626 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			626 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// This file implements classes for searching and analyzing source code clones.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Analysis/CloneDetection.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/DataCollection.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "llvm/Support/MD5.h"
 | |
| #include "llvm/Support/Path.h"
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
 | |
|                            unsigned StartIndex, unsigned EndIndex)
 | |
|     : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
 | |
|   assert(Stmt && "Stmt must not be a nullptr");
 | |
|   assert(StartIndex < EndIndex && "Given array should not be empty");
 | |
|   assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
 | |
| }
 | |
| 
 | |
| StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
 | |
|     : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
 | |
| 
 | |
| StmtSequence::StmtSequence()
 | |
|     : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
 | |
| 
 | |
| bool StmtSequence::contains(const StmtSequence &Other) const {
 | |
|   // If both sequences reside in different declarations, they can never contain
 | |
|   // each other.
 | |
|   if (D != Other.D)
 | |
|     return false;
 | |
| 
 | |
|   const SourceManager &SM = getASTContext().getSourceManager();
 | |
| 
 | |
|   // Otherwise check if the start and end locations of the current sequence
 | |
|   // surround the other sequence.
 | |
|   bool StartIsInBounds =
 | |
|       SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
 | |
|       getBeginLoc() == Other.getBeginLoc();
 | |
|   if (!StartIsInBounds)
 | |
|     return false;
 | |
| 
 | |
|   bool EndIsInBounds =
 | |
|       SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
 | |
|       Other.getEndLoc() == getEndLoc();
 | |
|   return EndIsInBounds;
 | |
| }
 | |
| 
 | |
| StmtSequence::iterator StmtSequence::begin() const {
 | |
|   if (!holdsSequence()) {
 | |
|     return &S;
 | |
|   }
 | |
|   auto CS = cast<CompoundStmt>(S);
 | |
|   return CS->body_begin() + StartIndex;
 | |
| }
 | |
| 
 | |
| StmtSequence::iterator StmtSequence::end() const {
 | |
|   if (!holdsSequence()) {
 | |
|     return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
 | |
|   }
 | |
|   auto CS = cast<CompoundStmt>(S);
 | |
|   return CS->body_begin() + EndIndex;
 | |
| }
 | |
| 
 | |
| ASTContext &StmtSequence::getASTContext() const {
 | |
|   assert(D);
 | |
|   return D->getASTContext();
 | |
| }
 | |
| 
 | |
| SourceLocation StmtSequence::getBeginLoc() const {
 | |
|   return front()->getBeginLoc();
 | |
| }
 | |
| 
 | |
| SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
 | |
| 
 | |
| SourceRange StmtSequence::getSourceRange() const {
 | |
|   return SourceRange(getBeginLoc(), getEndLoc());
 | |
| }
 | |
| 
 | |
| void CloneDetector::analyzeCodeBody(const Decl *D) {
 | |
|   assert(D);
 | |
|   assert(D->hasBody());
 | |
| 
 | |
|   Sequences.push_back(StmtSequence(D->getBody(), D));
 | |
| }
 | |
| 
 | |
| /// Returns true if and only if \p Stmt contains at least one other
 | |
| /// sequence in the \p Group.
 | |
| static bool containsAnyInGroup(StmtSequence &Seq,
 | |
|                                CloneDetector::CloneGroup &Group) {
 | |
|   for (StmtSequence &GroupSeq : Group) {
 | |
|     if (Seq.contains(GroupSeq))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if and only if all sequences in \p OtherGroup are
 | |
| /// contained by a sequence in \p Group.
 | |
| static bool containsGroup(CloneDetector::CloneGroup &Group,
 | |
|                           CloneDetector::CloneGroup &OtherGroup) {
 | |
|   // We have less sequences in the current group than we have in the other,
 | |
|   // so we will never fulfill the requirement for returning true. This is only
 | |
|   // possible because we know that a sequence in Group can contain at most
 | |
|   // one sequence in OtherGroup.
 | |
|   if (Group.size() < OtherGroup.size())
 | |
|     return false;
 | |
| 
 | |
|   for (StmtSequence &Stmt : Group) {
 | |
|     if (!containsAnyInGroup(Stmt, OtherGroup))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void OnlyLargestCloneConstraint::constrain(
 | |
|     std::vector<CloneDetector::CloneGroup> &Result) {
 | |
|   std::vector<unsigned> IndexesToRemove;
 | |
| 
 | |
|   // Compare every group in the result with the rest. If one groups contains
 | |
|   // another group, we only need to return the bigger group.
 | |
|   // Note: This doesn't scale well, so if possible avoid calling any heavy
 | |
|   // function from this loop to minimize the performance impact.
 | |
|   for (unsigned i = 0; i < Result.size(); ++i) {
 | |
|     for (unsigned j = 0; j < Result.size(); ++j) {
 | |
|       // Don't compare a group with itself.
 | |
|       if (i == j)
 | |
|         continue;
 | |
| 
 | |
|       if (containsGroup(Result[j], Result[i])) {
 | |
|         IndexesToRemove.push_back(i);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Erasing a list of indexes from the vector should be done with decreasing
 | |
|   // indexes. As IndexesToRemove is constructed with increasing values, we just
 | |
|   // reverse iterate over it to get the desired order.
 | |
|   for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
 | |
|     Result.erase(Result.begin() + *I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool FilenamePatternConstraint::isAutoGenerated(
 | |
|     const CloneDetector::CloneGroup &Group) {
 | |
|   if (IgnoredFilesPattern.empty() || Group.empty() ||
 | |
|       !IgnoredFilesRegex->isValid())
 | |
|     return false;
 | |
| 
 | |
|   for (const StmtSequence &S : Group) {
 | |
|     const SourceManager &SM = S.getASTContext().getSourceManager();
 | |
|     StringRef Filename = llvm::sys::path::filename(
 | |
|         SM.getFilename(S.getContainingDecl()->getLocation()));
 | |
|     if (IgnoredFilesRegex->match(Filename))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// This class defines what a type II code clone is: If it collects for two
 | |
| /// statements the same data, then those two statements are considered to be
 | |
| /// clones of each other.
 | |
| ///
 | |
| /// All collected data is forwarded to the given data consumer of the type T.
 | |
| /// The data consumer class needs to provide a member method with the signature:
 | |
| ///   update(StringRef Str)
 | |
| namespace {
 | |
| template <class T>
 | |
| class CloneTypeIIStmtDataCollector
 | |
|     : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
 | |
|   ASTContext &Context;
 | |
|   /// The data sink to which all data is forwarded.
 | |
|   T &DataConsumer;
 | |
| 
 | |
|   template <class Ty> void addData(const Ty &Data) {
 | |
|     data_collection::addDataToConsumer(DataConsumer, Data);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
 | |
|                                T &DataConsumer)
 | |
|       : Context(Context), DataConsumer(DataConsumer) {
 | |
|     this->Visit(S);
 | |
|   }
 | |
| 
 | |
| // Define a visit method for each class to collect data and subsequently visit
 | |
| // all parent classes. This uses a template so that custom visit methods by us
 | |
| // take precedence.
 | |
| #define DEF_ADD_DATA(CLASS, CODE)                                              \
 | |
|   template <class = void> void Visit##CLASS(const CLASS *S) {                  \
 | |
|     CODE;                                                                      \
 | |
|     ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
 | |
|   }
 | |
| 
 | |
| #include "clang/AST/StmtDataCollectors.inc"
 | |
| 
 | |
| // Type II clones ignore variable names and literals, so let's skip them.
 | |
| #define SKIP(CLASS)                                                            \
 | |
|   void Visit##CLASS(const CLASS *S) {                                          \
 | |
|     ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
 | |
|   }
 | |
|   SKIP(DeclRefExpr)
 | |
|   SKIP(MemberExpr)
 | |
|   SKIP(IntegerLiteral)
 | |
|   SKIP(FloatingLiteral)
 | |
|   SKIP(StringLiteral)
 | |
|   SKIP(CXXBoolLiteralExpr)
 | |
|   SKIP(CharacterLiteral)
 | |
| #undef SKIP
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static size_t createHash(llvm::MD5 &Hash) {
 | |
|   size_t HashCode;
 | |
| 
 | |
|   // Create the final hash code for the current Stmt.
 | |
|   llvm::MD5::MD5Result HashResult;
 | |
|   Hash.final(HashResult);
 | |
| 
 | |
|   // Copy as much as possible of the generated hash code to the Stmt's hash
 | |
|   // code.
 | |
|   std::memcpy(&HashCode, &HashResult,
 | |
|               std::min(sizeof(HashCode), sizeof(HashResult)));
 | |
| 
 | |
|   return HashCode;
 | |
| }
 | |
| 
 | |
| /// Generates and saves a hash code for the given Stmt.
 | |
| /// \param S The given Stmt.
 | |
| /// \param D The Decl containing S.
 | |
| /// \param StmtsByHash Output parameter that will contain the hash codes for
 | |
| ///                    each StmtSequence in the given Stmt.
 | |
| /// \return The hash code of the given Stmt.
 | |
| ///
 | |
| /// If the given Stmt is a CompoundStmt, this method will also generate
 | |
| /// hashes for all possible StmtSequences in the children of this Stmt.
 | |
| static size_t
 | |
| saveHash(const Stmt *S, const Decl *D,
 | |
|          std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
 | |
|   llvm::MD5 Hash;
 | |
|   ASTContext &Context = D->getASTContext();
 | |
| 
 | |
|   CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
 | |
| 
 | |
|   auto CS = dyn_cast<CompoundStmt>(S);
 | |
|   SmallVector<size_t, 8> ChildHashes;
 | |
| 
 | |
|   for (const Stmt *Child : S->children()) {
 | |
|     if (Child == nullptr) {
 | |
|       ChildHashes.push_back(0);
 | |
|       continue;
 | |
|     }
 | |
|     size_t ChildHash = saveHash(Child, D, StmtsByHash);
 | |
|     Hash.update(
 | |
|         StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
 | |
|     ChildHashes.push_back(ChildHash);
 | |
|   }
 | |
| 
 | |
|   if (CS) {
 | |
|     // If we're in a CompoundStmt, we hash all possible combinations of child
 | |
|     // statements to find clones in those subsequences.
 | |
|     // We first go through every possible starting position of a subsequence.
 | |
|     for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
 | |
|       // Then we try all possible lengths this subsequence could have and
 | |
|       // reuse the same hash object to make sure we only hash every child
 | |
|       // hash exactly once.
 | |
|       llvm::MD5 Hash;
 | |
|       for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
 | |
|         // Grab the current child hash and put it into our hash. We do
 | |
|         // -1 on the index because we start counting the length at 1.
 | |
|         size_t ChildHash = ChildHashes[Pos + Length - 1];
 | |
|         Hash.update(
 | |
|             StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
 | |
|         // If we have at least two elements in our subsequence, we can start
 | |
|         // saving it.
 | |
|         if (Length > 1) {
 | |
|           llvm::MD5 SubHash = Hash;
 | |
|           StmtsByHash.push_back(std::make_pair(
 | |
|               createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   size_t HashCode = createHash(Hash);
 | |
|   StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
 | |
|   return HashCode;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// Wrapper around FoldingSetNodeID that it can be used as the template
 | |
| /// argument of the StmtDataCollector.
 | |
| class FoldingSetNodeIDWrapper {
 | |
| 
 | |
|   llvm::FoldingSetNodeID &FS;
 | |
| 
 | |
| public:
 | |
|   FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
 | |
| 
 | |
|   void update(StringRef Str) { FS.AddString(Str); }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Writes the relevant data from all statements and child statements
 | |
| /// in the given StmtSequence into the given FoldingSetNodeID.
 | |
| static void CollectStmtSequenceData(const StmtSequence &Sequence,
 | |
|                                     FoldingSetNodeIDWrapper &OutputData) {
 | |
|   for (const Stmt *S : Sequence) {
 | |
|     CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
 | |
|         S, Sequence.getASTContext(), OutputData);
 | |
| 
 | |
|     for (const Stmt *Child : S->children()) {
 | |
|       if (!Child)
 | |
|         continue;
 | |
| 
 | |
|       CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
 | |
|                               OutputData);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Returns true if both sequences are clones of each other.
 | |
| static bool areSequencesClones(const StmtSequence &LHS,
 | |
|                                const StmtSequence &RHS) {
 | |
|   // We collect the data from all statements in the sequence as we did before
 | |
|   // when generating a hash value for each sequence. But this time we don't
 | |
|   // hash the collected data and compare the whole data set instead. This
 | |
|   // prevents any false-positives due to hash code collisions.
 | |
|   llvm::FoldingSetNodeID DataLHS, DataRHS;
 | |
|   FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
 | |
|   FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
 | |
| 
 | |
|   CollectStmtSequenceData(LHS, LHSWrapper);
 | |
|   CollectStmtSequenceData(RHS, RHSWrapper);
 | |
| 
 | |
|   return DataLHS == DataRHS;
 | |
| }
 | |
| 
 | |
| void RecursiveCloneTypeIIHashConstraint::constrain(
 | |
|     std::vector<CloneDetector::CloneGroup> &Sequences) {
 | |
|   // FIXME: Maybe we can do this in-place and don't need this additional vector.
 | |
|   std::vector<CloneDetector::CloneGroup> Result;
 | |
| 
 | |
|   for (CloneDetector::CloneGroup &Group : Sequences) {
 | |
|     // We assume in the following code that the Group is non-empty, so we
 | |
|     // skip all empty groups.
 | |
|     if (Group.empty())
 | |
|       continue;
 | |
| 
 | |
|     std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
 | |
| 
 | |
|     // Generate hash codes for all children of S and save them in StmtsByHash.
 | |
|     for (const StmtSequence &S : Group) {
 | |
|       saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
 | |
|     }
 | |
| 
 | |
|     // Sort hash_codes in StmtsByHash.
 | |
|     llvm::stable_sort(StmtsByHash, llvm::less_first());
 | |
| 
 | |
|     // Check for each StmtSequence if its successor has the same hash value.
 | |
|     // We don't check the last StmtSequence as it has no successor.
 | |
|     // Note: The 'size - 1 ' in the condition is safe because we check for an
 | |
|     // empty Group vector at the beginning of this function.
 | |
|     for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
 | |
|       const auto Current = StmtsByHash[i];
 | |
| 
 | |
|       // It's likely that we just found a sequence of StmtSequences that
 | |
|       // represent a CloneGroup, so we create a new group and start checking and
 | |
|       // adding the StmtSequences in this sequence.
 | |
|       CloneDetector::CloneGroup NewGroup;
 | |
| 
 | |
|       size_t PrototypeHash = Current.first;
 | |
| 
 | |
|       for (; i < StmtsByHash.size(); ++i) {
 | |
|         // A different hash value means we have reached the end of the sequence.
 | |
|         if (PrototypeHash != StmtsByHash[i].first) {
 | |
|           // The current sequence could be the start of a new CloneGroup. So we
 | |
|           // decrement i so that we visit it again in the outer loop.
 | |
|           // Note: i can never be 0 at this point because we are just comparing
 | |
|           // the hash of the Current StmtSequence with itself in the 'if' above.
 | |
|           assert(i != 0);
 | |
|           --i;
 | |
|           break;
 | |
|         }
 | |
|         // Same hash value means we should add the StmtSequence to the current
 | |
|         // group.
 | |
|         NewGroup.push_back(StmtsByHash[i].second);
 | |
|       }
 | |
| 
 | |
|       // We created a new clone group with matching hash codes and move it to
 | |
|       // the result vector.
 | |
|       Result.push_back(NewGroup);
 | |
|     }
 | |
|   }
 | |
|   // Sequences is the output parameter, so we copy our result into it.
 | |
|   Sequences = Result;
 | |
| }
 | |
| 
 | |
| void RecursiveCloneTypeIIVerifyConstraint::constrain(
 | |
|     std::vector<CloneDetector::CloneGroup> &Sequences) {
 | |
|   CloneConstraint::splitCloneGroups(
 | |
|       Sequences, [](const StmtSequence &A, const StmtSequence &B) {
 | |
|         return areSequencesClones(A, B);
 | |
|       });
 | |
| }
 | |
| 
 | |
| size_t MinComplexityConstraint::calculateStmtComplexity(
 | |
|     const StmtSequence &Seq, std::size_t Limit,
 | |
|     const std::string &ParentMacroStack) {
 | |
|   if (Seq.empty())
 | |
|     return 0;
 | |
| 
 | |
|   size_t Complexity = 1;
 | |
| 
 | |
|   ASTContext &Context = Seq.getASTContext();
 | |
| 
 | |
|   // Look up what macros expanded into the current statement.
 | |
|   std::string MacroStack =
 | |
|       data_collection::getMacroStack(Seq.getBeginLoc(), Context);
 | |
| 
 | |
|   // First, check if ParentMacroStack is not empty which means we are currently
 | |
|   // dealing with a parent statement which was expanded from a macro.
 | |
|   // If this parent statement was expanded from the same macros as this
 | |
|   // statement, we reduce the initial complexity of this statement to zero.
 | |
|   // This causes that a group of statements that were generated by a single
 | |
|   // macro expansion will only increase the total complexity by one.
 | |
|   // Note: This is not the final complexity of this statement as we still
 | |
|   // add the complexity of the child statements to the complexity value.
 | |
|   if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
 | |
|     Complexity = 0;
 | |
|   }
 | |
| 
 | |
|   // Iterate over the Stmts in the StmtSequence and add their complexity values
 | |
|   // to the current complexity value.
 | |
|   if (Seq.holdsSequence()) {
 | |
|     for (const Stmt *S : Seq) {
 | |
|       Complexity += calculateStmtComplexity(
 | |
|           StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
 | |
|       if (Complexity >= Limit)
 | |
|         return Limit;
 | |
|     }
 | |
|   } else {
 | |
|     for (const Stmt *S : Seq.front()->children()) {
 | |
|       Complexity += calculateStmtComplexity(
 | |
|           StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
 | |
|       if (Complexity >= Limit)
 | |
|         return Limit;
 | |
|     }
 | |
|   }
 | |
|   return Complexity;
 | |
| }
 | |
| 
 | |
| void MatchingVariablePatternConstraint::constrain(
 | |
|     std::vector<CloneDetector::CloneGroup> &CloneGroups) {
 | |
|   CloneConstraint::splitCloneGroups(
 | |
|       CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
 | |
|         VariablePattern PatternA(A);
 | |
|         VariablePattern PatternB(B);
 | |
|         return PatternA.countPatternDifferences(PatternB) == 0;
 | |
|       });
 | |
| }
 | |
| 
 | |
| void CloneConstraint::splitCloneGroups(
 | |
|     std::vector<CloneDetector::CloneGroup> &CloneGroups,
 | |
|     llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
 | |
|         Compare) {
 | |
|   std::vector<CloneDetector::CloneGroup> Result;
 | |
|   for (auto &HashGroup : CloneGroups) {
 | |
|     // Contains all indexes in HashGroup that were already added to a
 | |
|     // CloneGroup.
 | |
|     std::vector<char> Indexes;
 | |
|     Indexes.resize(HashGroup.size());
 | |
| 
 | |
|     for (unsigned i = 0; i < HashGroup.size(); ++i) {
 | |
|       // Skip indexes that are already part of a CloneGroup.
 | |
|       if (Indexes[i])
 | |
|         continue;
 | |
| 
 | |
|       // Pick the first unhandled StmtSequence and consider it as the
 | |
|       // beginning
 | |
|       // of a new CloneGroup for now.
 | |
|       // We don't add i to Indexes because we never iterate back.
 | |
|       StmtSequence Prototype = HashGroup[i];
 | |
|       CloneDetector::CloneGroup PotentialGroup = {Prototype};
 | |
|       ++Indexes[i];
 | |
| 
 | |
|       // Check all following StmtSequences for clones.
 | |
|       for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
 | |
|         // Skip indexes that are already part of a CloneGroup.
 | |
|         if (Indexes[j])
 | |
|           continue;
 | |
| 
 | |
|         // If a following StmtSequence belongs to our CloneGroup, we add it.
 | |
|         const StmtSequence &Candidate = HashGroup[j];
 | |
| 
 | |
|         if (!Compare(Prototype, Candidate))
 | |
|           continue;
 | |
| 
 | |
|         PotentialGroup.push_back(Candidate);
 | |
|         // Make sure we never visit this StmtSequence again.
 | |
|         ++Indexes[j];
 | |
|       }
 | |
| 
 | |
|       // Otherwise, add it to the result and continue searching for more
 | |
|       // groups.
 | |
|       Result.push_back(PotentialGroup);
 | |
|     }
 | |
| 
 | |
|     assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
 | |
|   }
 | |
|   CloneGroups = Result;
 | |
| }
 | |
| 
 | |
| void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
 | |
|                                            const Stmt *Mention) {
 | |
|   // First check if we already reference this variable
 | |
|   for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
 | |
|     if (Variables[KindIndex] == VarDecl) {
 | |
|       // If yes, add a new occurrence that points to the existing entry in
 | |
|       // the Variables vector.
 | |
|       Occurences.emplace_back(KindIndex, Mention);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   // If this variable wasn't already referenced, add it to the list of
 | |
|   // referenced variables and add a occurrence that points to this new entry.
 | |
|   Occurences.emplace_back(Variables.size(), Mention);
 | |
|   Variables.push_back(VarDecl);
 | |
| }
 | |
| 
 | |
| void VariablePattern::addVariables(const Stmt *S) {
 | |
|   // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
 | |
|   // children). We skip such statements as they don't reference any
 | |
|   // variables.
 | |
|   if (!S)
 | |
|     return;
 | |
| 
 | |
|   // Check if S is a reference to a variable. If yes, add it to the pattern.
 | |
|   if (auto D = dyn_cast<DeclRefExpr>(S)) {
 | |
|     if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
 | |
|       addVariableOccurence(VD, D);
 | |
|   }
 | |
| 
 | |
|   // Recursively check all children of the given statement.
 | |
|   for (const Stmt *Child : S->children()) {
 | |
|     addVariables(Child);
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned VariablePattern::countPatternDifferences(
 | |
|     const VariablePattern &Other,
 | |
|     VariablePattern::SuspiciousClonePair *FirstMismatch) {
 | |
|   unsigned NumberOfDifferences = 0;
 | |
| 
 | |
|   assert(Other.Occurences.size() == Occurences.size());
 | |
|   for (unsigned i = 0; i < Occurences.size(); ++i) {
 | |
|     auto ThisOccurence = Occurences[i];
 | |
|     auto OtherOccurence = Other.Occurences[i];
 | |
|     if (ThisOccurence.KindID == OtherOccurence.KindID)
 | |
|       continue;
 | |
| 
 | |
|     ++NumberOfDifferences;
 | |
| 
 | |
|     // If FirstMismatch is not a nullptr, we need to store information about
 | |
|     // the first difference between the two patterns.
 | |
|     if (FirstMismatch == nullptr)
 | |
|       continue;
 | |
| 
 | |
|     // Only proceed if we just found the first difference as we only store
 | |
|     // information about the first difference.
 | |
|     if (NumberOfDifferences != 1)
 | |
|       continue;
 | |
| 
 | |
|     const VarDecl *FirstSuggestion = nullptr;
 | |
|     // If there is a variable available in the list of referenced variables
 | |
|     // which wouldn't break the pattern if it is used in place of the
 | |
|     // current variable, we provide this variable as the suggested fix.
 | |
|     if (OtherOccurence.KindID < Variables.size())
 | |
|       FirstSuggestion = Variables[OtherOccurence.KindID];
 | |
| 
 | |
|     // Store information about the first clone.
 | |
|     FirstMismatch->FirstCloneInfo =
 | |
|         VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
 | |
|             Variables[ThisOccurence.KindID], ThisOccurence.Mention,
 | |
|             FirstSuggestion);
 | |
| 
 | |
|     // Same as above but with the other clone. We do this for both clones as
 | |
|     // we don't know which clone is the one containing the unintended
 | |
|     // pattern error.
 | |
|     const VarDecl *SecondSuggestion = nullptr;
 | |
|     if (ThisOccurence.KindID < Other.Variables.size())
 | |
|       SecondSuggestion = Other.Variables[ThisOccurence.KindID];
 | |
| 
 | |
|     // Store information about the second clone.
 | |
|     FirstMismatch->SecondCloneInfo =
 | |
|         VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
 | |
|             Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
 | |
|             SecondSuggestion);
 | |
| 
 | |
|     // SuspiciousClonePair guarantees that the first clone always has a
 | |
|     // suggested variable associated with it. As we know that one of the two
 | |
|     // clones in the pair always has suggestion, we swap the two clones
 | |
|     // in case the first clone has no suggested variable which means that
 | |
|     // the second clone has a suggested variable and should be first.
 | |
|     if (!FirstMismatch->FirstCloneInfo.Suggestion)
 | |
|       std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
 | |
| 
 | |
|     // This ensures that we always have at least one suggestion in a pair.
 | |
|     assert(FirstMismatch->FirstCloneInfo.Suggestion);
 | |
|   }
 | |
| 
 | |
|   return NumberOfDifferences;
 | |
| }
 |