T*)((char*)&base + N).
 | |
|       if (T->isReferenceType()) {
 | |
|         NotPrimaryExpr();
 | |
|         Out << "decvP";
 | |
|         mangleType(T->getPointeeType());
 | |
|       } else {
 | |
|         NotPrimaryExpr();
 | |
|         Out << "cv";
 | |
|         mangleType(T);
 | |
|       }
 | |
|       Out << "plcvPcad";
 | |
|       Kind = Offset;
 | |
|     } else {
 | |
|       if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
 | |
|         NotPrimaryExpr();
 | |
|         // A final conversion to the template parameter's type is usually
 | |
|         // folded into the 'so' mangling, but we can't do that for 'void*'
 | |
|         // parameters without introducing collisions.
 | |
|         if (NeedExactType && T->isVoidPointerType()) {
 | |
|           Out << "cv";
 | |
|           mangleType(T);
 | |
|         }
 | |
|         if (T->isPointerType())
 | |
|           Out << "ad";
 | |
|         Out << "so";
 | |
|         mangleType(T->isVoidPointerType()
 | |
|                        ? getLValueType(Ctx, V).getUnqualifiedType()
 | |
|                        : T->getPointeeType());
 | |
|         Kind = Path;
 | |
|       } else {
 | |
|         if (NeedExactType &&
 | |
|             !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
 | |
|             Ctx.getLangOpts().getClangABICompat() >
 | |
|                 LangOptions::ClangABI::Ver11) {
 | |
|           NotPrimaryExpr();
 | |
|           Out << "cv";
 | |
|           mangleType(T);
 | |
|         }
 | |
|         if (T->isPointerType()) {
 | |
|           NotPrimaryExpr();
 | |
|           Out << "ad";
 | |
|         }
 | |
|         Kind = Base;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     QualType TypeSoFar = B.getType();
 | |
|     if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
 | |
|       Out << 'L';
 | |
|       mangle(VD);
 | |
|       Out << 'E';
 | |
|     } else if (auto *E = B.dyn_cast<const Expr*>()) {
 | |
|       NotPrimaryExpr();
 | |
|       mangleExpression(E);
 | |
|     } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
 | |
|       NotPrimaryExpr();
 | |
|       Out << "ti";
 | |
|       mangleType(QualType(TI.getType(), 0));
 | |
|     } else {
 | |
|       // We should never see dynamic allocations here.
 | |
|       llvm_unreachable("unexpected lvalue base kind in template argument");
 | |
|     }
 | |
| 
 | |
|     switch (Kind) {
 | |
|     case Base:
 | |
|       break;
 | |
| 
 | |
|     case Offset:
 | |
|       Out << 'L';
 | |
|       mangleType(Ctx.getPointerDiffType());
 | |
|       mangleNumber(V.getLValueOffset().getQuantity());
 | |
|       Out << 'E';
 | |
|       break;
 | |
| 
 | |
|     case Path:
 | |
|       // <expression> ::= so <referent type> <expr> [<offset number>]
 | |
|       //                  <union-selector>* [p] E
 | |
|       if (!V.getLValueOffset().isZero())
 | |
|         mangleNumber(V.getLValueOffset().getQuantity());
 | |
| 
 | |
|       // We model a past-the-end array pointer as array indexing with index N,
 | |
|       // not with the "past the end" flag. Compensate for that.
 | |
|       bool OnePastTheEnd = V.isLValueOnePastTheEnd();
 | |
| 
 | |
|       for (APValue::LValuePathEntry E : V.getLValuePath()) {
 | |
|         if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
 | |
|           if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
 | |
|             OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
 | |
|           TypeSoFar = AT->getElementType();
 | |
|         } else {
 | |
|           const Decl *D = E.getAsBaseOrMember().getPointer();
 | |
|           if (auto *FD = dyn_cast<FieldDecl>(D)) {
 | |
|             // <union-selector> ::= _ <number>
 | |
|             if (FD->getParent()->isUnion()) {
 | |
|               Out << '_';
 | |
|               if (FD->getFieldIndex())
 | |
|                 Out << (FD->getFieldIndex() - 1);
 | |
|             }
 | |
|             TypeSoFar = FD->getType();
 | |
|           } else {
 | |
|             TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (OnePastTheEnd)
 | |
|         Out << 'p';
 | |
|       Out << 'E';
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case APValue::MemberPointer:
 | |
|     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
 | |
|     if (!V.getMemberPointerDecl()) {
 | |
|       mangleNullPointer(T);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     ASTContext &Ctx = Context.getASTContext();
 | |
| 
 | |
|     NotPrimaryExpr();
 | |
|     if (!V.getMemberPointerPath().empty()) {
 | |
|       Out << "mc";
 | |
|       mangleType(T);
 | |
|     } else if (NeedExactType &&
 | |
|                !Ctx.hasSameType(
 | |
|                    T->castAs<MemberPointerType>()->getPointeeType(),
 | |
|                    V.getMemberPointerDecl()->getType()) &&
 | |
|                Ctx.getLangOpts().getClangABICompat() >
 | |
|                    LangOptions::ClangABI::Ver11) {
 | |
|       Out << "cv";
 | |
|       mangleType(T);
 | |
|     }
 | |
|     Out << "adL";
 | |
|     mangle(V.getMemberPointerDecl());
 | |
|     Out << 'E';
 | |
|     if (!V.getMemberPointerPath().empty()) {
 | |
|       CharUnits Offset =
 | |
|           Context.getASTContext().getMemberPointerPathAdjustment(V);
 | |
|       if (!Offset.isZero())
 | |
|         mangleNumber(Offset.getQuantity());
 | |
|       Out << 'E';
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (TopLevel && !IsPrimaryExpr)
 | |
|     Out << 'E';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
 | |
|   // <template-param> ::= T_    # first template parameter
 | |
|   //                  ::= T <parameter-2 non-negative number> _
 | |
|   //                  ::= TL <L-1 non-negative number> __
 | |
|   //                  ::= TL <L-1 non-negative number> _
 | |
|   //                         <parameter-2 non-negative number> _
 | |
|   //
 | |
|   // The latter two manglings are from a proposal here:
 | |
|   // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
 | |
|   Out << 'T';
 | |
|   if (Depth != 0)
 | |
|     Out << 'L' << (Depth - 1) << '_';
 | |
|   if (Index != 0)
 | |
|     Out << (Index - 1);
 | |
|   Out << '_';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleSeqID(unsigned SeqID) {
 | |
|   if (SeqID == 1)
 | |
|     Out << '0';
 | |
|   else if (SeqID > 1) {
 | |
|     SeqID--;
 | |
| 
 | |
|     // <seq-id> is encoded in base-36, using digits and upper case letters.
 | |
|     char Buffer[7]; // log(2**32) / log(36) ~= 7
 | |
|     MutableArrayRef<char> BufferRef(Buffer);
 | |
|     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
 | |
| 
 | |
|     for (; SeqID != 0; SeqID /= 36) {
 | |
|       unsigned C = SeqID % 36;
 | |
|       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
 | |
|     }
 | |
| 
 | |
|     Out.write(I.base(), I - BufferRef.rbegin());
 | |
|   }
 | |
|   Out << '_';
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
 | |
|   bool result = mangleSubstitution(tname);
 | |
|   assert(result && "no existing substitution for template name");
 | |
|   (void) result;
 | |
| }
 | |
| 
 | |
| // <substitution> ::= S <seq-id> _
 | |
| //                ::= S_
 | |
| bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
 | |
|   // Try one of the standard substitutions first.
 | |
|   if (mangleStandardSubstitution(ND))
 | |
|     return true;
 | |
| 
 | |
|   ND = cast<NamedDecl>(ND->getCanonicalDecl());
 | |
|   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
 | |
| }
 | |
| 
 | |
| /// Determine whether the given type has any qualifiers that are relevant for
 | |
| /// substitutions.
 | |
| static bool hasMangledSubstitutionQualifiers(QualType T) {
 | |
|   Qualifiers Qs = T.getQualifiers();
 | |
|   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
 | |
| }
 | |
| 
 | |
| bool CXXNameMangler::mangleSubstitution(QualType T) {
 | |
|   if (!hasMangledSubstitutionQualifiers(T)) {
 | |
|     if (const RecordType *RT = T->getAs<RecordType>())
 | |
|       return mangleSubstitution(RT->getDecl());
 | |
|   }
 | |
| 
 | |
|   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
 | |
| 
 | |
|   return mangleSubstitution(TypePtr);
 | |
| }
 | |
| 
 | |
| bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
 | |
|   if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | |
|     return mangleSubstitution(TD);
 | |
| 
 | |
|   Template = Context.getASTContext().getCanonicalTemplateName(Template);
 | |
|   return mangleSubstitution(
 | |
|                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
 | |
| }
 | |
| 
 | |
| bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
 | |
|   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
 | |
|   if (I == Substitutions.end())
 | |
|     return false;
 | |
| 
 | |
|   unsigned SeqID = I->second;
 | |
|   Out << 'S';
 | |
|   mangleSeqID(SeqID);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isCharType(QualType T) {
 | |
|   if (T.isNull())
 | |
|     return false;
 | |
| 
 | |
|   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
 | |
|     T->isSpecificBuiltinType(BuiltinType::Char_U);
 | |
| }
 | |
| 
 | |
| /// Returns whether a given type is a template specialization of a given name
 | |
| /// with a single argument of type char.
 | |
| static bool isCharSpecialization(QualType T, const char *Name) {
 | |
|   if (T.isNull())
 | |
|     return false;
 | |
| 
 | |
|   const RecordType *RT = T->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return false;
 | |
| 
 | |
|   const ClassTemplateSpecializationDecl *SD =
 | |
|     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
 | |
|   if (!SD)
 | |
|     return false;
 | |
| 
 | |
|   if (!isStdNamespace(getEffectiveDeclContext(SD)))
 | |
|     return false;
 | |
| 
 | |
|   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
 | |
|   if (TemplateArgs.size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   if (!isCharType(TemplateArgs[0].getAsType()))
 | |
|     return false;
 | |
| 
 | |
|   return SD->getIdentifier()->getName() == Name;
 | |
| }
 | |
| 
 | |
| template <std::size_t StrLen>
 | |
| static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
 | |
|                                        const char (&Str)[StrLen]) {
 | |
|   if (!SD->getIdentifier()->isStr(Str))
 | |
|     return false;
 | |
| 
 | |
|   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
 | |
|   if (TemplateArgs.size() != 2)
 | |
|     return false;
 | |
| 
 | |
|   if (!isCharType(TemplateArgs[0].getAsType()))
 | |
|     return false;
 | |
| 
 | |
|   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
 | |
|   // <substitution> ::= St # ::std::
 | |
|   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
 | |
|     if (isStd(NS)) {
 | |
|       Out << "St";
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
 | |
|     if (!isStdNamespace(getEffectiveDeclContext(TD)))
 | |
|       return false;
 | |
| 
 | |
|     // <substitution> ::= Sa # ::std::allocator
 | |
|     if (TD->getIdentifier()->isStr("allocator")) {
 | |
|       Out << "Sa";
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // <<substitution> ::= Sb # ::std::basic_string
 | |
|     if (TD->getIdentifier()->isStr("basic_string")) {
 | |
|       Out << "Sb";
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const ClassTemplateSpecializationDecl *SD =
 | |
|         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
 | |
|     if (!isStdNamespace(getEffectiveDeclContext(SD)))
 | |
|       return false;
 | |
| 
 | |
|     //    <substitution> ::= Ss # ::std::basic_string<char,
 | |
|     //                            ::std::char_traits<char>,
 | |
|     //                            ::std::allocator<char> >
 | |
|     if (SD->getIdentifier()->isStr("basic_string")) {
 | |
|       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
 | |
| 
 | |
|       if (TemplateArgs.size() != 3)
 | |
|         return false;
 | |
| 
 | |
|       if (!isCharType(TemplateArgs[0].getAsType()))
 | |
|         return false;
 | |
| 
 | |
|       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
 | |
|         return false;
 | |
| 
 | |
|       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
 | |
|         return false;
 | |
| 
 | |
|       Out << "Ss";
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     //    <substitution> ::= Si # ::std::basic_istream<char,
 | |
|     //                            ::std::char_traits<char> >
 | |
|     if (isStreamCharSpecialization(SD, "basic_istream")) {
 | |
|       Out << "Si";
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     //    <substitution> ::= So # ::std::basic_ostream<char,
 | |
|     //                            ::std::char_traits<char> >
 | |
|     if (isStreamCharSpecialization(SD, "basic_ostream")) {
 | |
|       Out << "So";
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     //    <substitution> ::= Sd # ::std::basic_iostream<char,
 | |
|     //                            ::std::char_traits<char> >
 | |
|     if (isStreamCharSpecialization(SD, "basic_iostream")) {
 | |
|       Out << "Sd";
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::addSubstitution(QualType T) {
 | |
|   if (!hasMangledSubstitutionQualifiers(T)) {
 | |
|     if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|       addSubstitution(RT->getDecl());
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
 | |
|   addSubstitution(TypePtr);
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::addSubstitution(TemplateName Template) {
 | |
|   if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | |
|     return addSubstitution(TD);
 | |
| 
 | |
|   Template = Context.getASTContext().getCanonicalTemplateName(Template);
 | |
|   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
 | |
|   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
 | |
|   Substitutions[Ptr] = SeqID++;
 | |
| }
 | |
| 
 | |
| void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
 | |
|   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
 | |
|   if (Other->SeqID > SeqID) {
 | |
|     Substitutions.swap(Other->Substitutions);
 | |
|     SeqID = Other->SeqID;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CXXNameMangler::AbiTagList
 | |
| CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
 | |
|   // When derived abi tags are disabled there is no need to make any list.
 | |
|   if (DisableDerivedAbiTags)
 | |
|     return AbiTagList();
 | |
| 
 | |
|   llvm::raw_null_ostream NullOutStream;
 | |
|   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
 | |
|   TrackReturnTypeTags.disableDerivedAbiTags();
 | |
| 
 | |
|   const FunctionProtoType *Proto =
 | |
|       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
 | |
|   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
 | |
|   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
 | |
|   TrackReturnTypeTags.mangleType(Proto->getReturnType());
 | |
|   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
 | |
|   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
 | |
| 
 | |
|   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
 | |
| }
 | |
| 
 | |
| CXXNameMangler::AbiTagList
 | |
| CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
 | |
|   // When derived abi tags are disabled there is no need to make any list.
 | |
|   if (DisableDerivedAbiTags)
 | |
|     return AbiTagList();
 | |
| 
 | |
|   llvm::raw_null_ostream NullOutStream;
 | |
|   CXXNameMangler TrackVariableType(*this, NullOutStream);
 | |
|   TrackVariableType.disableDerivedAbiTags();
 | |
| 
 | |
|   TrackVariableType.mangleType(VD->getType());
 | |
| 
 | |
|   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
 | |
| }
 | |
| 
 | |
| bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
 | |
|                                        const VarDecl *VD) {
 | |
|   llvm::raw_null_ostream NullOutStream;
 | |
|   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
 | |
|   TrackAbiTags.mangle(VD);
 | |
|   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
 | |
| }
 | |
| 
 | |
| //
 | |
| 
 | |
| /// Mangles the name of the declaration D and emits that name to the given
 | |
| /// output stream.
 | |
| ///
 | |
| /// If the declaration D requires a mangled name, this routine will emit that
 | |
| /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
 | |
| /// and this routine will return false. In this case, the caller should just
 | |
| /// emit the identifier of the declaration (\c D->getIdentifier()) as its
 | |
| /// name.
 | |
| void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
 | |
|                                              raw_ostream &Out) {
 | |
|   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
 | |
|   assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
 | |
|          "Invalid mangleName() call, argument is not a variable or function!");
 | |
| 
 | |
|   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
 | |
|                                  getASTContext().getSourceManager(),
 | |
|                                  "Mangling declaration");
 | |
| 
 | |
|   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
 | |
|     auto Type = GD.getCtorType();
 | |
|     CXXNameMangler Mangler(*this, Out, CD, Type);
 | |
|     return Mangler.mangle(GlobalDecl(CD, Type));
 | |
|   }
 | |
| 
 | |
|   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
 | |
|     auto Type = GD.getDtorType();
 | |
|     CXXNameMangler Mangler(*this, Out, DD, Type);
 | |
|     return Mangler.mangle(GlobalDecl(DD, Type));
 | |
|   }
 | |
| 
 | |
|   CXXNameMangler Mangler(*this, Out, D);
 | |
|   Mangler.mangle(GD);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
 | |
|                                                    raw_ostream &Out) {
 | |
|   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
 | |
|   Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
 | |
|                                                    raw_ostream &Out) {
 | |
|   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
 | |
|   Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
 | |
|                                            const ThunkInfo &Thunk,
 | |
|                                            raw_ostream &Out) {
 | |
|   //  <special-name> ::= T <call-offset> <base encoding>
 | |
|   //                      # base is the nominal target function of thunk
 | |
|   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
 | |
|   //                      # base is the nominal target function of thunk
 | |
|   //                      # first call-offset is 'this' adjustment
 | |
|   //                      # second call-offset is result adjustment
 | |
| 
 | |
|   assert(!isa<CXXDestructorDecl>(MD) &&
 | |
|          "Use mangleCXXDtor for destructor decls!");
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "_ZT";
 | |
|   if (!Thunk.Return.isEmpty())
 | |
|     Mangler.getStream() << 'c';
 | |
| 
 | |
|   // Mangle the 'this' pointer adjustment.
 | |
|   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
 | |
|                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
 | |
| 
 | |
|   // Mangle the return pointer adjustment if there is one.
 | |
|   if (!Thunk.Return.isEmpty())
 | |
|     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
 | |
|                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
 | |
| 
 | |
|   Mangler.mangleFunctionEncoding(MD);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleCXXDtorThunk(
 | |
|     const CXXDestructorDecl *DD, CXXDtorType Type,
 | |
|     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
 | |
|   //  <special-name> ::= T <call-offset> <base encoding>
 | |
|   //                      # base is the nominal target function of thunk
 | |
|   CXXNameMangler Mangler(*this, Out, DD, Type);
 | |
|   Mangler.getStream() << "_ZT";
 | |
| 
 | |
|   // Mangle the 'this' pointer adjustment.
 | |
|   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
 | |
|                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
 | |
| 
 | |
|   Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
 | |
| }
 | |
| 
 | |
| /// Returns the mangled name for a guard variable for the passed in VarDecl.
 | |
| void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
 | |
|                                                          raw_ostream &Out) {
 | |
|   //  <special-name> ::= GV <object name>       # Guard variable for one-time
 | |
|   //                                            # initialization
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
 | |
|   // be a bug that is fixed in trunk.
 | |
|   Mangler.getStream() << "_ZGV";
 | |
|   Mangler.mangleName(D);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
 | |
|                                                         raw_ostream &Out) {
 | |
|   // These symbols are internal in the Itanium ABI, so the names don't matter.
 | |
|   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
 | |
|   // avoid duplicate symbols.
 | |
|   Out << "__cxx_global_var_init";
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
 | |
|                                                              raw_ostream &Out) {
 | |
|   // Prefix the mangling of D with __dtor_.
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "__dtor_";
 | |
|   if (shouldMangleDeclName(D))
 | |
|     Mangler.mangle(D);
 | |
|   else
 | |
|     Mangler.getStream() << D->getName();
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
 | |
|                                                            raw_ostream &Out) {
 | |
|   // Clang generates these internal-linkage functions as part of its
 | |
|   // implementation of the XL ABI.
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "__finalize_";
 | |
|   if (shouldMangleDeclName(D))
 | |
|     Mangler.mangle(D);
 | |
|   else
 | |
|     Mangler.getStream() << D->getName();
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleSEHFilterExpression(
 | |
|     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "__filt_";
 | |
|   if (shouldMangleDeclName(EnclosingDecl))
 | |
|     Mangler.mangle(EnclosingDecl);
 | |
|   else
 | |
|     Mangler.getStream() << EnclosingDecl->getName();
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
 | |
|     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "__fin_";
 | |
|   if (shouldMangleDeclName(EnclosingDecl))
 | |
|     Mangler.mangle(EnclosingDecl);
 | |
|   else
 | |
|     Mangler.getStream() << EnclosingDecl->getName();
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
 | |
|                                                             raw_ostream &Out) {
 | |
|   //  <special-name> ::= TH <object name>
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "_ZTH";
 | |
|   Mangler.mangleName(D);
 | |
| }
 | |
| 
 | |
| void
 | |
| ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
 | |
|                                                           raw_ostream &Out) {
 | |
|   //  <special-name> ::= TW <object name>
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "_ZTW";
 | |
|   Mangler.mangleName(D);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
 | |
|                                                         unsigned ManglingNumber,
 | |
|                                                         raw_ostream &Out) {
 | |
|   // We match the GCC mangling here.
 | |
|   //  <special-name> ::= GR <object name>
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "_ZGR";
 | |
|   Mangler.mangleName(D);
 | |
|   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
 | |
|   Mangler.mangleSeqID(ManglingNumber - 1);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
 | |
|                                                raw_ostream &Out) {
 | |
|   // <special-name> ::= TV <type>  # virtual table
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "_ZTV";
 | |
|   Mangler.mangleNameOrStandardSubstitution(RD);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
 | |
|                                             raw_ostream &Out) {
 | |
|   // <special-name> ::= TT <type>  # VTT structure
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "_ZTT";
 | |
|   Mangler.mangleNameOrStandardSubstitution(RD);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
 | |
|                                                    int64_t Offset,
 | |
|                                                    const CXXRecordDecl *Type,
 | |
|                                                    raw_ostream &Out) {
 | |
|   // <special-name> ::= TC <type> <offset number> _ <base type>
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "_ZTC";
 | |
|   Mangler.mangleNameOrStandardSubstitution(RD);
 | |
|   Mangler.getStream() << Offset;
 | |
|   Mangler.getStream() << '_';
 | |
|   Mangler.mangleNameOrStandardSubstitution(Type);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
 | |
|   // <special-name> ::= TI <type>  # typeinfo structure
 | |
|   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "_ZTI";
 | |
|   Mangler.mangleType(Ty);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
 | |
|                                                  raw_ostream &Out) {
 | |
|   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.getStream() << "_ZTS";
 | |
|   Mangler.mangleType(Ty);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
 | |
|   mangleCXXRTTIName(Ty, Out);
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
 | |
|   llvm_unreachable("Can't mangle string literals");
 | |
| }
 | |
| 
 | |
| void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
 | |
|                                                raw_ostream &Out) {
 | |
|   CXXNameMangler Mangler(*this, Out);
 | |
|   Mangler.mangleLambdaSig(Lambda);
 | |
| }
 | |
| 
 | |
| ItaniumMangleContext *
 | |
| ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
 | |
|   return new ItaniumMangleContextImpl(Context, Diags);
 | |
| }
 |