5438 lines
		
	
	
		
			214 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5438 lines
		
	
	
		
			214 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code to emit Expr nodes as LLVM code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CGCUDARuntime.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGCall.h"
 | |
| #include "CGCleanup.h"
 | |
| #include "CGDebugInfo.h"
 | |
| #include "CGObjCRuntime.h"
 | |
| #include "CGOpenMPRuntime.h"
 | |
| #include "CGRecordLayout.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "ConstantEmitter.h"
 | |
| #include "TargetInfo.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/NSAPI.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/CodeGenOptions.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/Support/ConvertUTF.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Path.h"
 | |
| #include "llvm/Transforms/Utils/SanitizerStats.h"
 | |
| 
 | |
| #include <string>
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| //                        Miscellaneous Helper Methods
 | |
| //===--------------------------------------------------------------------===//
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
 | |
|   unsigned addressSpace =
 | |
|       cast<llvm::PointerType>(value->getType())->getAddressSpace();
 | |
| 
 | |
|   llvm::PointerType *destType = Int8PtrTy;
 | |
|   if (addressSpace)
 | |
|     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
 | |
| 
 | |
|   if (value->getType() == destType) return value;
 | |
|   return Builder.CreateBitCast(value, destType);
 | |
| }
 | |
| 
 | |
| /// CreateTempAlloca - This creates a alloca and inserts it into the entry
 | |
| /// block.
 | |
| Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
 | |
|                                                      CharUnits Align,
 | |
|                                                      const Twine &Name,
 | |
|                                                      llvm::Value *ArraySize) {
 | |
|   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
 | |
|   Alloca->setAlignment(Align.getAsAlign());
 | |
|   return Address(Alloca, Align);
 | |
| }
 | |
| 
 | |
| /// CreateTempAlloca - This creates a alloca and inserts it into the entry
 | |
| /// block. The alloca is casted to default address space if necessary.
 | |
| Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
 | |
|                                           const Twine &Name,
 | |
|                                           llvm::Value *ArraySize,
 | |
|                                           Address *AllocaAddr) {
 | |
|   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
 | |
|   if (AllocaAddr)
 | |
|     *AllocaAddr = Alloca;
 | |
|   llvm::Value *V = Alloca.getPointer();
 | |
|   // Alloca always returns a pointer in alloca address space, which may
 | |
|   // be different from the type defined by the language. For example,
 | |
|   // in C++ the auto variables are in the default address space. Therefore
 | |
|   // cast alloca to the default address space when necessary.
 | |
|   if (getASTAllocaAddressSpace() != LangAS::Default) {
 | |
|     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
 | |
|     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
 | |
|     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
 | |
|     // otherwise alloca is inserted at the current insertion point of the
 | |
|     // builder.
 | |
|     if (!ArraySize)
 | |
|       Builder.SetInsertPoint(AllocaInsertPt);
 | |
|     V = getTargetHooks().performAddrSpaceCast(
 | |
|         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
 | |
|         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
 | |
|   }
 | |
| 
 | |
|   return Address(V, Align);
 | |
| }
 | |
| 
 | |
| /// CreateTempAlloca - This creates an alloca and inserts it into the entry
 | |
| /// block if \p ArraySize is nullptr, otherwise inserts it at the current
 | |
| /// insertion point of the builder.
 | |
| llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
 | |
|                                                     const Twine &Name,
 | |
|                                                     llvm::Value *ArraySize) {
 | |
|   if (ArraySize)
 | |
|     return Builder.CreateAlloca(Ty, ArraySize, Name);
 | |
|   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
 | |
|                               ArraySize, Name, AllocaInsertPt);
 | |
| }
 | |
| 
 | |
| /// CreateDefaultAlignTempAlloca - This creates an alloca with the
 | |
| /// default alignment of the corresponding LLVM type, which is *not*
 | |
| /// guaranteed to be related in any way to the expected alignment of
 | |
| /// an AST type that might have been lowered to Ty.
 | |
| Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
 | |
|                                                       const Twine &Name) {
 | |
|   CharUnits Align =
 | |
|     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
 | |
|   return CreateTempAlloca(Ty, Align, Name);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
 | |
|   auto *Alloca = Var.getPointer();
 | |
|   assert(isa<llvm::AllocaInst>(Alloca) ||
 | |
|          (isa<llvm::AddrSpaceCastInst>(Alloca) &&
 | |
|           isa<llvm::AllocaInst>(
 | |
|               cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand())));
 | |
| 
 | |
|   auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false,
 | |
|                                     Var.getAlignment().getAsAlign());
 | |
|   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
 | |
|   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
 | |
| }
 | |
| 
 | |
| Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
 | |
|   CharUnits Align = getContext().getTypeAlignInChars(Ty);
 | |
|   return CreateTempAlloca(ConvertType(Ty), Align, Name);
 | |
| }
 | |
| 
 | |
| Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
 | |
|                                        Address *Alloca) {
 | |
|   // FIXME: Should we prefer the preferred type alignment here?
 | |
|   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
 | |
| }
 | |
| 
 | |
| Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
 | |
|                                        const Twine &Name, Address *Alloca) {
 | |
|   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
 | |
|                                     /*ArraySize=*/nullptr, Alloca);
 | |
| 
 | |
|   if (Ty->isConstantMatrixType()) {
 | |
|     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
 | |
|     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
 | |
|                                                 ArrayTy->getNumElements());
 | |
| 
 | |
|     Result = Address(
 | |
|         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
 | |
|         Result.getAlignment());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
 | |
|                                                   const Twine &Name) {
 | |
|   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
 | |
| }
 | |
| 
 | |
| Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
 | |
|                                                   const Twine &Name) {
 | |
|   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
 | |
|                                   Name);
 | |
| }
 | |
| 
 | |
| /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
 | |
| /// expression and compare the result against zero, returning an Int1Ty value.
 | |
| llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
 | |
|   PGO.setCurrentStmt(E);
 | |
|   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
 | |
|     llvm::Value *MemPtr = EmitScalarExpr(E);
 | |
|     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
 | |
|   }
 | |
| 
 | |
|   QualType BoolTy = getContext().BoolTy;
 | |
|   SourceLocation Loc = E->getExprLoc();
 | |
|   CGFPOptionsRAII FPOptsRAII(*this, E);
 | |
|   if (!E->getType()->isAnyComplexType())
 | |
|     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
 | |
| 
 | |
|   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
 | |
|                                        Loc);
 | |
| }
 | |
| 
 | |
| /// EmitIgnoredExpr - Emit code to compute the specified expression,
 | |
| /// ignoring the result.
 | |
| void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
 | |
|   if (E->isRValue())
 | |
|     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
 | |
| 
 | |
|   // Just emit it as an l-value and drop the result.
 | |
|   EmitLValue(E);
 | |
| }
 | |
| 
 | |
| /// EmitAnyExpr - Emit code to compute the specified expression which
 | |
| /// can have any type.  The result is returned as an RValue struct.
 | |
| /// If this is an aggregate expression, AggSlot indicates where the
 | |
| /// result should be returned.
 | |
| RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
 | |
|                                     AggValueSlot aggSlot,
 | |
|                                     bool ignoreResult) {
 | |
|   switch (getEvaluationKind(E->getType())) {
 | |
|   case TEK_Scalar:
 | |
|     return RValue::get(EmitScalarExpr(E, ignoreResult));
 | |
|   case TEK_Complex:
 | |
|     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
 | |
|   case TEK_Aggregate:
 | |
|     if (!ignoreResult && aggSlot.isIgnored())
 | |
|       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
 | |
|     EmitAggExpr(E, aggSlot);
 | |
|     return aggSlot.asRValue();
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
 | |
| /// always be accessible even if no aggregate location is provided.
 | |
| RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
 | |
|   AggValueSlot AggSlot = AggValueSlot::ignored();
 | |
| 
 | |
|   if (hasAggregateEvaluationKind(E->getType()))
 | |
|     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
 | |
|   return EmitAnyExpr(E, AggSlot);
 | |
| }
 | |
| 
 | |
| /// EmitAnyExprToMem - Evaluate an expression into a given memory
 | |
| /// location.
 | |
| void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
 | |
|                                        Address Location,
 | |
|                                        Qualifiers Quals,
 | |
|                                        bool IsInit) {
 | |
|   // FIXME: This function should take an LValue as an argument.
 | |
|   switch (getEvaluationKind(E->getType())) {
 | |
|   case TEK_Complex:
 | |
|     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
 | |
|                               /*isInit*/ false);
 | |
|     return;
 | |
| 
 | |
|   case TEK_Aggregate: {
 | |
|     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
 | |
|                                          AggValueSlot::IsDestructed_t(IsInit),
 | |
|                                          AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                                          AggValueSlot::IsAliased_t(!IsInit),
 | |
|                                          AggValueSlot::MayOverlap));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case TEK_Scalar: {
 | |
|     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
 | |
|     LValue LV = MakeAddrLValue(Location, E->getType());
 | |
|     EmitStoreThroughLValue(RV, LV);
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| static void
 | |
| pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
 | |
|                      const Expr *E, Address ReferenceTemporary) {
 | |
|   // Objective-C++ ARC:
 | |
|   //   If we are binding a reference to a temporary that has ownership, we
 | |
|   //   need to perform retain/release operations on the temporary.
 | |
|   //
 | |
|   // FIXME: This should be looking at E, not M.
 | |
|   if (auto Lifetime = M->getType().getObjCLifetime()) {
 | |
|     switch (Lifetime) {
 | |
|     case Qualifiers::OCL_None:
 | |
|     case Qualifiers::OCL_ExplicitNone:
 | |
|       // Carry on to normal cleanup handling.
 | |
|       break;
 | |
| 
 | |
|     case Qualifiers::OCL_Autoreleasing:
 | |
|       // Nothing to do; cleaned up by an autorelease pool.
 | |
|       return;
 | |
| 
 | |
|     case Qualifiers::OCL_Strong:
 | |
|     case Qualifiers::OCL_Weak:
 | |
|       switch (StorageDuration Duration = M->getStorageDuration()) {
 | |
|       case SD_Static:
 | |
|         // Note: we intentionally do not register a cleanup to release
 | |
|         // the object on program termination.
 | |
|         return;
 | |
| 
 | |
|       case SD_Thread:
 | |
|         // FIXME: We should probably register a cleanup in this case.
 | |
|         return;
 | |
| 
 | |
|       case SD_Automatic:
 | |
|       case SD_FullExpression:
 | |
|         CodeGenFunction::Destroyer *Destroy;
 | |
|         CleanupKind CleanupKind;
 | |
|         if (Lifetime == Qualifiers::OCL_Strong) {
 | |
|           const ValueDecl *VD = M->getExtendingDecl();
 | |
|           bool Precise =
 | |
|               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
 | |
|           CleanupKind = CGF.getARCCleanupKind();
 | |
|           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
 | |
|                             : &CodeGenFunction::destroyARCStrongImprecise;
 | |
|         } else {
 | |
|           // __weak objects always get EH cleanups; otherwise, exceptions
 | |
|           // could cause really nasty crashes instead of mere leaks.
 | |
|           CleanupKind = NormalAndEHCleanup;
 | |
|           Destroy = &CodeGenFunction::destroyARCWeak;
 | |
|         }
 | |
|         if (Duration == SD_FullExpression)
 | |
|           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
 | |
|                           M->getType(), *Destroy,
 | |
|                           CleanupKind & EHCleanup);
 | |
|         else
 | |
|           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
 | |
|                                           M->getType(),
 | |
|                                           *Destroy, CleanupKind & EHCleanup);
 | |
|         return;
 | |
| 
 | |
|       case SD_Dynamic:
 | |
|         llvm_unreachable("temporary cannot have dynamic storage duration");
 | |
|       }
 | |
|       llvm_unreachable("unknown storage duration");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
 | |
|   if (const RecordType *RT =
 | |
|           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
 | |
|     // Get the destructor for the reference temporary.
 | |
|     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     if (!ClassDecl->hasTrivialDestructor())
 | |
|       ReferenceTemporaryDtor = ClassDecl->getDestructor();
 | |
|   }
 | |
| 
 | |
|   if (!ReferenceTemporaryDtor)
 | |
|     return;
 | |
| 
 | |
|   // Call the destructor for the temporary.
 | |
|   switch (M->getStorageDuration()) {
 | |
|   case SD_Static:
 | |
|   case SD_Thread: {
 | |
|     llvm::FunctionCallee CleanupFn;
 | |
|     llvm::Constant *CleanupArg;
 | |
|     if (E->getType()->isArrayType()) {
 | |
|       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
 | |
|           ReferenceTemporary, E->getType(),
 | |
|           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
 | |
|           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
 | |
|       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
 | |
|     } else {
 | |
|       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
 | |
|           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
 | |
|       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
 | |
|     }
 | |
|     CGF.CGM.getCXXABI().registerGlobalDtor(
 | |
|         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case SD_FullExpression:
 | |
|     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
 | |
|                     CodeGenFunction::destroyCXXObject,
 | |
|                     CGF.getLangOpts().Exceptions);
 | |
|     break;
 | |
| 
 | |
|   case SD_Automatic:
 | |
|     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
 | |
|                                     ReferenceTemporary, E->getType(),
 | |
|                                     CodeGenFunction::destroyCXXObject,
 | |
|                                     CGF.getLangOpts().Exceptions);
 | |
|     break;
 | |
| 
 | |
|   case SD_Dynamic:
 | |
|     llvm_unreachable("temporary cannot have dynamic storage duration");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Address createReferenceTemporary(CodeGenFunction &CGF,
 | |
|                                         const MaterializeTemporaryExpr *M,
 | |
|                                         const Expr *Inner,
 | |
|                                         Address *Alloca = nullptr) {
 | |
|   auto &TCG = CGF.getTargetHooks();
 | |
|   switch (M->getStorageDuration()) {
 | |
|   case SD_FullExpression:
 | |
|   case SD_Automatic: {
 | |
|     // If we have a constant temporary array or record try to promote it into a
 | |
|     // constant global under the same rules a normal constant would've been
 | |
|     // promoted. This is easier on the optimizer and generally emits fewer
 | |
|     // instructions.
 | |
|     QualType Ty = Inner->getType();
 | |
|     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
 | |
|         (Ty->isArrayType() || Ty->isRecordType()) &&
 | |
|         CGF.CGM.isTypeConstant(Ty, true))
 | |
|       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
 | |
|         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
 | |
|           auto AS = AddrSpace.getValue();
 | |
|           auto *GV = new llvm::GlobalVariable(
 | |
|               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
 | |
|               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
 | |
|               llvm::GlobalValue::NotThreadLocal,
 | |
|               CGF.getContext().getTargetAddressSpace(AS));
 | |
|           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
 | |
|           GV->setAlignment(alignment.getAsAlign());
 | |
|           llvm::Constant *C = GV;
 | |
|           if (AS != LangAS::Default)
 | |
|             C = TCG.performAddrSpaceCast(
 | |
|                 CGF.CGM, GV, AS, LangAS::Default,
 | |
|                 GV->getValueType()->getPointerTo(
 | |
|                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
 | |
|           // FIXME: Should we put the new global into a COMDAT?
 | |
|           return Address(C, alignment);
 | |
|         }
 | |
|       }
 | |
|     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
 | |
|   }
 | |
|   case SD_Thread:
 | |
|   case SD_Static:
 | |
|     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
 | |
| 
 | |
|   case SD_Dynamic:
 | |
|     llvm_unreachable("temporary can't have dynamic storage duration");
 | |
|   }
 | |
|   llvm_unreachable("unknown storage duration");
 | |
| }
 | |
| 
 | |
| /// Helper method to check if the underlying ABI is AAPCS
 | |
| static bool isAAPCS(const TargetInfo &TargetInfo) {
 | |
|   return TargetInfo.getABI().startswith("aapcs");
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::
 | |
| EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
 | |
|   const Expr *E = M->getSubExpr();
 | |
| 
 | |
|   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
 | |
|           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
 | |
|          "Reference should never be pseudo-strong!");
 | |
| 
 | |
|   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
 | |
|   // as that will cause the lifetime adjustment to be lost for ARC
 | |
|   auto ownership = M->getType().getObjCLifetime();
 | |
|   if (ownership != Qualifiers::OCL_None &&
 | |
|       ownership != Qualifiers::OCL_ExplicitNone) {
 | |
|     Address Object = createReferenceTemporary(*this, M, E);
 | |
|     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
 | |
|       Object = Address(llvm::ConstantExpr::getBitCast(Var,
 | |
|                            ConvertTypeForMem(E->getType())
 | |
|                              ->getPointerTo(Object.getAddressSpace())),
 | |
|                        Object.getAlignment());
 | |
| 
 | |
|       // createReferenceTemporary will promote the temporary to a global with a
 | |
|       // constant initializer if it can.  It can only do this to a value of
 | |
|       // ARC-manageable type if the value is global and therefore "immune" to
 | |
|       // ref-counting operations.  Therefore we have no need to emit either a
 | |
|       // dynamic initialization or a cleanup and we can just return the address
 | |
|       // of the temporary.
 | |
|       if (Var->hasInitializer())
 | |
|         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
 | |
| 
 | |
|       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
 | |
|     }
 | |
|     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
 | |
|                                        AlignmentSource::Decl);
 | |
| 
 | |
|     switch (getEvaluationKind(E->getType())) {
 | |
|     default: llvm_unreachable("expected scalar or aggregate expression");
 | |
|     case TEK_Scalar:
 | |
|       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
 | |
|       break;
 | |
|     case TEK_Aggregate: {
 | |
|       EmitAggExpr(E, AggValueSlot::forAddr(Object,
 | |
|                                            E->getType().getQualifiers(),
 | |
|                                            AggValueSlot::IsDestructed,
 | |
|                                            AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                                            AggValueSlot::IsNotAliased,
 | |
|                                            AggValueSlot::DoesNotOverlap));
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     pushTemporaryCleanup(*this, M, E, Object);
 | |
|     return RefTempDst;
 | |
|   }
 | |
| 
 | |
|   SmallVector<const Expr *, 2> CommaLHSs;
 | |
|   SmallVector<SubobjectAdjustment, 2> Adjustments;
 | |
|   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
 | |
| 
 | |
|   for (const auto &Ignored : CommaLHSs)
 | |
|     EmitIgnoredExpr(Ignored);
 | |
| 
 | |
|   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
 | |
|     if (opaque->getType()->isRecordType()) {
 | |
|       assert(Adjustments.empty());
 | |
|       return EmitOpaqueValueLValue(opaque);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create and initialize the reference temporary.
 | |
|   Address Alloca = Address::invalid();
 | |
|   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
 | |
|   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
 | |
|           Object.getPointer()->stripPointerCasts())) {
 | |
|     Object = Address(llvm::ConstantExpr::getBitCast(
 | |
|                          cast<llvm::Constant>(Object.getPointer()),
 | |
|                          ConvertTypeForMem(E->getType())->getPointerTo()),
 | |
|                      Object.getAlignment());
 | |
|     // If the temporary is a global and has a constant initializer or is a
 | |
|     // constant temporary that we promoted to a global, we may have already
 | |
|     // initialized it.
 | |
|     if (!Var->hasInitializer()) {
 | |
|       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
 | |
|       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
 | |
|     }
 | |
|   } else {
 | |
|     switch (M->getStorageDuration()) {
 | |
|     case SD_Automatic:
 | |
|       if (auto *Size = EmitLifetimeStart(
 | |
|               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
 | |
|               Alloca.getPointer())) {
 | |
|         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
 | |
|                                                   Alloca, Size);
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case SD_FullExpression: {
 | |
|       if (!ShouldEmitLifetimeMarkers)
 | |
|         break;
 | |
| 
 | |
|       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
 | |
|       // marker. Instead, start the lifetime of a conditional temporary earlier
 | |
|       // so that it's unconditional. Don't do this with sanitizers which need
 | |
|       // more precise lifetime marks.
 | |
|       ConditionalEvaluation *OldConditional = nullptr;
 | |
|       CGBuilderTy::InsertPoint OldIP;
 | |
|       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
 | |
|           !SanOpts.has(SanitizerKind::HWAddress) &&
 | |
|           !SanOpts.has(SanitizerKind::Memory) &&
 | |
|           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
 | |
|         OldConditional = OutermostConditional;
 | |
|         OutermostConditional = nullptr;
 | |
| 
 | |
|         OldIP = Builder.saveIP();
 | |
|         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
 | |
|         Builder.restoreIP(CGBuilderTy::InsertPoint(
 | |
|             Block, llvm::BasicBlock::iterator(Block->back())));
 | |
|       }
 | |
| 
 | |
|       if (auto *Size = EmitLifetimeStart(
 | |
|               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
 | |
|               Alloca.getPointer())) {
 | |
|         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
 | |
|                                              Size);
 | |
|       }
 | |
| 
 | |
|       if (OldConditional) {
 | |
|         OutermostConditional = OldConditional;
 | |
|         Builder.restoreIP(OldIP);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
 | |
|   }
 | |
|   pushTemporaryCleanup(*this, M, E, Object);
 | |
| 
 | |
|   // Perform derived-to-base casts and/or field accesses, to get from the
 | |
|   // temporary object we created (and, potentially, for which we extended
 | |
|   // the lifetime) to the subobject we're binding the reference to.
 | |
|   for (unsigned I = Adjustments.size(); I != 0; --I) {
 | |
|     SubobjectAdjustment &Adjustment = Adjustments[I-1];
 | |
|     switch (Adjustment.Kind) {
 | |
|     case SubobjectAdjustment::DerivedToBaseAdjustment:
 | |
|       Object =
 | |
|           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
 | |
|                                 Adjustment.DerivedToBase.BasePath->path_begin(),
 | |
|                                 Adjustment.DerivedToBase.BasePath->path_end(),
 | |
|                                 /*NullCheckValue=*/ false, E->getExprLoc());
 | |
|       break;
 | |
| 
 | |
|     case SubobjectAdjustment::FieldAdjustment: {
 | |
|       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
 | |
|       LV = EmitLValueForField(LV, Adjustment.Field);
 | |
|       assert(LV.isSimple() &&
 | |
|              "materialized temporary field is not a simple lvalue");
 | |
|       Object = LV.getAddress(*this);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case SubobjectAdjustment::MemberPointerAdjustment: {
 | |
|       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
 | |
|       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
 | |
|                                                Adjustment.Ptr.MPT);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| RValue
 | |
| CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
 | |
|   // Emit the expression as an lvalue.
 | |
|   LValue LV = EmitLValue(E);
 | |
|   assert(LV.isSimple());
 | |
|   llvm::Value *Value = LV.getPointer(*this);
 | |
| 
 | |
|   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
 | |
|     // C++11 [dcl.ref]p5 (as amended by core issue 453):
 | |
|     //   If a glvalue to which a reference is directly bound designates neither
 | |
|     //   an existing object or function of an appropriate type nor a region of
 | |
|     //   storage of suitable size and alignment to contain an object of the
 | |
|     //   reference's type, the behavior is undefined.
 | |
|     QualType Ty = E->getType();
 | |
|     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
 | |
|   }
 | |
| 
 | |
|   return RValue::get(Value);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getAccessedFieldNo - Given an encoded value and a result number, return the
 | |
| /// input field number being accessed.
 | |
| unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
 | |
|                                              const llvm::Constant *Elts) {
 | |
|   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
 | |
|       ->getZExtValue();
 | |
| }
 | |
| 
 | |
| /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
 | |
| static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
 | |
|                                     llvm::Value *High) {
 | |
|   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
 | |
|   llvm::Value *K47 = Builder.getInt64(47);
 | |
|   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
 | |
|   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
 | |
|   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
 | |
|   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
 | |
|   return Builder.CreateMul(B1, KMul);
 | |
| }
 | |
| 
 | |
| bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
 | |
|   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
 | |
|          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
 | |
| }
 | |
| 
 | |
| bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
 | |
|   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
 | |
|   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
 | |
|          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
 | |
|           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
 | |
|           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
 | |
| }
 | |
| 
 | |
| bool CodeGenFunction::sanitizePerformTypeCheck() const {
 | |
|   return SanOpts.has(SanitizerKind::Null) |
 | |
|          SanOpts.has(SanitizerKind::Alignment) |
 | |
|          SanOpts.has(SanitizerKind::ObjectSize) |
 | |
|          SanOpts.has(SanitizerKind::Vptr);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
 | |
|                                     llvm::Value *Ptr, QualType Ty,
 | |
|                                     CharUnits Alignment,
 | |
|                                     SanitizerSet SkippedChecks,
 | |
|                                     llvm::Value *ArraySize) {
 | |
|   if (!sanitizePerformTypeCheck())
 | |
|     return;
 | |
| 
 | |
|   // Don't check pointers outside the default address space. The null check
 | |
|   // isn't correct, the object-size check isn't supported by LLVM, and we can't
 | |
|   // communicate the addresses to the runtime handler for the vptr check.
 | |
|   if (Ptr->getType()->getPointerAddressSpace())
 | |
|     return;
 | |
| 
 | |
|   // Don't check pointers to volatile data. The behavior here is implementation-
 | |
|   // defined.
 | |
|   if (Ty.isVolatileQualified())
 | |
|     return;
 | |
| 
 | |
|   SanitizerScope SanScope(this);
 | |
| 
 | |
|   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
 | |
|   llvm::BasicBlock *Done = nullptr;
 | |
| 
 | |
|   // Quickly determine whether we have a pointer to an alloca. It's possible
 | |
|   // to skip null checks, and some alignment checks, for these pointers. This
 | |
|   // can reduce compile-time significantly.
 | |
|   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
 | |
| 
 | |
|   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
 | |
|   llvm::Value *IsNonNull = nullptr;
 | |
|   bool IsGuaranteedNonNull =
 | |
|       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
 | |
|   bool AllowNullPointers = isNullPointerAllowed(TCK);
 | |
|   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
 | |
|       !IsGuaranteedNonNull) {
 | |
|     // The glvalue must not be an empty glvalue.
 | |
|     IsNonNull = Builder.CreateIsNotNull(Ptr);
 | |
| 
 | |
|     // The IR builder can constant-fold the null check if the pointer points to
 | |
|     // a constant.
 | |
|     IsGuaranteedNonNull = IsNonNull == True;
 | |
| 
 | |
|     // Skip the null check if the pointer is known to be non-null.
 | |
|     if (!IsGuaranteedNonNull) {
 | |
|       if (AllowNullPointers) {
 | |
|         // When performing pointer casts, it's OK if the value is null.
 | |
|         // Skip the remaining checks in that case.
 | |
|         Done = createBasicBlock("null");
 | |
|         llvm::BasicBlock *Rest = createBasicBlock("not.null");
 | |
|         Builder.CreateCondBr(IsNonNull, Rest, Done);
 | |
|         EmitBlock(Rest);
 | |
|       } else {
 | |
|         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (SanOpts.has(SanitizerKind::ObjectSize) &&
 | |
|       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
 | |
|       !Ty->isIncompleteType()) {
 | |
|     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
 | |
|     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
 | |
|     if (ArraySize)
 | |
|       Size = Builder.CreateMul(Size, ArraySize);
 | |
| 
 | |
|     // Degenerate case: new X[0] does not need an objectsize check.
 | |
|     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
 | |
|     if (!ConstantSize || !ConstantSize->isNullValue()) {
 | |
|       // The glvalue must refer to a large enough storage region.
 | |
|       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
 | |
|       //        to check this.
 | |
|       // FIXME: Get object address space
 | |
|       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
 | |
|       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
 | |
|       llvm::Value *Min = Builder.getFalse();
 | |
|       llvm::Value *NullIsUnknown = Builder.getFalse();
 | |
|       llvm::Value *Dynamic = Builder.getFalse();
 | |
|       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
 | |
|       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
 | |
|           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
 | |
|       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uint64_t AlignVal = 0;
 | |
|   llvm::Value *PtrAsInt = nullptr;
 | |
| 
 | |
|   if (SanOpts.has(SanitizerKind::Alignment) &&
 | |
|       !SkippedChecks.has(SanitizerKind::Alignment)) {
 | |
|     AlignVal = Alignment.getQuantity();
 | |
|     if (!Ty->isIncompleteType() && !AlignVal)
 | |
|       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
 | |
|                                              /*ForPointeeType=*/true)
 | |
|                      .getQuantity();
 | |
| 
 | |
|     // The glvalue must be suitably aligned.
 | |
|     if (AlignVal > 1 &&
 | |
|         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
 | |
|       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
 | |
|       llvm::Value *Align = Builder.CreateAnd(
 | |
|           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
 | |
|       llvm::Value *Aligned =
 | |
|           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
 | |
|       if (Aligned != True)
 | |
|         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Checks.size() > 0) {
 | |
|     // Make sure we're not losing information. Alignment needs to be a power of
 | |
|     // 2
 | |
|     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
 | |
|     llvm::Constant *StaticData[] = {
 | |
|         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
 | |
|         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
 | |
|         llvm::ConstantInt::get(Int8Ty, TCK)};
 | |
|     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
 | |
|               PtrAsInt ? PtrAsInt : Ptr);
 | |
|   }
 | |
| 
 | |
|   // If possible, check that the vptr indicates that there is a subobject of
 | |
|   // type Ty at offset zero within this object.
 | |
|   //
 | |
|   // C++11 [basic.life]p5,6:
 | |
|   //   [For storage which does not refer to an object within its lifetime]
 | |
|   //   The program has undefined behavior if:
 | |
|   //    -- the [pointer or glvalue] is used to access a non-static data member
 | |
|   //       or call a non-static member function
 | |
|   if (SanOpts.has(SanitizerKind::Vptr) &&
 | |
|       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
 | |
|     // Ensure that the pointer is non-null before loading it. If there is no
 | |
|     // compile-time guarantee, reuse the run-time null check or emit a new one.
 | |
|     if (!IsGuaranteedNonNull) {
 | |
|       if (!IsNonNull)
 | |
|         IsNonNull = Builder.CreateIsNotNull(Ptr);
 | |
|       if (!Done)
 | |
|         Done = createBasicBlock("vptr.null");
 | |
|       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
 | |
|       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
 | |
|       EmitBlock(VptrNotNull);
 | |
|     }
 | |
| 
 | |
|     // Compute a hash of the mangled name of the type.
 | |
|     //
 | |
|     // FIXME: This is not guaranteed to be deterministic! Move to a
 | |
|     //        fingerprinting mechanism once LLVM provides one. For the time
 | |
|     //        being the implementation happens to be deterministic.
 | |
|     SmallString<64> MangledName;
 | |
|     llvm::raw_svector_ostream Out(MangledName);
 | |
|     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
 | |
|                                                      Out);
 | |
| 
 | |
|     // Contained in NoSanitizeList based on the mangled type.
 | |
|     if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
 | |
|                                                            Out.str())) {
 | |
|       llvm::hash_code TypeHash = hash_value(Out.str());
 | |
| 
 | |
|       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
 | |
|       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
 | |
|       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
 | |
|       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
 | |
|       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
 | |
|       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
 | |
| 
 | |
|       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
 | |
|       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
 | |
| 
 | |
|       // Look the hash up in our cache.
 | |
|       const int CacheSize = 128;
 | |
|       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
 | |
|       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
 | |
|                                                      "__ubsan_vptr_type_cache");
 | |
|       llvm::Value *Slot = Builder.CreateAnd(Hash,
 | |
|                                             llvm::ConstantInt::get(IntPtrTy,
 | |
|                                                                    CacheSize-1));
 | |
|       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
 | |
|       llvm::Value *CacheVal = Builder.CreateAlignedLoad(
 | |
|           IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
 | |
|           getPointerAlign());
 | |
| 
 | |
|       // If the hash isn't in the cache, call a runtime handler to perform the
 | |
|       // hard work of checking whether the vptr is for an object of the right
 | |
|       // type. This will either fill in the cache and return, or produce a
 | |
|       // diagnostic.
 | |
|       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
 | |
|       llvm::Constant *StaticData[] = {
 | |
|         EmitCheckSourceLocation(Loc),
 | |
|         EmitCheckTypeDescriptor(Ty),
 | |
|         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
 | |
|         llvm::ConstantInt::get(Int8Ty, TCK)
 | |
|       };
 | |
|       llvm::Value *DynamicData[] = { Ptr, Hash };
 | |
|       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
 | |
|                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
 | |
|                 DynamicData);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Done) {
 | |
|     Builder.CreateBr(Done);
 | |
|     EmitBlock(Done);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determine whether this expression refers to a flexible array member in a
 | |
| /// struct. We disable array bounds checks for such members.
 | |
| static bool isFlexibleArrayMemberExpr(const Expr *E) {
 | |
|   // For compatibility with existing code, we treat arrays of length 0 or
 | |
|   // 1 as flexible array members.
 | |
|   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
 | |
|   // the two mechanisms.
 | |
|   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
 | |
|   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
 | |
|     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
 | |
|     // was produced by macro expansion.
 | |
|     if (CAT->getSize().ugt(1))
 | |
|       return false;
 | |
|   } else if (!isa<IncompleteArrayType>(AT))
 | |
|     return false;
 | |
| 
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // A flexible array member must be the last member in the class.
 | |
|   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
 | |
|     // FIXME: If the base type of the member expr is not FD->getParent(),
 | |
|     // this should not be treated as a flexible array member access.
 | |
|     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
 | |
|       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
 | |
|       // member, only a T[0] or T[] member gets that treatment.
 | |
|       if (FD->getParent()->isUnion())
 | |
|         return true;
 | |
|       RecordDecl::field_iterator FI(
 | |
|           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
 | |
|       return ++FI == FD->getParent()->field_end();
 | |
|     }
 | |
|   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
 | |
|     return IRE->getDecl()->getNextIvar() == nullptr;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
 | |
|                                                    QualType EltTy) {
 | |
|   ASTContext &C = getContext();
 | |
|   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
 | |
|   if (!EltSize)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
 | |
|   if (!ArrayDeclRef)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
 | |
|   if (!ParamDecl)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
 | |
|   if (!POSAttr)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Don't load the size if it's a lower bound.
 | |
|   int POSType = POSAttr->getType();
 | |
|   if (POSType != 0 && POSType != 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Find the implicit size parameter.
 | |
|   auto PassedSizeIt = SizeArguments.find(ParamDecl);
 | |
|   if (PassedSizeIt == SizeArguments.end())
 | |
|     return nullptr;
 | |
| 
 | |
|   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
 | |
|   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
 | |
|   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
 | |
|   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
 | |
|                                               C.getSizeType(), E->getExprLoc());
 | |
|   llvm::Value *SizeOfElement =
 | |
|       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
 | |
|   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
 | |
| }
 | |
| 
 | |
| /// If Base is known to point to the start of an array, return the length of
 | |
| /// that array. Return 0 if the length cannot be determined.
 | |
| static llvm::Value *getArrayIndexingBound(
 | |
|     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
 | |
|   // For the vector indexing extension, the bound is the number of elements.
 | |
|   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
 | |
|     IndexedType = Base->getType();
 | |
|     return CGF.Builder.getInt32(VT->getNumElements());
 | |
|   }
 | |
| 
 | |
|   Base = Base->IgnoreParens();
 | |
| 
 | |
|   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
 | |
|     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
 | |
|         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
 | |
|       IndexedType = CE->getSubExpr()->getType();
 | |
|       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
 | |
|       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
 | |
|         return CGF.Builder.getInt(CAT->getSize());
 | |
|       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
 | |
|         return CGF.getVLASize(VAT).NumElts;
 | |
|       // Ignore pass_object_size here. It's not applicable on decayed pointers.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
 | |
|   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
 | |
|     IndexedType = Base->getType();
 | |
|     return POS;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
 | |
|                                       llvm::Value *Index, QualType IndexType,
 | |
|                                       bool Accessed) {
 | |
|   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
 | |
|          "should not be called unless adding bounds checks");
 | |
|   SanitizerScope SanScope(this);
 | |
| 
 | |
|   QualType IndexedType;
 | |
|   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
 | |
|   if (!Bound)
 | |
|     return;
 | |
| 
 | |
|   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
 | |
|   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
 | |
|   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
 | |
| 
 | |
|   llvm::Constant *StaticData[] = {
 | |
|     EmitCheckSourceLocation(E->getExprLoc()),
 | |
|     EmitCheckTypeDescriptor(IndexedType),
 | |
|     EmitCheckTypeDescriptor(IndexType)
 | |
|   };
 | |
|   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
 | |
|                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
 | |
|   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
 | |
|             SanitizerHandler::OutOfBounds, StaticData, Index);
 | |
| }
 | |
| 
 | |
| 
 | |
| CodeGenFunction::ComplexPairTy CodeGenFunction::
 | |
| EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
 | |
|                          bool isInc, bool isPre) {
 | |
|   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
 | |
| 
 | |
|   llvm::Value *NextVal;
 | |
|   if (isa<llvm::IntegerType>(InVal.first->getType())) {
 | |
|     uint64_t AmountVal = isInc ? 1 : -1;
 | |
|     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
 | |
| 
 | |
|     // Add the inc/dec to the real part.
 | |
|     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
 | |
|   } else {
 | |
|     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
 | |
|     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
 | |
|     if (!isInc)
 | |
|       FVal.changeSign();
 | |
|     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
 | |
| 
 | |
|     // Add the inc/dec to the real part.
 | |
|     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
 | |
|   }
 | |
| 
 | |
|   ComplexPairTy IncVal(NextVal, InVal.second);
 | |
| 
 | |
|   // Store the updated result through the lvalue.
 | |
|   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
 | |
|   if (getLangOpts().OpenMP)
 | |
|     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
 | |
|                                                               E->getSubExpr());
 | |
| 
 | |
|   // If this is a postinc, return the value read from memory, otherwise use the
 | |
|   // updated value.
 | |
|   return isPre ? IncVal : InVal;
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
 | |
|                                              CodeGenFunction *CGF) {
 | |
|   // Bind VLAs in the cast type.
 | |
|   if (CGF && E->getType()->isVariablyModifiedType())
 | |
|     CGF->EmitVariablyModifiedType(E->getType());
 | |
| 
 | |
|   if (CGDebugInfo *DI = getModuleDebugInfo())
 | |
|     DI->EmitExplicitCastType(E->getType());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         LValue Expression Emission
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// EmitPointerWithAlignment - Given an expression of pointer type, try to
 | |
| /// derive a more accurate bound on the alignment of the pointer.
 | |
| Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
 | |
|                                                   LValueBaseInfo *BaseInfo,
 | |
|                                                   TBAAAccessInfo *TBAAInfo) {
 | |
|   // We allow this with ObjC object pointers because of fragile ABIs.
 | |
|   assert(E->getType()->isPointerType() ||
 | |
|          E->getType()->isObjCObjectPointerType());
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Casts:
 | |
|   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
 | |
|     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
 | |
|       CGM.EmitExplicitCastExprType(ECE, this);
 | |
| 
 | |
|     switch (CE->getCastKind()) {
 | |
|     // Non-converting casts (but not C's implicit conversion from void*).
 | |
|     case CK_BitCast:
 | |
|     case CK_NoOp:
 | |
|     case CK_AddressSpaceConversion:
 | |
|       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
 | |
|         if (PtrTy->getPointeeType()->isVoidType())
 | |
|           break;
 | |
| 
 | |
|         LValueBaseInfo InnerBaseInfo;
 | |
|         TBAAAccessInfo InnerTBAAInfo;
 | |
|         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
 | |
|                                                 &InnerBaseInfo,
 | |
|                                                 &InnerTBAAInfo);
 | |
|         if (BaseInfo) *BaseInfo = InnerBaseInfo;
 | |
|         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
 | |
| 
 | |
|         if (isa<ExplicitCastExpr>(CE)) {
 | |
|           LValueBaseInfo TargetTypeBaseInfo;
 | |
|           TBAAAccessInfo TargetTypeTBAAInfo;
 | |
|           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
 | |
|               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
 | |
|           if (TBAAInfo)
 | |
|             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
 | |
|                                                  TargetTypeTBAAInfo);
 | |
|           // If the source l-value is opaque, honor the alignment of the
 | |
|           // casted-to type.
 | |
|           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
 | |
|             if (BaseInfo)
 | |
|               BaseInfo->mergeForCast(TargetTypeBaseInfo);
 | |
|             Addr = Address(Addr.getPointer(), Align);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
 | |
|             CE->getCastKind() == CK_BitCast) {
 | |
|           if (auto PT = E->getType()->getAs<PointerType>())
 | |
|             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
 | |
|                                       /*MayBeNull=*/true,
 | |
|                                       CodeGenFunction::CFITCK_UnrelatedCast,
 | |
|                                       CE->getBeginLoc());
 | |
|         }
 | |
|         return CE->getCastKind() != CK_AddressSpaceConversion
 | |
|                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
 | |
|                    : Builder.CreateAddrSpaceCast(Addr,
 | |
|                                                  ConvertType(E->getType()));
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     // Array-to-pointer decay.
 | |
|     case CK_ArrayToPointerDecay:
 | |
|       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
 | |
| 
 | |
|     // Derived-to-base conversions.
 | |
|     case CK_UncheckedDerivedToBase:
 | |
|     case CK_DerivedToBase: {
 | |
|       // TODO: Support accesses to members of base classes in TBAA. For now, we
 | |
|       // conservatively pretend that the complete object is of the base class
 | |
|       // type.
 | |
|       if (TBAAInfo)
 | |
|         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
 | |
|       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
 | |
|       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
 | |
|       return GetAddressOfBaseClass(Addr, Derived,
 | |
|                                    CE->path_begin(), CE->path_end(),
 | |
|                                    ShouldNullCheckClassCastValue(CE),
 | |
|                                    CE->getExprLoc());
 | |
|     }
 | |
| 
 | |
|     // TODO: Is there any reason to treat base-to-derived conversions
 | |
|     // specially?
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Unary &.
 | |
|   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|     if (UO->getOpcode() == UO_AddrOf) {
 | |
|       LValue LV = EmitLValue(UO->getSubExpr());
 | |
|       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
 | |
|       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
 | |
|       return LV.getAddress(*this);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: conditional operators, comma.
 | |
| 
 | |
|   // Otherwise, use the alignment of the type.
 | |
|   CharUnits Align =
 | |
|       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
 | |
|   return Address(EmitScalarExpr(E), Align);
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
 | |
|   llvm::Value *V = RV.getScalarVal();
 | |
|   if (auto MPT = T->getAs<MemberPointerType>())
 | |
|     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
 | |
|   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
 | |
|   if (Ty->isVoidType())
 | |
|     return RValue::get(nullptr);
 | |
| 
 | |
|   switch (getEvaluationKind(Ty)) {
 | |
|   case TEK_Complex: {
 | |
|     llvm::Type *EltTy =
 | |
|       ConvertType(Ty->castAs<ComplexType>()->getElementType());
 | |
|     llvm::Value *U = llvm::UndefValue::get(EltTy);
 | |
|     return RValue::getComplex(std::make_pair(U, U));
 | |
|   }
 | |
| 
 | |
|   // If this is a use of an undefined aggregate type, the aggregate must have an
 | |
|   // identifiable address.  Just because the contents of the value are undefined
 | |
|   // doesn't mean that the address can't be taken and compared.
 | |
|   case TEK_Aggregate: {
 | |
|     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
 | |
|     return RValue::getAggregate(DestPtr);
 | |
|   }
 | |
| 
 | |
|   case TEK_Scalar:
 | |
|     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
 | |
|                                               const char *Name) {
 | |
|   ErrorUnsupported(E, Name);
 | |
|   return GetUndefRValue(E->getType());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
 | |
|                                               const char *Name) {
 | |
|   ErrorUnsupported(E, Name);
 | |
|   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
 | |
|   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
 | |
|                         E->getType());
 | |
| }
 | |
| 
 | |
| bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
 | |
|   const Expr *Base = Obj;
 | |
|   while (!isa<CXXThisExpr>(Base)) {
 | |
|     // The result of a dynamic_cast can be null.
 | |
|     if (isa<CXXDynamicCastExpr>(Base))
 | |
|       return false;
 | |
| 
 | |
|     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
 | |
|       Base = CE->getSubExpr();
 | |
|     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
 | |
|       Base = PE->getSubExpr();
 | |
|     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
 | |
|       if (UO->getOpcode() == UO_Extension)
 | |
|         Base = UO->getSubExpr();
 | |
|       else
 | |
|         return false;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
 | |
|   LValue LV;
 | |
|   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
 | |
|     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
 | |
|   else
 | |
|     LV = EmitLValue(E);
 | |
|   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
 | |
|     SanitizerSet SkippedChecks;
 | |
|     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
 | |
|       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
 | |
|       if (IsBaseCXXThis)
 | |
|         SkippedChecks.set(SanitizerKind::Alignment, true);
 | |
|       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
 | |
|         SkippedChecks.set(SanitizerKind::Null, true);
 | |
|     }
 | |
|     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
 | |
|                   LV.getAlignment(), SkippedChecks);
 | |
|   }
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| /// EmitLValue - Emit code to compute a designator that specifies the location
 | |
| /// of the expression.
 | |
| ///
 | |
| /// This can return one of two things: a simple address or a bitfield reference.
 | |
| /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
 | |
| /// an LLVM pointer type.
 | |
| ///
 | |
| /// If this returns a bitfield reference, nothing about the pointee type of the
 | |
| /// LLVM value is known: For example, it may not be a pointer to an integer.
 | |
| ///
 | |
| /// If this returns a normal address, and if the lvalue's C type is fixed size,
 | |
| /// this method guarantees that the returned pointer type will point to an LLVM
 | |
| /// type of the same size of the lvalue's type.  If the lvalue has a variable
 | |
| /// length type, this is not possible.
 | |
| ///
 | |
| LValue CodeGenFunction::EmitLValue(const Expr *E) {
 | |
|   ApplyDebugLocation DL(*this, E);
 | |
|   switch (E->getStmtClass()) {
 | |
|   default: return EmitUnsupportedLValue(E, "l-value expression");
 | |
| 
 | |
|   case Expr::ObjCPropertyRefExprClass:
 | |
|     llvm_unreachable("cannot emit a property reference directly");
 | |
| 
 | |
|   case Expr::ObjCSelectorExprClass:
 | |
|     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
 | |
|   case Expr::ObjCIsaExprClass:
 | |
|     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
 | |
|   case Expr::BinaryOperatorClass:
 | |
|     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
 | |
|   case Expr::CompoundAssignOperatorClass: {
 | |
|     QualType Ty = E->getType();
 | |
|     if (const AtomicType *AT = Ty->getAs<AtomicType>())
 | |
|       Ty = AT->getValueType();
 | |
|     if (!Ty->isAnyComplexType())
 | |
|       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
 | |
|     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
 | |
|   }
 | |
|   case Expr::CallExprClass:
 | |
|   case Expr::CXXMemberCallExprClass:
 | |
|   case Expr::CXXOperatorCallExprClass:
 | |
|   case Expr::UserDefinedLiteralClass:
 | |
|     return EmitCallExprLValue(cast<CallExpr>(E));
 | |
|   case Expr::CXXRewrittenBinaryOperatorClass:
 | |
|     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
 | |
|   case Expr::VAArgExprClass:
 | |
|     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
 | |
|   case Expr::DeclRefExprClass:
 | |
|     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
 | |
|   case Expr::ConstantExprClass: {
 | |
|     const ConstantExpr *CE = cast<ConstantExpr>(E);
 | |
|     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
 | |
|       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
 | |
|                              ->getCallReturnType(getContext());
 | |
|       return MakeNaturalAlignAddrLValue(Result, RetType);
 | |
|     }
 | |
|     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
 | |
|   }
 | |
|   case Expr::ParenExprClass:
 | |
|     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
 | |
|   case Expr::GenericSelectionExprClass:
 | |
|     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
 | |
|   case Expr::PredefinedExprClass:
 | |
|     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
 | |
|   case Expr::StringLiteralClass:
 | |
|     return EmitStringLiteralLValue(cast<StringLiteral>(E));
 | |
|   case Expr::ObjCEncodeExprClass:
 | |
|     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
 | |
|   case Expr::PseudoObjectExprClass:
 | |
|     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
 | |
|   case Expr::InitListExprClass:
 | |
|     return EmitInitListLValue(cast<InitListExpr>(E));
 | |
|   case Expr::CXXTemporaryObjectExprClass:
 | |
|   case Expr::CXXConstructExprClass:
 | |
|     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
 | |
|   case Expr::CXXBindTemporaryExprClass:
 | |
|     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
 | |
|   case Expr::CXXUuidofExprClass:
 | |
|     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
 | |
|   case Expr::LambdaExprClass:
 | |
|     return EmitAggExprToLValue(E);
 | |
| 
 | |
|   case Expr::ExprWithCleanupsClass: {
 | |
|     const auto *cleanups = cast<ExprWithCleanups>(E);
 | |
|     RunCleanupsScope Scope(*this);
 | |
|     LValue LV = EmitLValue(cleanups->getSubExpr());
 | |
|     if (LV.isSimple()) {
 | |
|       // Defend against branches out of gnu statement expressions surrounded by
 | |
|       // cleanups.
 | |
|       llvm::Value *V = LV.getPointer(*this);
 | |
|       Scope.ForceCleanup({&V});
 | |
|       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
 | |
|                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
 | |
|     }
 | |
|     // FIXME: Is it possible to create an ExprWithCleanups that produces a
 | |
|     // bitfield lvalue or some other non-simple lvalue?
 | |
|     return LV;
 | |
|   }
 | |
| 
 | |
|   case Expr::CXXDefaultArgExprClass: {
 | |
|     auto *DAE = cast<CXXDefaultArgExpr>(E);
 | |
|     CXXDefaultArgExprScope Scope(*this, DAE);
 | |
|     return EmitLValue(DAE->getExpr());
 | |
|   }
 | |
|   case Expr::CXXDefaultInitExprClass: {
 | |
|     auto *DIE = cast<CXXDefaultInitExpr>(E);
 | |
|     CXXDefaultInitExprScope Scope(*this, DIE);
 | |
|     return EmitLValue(DIE->getExpr());
 | |
|   }
 | |
|   case Expr::CXXTypeidExprClass:
 | |
|     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
 | |
| 
 | |
|   case Expr::ObjCMessageExprClass:
 | |
|     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
 | |
|   case Expr::ObjCIvarRefExprClass:
 | |
|     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
 | |
|   case Expr::StmtExprClass:
 | |
|     return EmitStmtExprLValue(cast<StmtExpr>(E));
 | |
|   case Expr::UnaryOperatorClass:
 | |
|     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
 | |
|   case Expr::ArraySubscriptExprClass:
 | |
|     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
 | |
|   case Expr::MatrixSubscriptExprClass:
 | |
|     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
 | |
|   case Expr::OMPArraySectionExprClass:
 | |
|     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
 | |
|   case Expr::ExtVectorElementExprClass:
 | |
|     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
 | |
|   case Expr::MemberExprClass:
 | |
|     return EmitMemberExpr(cast<MemberExpr>(E));
 | |
|   case Expr::CompoundLiteralExprClass:
 | |
|     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
 | |
|   case Expr::ConditionalOperatorClass:
 | |
|     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
 | |
|   case Expr::BinaryConditionalOperatorClass:
 | |
|     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
 | |
|   case Expr::ChooseExprClass:
 | |
|     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
 | |
|   case Expr::OpaqueValueExprClass:
 | |
|     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
 | |
|   case Expr::SubstNonTypeTemplateParmExprClass:
 | |
|     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
 | |
|   case Expr::ImplicitCastExprClass:
 | |
|   case Expr::CStyleCastExprClass:
 | |
|   case Expr::CXXFunctionalCastExprClass:
 | |
|   case Expr::CXXStaticCastExprClass:
 | |
|   case Expr::CXXDynamicCastExprClass:
 | |
|   case Expr::CXXReinterpretCastExprClass:
 | |
|   case Expr::CXXConstCastExprClass:
 | |
|   case Expr::CXXAddrspaceCastExprClass:
 | |
|   case Expr::ObjCBridgedCastExprClass:
 | |
|     return EmitCastLValue(cast<CastExpr>(E));
 | |
| 
 | |
|   case Expr::MaterializeTemporaryExprClass:
 | |
|     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
 | |
| 
 | |
|   case Expr::CoawaitExprClass:
 | |
|     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
 | |
|   case Expr::CoyieldExprClass:
 | |
|     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given an object of the given canonical type, can we safely copy a
 | |
| /// value out of it based on its initializer?
 | |
| static bool isConstantEmittableObjectType(QualType type) {
 | |
|   assert(type.isCanonical());
 | |
|   assert(!type->isReferenceType());
 | |
| 
 | |
|   // Must be const-qualified but non-volatile.
 | |
|   Qualifiers qs = type.getLocalQualifiers();
 | |
|   if (!qs.hasConst() || qs.hasVolatile()) return false;
 | |
| 
 | |
|   // Otherwise, all object types satisfy this except C++ classes with
 | |
|   // mutable subobjects or non-trivial copy/destroy behavior.
 | |
|   if (const auto *RT = dyn_cast<RecordType>(type))
 | |
|     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
 | |
|       if (RD->hasMutableFields() || !RD->isTrivial())
 | |
|         return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Can we constant-emit a load of a reference to a variable of the
 | |
| /// given type?  This is different from predicates like
 | |
| /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
 | |
| /// in situations that don't necessarily satisfy the language's rules
 | |
| /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
 | |
| /// to do this with const float variables even if those variables
 | |
| /// aren't marked 'constexpr'.
 | |
| enum ConstantEmissionKind {
 | |
|   CEK_None,
 | |
|   CEK_AsReferenceOnly,
 | |
|   CEK_AsValueOrReference,
 | |
|   CEK_AsValueOnly
 | |
| };
 | |
| static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
 | |
|   type = type.getCanonicalType();
 | |
|   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
 | |
|     if (isConstantEmittableObjectType(ref->getPointeeType()))
 | |
|       return CEK_AsValueOrReference;
 | |
|     return CEK_AsReferenceOnly;
 | |
|   }
 | |
|   if (isConstantEmittableObjectType(type))
 | |
|     return CEK_AsValueOnly;
 | |
|   return CEK_None;
 | |
| }
 | |
| 
 | |
| /// Try to emit a reference to the given value without producing it as
 | |
| /// an l-value.  This is just an optimization, but it avoids us needing
 | |
| /// to emit global copies of variables if they're named without triggering
 | |
| /// a formal use in a context where we can't emit a direct reference to them,
 | |
| /// for instance if a block or lambda or a member of a local class uses a
 | |
| /// const int variable or constexpr variable from an enclosing function.
 | |
| CodeGenFunction::ConstantEmission
 | |
| CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
 | |
|   ValueDecl *value = refExpr->getDecl();
 | |
| 
 | |
|   // The value needs to be an enum constant or a constant variable.
 | |
|   ConstantEmissionKind CEK;
 | |
|   if (isa<ParmVarDecl>(value)) {
 | |
|     CEK = CEK_None;
 | |
|   } else if (auto *var = dyn_cast<VarDecl>(value)) {
 | |
|     CEK = checkVarTypeForConstantEmission(var->getType());
 | |
|   } else if (isa<EnumConstantDecl>(value)) {
 | |
|     CEK = CEK_AsValueOnly;
 | |
|   } else {
 | |
|     CEK = CEK_None;
 | |
|   }
 | |
|   if (CEK == CEK_None) return ConstantEmission();
 | |
| 
 | |
|   Expr::EvalResult result;
 | |
|   bool resultIsReference;
 | |
|   QualType resultType;
 | |
| 
 | |
|   // It's best to evaluate all the way as an r-value if that's permitted.
 | |
|   if (CEK != CEK_AsReferenceOnly &&
 | |
|       refExpr->EvaluateAsRValue(result, getContext())) {
 | |
|     resultIsReference = false;
 | |
|     resultType = refExpr->getType();
 | |
| 
 | |
|   // Otherwise, try to evaluate as an l-value.
 | |
|   } else if (CEK != CEK_AsValueOnly &&
 | |
|              refExpr->EvaluateAsLValue(result, getContext())) {
 | |
|     resultIsReference = true;
 | |
|     resultType = value->getType();
 | |
| 
 | |
|   // Failure.
 | |
|   } else {
 | |
|     return ConstantEmission();
 | |
|   }
 | |
| 
 | |
|   // In any case, if the initializer has side-effects, abandon ship.
 | |
|   if (result.HasSideEffects)
 | |
|     return ConstantEmission();
 | |
| 
 | |
|   // In CUDA/HIP device compilation, a lambda may capture a reference variable
 | |
|   // referencing a global host variable by copy. In this case the lambda should
 | |
|   // make a copy of the value of the global host variable. The DRE of the
 | |
|   // captured reference variable cannot be emitted as load from the host
 | |
|   // global variable as compile time constant, since the host variable is not
 | |
|   // accessible on device. The DRE of the captured reference variable has to be
 | |
|   // loaded from captures.
 | |
|   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
 | |
|       refExpr->refersToEnclosingVariableOrCapture()) {
 | |
|     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
 | |
|     if (MD && MD->getParent()->isLambda() &&
 | |
|         MD->getOverloadedOperator() == OO_Call) {
 | |
|       const APValue::LValueBase &base = result.Val.getLValueBase();
 | |
|       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
 | |
|         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
 | |
|           if (!VD->hasAttr<CUDADeviceAttr>()) {
 | |
|             return ConstantEmission();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emit as a constant.
 | |
|   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
 | |
|                                                result.Val, resultType);
 | |
| 
 | |
|   // Make sure we emit a debug reference to the global variable.
 | |
|   // This should probably fire even for
 | |
|   if (isa<VarDecl>(value)) {
 | |
|     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
 | |
|       EmitDeclRefExprDbgValue(refExpr, result.Val);
 | |
|   } else {
 | |
|     assert(isa<EnumConstantDecl>(value));
 | |
|     EmitDeclRefExprDbgValue(refExpr, result.Val);
 | |
|   }
 | |
| 
 | |
|   // If we emitted a reference constant, we need to dereference that.
 | |
|   if (resultIsReference)
 | |
|     return ConstantEmission::forReference(C);
 | |
| 
 | |
|   return ConstantEmission::forValue(C);
 | |
| }
 | |
| 
 | |
| static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
 | |
|                                                         const MemberExpr *ME) {
 | |
|   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
 | |
|     // Try to emit static variable member expressions as DREs.
 | |
|     return DeclRefExpr::Create(
 | |
|         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
 | |
|         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
 | |
|         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| CodeGenFunction::ConstantEmission
 | |
| CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
 | |
|   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
 | |
|     return tryEmitAsConstant(DRE);
 | |
|   return ConstantEmission();
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::emitScalarConstant(
 | |
|     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
 | |
|   assert(Constant && "not a constant");
 | |
|   if (Constant.isReference())
 | |
|     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
 | |
|                             E->getExprLoc())
 | |
|         .getScalarVal();
 | |
|   return Constant.getValue();
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
 | |
|                                                SourceLocation Loc) {
 | |
|   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
 | |
|                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
 | |
|                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
 | |
| }
 | |
| 
 | |
| static bool hasBooleanRepresentation(QualType Ty) {
 | |
|   if (Ty->isBooleanType())
 | |
|     return true;
 | |
| 
 | |
|   if (const EnumType *ET = Ty->getAs<EnumType>())
 | |
|     return ET->getDecl()->getIntegerType()->isBooleanType();
 | |
| 
 | |
|   if (const AtomicType *AT = Ty->getAs<AtomicType>())
 | |
|     return hasBooleanRepresentation(AT->getValueType());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
 | |
|                             llvm::APInt &Min, llvm::APInt &End,
 | |
|                             bool StrictEnums, bool IsBool) {
 | |
|   const EnumType *ET = Ty->getAs<EnumType>();
 | |
|   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
 | |
|                                 ET && !ET->getDecl()->isFixed();
 | |
|   if (!IsBool && !IsRegularCPlusPlusEnum)
 | |
|     return false;
 | |
| 
 | |
|   if (IsBool) {
 | |
|     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
 | |
|     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
 | |
|   } else {
 | |
|     const EnumDecl *ED = ET->getDecl();
 | |
|     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
 | |
|     unsigned Bitwidth = LTy->getScalarSizeInBits();
 | |
|     unsigned NumNegativeBits = ED->getNumNegativeBits();
 | |
|     unsigned NumPositiveBits = ED->getNumPositiveBits();
 | |
| 
 | |
|     if (NumNegativeBits) {
 | |
|       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
 | |
|       assert(NumBits <= Bitwidth);
 | |
|       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
 | |
|       Min = -End;
 | |
|     } else {
 | |
|       assert(NumPositiveBits <= Bitwidth);
 | |
|       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
 | |
|       Min = llvm::APInt(Bitwidth, 0);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
 | |
|   llvm::APInt Min, End;
 | |
|   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
 | |
|                        hasBooleanRepresentation(Ty)))
 | |
|     return nullptr;
 | |
| 
 | |
|   llvm::MDBuilder MDHelper(getLLVMContext());
 | |
|   return MDHelper.createRange(Min, End);
 | |
| }
 | |
| 
 | |
| bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
 | |
|                                            SourceLocation Loc) {
 | |
|   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
 | |
|   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
 | |
|   if (!HasBoolCheck && !HasEnumCheck)
 | |
|     return false;
 | |
| 
 | |
|   bool IsBool = hasBooleanRepresentation(Ty) ||
 | |
|                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
 | |
|   bool NeedsBoolCheck = HasBoolCheck && IsBool;
 | |
|   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
 | |
|   if (!NeedsBoolCheck && !NeedsEnumCheck)
 | |
|     return false;
 | |
| 
 | |
|   // Single-bit booleans don't need to be checked. Special-case this to avoid
 | |
|   // a bit width mismatch when handling bitfield values. This is handled by
 | |
|   // EmitFromMemory for the non-bitfield case.
 | |
|   if (IsBool &&
 | |
|       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
 | |
|     return false;
 | |
| 
 | |
|   llvm::APInt Min, End;
 | |
|   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
 | |
|     return true;
 | |
| 
 | |
|   auto &Ctx = getLLVMContext();
 | |
|   SanitizerScope SanScope(this);
 | |
|   llvm::Value *Check;
 | |
|   --End;
 | |
|   if (!Min) {
 | |
|     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
 | |
|   } else {
 | |
|     llvm::Value *Upper =
 | |
|         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
 | |
|     llvm::Value *Lower =
 | |
|         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
 | |
|     Check = Builder.CreateAnd(Upper, Lower);
 | |
|   }
 | |
|   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
 | |
|                                   EmitCheckTypeDescriptor(Ty)};
 | |
|   SanitizerMask Kind =
 | |
|       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
 | |
|   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
 | |
|             StaticArgs, EmitCheckValue(Value));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
 | |
|                                                QualType Ty,
 | |
|                                                SourceLocation Loc,
 | |
|                                                LValueBaseInfo BaseInfo,
 | |
|                                                TBAAAccessInfo TBAAInfo,
 | |
|                                                bool isNontemporal) {
 | |
|   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
 | |
|     // For better performance, handle vector loads differently.
 | |
|     if (Ty->isVectorType()) {
 | |
|       const llvm::Type *EltTy = Addr.getElementType();
 | |
| 
 | |
|       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
 | |
| 
 | |
|       // Handle vectors of size 3 like size 4 for better performance.
 | |
|       if (VTy->getNumElements() == 3) {
 | |
| 
 | |
|         // Bitcast to vec4 type.
 | |
|         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
 | |
|         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
 | |
|         // Now load value.
 | |
|         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
 | |
| 
 | |
|         // Shuffle vector to get vec3.
 | |
|         V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2},
 | |
|                                         "extractVec");
 | |
|         return EmitFromMemory(V, Ty);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Atomic operations have to be done on integral types.
 | |
|   LValue AtomicLValue =
 | |
|       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
 | |
|   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
 | |
|     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
 | |
|   }
 | |
| 
 | |
|   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
 | |
|   if (isNontemporal) {
 | |
|     llvm::MDNode *Node = llvm::MDNode::get(
 | |
|         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
 | |
|     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
 | |
|   }
 | |
| 
 | |
|   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
 | |
| 
 | |
|   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
 | |
|     // In order to prevent the optimizer from throwing away the check, don't
 | |
|     // attach range metadata to the load.
 | |
|   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
 | |
|     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
 | |
|       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
 | |
| 
 | |
|   return EmitFromMemory(Load, Ty);
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
 | |
|   // Bool has a different representation in memory than in registers.
 | |
|   if (hasBooleanRepresentation(Ty)) {
 | |
|     // This should really always be an i1, but sometimes it's already
 | |
|     // an i8, and it's awkward to track those cases down.
 | |
|     if (Value->getType()->isIntegerTy(1))
 | |
|       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
 | |
|     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
 | |
|            "wrong value rep of bool");
 | |
|   }
 | |
| 
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
 | |
|   // Bool has a different representation in memory than in registers.
 | |
|   if (hasBooleanRepresentation(Ty)) {
 | |
|     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
 | |
|            "wrong value rep of bool");
 | |
|     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
 | |
|   }
 | |
| 
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| // Convert the pointer of \p Addr to a pointer to a vector (the value type of
 | |
| // MatrixType), if it points to a array (the memory type of MatrixType).
 | |
| static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
 | |
|                                          bool IsVector = true) {
 | |
|   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
 | |
|       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
 | |
|   if (ArrayTy && IsVector) {
 | |
|     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
 | |
|                                                 ArrayTy->getNumElements());
 | |
| 
 | |
|     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
 | |
|   }
 | |
|   auto *VectorTy = dyn_cast<llvm::VectorType>(
 | |
|       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
 | |
|   if (VectorTy && !IsVector) {
 | |
|     auto *ArrayTy = llvm::ArrayType::get(
 | |
|         VectorTy->getElementType(),
 | |
|         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
 | |
| 
 | |
|     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
 | |
|   }
 | |
| 
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| // Emit a store of a matrix LValue. This may require casting the original
 | |
| // pointer to memory address (ArrayType) to a pointer to the value type
 | |
| // (VectorType).
 | |
| static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
 | |
|                                     bool isInit, CodeGenFunction &CGF) {
 | |
|   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
 | |
|                                            value->getType()->isVectorTy());
 | |
|   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
 | |
|                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
 | |
|                         lvalue.isNontemporal());
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
 | |
|                                         bool Volatile, QualType Ty,
 | |
|                                         LValueBaseInfo BaseInfo,
 | |
|                                         TBAAAccessInfo TBAAInfo,
 | |
|                                         bool isInit, bool isNontemporal) {
 | |
|   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
 | |
|     // Handle vectors differently to get better performance.
 | |
|     if (Ty->isVectorType()) {
 | |
|       llvm::Type *SrcTy = Value->getType();
 | |
|       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
 | |
|       // Handle vec3 special.
 | |
|       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
 | |
|         // Our source is a vec3, do a shuffle vector to make it a vec4.
 | |
|         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
 | |
|                                             "extractVec");
 | |
|         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
 | |
|       }
 | |
|       if (Addr.getElementType() != SrcTy) {
 | |
|         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Value = EmitToMemory(Value, Ty);
 | |
| 
 | |
|   LValue AtomicLValue =
 | |
|       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
 | |
|   if (Ty->isAtomicType() ||
 | |
|       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
 | |
|     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
 | |
|   if (isNontemporal) {
 | |
|     llvm::MDNode *Node =
 | |
|         llvm::MDNode::get(Store->getContext(),
 | |
|                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
 | |
|     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
 | |
|   }
 | |
| 
 | |
|   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
 | |
|                                         bool isInit) {
 | |
|   if (lvalue.getType()->isConstantMatrixType()) {
 | |
|     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
 | |
|                     lvalue.getType(), lvalue.getBaseInfo(),
 | |
|                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
 | |
| }
 | |
| 
 | |
| // Emit a load of a LValue of matrix type. This may require casting the pointer
 | |
| // to memory address (ArrayType) to a pointer to the value type (VectorType).
 | |
| static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
 | |
|                                      CodeGenFunction &CGF) {
 | |
|   assert(LV.getType()->isConstantMatrixType());
 | |
|   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
 | |
|   LV.setAddress(Addr);
 | |
|   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
 | |
| }
 | |
| 
 | |
| /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
 | |
| /// method emits the address of the lvalue, then loads the result as an rvalue,
 | |
| /// returning the rvalue.
 | |
| RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
 | |
|   if (LV.isObjCWeak()) {
 | |
|     // load of a __weak object.
 | |
|     Address AddrWeakObj = LV.getAddress(*this);
 | |
|     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
 | |
|                                                              AddrWeakObj));
 | |
|   }
 | |
|   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
 | |
|     // In MRC mode, we do a load+autorelease.
 | |
|     if (!getLangOpts().ObjCAutoRefCount) {
 | |
|       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
 | |
|     }
 | |
| 
 | |
|     // In ARC mode, we load retained and then consume the value.
 | |
|     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
 | |
|     Object = EmitObjCConsumeObject(LV.getType(), Object);
 | |
|     return RValue::get(Object);
 | |
|   }
 | |
| 
 | |
|   if (LV.isSimple()) {
 | |
|     assert(!LV.getType()->isFunctionType());
 | |
| 
 | |
|     if (LV.getType()->isConstantMatrixType())
 | |
|       return EmitLoadOfMatrixLValue(LV, Loc, *this);
 | |
| 
 | |
|     // Everything needs a load.
 | |
|     return RValue::get(EmitLoadOfScalar(LV, Loc));
 | |
|   }
 | |
| 
 | |
|   if (LV.isVectorElt()) {
 | |
|     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
 | |
|                                               LV.isVolatileQualified());
 | |
|     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
 | |
|                                                     "vecext"));
 | |
|   }
 | |
| 
 | |
|   // If this is a reference to a subset of the elements of a vector, either
 | |
|   // shuffle the input or extract/insert them as appropriate.
 | |
|   if (LV.isExtVectorElt()) {
 | |
|     return EmitLoadOfExtVectorElementLValue(LV);
 | |
|   }
 | |
| 
 | |
|   // Global Register variables always invoke intrinsics
 | |
|   if (LV.isGlobalReg())
 | |
|     return EmitLoadOfGlobalRegLValue(LV);
 | |
| 
 | |
|   if (LV.isMatrixElt()) {
 | |
|     llvm::LoadInst *Load =
 | |
|         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
 | |
|     return RValue::get(
 | |
|         Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext"));
 | |
|   }
 | |
| 
 | |
|   assert(LV.isBitField() && "Unknown LValue type!");
 | |
|   return EmitLoadOfBitfieldLValue(LV, Loc);
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
 | |
|                                                  SourceLocation Loc) {
 | |
|   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
 | |
| 
 | |
|   // Get the output type.
 | |
|   llvm::Type *ResLTy = ConvertType(LV.getType());
 | |
| 
 | |
|   Address Ptr = LV.getBitFieldAddress();
 | |
|   llvm::Value *Val =
 | |
|       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
 | |
| 
 | |
|   bool UseVolatile = LV.isVolatileQualified() &&
 | |
|                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
 | |
|   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
 | |
|   const unsigned StorageSize =
 | |
|       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
 | |
|   if (Info.IsSigned) {
 | |
|     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
 | |
|     unsigned HighBits = StorageSize - Offset - Info.Size;
 | |
|     if (HighBits)
 | |
|       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
 | |
|     if (Offset + HighBits)
 | |
|       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
 | |
|   } else {
 | |
|     if (Offset)
 | |
|       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
 | |
|     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
 | |
|       Val = Builder.CreateAnd(
 | |
|           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
 | |
|   }
 | |
|   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
 | |
|   EmitScalarRangeCheck(Val, LV.getType(), Loc);
 | |
|   return RValue::get(Val);
 | |
| }
 | |
| 
 | |
| // If this is a reference to a subset of the elements of a vector, create an
 | |
| // appropriate shufflevector.
 | |
| RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
 | |
|   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
 | |
|                                         LV.isVolatileQualified());
 | |
| 
 | |
|   const llvm::Constant *Elts = LV.getExtVectorElts();
 | |
| 
 | |
|   // If the result of the expression is a non-vector type, we must be extracting
 | |
|   // a single element.  Just codegen as an extractelement.
 | |
|   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
 | |
|   if (!ExprVT) {
 | |
|     unsigned InIdx = getAccessedFieldNo(0, Elts);
 | |
|     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
 | |
|     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
 | |
|   }
 | |
| 
 | |
|   // Always use shuffle vector to try to retain the original program structure
 | |
|   unsigned NumResultElts = ExprVT->getNumElements();
 | |
| 
 | |
|   SmallVector<int, 4> Mask;
 | |
|   for (unsigned i = 0; i != NumResultElts; ++i)
 | |
|     Mask.push_back(getAccessedFieldNo(i, Elts));
 | |
| 
 | |
|   Vec = Builder.CreateShuffleVector(Vec, Mask);
 | |
|   return RValue::get(Vec);
 | |
| }
 | |
| 
 | |
| /// Generates lvalue for partial ext_vector access.
 | |
| Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
 | |
|   Address VectorAddress = LV.getExtVectorAddress();
 | |
|   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
 | |
|   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
 | |
| 
 | |
|   Address CastToPointerElement =
 | |
|     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
 | |
|                                  "conv.ptr.element");
 | |
| 
 | |
|   const llvm::Constant *Elts = LV.getExtVectorElts();
 | |
|   unsigned ix = getAccessedFieldNo(0, Elts);
 | |
| 
 | |
|   Address VectorBasePtrPlusIx =
 | |
|     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
 | |
|                                    "vector.elt");
 | |
| 
 | |
|   return VectorBasePtrPlusIx;
 | |
| }
 | |
| 
 | |
| /// Load of global gamed gegisters are always calls to intrinsics.
 | |
| RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
 | |
|   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
 | |
|          "Bad type for register variable");
 | |
|   llvm::MDNode *RegName = cast<llvm::MDNode>(
 | |
|       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
 | |
| 
 | |
|   // We accept integer and pointer types only
 | |
|   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
 | |
|   llvm::Type *Ty = OrigTy;
 | |
|   if (OrigTy->isPointerTy())
 | |
|     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
 | |
|   llvm::Type *Types[] = { Ty };
 | |
| 
 | |
|   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
 | |
|   llvm::Value *Call = Builder.CreateCall(
 | |
|       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
 | |
|   if (OrigTy->isPointerTy())
 | |
|     Call = Builder.CreateIntToPtr(Call, OrigTy);
 | |
|   return RValue::get(Call);
 | |
| }
 | |
| 
 | |
| /// EmitStoreThroughLValue - Store the specified rvalue into the specified
 | |
| /// lvalue, where both are guaranteed to the have the same type, and that type
 | |
| /// is 'Ty'.
 | |
| void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
 | |
|                                              bool isInit) {
 | |
|   if (!Dst.isSimple()) {
 | |
|     if (Dst.isVectorElt()) {
 | |
|       // Read/modify/write the vector, inserting the new element.
 | |
|       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
 | |
|                                             Dst.isVolatileQualified());
 | |
|       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
 | |
|                                         Dst.getVectorIdx(), "vecins");
 | |
|       Builder.CreateStore(Vec, Dst.getVectorAddress(),
 | |
|                           Dst.isVolatileQualified());
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If this is an update of extended vector elements, insert them as
 | |
|     // appropriate.
 | |
|     if (Dst.isExtVectorElt())
 | |
|       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
 | |
| 
 | |
|     if (Dst.isGlobalReg())
 | |
|       return EmitStoreThroughGlobalRegLValue(Src, Dst);
 | |
| 
 | |
|     if (Dst.isMatrixElt()) {
 | |
|       llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress());
 | |
|       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
 | |
|                                         Dst.getMatrixIdx(), "matins");
 | |
|       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
 | |
|                           Dst.isVolatileQualified());
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     assert(Dst.isBitField() && "Unknown LValue type");
 | |
|     return EmitStoreThroughBitfieldLValue(Src, Dst);
 | |
|   }
 | |
| 
 | |
|   // There's special magic for assigning into an ARC-qualified l-value.
 | |
|   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
 | |
|     switch (Lifetime) {
 | |
|     case Qualifiers::OCL_None:
 | |
|       llvm_unreachable("present but none");
 | |
| 
 | |
|     case Qualifiers::OCL_ExplicitNone:
 | |
|       // nothing special
 | |
|       break;
 | |
| 
 | |
|     case Qualifiers::OCL_Strong:
 | |
|       if (isInit) {
 | |
|         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
 | |
|         break;
 | |
|       }
 | |
|       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
 | |
|       return;
 | |
| 
 | |
|     case Qualifiers::OCL_Weak:
 | |
|       if (isInit)
 | |
|         // Initialize and then skip the primitive store.
 | |
|         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
 | |
|       else
 | |
|         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
 | |
|                          /*ignore*/ true);
 | |
|       return;
 | |
| 
 | |
|     case Qualifiers::OCL_Autoreleasing:
 | |
|       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
 | |
|                                                      Src.getScalarVal()));
 | |
|       // fall into the normal path
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
 | |
|     // load of a __weak object.
 | |
|     Address LvalueDst = Dst.getAddress(*this);
 | |
|     llvm::Value *src = Src.getScalarVal();
 | |
|      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
 | |
|     // load of a __strong object.
 | |
|     Address LvalueDst = Dst.getAddress(*this);
 | |
|     llvm::Value *src = Src.getScalarVal();
 | |
|     if (Dst.isObjCIvar()) {
 | |
|       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
 | |
|       llvm::Type *ResultType = IntPtrTy;
 | |
|       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
 | |
|       llvm::Value *RHS = dst.getPointer();
 | |
|       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
 | |
|       llvm::Value *LHS =
 | |
|         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
 | |
|                                "sub.ptr.lhs.cast");
 | |
|       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
 | |
|       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
 | |
|                                               BytesBetween);
 | |
|     } else if (Dst.isGlobalObjCRef()) {
 | |
|       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
 | |
|                                                 Dst.isThreadLocalRef());
 | |
|     }
 | |
|     else
 | |
|       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(Src.isScalar() && "Can't emit an agg store with this method");
 | |
|   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
 | |
|                                                      llvm::Value **Result) {
 | |
|   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
 | |
|   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
 | |
|   Address Ptr = Dst.getBitFieldAddress();
 | |
| 
 | |
|   // Get the source value, truncated to the width of the bit-field.
 | |
|   llvm::Value *SrcVal = Src.getScalarVal();
 | |
| 
 | |
|   // Cast the source to the storage type and shift it into place.
 | |
|   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
 | |
|                                  /*isSigned=*/false);
 | |
|   llvm::Value *MaskedVal = SrcVal;
 | |
| 
 | |
|   const bool UseVolatile =
 | |
|       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
 | |
|       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
 | |
|   const unsigned StorageSize =
 | |
|       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
 | |
|   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
 | |
|   // See if there are other bits in the bitfield's storage we'll need to load
 | |
|   // and mask together with source before storing.
 | |
|   if (StorageSize != Info.Size) {
 | |
|     assert(StorageSize > Info.Size && "Invalid bitfield size.");
 | |
|     llvm::Value *Val =
 | |
|         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
 | |
| 
 | |
|     // Mask the source value as needed.
 | |
|     if (!hasBooleanRepresentation(Dst.getType()))
 | |
|       SrcVal = Builder.CreateAnd(
 | |
|           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
 | |
|           "bf.value");
 | |
|     MaskedVal = SrcVal;
 | |
|     if (Offset)
 | |
|       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
 | |
| 
 | |
|     // Mask out the original value.
 | |
|     Val = Builder.CreateAnd(
 | |
|         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
 | |
|         "bf.clear");
 | |
| 
 | |
|     // Or together the unchanged values and the source value.
 | |
|     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
 | |
|   } else {
 | |
|     assert(Offset == 0);
 | |
|     // According to the AACPS:
 | |
|     // When a volatile bit-field is written, and its container does not overlap
 | |
|     // with any non-bit-field member, its container must be read exactly once
 | |
|     // and written exactly once using the access width appropriate to the type
 | |
|     // of the container. The two accesses are not atomic.
 | |
|     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
 | |
|         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
 | |
|       Builder.CreateLoad(Ptr, true, "bf.load");
 | |
|   }
 | |
| 
 | |
|   // Write the new value back out.
 | |
|   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
 | |
| 
 | |
|   // Return the new value of the bit-field, if requested.
 | |
|   if (Result) {
 | |
|     llvm::Value *ResultVal = MaskedVal;
 | |
| 
 | |
|     // Sign extend the value if needed.
 | |
|     if (Info.IsSigned) {
 | |
|       assert(Info.Size <= StorageSize);
 | |
|       unsigned HighBits = StorageSize - Info.Size;
 | |
|       if (HighBits) {
 | |
|         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
 | |
|         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
 | |
|                                       "bf.result.cast");
 | |
|     *Result = EmitFromMemory(ResultVal, Dst.getType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
 | |
|                                                                LValue Dst) {
 | |
|   // This access turns into a read/modify/write of the vector.  Load the input
 | |
|   // value now.
 | |
|   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
 | |
|                                         Dst.isVolatileQualified());
 | |
|   const llvm::Constant *Elts = Dst.getExtVectorElts();
 | |
| 
 | |
|   llvm::Value *SrcVal = Src.getScalarVal();
 | |
| 
 | |
|   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
 | |
|     unsigned NumSrcElts = VTy->getNumElements();
 | |
|     unsigned NumDstElts =
 | |
|         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
 | |
|     if (NumDstElts == NumSrcElts) {
 | |
|       // Use shuffle vector is the src and destination are the same number of
 | |
|       // elements and restore the vector mask since it is on the side it will be
 | |
|       // stored.
 | |
|       SmallVector<int, 4> Mask(NumDstElts);
 | |
|       for (unsigned i = 0; i != NumSrcElts; ++i)
 | |
|         Mask[getAccessedFieldNo(i, Elts)] = i;
 | |
| 
 | |
|       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
 | |
|     } else if (NumDstElts > NumSrcElts) {
 | |
|       // Extended the source vector to the same length and then shuffle it
 | |
|       // into the destination.
 | |
|       // FIXME: since we're shuffling with undef, can we just use the indices
 | |
|       //        into that?  This could be simpler.
 | |
|       SmallVector<int, 4> ExtMask;
 | |
|       for (unsigned i = 0; i != NumSrcElts; ++i)
 | |
|         ExtMask.push_back(i);
 | |
|       ExtMask.resize(NumDstElts, -1);
 | |
|       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
 | |
|       // build identity
 | |
|       SmallVector<int, 4> Mask;
 | |
|       for (unsigned i = 0; i != NumDstElts; ++i)
 | |
|         Mask.push_back(i);
 | |
| 
 | |
|       // When the vector size is odd and .odd or .hi is used, the last element
 | |
|       // of the Elts constant array will be one past the size of the vector.
 | |
|       // Ignore the last element here, if it is greater than the mask size.
 | |
|       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
 | |
|         NumSrcElts--;
 | |
| 
 | |
|       // modify when what gets shuffled in
 | |
|       for (unsigned i = 0; i != NumSrcElts; ++i)
 | |
|         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
 | |
|       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
 | |
|     } else {
 | |
|       // We should never shorten the vector
 | |
|       llvm_unreachable("unexpected shorten vector length");
 | |
|     }
 | |
|   } else {
 | |
|     // If the Src is a scalar (not a vector) it must be updating one element.
 | |
|     unsigned InIdx = getAccessedFieldNo(0, Elts);
 | |
|     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
 | |
|     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
 | |
|   }
 | |
| 
 | |
|   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
 | |
|                       Dst.isVolatileQualified());
 | |
| }
 | |
| 
 | |
| /// Store of global named registers are always calls to intrinsics.
 | |
| void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
 | |
|   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
 | |
|          "Bad type for register variable");
 | |
|   llvm::MDNode *RegName = cast<llvm::MDNode>(
 | |
|       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
 | |
|   assert(RegName && "Register LValue is not metadata");
 | |
| 
 | |
|   // We accept integer and pointer types only
 | |
|   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
 | |
|   llvm::Type *Ty = OrigTy;
 | |
|   if (OrigTy->isPointerTy())
 | |
|     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
 | |
|   llvm::Type *Types[] = { Ty };
 | |
| 
 | |
|   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
 | |
|   llvm::Value *Value = Src.getScalarVal();
 | |
|   if (OrigTy->isPointerTy())
 | |
|     Value = Builder.CreatePtrToInt(Value, Ty);
 | |
|   Builder.CreateCall(
 | |
|       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
 | |
| }
 | |
| 
 | |
| // setObjCGCLValueClass - sets class of the lvalue for the purpose of
 | |
| // generating write-barries API. It is currently a global, ivar,
 | |
| // or neither.
 | |
| static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
 | |
|                                  LValue &LV,
 | |
|                                  bool IsMemberAccess=false) {
 | |
|   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
 | |
|     return;
 | |
| 
 | |
|   if (isa<ObjCIvarRefExpr>(E)) {
 | |
|     QualType ExpTy = E->getType();
 | |
|     if (IsMemberAccess && ExpTy->isPointerType()) {
 | |
|       // If ivar is a structure pointer, assigning to field of
 | |
|       // this struct follows gcc's behavior and makes it a non-ivar
 | |
|       // writer-barrier conservatively.
 | |
|       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
 | |
|       if (ExpTy->isRecordType()) {
 | |
|         LV.setObjCIvar(false);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     LV.setObjCIvar(true);
 | |
|     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
 | |
|     LV.setBaseIvarExp(Exp->getBase());
 | |
|     LV.setObjCArray(E->getType()->isArrayType());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
 | |
|     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
 | |
|       if (VD->hasGlobalStorage()) {
 | |
|         LV.setGlobalObjCRef(true);
 | |
|         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
 | |
|       }
 | |
|     }
 | |
|     LV.setObjCArray(E->getType()->isArrayType());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | |
|     if (LV.isObjCIvar()) {
 | |
|       // If cast is to a structure pointer, follow gcc's behavior and make it
 | |
|       // a non-ivar write-barrier.
 | |
|       QualType ExpTy = E->getType();
 | |
|       if (ExpTy->isPointerType())
 | |
|         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
 | |
|       if (ExpTy->isRecordType())
 | |
|         LV.setObjCIvar(false);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
 | |
|     if (LV.isObjCIvar() && !LV.isObjCArray())
 | |
|       // Using array syntax to assigning to what an ivar points to is not
 | |
|       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
 | |
|       LV.setObjCIvar(false);
 | |
|     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
 | |
|       // Using array syntax to assigning to what global points to is not
 | |
|       // same as assigning to the global itself. {id *G;} G[i] = 0;
 | |
|       LV.setGlobalObjCRef(false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
 | |
|     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
 | |
|     // We don't know if member is an 'ivar', but this flag is looked at
 | |
|     // only in the context of LV.isObjCIvar().
 | |
|     LV.setObjCArray(E->getType()->isArrayType());
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static llvm::Value *
 | |
| EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
 | |
|                                 llvm::Value *V, llvm::Type *IRType,
 | |
|                                 StringRef Name = StringRef()) {
 | |
|   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
 | |
|   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
 | |
| }
 | |
| 
 | |
| static LValue EmitThreadPrivateVarDeclLValue(
 | |
|     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
 | |
|     llvm::Type *RealVarTy, SourceLocation Loc) {
 | |
|   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
 | |
|     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
 | |
|         CGF, VD, Addr, Loc);
 | |
|   else
 | |
|     Addr =
 | |
|         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
 | |
| 
 | |
|   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
 | |
|   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
 | |
|                                            const VarDecl *VD, QualType T) {
 | |
|   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
 | |
|       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
 | |
|   // Return an invalid address if variable is MT_To and unified
 | |
|   // memory is not enabled. For all other cases: MT_Link and
 | |
|   // MT_To with unified memory, return a valid address.
 | |
|   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
 | |
|                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
 | |
|     return Address::invalid();
 | |
|   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
 | |
|           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
 | |
|            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
 | |
|          "Expected link clause OR to clause with unified memory enabled.");
 | |
|   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
 | |
|   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
 | |
|   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
 | |
| }
 | |
| 
 | |
| Address
 | |
| CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
 | |
|                                      LValueBaseInfo *PointeeBaseInfo,
 | |
|                                      TBAAAccessInfo *PointeeTBAAInfo) {
 | |
|   llvm::LoadInst *Load =
 | |
|       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
 | |
|   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
 | |
| 
 | |
|   CharUnits Align = CGM.getNaturalTypeAlignment(
 | |
|       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
 | |
|       /* forPointeeType= */ true);
 | |
|   return Address(Load, Align);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
 | |
|   LValueBaseInfo PointeeBaseInfo;
 | |
|   TBAAAccessInfo PointeeTBAAInfo;
 | |
|   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
 | |
|                                             &PointeeTBAAInfo);
 | |
|   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
 | |
|                         PointeeBaseInfo, PointeeTBAAInfo);
 | |
| }
 | |
| 
 | |
| Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
 | |
|                                            const PointerType *PtrTy,
 | |
|                                            LValueBaseInfo *BaseInfo,
 | |
|                                            TBAAAccessInfo *TBAAInfo) {
 | |
|   llvm::Value *Addr = Builder.CreateLoad(Ptr);
 | |
|   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
 | |
|                                                    BaseInfo, TBAAInfo,
 | |
|                                                    /*forPointeeType=*/true));
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
 | |
|                                                 const PointerType *PtrTy) {
 | |
|   LValueBaseInfo BaseInfo;
 | |
|   TBAAAccessInfo TBAAInfo;
 | |
|   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
 | |
|   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
 | |
| }
 | |
| 
 | |
| static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
 | |
|                                       const Expr *E, const VarDecl *VD) {
 | |
|   QualType T = E->getType();
 | |
| 
 | |
|   // If it's thread_local, emit a call to its wrapper function instead.
 | |
|   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
 | |
|       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
 | |
|     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
 | |
|   // Check if the variable is marked as declare target with link clause in
 | |
|   // device codegen.
 | |
|   if (CGF.getLangOpts().OpenMPIsDevice) {
 | |
|     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
 | |
|     if (Addr.isValid())
 | |
|       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
 | |
|   }
 | |
| 
 | |
|   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
 | |
|   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
 | |
|   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
 | |
|   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
 | |
|   Address Addr(V, Alignment);
 | |
|   // Emit reference to the private copy of the variable if it is an OpenMP
 | |
|   // threadprivate variable.
 | |
|   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
 | |
|       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
 | |
|     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
 | |
|                                           E->getExprLoc());
 | |
|   }
 | |
|   LValue LV = VD->getType()->isReferenceType() ?
 | |
|       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
 | |
|                                     AlignmentSource::Decl) :
 | |
|       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
 | |
|   setObjCGCLValueClass(CGF.getContext(), E, LV);
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
 | |
|                                                GlobalDecl GD) {
 | |
|   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | |
|   if (FD->hasAttr<WeakRefAttr>()) {
 | |
|     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
 | |
|     return aliasee.getPointer();
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
 | |
|   if (!FD->hasPrototype()) {
 | |
|     if (const FunctionProtoType *Proto =
 | |
|             FD->getType()->getAs<FunctionProtoType>()) {
 | |
|       // Ugly case: for a K&R-style definition, the type of the definition
 | |
|       // isn't the same as the type of a use.  Correct for this with a
 | |
|       // bitcast.
 | |
|       QualType NoProtoType =
 | |
|           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
 | |
|       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
 | |
|       V = llvm::ConstantExpr::getBitCast(V,
 | |
|                                       CGM.getTypes().ConvertType(NoProtoType));
 | |
|     }
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
 | |
|                                      GlobalDecl GD) {
 | |
|   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | |
|   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
 | |
|   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
 | |
|   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
 | |
|                             AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
 | |
|                                       llvm::Value *ThisValue) {
 | |
|   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
 | |
|   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
 | |
|   return CGF.EmitLValueForField(LV, FD);
 | |
| }
 | |
| 
 | |
| /// Named Registers are named metadata pointing to the register name
 | |
| /// which will be read from/written to as an argument to the intrinsic
 | |
| /// @llvm.read/write_register.
 | |
| /// So far, only the name is being passed down, but other options such as
 | |
| /// register type, allocation type or even optimization options could be
 | |
| /// passed down via the metadata node.
 | |
| static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
 | |
|   SmallString<64> Name("llvm.named.register.");
 | |
|   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
 | |
|   assert(Asm->getLabel().size() < 64-Name.size() &&
 | |
|       "Register name too big");
 | |
|   Name.append(Asm->getLabel());
 | |
|   llvm::NamedMDNode *M =
 | |
|     CGM.getModule().getOrInsertNamedMetadata(Name);
 | |
|   if (M->getNumOperands() == 0) {
 | |
|     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
 | |
|                                               Asm->getLabel());
 | |
|     llvm::Metadata *Ops[] = {Str};
 | |
|     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
 | |
|   }
 | |
| 
 | |
|   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
 | |
| 
 | |
|   llvm::Value *Ptr =
 | |
|     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
 | |
|   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
 | |
| }
 | |
| 
 | |
| /// Determine whether we can emit a reference to \p VD from the current
 | |
| /// context, despite not necessarily having seen an odr-use of the variable in
 | |
| /// this context.
 | |
| static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
 | |
|                                                const DeclRefExpr *E,
 | |
|                                                const VarDecl *VD,
 | |
|                                                bool IsConstant) {
 | |
|   // For a variable declared in an enclosing scope, do not emit a spurious
 | |
|   // reference even if we have a capture, as that will emit an unwarranted
 | |
|   // reference to our capture state, and will likely generate worse code than
 | |
|   // emitting a local copy.
 | |
|   if (E->refersToEnclosingVariableOrCapture())
 | |
|     return false;
 | |
| 
 | |
|   // For a local declaration declared in this function, we can always reference
 | |
|   // it even if we don't have an odr-use.
 | |
|   if (VD->hasLocalStorage()) {
 | |
|     return VD->getDeclContext() ==
 | |
|            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
 | |
|   }
 | |
| 
 | |
|   // For a global declaration, we can emit a reference to it if we know
 | |
|   // for sure that we are able to emit a definition of it.
 | |
|   VD = VD->getDefinition(CGF.getContext());
 | |
|   if (!VD)
 | |
|     return false;
 | |
| 
 | |
|   // Don't emit a spurious reference if it might be to a variable that only
 | |
|   // exists on a different device / target.
 | |
|   // FIXME: This is unnecessarily broad. Check whether this would actually be a
 | |
|   // cross-target reference.
 | |
|   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
 | |
|       CGF.getLangOpts().OpenCL) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We can emit a spurious reference only if the linkage implies that we'll
 | |
|   // be emitting a non-interposable symbol that will be retained until link
 | |
|   // time.
 | |
|   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
 | |
|   case llvm::GlobalValue::ExternalLinkage:
 | |
|   case llvm::GlobalValue::LinkOnceODRLinkage:
 | |
|   case llvm::GlobalValue::WeakODRLinkage:
 | |
|   case llvm::GlobalValue::InternalLinkage:
 | |
|   case llvm::GlobalValue::PrivateLinkage:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
 | |
|   const NamedDecl *ND = E->getDecl();
 | |
|   QualType T = E->getType();
 | |
| 
 | |
|   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
 | |
|          "should not emit an unevaluated operand");
 | |
| 
 | |
|   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
 | |
|     // Global Named registers access via intrinsics only
 | |
|     if (VD->getStorageClass() == SC_Register &&
 | |
|         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
 | |
|       return EmitGlobalNamedRegister(VD, CGM);
 | |
| 
 | |
|     // If this DeclRefExpr does not constitute an odr-use of the variable,
 | |
|     // we're not permitted to emit a reference to it in general, and it might
 | |
|     // not be captured if capture would be necessary for a use. Emit the
 | |
|     // constant value directly instead.
 | |
|     if (E->isNonOdrUse() == NOUR_Constant &&
 | |
|         (VD->getType()->isReferenceType() ||
 | |
|          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
 | |
|       VD->getAnyInitializer(VD);
 | |
|       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
 | |
|           E->getLocation(), *VD->evaluateValue(), VD->getType());
 | |
|       assert(Val && "failed to emit constant expression");
 | |
| 
 | |
|       Address Addr = Address::invalid();
 | |
|       if (!VD->getType()->isReferenceType()) {
 | |
|         // Spill the constant value to a global.
 | |
|         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
 | |
|                                            getContext().getDeclAlign(VD));
 | |
|         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
 | |
|         auto *PTy = llvm::PointerType::get(
 | |
|             VarTy, getContext().getTargetAddressSpace(VD->getType()));
 | |
|         if (PTy != Addr.getType())
 | |
|           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
 | |
|       } else {
 | |
|         // Should we be using the alignment of the constant pointer we emitted?
 | |
|         CharUnits Alignment =
 | |
|             CGM.getNaturalTypeAlignment(E->getType(),
 | |
|                                         /* BaseInfo= */ nullptr,
 | |
|                                         /* TBAAInfo= */ nullptr,
 | |
|                                         /* forPointeeType= */ true);
 | |
|         Addr = Address(Val, Alignment);
 | |
|       }
 | |
|       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
 | |
|     }
 | |
| 
 | |
|     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
 | |
| 
 | |
|     // Check for captured variables.
 | |
|     if (E->refersToEnclosingVariableOrCapture()) {
 | |
|       VD = VD->getCanonicalDecl();
 | |
|       if (auto *FD = LambdaCaptureFields.lookup(VD))
 | |
|         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
 | |
|       if (CapturedStmtInfo) {
 | |
|         auto I = LocalDeclMap.find(VD);
 | |
|         if (I != LocalDeclMap.end()) {
 | |
|           LValue CapLVal;
 | |
|           if (VD->getType()->isReferenceType())
 | |
|             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
 | |
|                                                 AlignmentSource::Decl);
 | |
|           else
 | |
|             CapLVal = MakeAddrLValue(I->second, T);
 | |
|           // Mark lvalue as nontemporal if the variable is marked as nontemporal
 | |
|           // in simd context.
 | |
|           if (getLangOpts().OpenMP &&
 | |
|               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
 | |
|             CapLVal.setNontemporal(/*Value=*/true);
 | |
|           return CapLVal;
 | |
|         }
 | |
|         LValue CapLVal =
 | |
|             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
 | |
|                                     CapturedStmtInfo->getContextValue());
 | |
|         CapLVal = MakeAddrLValue(
 | |
|             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
 | |
|             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
 | |
|             CapLVal.getTBAAInfo());
 | |
|         // Mark lvalue as nontemporal if the variable is marked as nontemporal
 | |
|         // in simd context.
 | |
|         if (getLangOpts().OpenMP &&
 | |
|             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
 | |
|           CapLVal.setNontemporal(/*Value=*/true);
 | |
|         return CapLVal;
 | |
|       }
 | |
| 
 | |
|       assert(isa<BlockDecl>(CurCodeDecl));
 | |
|       Address addr = GetAddrOfBlockDecl(VD);
 | |
|       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: We should be able to assert this for FunctionDecls as well!
 | |
|   // FIXME: We should be able to assert this for all DeclRefExprs, not just
 | |
|   // those with a valid source location.
 | |
|   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
 | |
|           !E->getLocation().isValid()) &&
 | |
|          "Should not use decl without marking it used!");
 | |
| 
 | |
|   if (ND->hasAttr<WeakRefAttr>()) {
 | |
|     const auto *VD = cast<ValueDecl>(ND);
 | |
|     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
 | |
|     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
 | |
|   }
 | |
| 
 | |
|   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
 | |
|     // Check if this is a global variable.
 | |
|     if (VD->hasLinkage() || VD->isStaticDataMember())
 | |
|       return EmitGlobalVarDeclLValue(*this, E, VD);
 | |
| 
 | |
|     Address addr = Address::invalid();
 | |
| 
 | |
|     // The variable should generally be present in the local decl map.
 | |
|     auto iter = LocalDeclMap.find(VD);
 | |
|     if (iter != LocalDeclMap.end()) {
 | |
|       addr = iter->second;
 | |
| 
 | |
|     // Otherwise, it might be static local we haven't emitted yet for
 | |
|     // some reason; most likely, because it's in an outer function.
 | |
|     } else if (VD->isStaticLocal()) {
 | |
|       addr = Address(CGM.getOrCreateStaticVarDecl(
 | |
|           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
 | |
|                      getContext().getDeclAlign(VD));
 | |
| 
 | |
|     // No other cases for now.
 | |
|     } else {
 | |
|       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Check for OpenMP threadprivate variables.
 | |
|     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
 | |
|         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
 | |
|       return EmitThreadPrivateVarDeclLValue(
 | |
|           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
 | |
|           E->getExprLoc());
 | |
|     }
 | |
| 
 | |
|     // Drill into block byref variables.
 | |
|     bool isBlockByref = VD->isEscapingByref();
 | |
|     if (isBlockByref) {
 | |
|       addr = emitBlockByrefAddress(addr, VD);
 | |
|     }
 | |
| 
 | |
|     // Drill into reference types.
 | |
|     LValue LV = VD->getType()->isReferenceType() ?
 | |
|         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
 | |
|         MakeAddrLValue(addr, T, AlignmentSource::Decl);
 | |
| 
 | |
|     bool isLocalStorage = VD->hasLocalStorage();
 | |
| 
 | |
|     bool NonGCable = isLocalStorage &&
 | |
|                      !VD->getType()->isReferenceType() &&
 | |
|                      !isBlockByref;
 | |
|     if (NonGCable) {
 | |
|       LV.getQuals().removeObjCGCAttr();
 | |
|       LV.setNonGC(true);
 | |
|     }
 | |
| 
 | |
|     bool isImpreciseLifetime =
 | |
|       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
 | |
|     if (isImpreciseLifetime)
 | |
|       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
 | |
|     setObjCGCLValueClass(getContext(), E, LV);
 | |
|     return LV;
 | |
|   }
 | |
| 
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
 | |
|     return EmitFunctionDeclLValue(*this, E, FD);
 | |
| 
 | |
|   // FIXME: While we're emitting a binding from an enclosing scope, all other
 | |
|   // DeclRefExprs we see should be implicitly treated as if they also refer to
 | |
|   // an enclosing scope.
 | |
|   if (const auto *BD = dyn_cast<BindingDecl>(ND))
 | |
|     return EmitLValue(BD->getBinding());
 | |
| 
 | |
|   // We can form DeclRefExprs naming GUID declarations when reconstituting
 | |
|   // non-type template parameters into expressions.
 | |
|   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
 | |
|     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
 | |
|                           AlignmentSource::Decl);
 | |
| 
 | |
|   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
 | |
|     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
 | |
|                           AlignmentSource::Decl);
 | |
| 
 | |
|   llvm_unreachable("Unhandled DeclRefExpr");
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
 | |
|   // __extension__ doesn't affect lvalue-ness.
 | |
|   if (E->getOpcode() == UO_Extension)
 | |
|     return EmitLValue(E->getSubExpr());
 | |
| 
 | |
|   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
 | |
|   switch (E->getOpcode()) {
 | |
|   default: llvm_unreachable("Unknown unary operator lvalue!");
 | |
|   case UO_Deref: {
 | |
|     QualType T = E->getSubExpr()->getType()->getPointeeType();
 | |
|     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
 | |
| 
 | |
|     LValueBaseInfo BaseInfo;
 | |
|     TBAAAccessInfo TBAAInfo;
 | |
|     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
 | |
|                                             &TBAAInfo);
 | |
|     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
 | |
|     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
 | |
| 
 | |
|     // We should not generate __weak write barrier on indirect reference
 | |
|     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
 | |
|     // But, we continue to generate __strong write barrier on indirect write
 | |
|     // into a pointer to object.
 | |
|     if (getLangOpts().ObjC &&
 | |
|         getLangOpts().getGC() != LangOptions::NonGC &&
 | |
|         LV.isObjCWeak())
 | |
|       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
 | |
|     return LV;
 | |
|   }
 | |
|   case UO_Real:
 | |
|   case UO_Imag: {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
 | |
| 
 | |
|     // __real is valid on scalars.  This is a faster way of testing that.
 | |
|     // __imag can only produce an rvalue on scalars.
 | |
|     if (E->getOpcode() == UO_Real &&
 | |
|         !LV.getAddress(*this).getElementType()->isStructTy()) {
 | |
|       assert(E->getSubExpr()->getType()->isArithmeticType());
 | |
|       return LV;
 | |
|     }
 | |
| 
 | |
|     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
 | |
| 
 | |
|     Address Component =
 | |
|         (E->getOpcode() == UO_Real
 | |
|              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
 | |
|              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
 | |
|     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
 | |
|                                    CGM.getTBAAInfoForSubobject(LV, T));
 | |
|     ElemLV.getQuals().addQualifiers(LV.getQuals());
 | |
|     return ElemLV;
 | |
|   }
 | |
|   case UO_PreInc:
 | |
|   case UO_PreDec: {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     bool isInc = E->getOpcode() == UO_PreInc;
 | |
| 
 | |
|     if (E->getType()->isAnyComplexType())
 | |
|       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
 | |
|     else
 | |
|       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
 | |
|     return LV;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
 | |
|   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
 | |
|                         E->getType(), AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
 | |
|   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
 | |
|                         E->getType(), AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
 | |
|   auto SL = E->getFunctionName();
 | |
|   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
 | |
|   StringRef FnName = CurFn->getName();
 | |
|   if (FnName.startswith("\01"))
 | |
|     FnName = FnName.substr(1);
 | |
|   StringRef NameItems[] = {
 | |
|       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
 | |
|   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
 | |
|   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
 | |
|     std::string Name = std::string(SL->getString());
 | |
|     if (!Name.empty()) {
 | |
|       unsigned Discriminator =
 | |
|           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
 | |
|       if (Discriminator)
 | |
|         Name += "_" + Twine(Discriminator + 1).str();
 | |
|       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
 | |
|       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
 | |
|     } else {
 | |
|       auto C =
 | |
|           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
 | |
|       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
 | |
|     }
 | |
|   }
 | |
|   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
 | |
|   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| /// Emit a type description suitable for use by a runtime sanitizer library. The
 | |
| /// format of a type descriptor is
 | |
| ///
 | |
| /// \code
 | |
| ///   { i16 TypeKind, i16 TypeInfo }
 | |
| /// \endcode
 | |
| ///
 | |
| /// followed by an array of i8 containing the type name. TypeKind is 0 for an
 | |
| /// integer, 1 for a floating point value, and -1 for anything else.
 | |
| llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
 | |
|   // Only emit each type's descriptor once.
 | |
|   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
 | |
|     return C;
 | |
| 
 | |
|   uint16_t TypeKind = -1;
 | |
|   uint16_t TypeInfo = 0;
 | |
| 
 | |
|   if (T->isIntegerType()) {
 | |
|     TypeKind = 0;
 | |
|     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
 | |
|                (T->isSignedIntegerType() ? 1 : 0);
 | |
|   } else if (T->isFloatingType()) {
 | |
|     TypeKind = 1;
 | |
|     TypeInfo = getContext().getTypeSize(T);
 | |
|   }
 | |
| 
 | |
|   // Format the type name as if for a diagnostic, including quotes and
 | |
|   // optionally an 'aka'.
 | |
|   SmallString<32> Buffer;
 | |
|   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
 | |
|                                     (intptr_t)T.getAsOpaquePtr(),
 | |
|                                     StringRef(), StringRef(), None, Buffer,
 | |
|                                     None);
 | |
| 
 | |
|   llvm::Constant *Components[] = {
 | |
|     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
 | |
|     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
 | |
|   };
 | |
|   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
 | |
| 
 | |
|   auto *GV = new llvm::GlobalVariable(
 | |
|       CGM.getModule(), Descriptor->getType(),
 | |
|       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
 | |
|   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | |
|   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
 | |
| 
 | |
|   // Remember the descriptor for this type.
 | |
|   CGM.setTypeDescriptorInMap(T, GV);
 | |
| 
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
 | |
|   llvm::Type *TargetTy = IntPtrTy;
 | |
| 
 | |
|   if (V->getType() == TargetTy)
 | |
|     return V;
 | |
| 
 | |
|   // Floating-point types which fit into intptr_t are bitcast to integers
 | |
|   // and then passed directly (after zero-extension, if necessary).
 | |
|   if (V->getType()->isFloatingPointTy()) {
 | |
|     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
 | |
|     if (Bits <= TargetTy->getIntegerBitWidth())
 | |
|       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
 | |
|                                                          Bits));
 | |
|   }
 | |
| 
 | |
|   // Integers which fit in intptr_t are zero-extended and passed directly.
 | |
|   if (V->getType()->isIntegerTy() &&
 | |
|       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
 | |
|     return Builder.CreateZExt(V, TargetTy);
 | |
| 
 | |
|   // Pointers are passed directly, everything else is passed by address.
 | |
|   if (!V->getType()->isPointerTy()) {
 | |
|     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
 | |
|     Builder.CreateStore(V, Ptr);
 | |
|     V = Ptr.getPointer();
 | |
|   }
 | |
|   return Builder.CreatePtrToInt(V, TargetTy);
 | |
| }
 | |
| 
 | |
| /// Emit a representation of a SourceLocation for passing to a handler
 | |
| /// in a sanitizer runtime library. The format for this data is:
 | |
| /// \code
 | |
| ///   struct SourceLocation {
 | |
| ///     const char *Filename;
 | |
| ///     int32_t Line, Column;
 | |
| ///   };
 | |
| /// \endcode
 | |
| /// For an invalid SourceLocation, the Filename pointer is null.
 | |
| llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
 | |
|   llvm::Constant *Filename;
 | |
|   int Line, Column;
 | |
| 
 | |
|   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
 | |
|   if (PLoc.isValid()) {
 | |
|     StringRef FilenameString = PLoc.getFilename();
 | |
| 
 | |
|     int PathComponentsToStrip =
 | |
|         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
 | |
|     if (PathComponentsToStrip < 0) {
 | |
|       assert(PathComponentsToStrip != INT_MIN);
 | |
|       int PathComponentsToKeep = -PathComponentsToStrip;
 | |
|       auto I = llvm::sys::path::rbegin(FilenameString);
 | |
|       auto E = llvm::sys::path::rend(FilenameString);
 | |
|       while (I != E && --PathComponentsToKeep)
 | |
|         ++I;
 | |
| 
 | |
|       FilenameString = FilenameString.substr(I - E);
 | |
|     } else if (PathComponentsToStrip > 0) {
 | |
|       auto I = llvm::sys::path::begin(FilenameString);
 | |
|       auto E = llvm::sys::path::end(FilenameString);
 | |
|       while (I != E && PathComponentsToStrip--)
 | |
|         ++I;
 | |
| 
 | |
|       if (I != E)
 | |
|         FilenameString =
 | |
|             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
 | |
|       else
 | |
|         FilenameString = llvm::sys::path::filename(FilenameString);
 | |
|     }
 | |
| 
 | |
|     auto FilenameGV =
 | |
|         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
 | |
|     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
 | |
|                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
 | |
|     Filename = FilenameGV.getPointer();
 | |
|     Line = PLoc.getLine();
 | |
|     Column = PLoc.getColumn();
 | |
|   } else {
 | |
|     Filename = llvm::Constant::getNullValue(Int8PtrTy);
 | |
|     Line = Column = 0;
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
 | |
|                             Builder.getInt32(Column)};
 | |
| 
 | |
|   return llvm::ConstantStruct::getAnon(Data);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// Specify under what conditions this check can be recovered
 | |
| enum class CheckRecoverableKind {
 | |
|   /// Always terminate program execution if this check fails.
 | |
|   Unrecoverable,
 | |
|   /// Check supports recovering, runtime has both fatal (noreturn) and
 | |
|   /// non-fatal handlers for this check.
 | |
|   Recoverable,
 | |
|   /// Runtime conditionally aborts, always need to support recovery.
 | |
|   AlwaysRecoverable
 | |
| };
 | |
| }
 | |
| 
 | |
| static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
 | |
|   assert(Kind.countPopulation() == 1);
 | |
|   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
 | |
|     return CheckRecoverableKind::AlwaysRecoverable;
 | |
|   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
 | |
|     return CheckRecoverableKind::Unrecoverable;
 | |
|   else
 | |
|     return CheckRecoverableKind::Recoverable;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct SanitizerHandlerInfo {
 | |
|   char const *const Name;
 | |
|   unsigned Version;
 | |
| };
 | |
| }
 | |
| 
 | |
| const SanitizerHandlerInfo SanitizerHandlers[] = {
 | |
| #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
 | |
|     LIST_SANITIZER_CHECKS
 | |
| #undef SANITIZER_CHECK
 | |
| };
 | |
| 
 | |
| static void emitCheckHandlerCall(CodeGenFunction &CGF,
 | |
|                                  llvm::FunctionType *FnType,
 | |
|                                  ArrayRef<llvm::Value *> FnArgs,
 | |
|                                  SanitizerHandler CheckHandler,
 | |
|                                  CheckRecoverableKind RecoverKind, bool IsFatal,
 | |
|                                  llvm::BasicBlock *ContBB) {
 | |
|   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
 | |
|   Optional<ApplyDebugLocation> DL;
 | |
|   if (!CGF.Builder.getCurrentDebugLocation()) {
 | |
|     // Ensure that the call has at least an artificial debug location.
 | |
|     DL.emplace(CGF, SourceLocation());
 | |
|   }
 | |
|   bool NeedsAbortSuffix =
 | |
|       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
 | |
|   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
 | |
|   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
 | |
|   const StringRef CheckName = CheckInfo.Name;
 | |
|   std::string FnName = "__ubsan_handle_" + CheckName.str();
 | |
|   if (CheckInfo.Version && !MinimalRuntime)
 | |
|     FnName += "_v" + llvm::utostr(CheckInfo.Version);
 | |
|   if (MinimalRuntime)
 | |
|     FnName += "_minimal";
 | |
|   if (NeedsAbortSuffix)
 | |
|     FnName += "_abort";
 | |
|   bool MayReturn =
 | |
|       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
 | |
| 
 | |
|   llvm::AttrBuilder B;
 | |
|   if (!MayReturn) {
 | |
|     B.addAttribute(llvm::Attribute::NoReturn)
 | |
|         .addAttribute(llvm::Attribute::NoUnwind);
 | |
|   }
 | |
|   B.addAttribute(llvm::Attribute::UWTable);
 | |
| 
 | |
|   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
 | |
|       FnType, FnName,
 | |
|       llvm::AttributeList::get(CGF.getLLVMContext(),
 | |
|                                llvm::AttributeList::FunctionIndex, B),
 | |
|       /*Local=*/true);
 | |
|   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
 | |
|   if (!MayReturn) {
 | |
|     HandlerCall->setDoesNotReturn();
 | |
|     CGF.Builder.CreateUnreachable();
 | |
|   } else {
 | |
|     CGF.Builder.CreateBr(ContBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCheck(
 | |
|     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
 | |
|     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
 | |
|     ArrayRef<llvm::Value *> DynamicArgs) {
 | |
|   assert(IsSanitizerScope);
 | |
|   assert(Checked.size() > 0);
 | |
|   assert(CheckHandler >= 0 &&
 | |
|          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
 | |
|   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
 | |
| 
 | |
|   llvm::Value *FatalCond = nullptr;
 | |
|   llvm::Value *RecoverableCond = nullptr;
 | |
|   llvm::Value *TrapCond = nullptr;
 | |
|   for (int i = 0, n = Checked.size(); i < n; ++i) {
 | |
|     llvm::Value *Check = Checked[i].first;
 | |
|     // -fsanitize-trap= overrides -fsanitize-recover=.
 | |
|     llvm::Value *&Cond =
 | |
|         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
 | |
|             ? TrapCond
 | |
|             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
 | |
|                   ? RecoverableCond
 | |
|                   : FatalCond;
 | |
|     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
 | |
|   }
 | |
| 
 | |
|   if (TrapCond)
 | |
|     EmitTrapCheck(TrapCond, CheckHandler);
 | |
|   if (!FatalCond && !RecoverableCond)
 | |
|     return;
 | |
| 
 | |
|   llvm::Value *JointCond;
 | |
|   if (FatalCond && RecoverableCond)
 | |
|     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
 | |
|   else
 | |
|     JointCond = FatalCond ? FatalCond : RecoverableCond;
 | |
|   assert(JointCond);
 | |
| 
 | |
|   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
 | |
|   assert(SanOpts.has(Checked[0].second));
 | |
| #ifndef NDEBUG
 | |
|   for (int i = 1, n = Checked.size(); i < n; ++i) {
 | |
|     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
 | |
|            "All recoverable kinds in a single check must be same!");
 | |
|     assert(SanOpts.has(Checked[i].second));
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   llvm::BasicBlock *Cont = createBasicBlock("cont");
 | |
|   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
 | |
|   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
 | |
|   // Give hint that we very much don't expect to execute the handler
 | |
|   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
 | |
|   llvm::MDBuilder MDHelper(getLLVMContext());
 | |
|   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
 | |
|   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
 | |
|   EmitBlock(Handlers);
 | |
| 
 | |
|   // Handler functions take an i8* pointing to the (handler-specific) static
 | |
|   // information block, followed by a sequence of intptr_t arguments
 | |
|   // representing operand values.
 | |
|   SmallVector<llvm::Value *, 4> Args;
 | |
|   SmallVector<llvm::Type *, 4> ArgTypes;
 | |
|   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
 | |
|     Args.reserve(DynamicArgs.size() + 1);
 | |
|     ArgTypes.reserve(DynamicArgs.size() + 1);
 | |
| 
 | |
|     // Emit handler arguments and create handler function type.
 | |
|     if (!StaticArgs.empty()) {
 | |
|       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
 | |
|       auto *InfoPtr =
 | |
|           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
 | |
|                                    llvm::GlobalVariable::PrivateLinkage, Info);
 | |
|       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | |
|       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
 | |
|       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
 | |
|       ArgTypes.push_back(Int8PtrTy);
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
 | |
|       Args.push_back(EmitCheckValue(DynamicArgs[i]));
 | |
|       ArgTypes.push_back(IntPtrTy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm::FunctionType *FnType =
 | |
|     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
 | |
| 
 | |
|   if (!FatalCond || !RecoverableCond) {
 | |
|     // Simple case: we need to generate a single handler call, either
 | |
|     // fatal, or non-fatal.
 | |
|     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
 | |
|                          (FatalCond != nullptr), Cont);
 | |
|   } else {
 | |
|     // Emit two handler calls: first one for set of unrecoverable checks,
 | |
|     // another one for recoverable.
 | |
|     llvm::BasicBlock *NonFatalHandlerBB =
 | |
|         createBasicBlock("non_fatal." + CheckName);
 | |
|     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
 | |
|     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
 | |
|     EmitBlock(FatalHandlerBB);
 | |
|     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
 | |
|                          NonFatalHandlerBB);
 | |
|     EmitBlock(NonFatalHandlerBB);
 | |
|     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
 | |
|                          Cont);
 | |
|   }
 | |
| 
 | |
|   EmitBlock(Cont);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCfiSlowPathCheck(
 | |
|     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
 | |
|     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
 | |
|   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
 | |
| 
 | |
|   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
 | |
|   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
 | |
| 
 | |
|   llvm::MDBuilder MDHelper(getLLVMContext());
 | |
|   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
 | |
|   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
 | |
| 
 | |
|   EmitBlock(CheckBB);
 | |
| 
 | |
|   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
 | |
| 
 | |
|   llvm::CallInst *CheckCall;
 | |
|   llvm::FunctionCallee SlowPathFn;
 | |
|   if (WithDiag) {
 | |
|     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
 | |
|     auto *InfoPtr =
 | |
|         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
 | |
|                                  llvm::GlobalVariable::PrivateLinkage, Info);
 | |
|     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
 | |
|     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
 | |
| 
 | |
|     SlowPathFn = CGM.getModule().getOrInsertFunction(
 | |
|         "__cfi_slowpath_diag",
 | |
|         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
 | |
|                                 false));
 | |
|     CheckCall = Builder.CreateCall(
 | |
|         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
 | |
|   } else {
 | |
|     SlowPathFn = CGM.getModule().getOrInsertFunction(
 | |
|         "__cfi_slowpath",
 | |
|         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
 | |
|     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
 | |
|   }
 | |
| 
 | |
|   CGM.setDSOLocal(
 | |
|       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
 | |
|   CheckCall->setDoesNotThrow();
 | |
| 
 | |
|   EmitBlock(Cont);
 | |
| }
 | |
| 
 | |
| // Emit a stub for __cfi_check function so that the linker knows about this
 | |
| // symbol in LTO mode.
 | |
| void CodeGenFunction::EmitCfiCheckStub() {
 | |
|   llvm::Module *M = &CGM.getModule();
 | |
|   auto &Ctx = M->getContext();
 | |
|   llvm::Function *F = llvm::Function::Create(
 | |
|       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
 | |
|       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
 | |
|   CGM.setDSOLocal(F);
 | |
|   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
 | |
|   // FIXME: consider emitting an intrinsic call like
 | |
|   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
 | |
|   // which can be lowered in CrossDSOCFI pass to the actual contents of
 | |
|   // __cfi_check. This would allow inlining of __cfi_check calls.
 | |
|   llvm::CallInst::Create(
 | |
|       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
 | |
|   llvm::ReturnInst::Create(Ctx, nullptr, BB);
 | |
| }
 | |
| 
 | |
| // This function is basically a switch over the CFI failure kind, which is
 | |
| // extracted from CFICheckFailData (1st function argument). Each case is either
 | |
| // llvm.trap or a call to one of the two runtime handlers, based on
 | |
| // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
 | |
| // failure kind) traps, but this should really never happen.  CFICheckFailData
 | |
| // can be nullptr if the calling module has -fsanitize-trap behavior for this
 | |
| // check kind; in this case __cfi_check_fail traps as well.
 | |
| void CodeGenFunction::EmitCfiCheckFail() {
 | |
|   SanitizerScope SanScope(this);
 | |
|   FunctionArgList Args;
 | |
|   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
 | |
|                             ImplicitParamDecl::Other);
 | |
|   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
 | |
|                             ImplicitParamDecl::Other);
 | |
|   Args.push_back(&ArgData);
 | |
|   Args.push_back(&ArgAddr);
 | |
| 
 | |
|   const CGFunctionInfo &FI =
 | |
|     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
 | |
| 
 | |
|   llvm::Function *F = llvm::Function::Create(
 | |
|       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
 | |
|       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
 | |
| 
 | |
|   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
 | |
|   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
 | |
|   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
 | |
| 
 | |
|   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
 | |
|                 SourceLocation());
 | |
| 
 | |
|   // This function is not affected by NoSanitizeList. This function does
 | |
|   // not have a source location, but "src:*" would still apply. Revert any
 | |
|   // changes to SanOpts made in StartFunction.
 | |
|   SanOpts = CGM.getLangOpts().Sanitize;
 | |
| 
 | |
|   llvm::Value *Data =
 | |
|       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
 | |
|                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
 | |
|   llvm::Value *Addr =
 | |
|       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
 | |
|                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
 | |
| 
 | |
|   // Data == nullptr means the calling module has trap behaviour for this check.
 | |
|   llvm::Value *DataIsNotNullPtr =
 | |
|       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
 | |
|   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
 | |
| 
 | |
|   llvm::StructType *SourceLocationTy =
 | |
|       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
 | |
|   llvm::StructType *CfiCheckFailDataTy =
 | |
|       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
 | |
| 
 | |
|   llvm::Value *V = Builder.CreateConstGEP2_32(
 | |
|       CfiCheckFailDataTy,
 | |
|       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
 | |
|       0);
 | |
|   Address CheckKindAddr(V, getIntAlign());
 | |
|   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
 | |
| 
 | |
|   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
 | |
|       CGM.getLLVMContext(),
 | |
|       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
 | |
|   llvm::Value *ValidVtable = Builder.CreateZExt(
 | |
|       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
 | |
|                          {Addr, AllVtables}),
 | |
|       IntPtrTy);
 | |
| 
 | |
|   const std::pair<int, SanitizerMask> CheckKinds[] = {
 | |
|       {CFITCK_VCall, SanitizerKind::CFIVCall},
 | |
|       {CFITCK_NVCall, SanitizerKind::CFINVCall},
 | |
|       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
 | |
|       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
 | |
|       {CFITCK_ICall, SanitizerKind::CFIICall}};
 | |
| 
 | |
|   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
 | |
|   for (auto CheckKindMaskPair : CheckKinds) {
 | |
|     int Kind = CheckKindMaskPair.first;
 | |
|     SanitizerMask Mask = CheckKindMaskPair.second;
 | |
|     llvm::Value *Cond =
 | |
|         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
 | |
|     if (CGM.getLangOpts().Sanitize.has(Mask))
 | |
|       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
 | |
|                 {Data, Addr, ValidVtable});
 | |
|     else
 | |
|       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
 | |
|   }
 | |
| 
 | |
|   FinishFunction();
 | |
|   // The only reference to this function will be created during LTO link.
 | |
|   // Make sure it survives until then.
 | |
|   CGM.addUsedGlobal(F);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
 | |
|   if (SanOpts.has(SanitizerKind::Unreachable)) {
 | |
|     SanitizerScope SanScope(this);
 | |
|     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
 | |
|                              SanitizerKind::Unreachable),
 | |
|               SanitizerHandler::BuiltinUnreachable,
 | |
|               EmitCheckSourceLocation(Loc), None);
 | |
|   }
 | |
|   Builder.CreateUnreachable();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
 | |
|                                     SanitizerHandler CheckHandlerID) {
 | |
|   llvm::BasicBlock *Cont = createBasicBlock("cont");
 | |
| 
 | |
|   // If we're optimizing, collapse all calls to trap down to just one per
 | |
|   // check-type per function to save on code size.
 | |
|   if (TrapBBs.size() <= CheckHandlerID)
 | |
|     TrapBBs.resize(CheckHandlerID + 1);
 | |
|   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
 | |
| 
 | |
|   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
 | |
|     TrapBB = createBasicBlock("trap");
 | |
|     Builder.CreateCondBr(Checked, Cont, TrapBB);
 | |
|     EmitBlock(TrapBB);
 | |
| 
 | |
|     llvm::CallInst *TrapCall =
 | |
|         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
 | |
|                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
 | |
| 
 | |
|     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
 | |
|       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
 | |
|                                     CGM.getCodeGenOpts().TrapFuncName);
 | |
|       TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
 | |
|     }
 | |
|     TrapCall->setDoesNotReturn();
 | |
|     TrapCall->setDoesNotThrow();
 | |
|     Builder.CreateUnreachable();
 | |
|   } else {
 | |
|     auto Call = TrapBB->begin();
 | |
|     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
 | |
| 
 | |
|     Call->applyMergedLocation(Call->getDebugLoc(),
 | |
|                               Builder.getCurrentDebugLocation());
 | |
|     Builder.CreateCondBr(Checked, Cont, TrapBB);
 | |
|   }
 | |
| 
 | |
|   EmitBlock(Cont);
 | |
| }
 | |
| 
 | |
| llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
 | |
|   llvm::CallInst *TrapCall =
 | |
|       Builder.CreateCall(CGM.getIntrinsic(IntrID));
 | |
| 
 | |
|   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
 | |
|     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
 | |
|                                   CGM.getCodeGenOpts().TrapFuncName);
 | |
|     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
 | |
|   }
 | |
| 
 | |
|   return TrapCall;
 | |
| }
 | |
| 
 | |
| Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
 | |
|                                                  LValueBaseInfo *BaseInfo,
 | |
|                                                  TBAAAccessInfo *TBAAInfo) {
 | |
|   assert(E->getType()->isArrayType() &&
 | |
|          "Array to pointer decay must have array source type!");
 | |
| 
 | |
|   // Expressions of array type can't be bitfields or vector elements.
 | |
|   LValue LV = EmitLValue(E);
 | |
|   Address Addr = LV.getAddress(*this);
 | |
| 
 | |
|   // If the array type was an incomplete type, we need to make sure
 | |
|   // the decay ends up being the right type.
 | |
|   llvm::Type *NewTy = ConvertType(E->getType());
 | |
|   Addr = Builder.CreateElementBitCast(Addr, NewTy);
 | |
| 
 | |
|   // Note that VLA pointers are always decayed, so we don't need to do
 | |
|   // anything here.
 | |
|   if (!E->getType()->isVariableArrayType()) {
 | |
|     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
 | |
|            "Expected pointer to array");
 | |
|     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
 | |
|   }
 | |
| 
 | |
|   // The result of this decay conversion points to an array element within the
 | |
|   // base lvalue. However, since TBAA currently does not support representing
 | |
|   // accesses to elements of member arrays, we conservatively represent accesses
 | |
|   // to the pointee object as if it had no any base lvalue specified.
 | |
|   // TODO: Support TBAA for member arrays.
 | |
|   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
 | |
|   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
 | |
|   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
 | |
| 
 | |
|   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
 | |
| }
 | |
| 
 | |
| /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
 | |
| /// array to pointer, return the array subexpression.
 | |
| static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
 | |
|   // If this isn't just an array->pointer decay, bail out.
 | |
|   const auto *CE = dyn_cast<CastExpr>(E);
 | |
|   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is a decay from variable width array, bail out.
 | |
|   const Expr *SubExpr = CE->getSubExpr();
 | |
|   if (SubExpr->getType()->isVariableArrayType())
 | |
|     return nullptr;
 | |
| 
 | |
|   return SubExpr;
 | |
| }
 | |
| 
 | |
| static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
 | |
|                                           llvm::Type *elemType,
 | |
|                                           llvm::Value *ptr,
 | |
|                                           ArrayRef<llvm::Value*> indices,
 | |
|                                           bool inbounds,
 | |
|                                           bool signedIndices,
 | |
|                                           SourceLocation loc,
 | |
|                                     const llvm::Twine &name = "arrayidx") {
 | |
|   if (inbounds) {
 | |
|     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
 | |
|                                       CodeGenFunction::NotSubtraction, loc,
 | |
|                                       name);
 | |
|   } else {
 | |
|     return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static CharUnits getArrayElementAlign(CharUnits arrayAlign,
 | |
|                                       llvm::Value *idx,
 | |
|                                       CharUnits eltSize) {
 | |
|   // If we have a constant index, we can use the exact offset of the
 | |
|   // element we're accessing.
 | |
|   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
 | |
|     CharUnits offset = constantIdx->getZExtValue() * eltSize;
 | |
|     return arrayAlign.alignmentAtOffset(offset);
 | |
| 
 | |
|   // Otherwise, use the worst-case alignment for any element.
 | |
|   } else {
 | |
|     return arrayAlign.alignmentOfArrayElement(eltSize);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static QualType getFixedSizeElementType(const ASTContext &ctx,
 | |
|                                         const VariableArrayType *vla) {
 | |
|   QualType eltType;
 | |
|   do {
 | |
|     eltType = vla->getElementType();
 | |
|   } while ((vla = ctx.getAsVariableArrayType(eltType)));
 | |
|   return eltType;
 | |
| }
 | |
| 
 | |
| /// Given an array base, check whether its member access belongs to a record
 | |
| /// with preserve_access_index attribute or not.
 | |
| static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
 | |
|   if (!ArrayBase || !CGF.getDebugInfo())
 | |
|     return false;
 | |
| 
 | |
|   // Only support base as either a MemberExpr or DeclRefExpr.
 | |
|   // DeclRefExpr to cover cases like:
 | |
|   //    struct s { int a; int b[10]; };
 | |
|   //    struct s *p;
 | |
|   //    p[1].a
 | |
|   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
 | |
|   // p->b[5] is a MemberExpr example.
 | |
|   const Expr *E = ArrayBase->IgnoreImpCasts();
 | |
|   if (const auto *ME = dyn_cast<MemberExpr>(E))
 | |
|     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
 | |
| 
 | |
|   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
 | |
|     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
 | |
|     if (!VarDef)
 | |
|       return false;
 | |
| 
 | |
|     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
 | |
|     if (!PtrT)
 | |
|       return false;
 | |
| 
 | |
|     const auto *PointeeT = PtrT->getPointeeType()
 | |
|                              ->getUnqualifiedDesugaredType();
 | |
|     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
 | |
|       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
 | |
|                                      ArrayRef<llvm::Value *> indices,
 | |
|                                      QualType eltType, bool inbounds,
 | |
|                                      bool signedIndices, SourceLocation loc,
 | |
|                                      QualType *arrayType = nullptr,
 | |
|                                      const Expr *Base = nullptr,
 | |
|                                      const llvm::Twine &name = "arrayidx") {
 | |
|   // All the indices except that last must be zero.
 | |
| #ifndef NDEBUG
 | |
|   for (auto idx : indices.drop_back())
 | |
|     assert(isa<llvm::ConstantInt>(idx) &&
 | |
|            cast<llvm::ConstantInt>(idx)->isZero());
 | |
| #endif
 | |
| 
 | |
|   // Determine the element size of the statically-sized base.  This is
 | |
|   // the thing that the indices are expressed in terms of.
 | |
|   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
 | |
|     eltType = getFixedSizeElementType(CGF.getContext(), vla);
 | |
|   }
 | |
| 
 | |
|   // We can use that to compute the best alignment of the element.
 | |
|   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
 | |
|   CharUnits eltAlign =
 | |
|     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
 | |
| 
 | |
|   llvm::Value *eltPtr;
 | |
|   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
 | |
|   if (!LastIndex ||
 | |
|       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
 | |
|     eltPtr = emitArraySubscriptGEP(
 | |
|         CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
 | |
|         signedIndices, loc, name);
 | |
|   } else {
 | |
|     // Remember the original array subscript for bpf target
 | |
|     unsigned idx = LastIndex->getZExtValue();
 | |
|     llvm::DIType *DbgInfo = nullptr;
 | |
|     if (arrayType)
 | |
|       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
 | |
|     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
 | |
|                                                         addr.getPointer(),
 | |
|                                                         indices.size() - 1,
 | |
|                                                         idx, DbgInfo);
 | |
|   }
 | |
| 
 | |
|   return Address(eltPtr, eltAlign);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
 | |
|                                                bool Accessed) {
 | |
|   // The index must always be an integer, which is not an aggregate.  Emit it
 | |
|   // in lexical order (this complexity is, sadly, required by C++17).
 | |
|   llvm::Value *IdxPre =
 | |
|       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
 | |
|   bool SignedIndices = false;
 | |
|   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
 | |
|     auto *Idx = IdxPre;
 | |
|     if (E->getLHS() != E->getIdx()) {
 | |
|       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
 | |
|       Idx = EmitScalarExpr(E->getIdx());
 | |
|     }
 | |
| 
 | |
|     QualType IdxTy = E->getIdx()->getType();
 | |
|     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
 | |
|     SignedIndices |= IdxSigned;
 | |
| 
 | |
|     if (SanOpts.has(SanitizerKind::ArrayBounds))
 | |
|       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
 | |
| 
 | |
|     // Extend or truncate the index type to 32 or 64-bits.
 | |
|     if (Promote && Idx->getType() != IntPtrTy)
 | |
|       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
 | |
| 
 | |
|     return Idx;
 | |
|   };
 | |
|   IdxPre = nullptr;
 | |
| 
 | |
|   // If the base is a vector type, then we are forming a vector element lvalue
 | |
|   // with this subscript.
 | |
|   if (E->getBase()->getType()->isVectorType() &&
 | |
|       !isa<ExtVectorElementExpr>(E->getBase())) {
 | |
|     // Emit the vector as an lvalue to get its address.
 | |
|     LValue LHS = EmitLValue(E->getBase());
 | |
|     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
 | |
|     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
 | |
|     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
 | |
|                                  E->getBase()->getType(), LHS.getBaseInfo(),
 | |
|                                  TBAAAccessInfo());
 | |
|   }
 | |
| 
 | |
|   // All the other cases basically behave like simple offsetting.
 | |
| 
 | |
|   // Handle the extvector case we ignored above.
 | |
|   if (isa<ExtVectorElementExpr>(E->getBase())) {
 | |
|     LValue LV = EmitLValue(E->getBase());
 | |
|     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
 | |
|     Address Addr = EmitExtVectorElementLValue(LV);
 | |
| 
 | |
|     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
 | |
|     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
 | |
|                                  SignedIndices, E->getExprLoc());
 | |
|     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
 | |
|                           CGM.getTBAAInfoForSubobject(LV, EltType));
 | |
|   }
 | |
| 
 | |
|   LValueBaseInfo EltBaseInfo;
 | |
|   TBAAAccessInfo EltTBAAInfo;
 | |
|   Address Addr = Address::invalid();
 | |
|   if (const VariableArrayType *vla =
 | |
|            getContext().getAsVariableArrayType(E->getType())) {
 | |
|     // The base must be a pointer, which is not an aggregate.  Emit
 | |
|     // it.  It needs to be emitted first in case it's what captures
 | |
|     // the VLA bounds.
 | |
|     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
 | |
|     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
 | |
| 
 | |
|     // The element count here is the total number of non-VLA elements.
 | |
|     llvm::Value *numElements = getVLASize(vla).NumElts;
 | |
| 
 | |
|     // Effectively, the multiply by the VLA size is part of the GEP.
 | |
|     // GEP indexes are signed, and scaling an index isn't permitted to
 | |
|     // signed-overflow, so we use the same semantics for our explicit
 | |
|     // multiply.  We suppress this if overflow is not undefined behavior.
 | |
|     if (getLangOpts().isSignedOverflowDefined()) {
 | |
|       Idx = Builder.CreateMul(Idx, numElements);
 | |
|     } else {
 | |
|       Idx = Builder.CreateNSWMul(Idx, numElements);
 | |
|     }
 | |
| 
 | |
|     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
 | |
|                                  !getLangOpts().isSignedOverflowDefined(),
 | |
|                                  SignedIndices, E->getExprLoc());
 | |
| 
 | |
|   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
 | |
|     // Indexing over an interface, as in "NSString *P; P[4];"
 | |
| 
 | |
|     // Emit the base pointer.
 | |
|     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
 | |
|     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
 | |
| 
 | |
|     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
 | |
|     llvm::Value *InterfaceSizeVal =
 | |
|         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
 | |
| 
 | |
|     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
 | |
| 
 | |
|     // We don't necessarily build correct LLVM struct types for ObjC
 | |
|     // interfaces, so we can't rely on GEP to do this scaling
 | |
|     // correctly, so we need to cast to i8*.  FIXME: is this actually
 | |
|     // true?  A lot of other things in the fragile ABI would break...
 | |
|     llvm::Type *OrigBaseTy = Addr.getType();
 | |
|     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
 | |
| 
 | |
|     // Do the GEP.
 | |
|     CharUnits EltAlign =
 | |
|       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
 | |
|     llvm::Value *EltPtr =
 | |
|         emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
 | |
|                               ScaledIdx, false, SignedIndices, E->getExprLoc());
 | |
|     Addr = Address(EltPtr, EltAlign);
 | |
| 
 | |
|     // Cast back.
 | |
|     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
 | |
|   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
 | |
|     // If this is A[i] where A is an array, the frontend will have decayed the
 | |
|     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
 | |
|     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
 | |
|     // "gep x, i" here.  Emit one "gep A, 0, i".
 | |
|     assert(Array->getType()->isArrayType() &&
 | |
|            "Array to pointer decay must have array source type!");
 | |
|     LValue ArrayLV;
 | |
|     // For simple multidimensional array indexing, set the 'accessed' flag for
 | |
|     // better bounds-checking of the base expression.
 | |
|     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
 | |
|       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
 | |
|     else
 | |
|       ArrayLV = EmitLValue(Array);
 | |
|     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
 | |
| 
 | |
|     // Propagate the alignment from the array itself to the result.
 | |
|     QualType arrayType = Array->getType();
 | |
|     Addr = emitArraySubscriptGEP(
 | |
|         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
 | |
|         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
 | |
|         E->getExprLoc(), &arrayType, E->getBase());
 | |
|     EltBaseInfo = ArrayLV.getBaseInfo();
 | |
|     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
 | |
|   } else {
 | |
|     // The base must be a pointer; emit it with an estimate of its alignment.
 | |
|     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
 | |
|     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
 | |
|     QualType ptrType = E->getBase()->getType();
 | |
|     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
 | |
|                                  !getLangOpts().isSignedOverflowDefined(),
 | |
|                                  SignedIndices, E->getExprLoc(), &ptrType,
 | |
|                                  E->getBase());
 | |
|   }
 | |
| 
 | |
|   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
 | |
| 
 | |
|   if (getLangOpts().ObjC &&
 | |
|       getLangOpts().getGC() != LangOptions::NonGC) {
 | |
|     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
 | |
|     setObjCGCLValueClass(getContext(), E, LV);
 | |
|   }
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
 | |
|   assert(
 | |
|       !E->isIncomplete() &&
 | |
|       "incomplete matrix subscript expressions should be rejected during Sema");
 | |
|   LValue Base = EmitLValue(E->getBase());
 | |
|   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
 | |
|   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
 | |
|   llvm::Value *NumRows = Builder.getIntN(
 | |
|       RowIdx->getType()->getScalarSizeInBits(),
 | |
|       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
 | |
|   llvm::Value *FinalIdx =
 | |
|       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
 | |
|   return LValue::MakeMatrixElt(
 | |
|       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
 | |
|       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
 | |
| }
 | |
| 
 | |
| static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
 | |
|                                        LValueBaseInfo &BaseInfo,
 | |
|                                        TBAAAccessInfo &TBAAInfo,
 | |
|                                        QualType BaseTy, QualType ElTy,
 | |
|                                        bool IsLowerBound) {
 | |
|   LValue BaseLVal;
 | |
|   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
 | |
|     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
 | |
|     if (BaseTy->isArrayType()) {
 | |
|       Address Addr = BaseLVal.getAddress(CGF);
 | |
|       BaseInfo = BaseLVal.getBaseInfo();
 | |
| 
 | |
|       // If the array type was an incomplete type, we need to make sure
 | |
|       // the decay ends up being the right type.
 | |
|       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
 | |
|       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
 | |
| 
 | |
|       // Note that VLA pointers are always decayed, so we don't need to do
 | |
|       // anything here.
 | |
|       if (!BaseTy->isVariableArrayType()) {
 | |
|         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
 | |
|                "Expected pointer to array");
 | |
|         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
 | |
|       }
 | |
| 
 | |
|       return CGF.Builder.CreateElementBitCast(Addr,
 | |
|                                               CGF.ConvertTypeForMem(ElTy));
 | |
|     }
 | |
|     LValueBaseInfo TypeBaseInfo;
 | |
|     TBAAAccessInfo TypeTBAAInfo;
 | |
|     CharUnits Align =
 | |
|         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
 | |
|     BaseInfo.mergeForCast(TypeBaseInfo);
 | |
|     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
 | |
|     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
 | |
|   }
 | |
|   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
 | |
|                                                 bool IsLowerBound) {
 | |
|   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
 | |
|   QualType ResultExprTy;
 | |
|   if (auto *AT = getContext().getAsArrayType(BaseTy))
 | |
|     ResultExprTy = AT->getElementType();
 | |
|   else
 | |
|     ResultExprTy = BaseTy->getPointeeType();
 | |
|   llvm::Value *Idx = nullptr;
 | |
|   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
 | |
|     // Requesting lower bound or upper bound, but without provided length and
 | |
|     // without ':' symbol for the default length -> length = 1.
 | |
|     // Idx = LowerBound ?: 0;
 | |
|     if (auto *LowerBound = E->getLowerBound()) {
 | |
|       Idx = Builder.CreateIntCast(
 | |
|           EmitScalarExpr(LowerBound), IntPtrTy,
 | |
|           LowerBound->getType()->hasSignedIntegerRepresentation());
 | |
|     } else
 | |
|       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
 | |
|   } else {
 | |
|     // Try to emit length or lower bound as constant. If this is possible, 1
 | |
|     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
 | |
|     // IR (LB + Len) - 1.
 | |
|     auto &C = CGM.getContext();
 | |
|     auto *Length = E->getLength();
 | |
|     llvm::APSInt ConstLength;
 | |
|     if (Length) {
 | |
|       // Idx = LowerBound + Length - 1;
 | |
|       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
 | |
|         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
 | |
|         Length = nullptr;
 | |
|       }
 | |
|       auto *LowerBound = E->getLowerBound();
 | |
|       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
 | |
|       if (LowerBound) {
 | |
|         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
 | |
|           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
 | |
|           LowerBound = nullptr;
 | |
|         }
 | |
|       }
 | |
|       if (!Length)
 | |
|         --ConstLength;
 | |
|       else if (!LowerBound)
 | |
|         --ConstLowerBound;
 | |
| 
 | |
|       if (Length || LowerBound) {
 | |
|         auto *LowerBoundVal =
 | |
|             LowerBound
 | |
|                 ? Builder.CreateIntCast(
 | |
|                       EmitScalarExpr(LowerBound), IntPtrTy,
 | |
|                       LowerBound->getType()->hasSignedIntegerRepresentation())
 | |
|                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
 | |
|         auto *LengthVal =
 | |
|             Length
 | |
|                 ? Builder.CreateIntCast(
 | |
|                       EmitScalarExpr(Length), IntPtrTy,
 | |
|                       Length->getType()->hasSignedIntegerRepresentation())
 | |
|                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
 | |
|         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
 | |
|                                 /*HasNUW=*/false,
 | |
|                                 !getLangOpts().isSignedOverflowDefined());
 | |
|         if (Length && LowerBound) {
 | |
|           Idx = Builder.CreateSub(
 | |
|               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
 | |
|               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
 | |
|         }
 | |
|       } else
 | |
|         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
 | |
|     } else {
 | |
|       // Idx = ArraySize - 1;
 | |
|       QualType ArrayTy = BaseTy->isPointerType()
 | |
|                              ? E->getBase()->IgnoreParenImpCasts()->getType()
 | |
|                              : BaseTy;
 | |
|       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
 | |
|         Length = VAT->getSizeExpr();
 | |
|         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
 | |
|           ConstLength = *L;
 | |
|           Length = nullptr;
 | |
|         }
 | |
|       } else {
 | |
|         auto *CAT = C.getAsConstantArrayType(ArrayTy);
 | |
|         ConstLength = CAT->getSize();
 | |
|       }
 | |
|       if (Length) {
 | |
|         auto *LengthVal = Builder.CreateIntCast(
 | |
|             EmitScalarExpr(Length), IntPtrTy,
 | |
|             Length->getType()->hasSignedIntegerRepresentation());
 | |
|         Idx = Builder.CreateSub(
 | |
|             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
 | |
|             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
 | |
|       } else {
 | |
|         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
 | |
|         --ConstLength;
 | |
|         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   assert(Idx);
 | |
| 
 | |
|   Address EltPtr = Address::invalid();
 | |
|   LValueBaseInfo BaseInfo;
 | |
|   TBAAAccessInfo TBAAInfo;
 | |
|   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
 | |
|     // The base must be a pointer, which is not an aggregate.  Emit
 | |
|     // it.  It needs to be emitted first in case it's what captures
 | |
|     // the VLA bounds.
 | |
|     Address Base =
 | |
|         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
 | |
|                                 BaseTy, VLA->getElementType(), IsLowerBound);
 | |
|     // The element count here is the total number of non-VLA elements.
 | |
|     llvm::Value *NumElements = getVLASize(VLA).NumElts;
 | |
| 
 | |
|     // Effectively, the multiply by the VLA size is part of the GEP.
 | |
|     // GEP indexes are signed, and scaling an index isn't permitted to
 | |
|     // signed-overflow, so we use the same semantics for our explicit
 | |
|     // multiply.  We suppress this if overflow is not undefined behavior.
 | |
|     if (getLangOpts().isSignedOverflowDefined())
 | |
|       Idx = Builder.CreateMul(Idx, NumElements);
 | |
|     else
 | |
|       Idx = Builder.CreateNSWMul(Idx, NumElements);
 | |
|     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
 | |
|                                    !getLangOpts().isSignedOverflowDefined(),
 | |
|                                    /*signedIndices=*/false, E->getExprLoc());
 | |
|   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
 | |
|     // If this is A[i] where A is an array, the frontend will have decayed the
 | |
|     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
 | |
|     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
 | |
|     // "gep x, i" here.  Emit one "gep A, 0, i".
 | |
|     assert(Array->getType()->isArrayType() &&
 | |
|            "Array to pointer decay must have array source type!");
 | |
|     LValue ArrayLV;
 | |
|     // For simple multidimensional array indexing, set the 'accessed' flag for
 | |
|     // better bounds-checking of the base expression.
 | |
|     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
 | |
|       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
 | |
|     else
 | |
|       ArrayLV = EmitLValue(Array);
 | |
| 
 | |
|     // Propagate the alignment from the array itself to the result.
 | |
|     EltPtr = emitArraySubscriptGEP(
 | |
|         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
 | |
|         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
 | |
|         /*signedIndices=*/false, E->getExprLoc());
 | |
|     BaseInfo = ArrayLV.getBaseInfo();
 | |
|     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
 | |
|   } else {
 | |
|     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
 | |
|                                            TBAAInfo, BaseTy, ResultExprTy,
 | |
|                                            IsLowerBound);
 | |
|     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
 | |
|                                    !getLangOpts().isSignedOverflowDefined(),
 | |
|                                    /*signedIndices=*/false, E->getExprLoc());
 | |
|   }
 | |
| 
 | |
|   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::
 | |
| EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
 | |
|   // Emit the base vector as an l-value.
 | |
|   LValue Base;
 | |
| 
 | |
|   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
 | |
|   if (E->isArrow()) {
 | |
|     // If it is a pointer to a vector, emit the address and form an lvalue with
 | |
|     // it.
 | |
|     LValueBaseInfo BaseInfo;
 | |
|     TBAAAccessInfo TBAAInfo;
 | |
|     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
 | |
|     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
 | |
|     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
 | |
|     Base.getQuals().removeObjCGCAttr();
 | |
|   } else if (E->getBase()->isGLValue()) {
 | |
|     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
 | |
|     // emit the base as an lvalue.
 | |
|     assert(E->getBase()->getType()->isVectorType());
 | |
|     Base = EmitLValue(E->getBase());
 | |
|   } else {
 | |
|     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
 | |
|     assert(E->getBase()->getType()->isVectorType() &&
 | |
|            "Result must be a vector");
 | |
|     llvm::Value *Vec = EmitScalarExpr(E->getBase());
 | |
| 
 | |
|     // Store the vector to memory (because LValue wants an address).
 | |
|     Address VecMem = CreateMemTemp(E->getBase()->getType());
 | |
|     Builder.CreateStore(Vec, VecMem);
 | |
|     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
 | |
|                           AlignmentSource::Decl);
 | |
|   }
 | |
| 
 | |
|   QualType type =
 | |
|     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
 | |
| 
 | |
|   // Encode the element access list into a vector of unsigned indices.
 | |
|   SmallVector<uint32_t, 4> Indices;
 | |
|   E->getEncodedElementAccess(Indices);
 | |
| 
 | |
|   if (Base.isSimple()) {
 | |
|     llvm::Constant *CV =
 | |
|         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
 | |
|     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
 | |
|                                     Base.getBaseInfo(), TBAAAccessInfo());
 | |
|   }
 | |
|   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
 | |
| 
 | |
|   llvm::Constant *BaseElts = Base.getExtVectorElts();
 | |
|   SmallVector<llvm::Constant *, 4> CElts;
 | |
| 
 | |
|   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
 | |
|     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
 | |
|   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
 | |
|   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
 | |
|                                   Base.getBaseInfo(), TBAAAccessInfo());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
 | |
|   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
 | |
|     EmitIgnoredExpr(E->getBase());
 | |
|     return EmitDeclRefLValue(DRE);
 | |
|   }
 | |
| 
 | |
|   Expr *BaseExpr = E->getBase();
 | |
|   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
 | |
|   LValue BaseLV;
 | |
|   if (E->isArrow()) {
 | |
|     LValueBaseInfo BaseInfo;
 | |
|     TBAAAccessInfo TBAAInfo;
 | |
|     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
 | |
|     QualType PtrTy = BaseExpr->getType()->getPointeeType();
 | |
|     SanitizerSet SkippedChecks;
 | |
|     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
 | |
|     if (IsBaseCXXThis)
 | |
|       SkippedChecks.set(SanitizerKind::Alignment, true);
 | |
|     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
 | |
|       SkippedChecks.set(SanitizerKind::Null, true);
 | |
|     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
 | |
|                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
 | |
|     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
 | |
|   } else
 | |
|     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
 | |
| 
 | |
|   NamedDecl *ND = E->getMemberDecl();
 | |
|   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
 | |
|     LValue LV = EmitLValueForField(BaseLV, Field);
 | |
|     setObjCGCLValueClass(getContext(), E, LV);
 | |
|     if (getLangOpts().OpenMP) {
 | |
|       // If the member was explicitly marked as nontemporal, mark it as
 | |
|       // nontemporal. If the base lvalue is marked as nontemporal, mark access
 | |
|       // to children as nontemporal too.
 | |
|       if ((IsWrappedCXXThis(BaseExpr) &&
 | |
|            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
 | |
|           BaseLV.isNontemporal())
 | |
|         LV.setNontemporal(/*Value=*/true);
 | |
|     }
 | |
|     return LV;
 | |
|   }
 | |
| 
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
 | |
|     return EmitFunctionDeclLValue(*this, E, FD);
 | |
| 
 | |
|   llvm_unreachable("Unhandled member declaration!");
 | |
| }
 | |
| 
 | |
| /// Given that we are currently emitting a lambda, emit an l-value for
 | |
| /// one of its members.
 | |
| LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
 | |
|   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
 | |
|   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
 | |
|   QualType LambdaTagType =
 | |
|     getContext().getTagDeclType(Field->getParent());
 | |
|   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
 | |
|   return EmitLValueForField(LambdaLV, Field);
 | |
| }
 | |
| 
 | |
| /// Get the field index in the debug info. The debug info structure/union
 | |
| /// will ignore the unnamed bitfields.
 | |
| unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
 | |
|                                              unsigned FieldIndex) {
 | |
|   unsigned I = 0, Skipped = 0;
 | |
| 
 | |
|   for (auto F : Rec->getDefinition()->fields()) {
 | |
|     if (I == FieldIndex)
 | |
|       break;
 | |
|     if (F->isUnnamedBitfield())
 | |
|       Skipped++;
 | |
|     I++;
 | |
|   }
 | |
| 
 | |
|   return FieldIndex - Skipped;
 | |
| }
 | |
| 
 | |
| /// Get the address of a zero-sized field within a record. The resulting
 | |
| /// address doesn't necessarily have the right type.
 | |
| static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
 | |
|                                        const FieldDecl *Field) {
 | |
|   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
 | |
|       CGF.getContext().getFieldOffset(Field));
 | |
|   if (Offset.isZero())
 | |
|     return Base;
 | |
|   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
 | |
|   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
 | |
| }
 | |
| 
 | |
| /// Drill down to the storage of a field without walking into
 | |
| /// reference types.
 | |
| ///
 | |
| /// The resulting address doesn't necessarily have the right type.
 | |
| static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
 | |
|                                       const FieldDecl *field) {
 | |
|   if (field->isZeroSize(CGF.getContext()))
 | |
|     return emitAddrOfZeroSizeField(CGF, base, field);
 | |
| 
 | |
|   const RecordDecl *rec = field->getParent();
 | |
| 
 | |
|   unsigned idx =
 | |
|     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
 | |
| 
 | |
|   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
 | |
| }
 | |
| 
 | |
| static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
 | |
|                                         Address addr, const FieldDecl *field) {
 | |
|   const RecordDecl *rec = field->getParent();
 | |
|   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
 | |
|       base.getType(), rec->getLocation());
 | |
| 
 | |
|   unsigned idx =
 | |
|       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
 | |
| 
 | |
|   return CGF.Builder.CreatePreserveStructAccessIndex(
 | |
|       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
 | |
| }
 | |
| 
 | |
| static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
 | |
|   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
 | |
|   if (!RD)
 | |
|     return false;
 | |
| 
 | |
|   if (RD->isDynamicClass())
 | |
|     return true;
 | |
| 
 | |
|   for (const auto &Base : RD->bases())
 | |
|     if (hasAnyVptr(Base.getType(), Context))
 | |
|       return true;
 | |
| 
 | |
|   for (const FieldDecl *Field : RD->fields())
 | |
|     if (hasAnyVptr(Field->getType(), Context))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitLValueForField(LValue base,
 | |
|                                            const FieldDecl *field) {
 | |
|   LValueBaseInfo BaseInfo = base.getBaseInfo();
 | |
| 
 | |
|   if (field->isBitField()) {
 | |
|     const CGRecordLayout &RL =
 | |
|         CGM.getTypes().getCGRecordLayout(field->getParent());
 | |
|     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
 | |
|     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
 | |
|                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
 | |
|                              Info.VolatileStorageSize != 0 &&
 | |
|                              field->getType()
 | |
|                                  .withCVRQualifiers(base.getVRQualifiers())
 | |
|                                  .isVolatileQualified();
 | |
|     Address Addr = base.getAddress(*this);
 | |
|     unsigned Idx = RL.getLLVMFieldNo(field);
 | |
|     const RecordDecl *rec = field->getParent();
 | |
|     if (!UseVolatile) {
 | |
|       if (!IsInPreservedAIRegion &&
 | |
|           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
 | |
|         if (Idx != 0)
 | |
|           // For structs, we GEP to the field that the record layout suggests.
 | |
|           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
 | |
|       } else {
 | |
|         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
 | |
|             getContext().getRecordType(rec), rec->getLocation());
 | |
|         Addr = Builder.CreatePreserveStructAccessIndex(
 | |
|             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
 | |
|             DbgInfo);
 | |
|       }
 | |
|     }
 | |
|     const unsigned SS =
 | |
|         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
 | |
|     // Get the access type.
 | |
|     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
 | |
|     if (Addr.getElementType() != FieldIntTy)
 | |
|       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
 | |
|     if (UseVolatile) {
 | |
|       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
 | |
|       if (VolatileOffset)
 | |
|         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
 | |
|     }
 | |
| 
 | |
|     QualType fieldType =
 | |
|         field->getType().withCVRQualifiers(base.getVRQualifiers());
 | |
|     // TODO: Support TBAA for bit fields.
 | |
|     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
 | |
|     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
 | |
|                                 TBAAAccessInfo());
 | |
|   }
 | |
| 
 | |
|   // Fields of may-alias structures are may-alias themselves.
 | |
|   // FIXME: this should get propagated down through anonymous structs
 | |
|   // and unions.
 | |
|   QualType FieldType = field->getType();
 | |
|   const RecordDecl *rec = field->getParent();
 | |
|   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
 | |
|   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
 | |
|   TBAAAccessInfo FieldTBAAInfo;
 | |
|   if (base.getTBAAInfo().isMayAlias() ||
 | |
|           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
 | |
|     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
 | |
|   } else if (rec->isUnion()) {
 | |
|     // TODO: Support TBAA for unions.
 | |
|     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
 | |
|   } else {
 | |
|     // If no base type been assigned for the base access, then try to generate
 | |
|     // one for this base lvalue.
 | |
|     FieldTBAAInfo = base.getTBAAInfo();
 | |
|     if (!FieldTBAAInfo.BaseType) {
 | |
|         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
 | |
|         assert(!FieldTBAAInfo.Offset &&
 | |
|                "Nonzero offset for an access with no base type!");
 | |
|     }
 | |
| 
 | |
|     // Adjust offset to be relative to the base type.
 | |
|     const ASTRecordLayout &Layout =
 | |
|         getContext().getASTRecordLayout(field->getParent());
 | |
|     unsigned CharWidth = getContext().getCharWidth();
 | |
|     if (FieldTBAAInfo.BaseType)
 | |
|       FieldTBAAInfo.Offset +=
 | |
|           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
 | |
| 
 | |
|     // Update the final access type and size.
 | |
|     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
 | |
|     FieldTBAAInfo.Size =
 | |
|         getContext().getTypeSizeInChars(FieldType).getQuantity();
 | |
|   }
 | |
| 
 | |
|   Address addr = base.getAddress(*this);
 | |
|   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
 | |
|     if (CGM.getCodeGenOpts().StrictVTablePointers &&
 | |
|         ClassDef->isDynamicClass()) {
 | |
|       // Getting to any field of dynamic object requires stripping dynamic
 | |
|       // information provided by invariant.group.  This is because accessing
 | |
|       // fields may leak the real address of dynamic object, which could result
 | |
|       // in miscompilation when leaked pointer would be compared.
 | |
|       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
 | |
|       addr = Address(stripped, addr.getAlignment());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned RecordCVR = base.getVRQualifiers();
 | |
|   if (rec->isUnion()) {
 | |
|     // For unions, there is no pointer adjustment.
 | |
|     if (CGM.getCodeGenOpts().StrictVTablePointers &&
 | |
|         hasAnyVptr(FieldType, getContext()))
 | |
|       // Because unions can easily skip invariant.barriers, we need to add
 | |
|       // a barrier every time CXXRecord field with vptr is referenced.
 | |
|       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
 | |
|                      addr.getAlignment());
 | |
| 
 | |
|     if (IsInPreservedAIRegion ||
 | |
|         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
 | |
|       // Remember the original union field index
 | |
|       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
 | |
|           rec->getLocation());
 | |
|       addr = Address(
 | |
|           Builder.CreatePreserveUnionAccessIndex(
 | |
|               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
 | |
|           addr.getAlignment());
 | |
|     }
 | |
| 
 | |
|     if (FieldType->isReferenceType())
 | |
|       addr = Builder.CreateElementBitCast(
 | |
|           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
 | |
|   } else {
 | |
|     if (!IsInPreservedAIRegion &&
 | |
|         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
 | |
|       // For structs, we GEP to the field that the record layout suggests.
 | |
|       addr = emitAddrOfFieldStorage(*this, addr, field);
 | |
|     else
 | |
|       // Remember the original struct field index
 | |
|       addr = emitPreserveStructAccess(*this, base, addr, field);
 | |
|   }
 | |
| 
 | |
|   // If this is a reference field, load the reference right now.
 | |
|   if (FieldType->isReferenceType()) {
 | |
|     LValue RefLVal =
 | |
|         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
 | |
|     if (RecordCVR & Qualifiers::Volatile)
 | |
|       RefLVal.getQuals().addVolatile();
 | |
|     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
 | |
| 
 | |
|     // Qualifiers on the struct don't apply to the referencee.
 | |
|     RecordCVR = 0;
 | |
|     FieldType = FieldType->getPointeeType();
 | |
|   }
 | |
| 
 | |
|   // Make sure that the address is pointing to the right type.  This is critical
 | |
|   // for both unions and structs.  A union needs a bitcast, a struct element
 | |
|   // will need a bitcast if the LLVM type laid out doesn't match the desired
 | |
|   // type.
 | |
|   addr = Builder.CreateElementBitCast(
 | |
|       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
 | |
| 
 | |
|   if (field->hasAttr<AnnotateAttr>())
 | |
|     addr = EmitFieldAnnotations(field, addr);
 | |
| 
 | |
|   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
 | |
|   LV.getQuals().addCVRQualifiers(RecordCVR);
 | |
| 
 | |
|   // __weak attribute on a field is ignored.
 | |
|   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
 | |
|     LV.getQuals().removeObjCGCAttr();
 | |
| 
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| LValue
 | |
| CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
 | |
|                                                   const FieldDecl *Field) {
 | |
|   QualType FieldType = Field->getType();
 | |
| 
 | |
|   if (!FieldType->isReferenceType())
 | |
|     return EmitLValueForField(Base, Field);
 | |
| 
 | |
|   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
 | |
| 
 | |
|   // Make sure that the address is pointing to the right type.
 | |
|   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
 | |
|   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
 | |
| 
 | |
|   // TODO: Generate TBAA information that describes this access as a structure
 | |
|   // member access and not just an access to an object of the field's type. This
 | |
|   // should be similar to what we do in EmitLValueForField().
 | |
|   LValueBaseInfo BaseInfo = Base.getBaseInfo();
 | |
|   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
 | |
|   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
 | |
|   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
 | |
|                         CGM.getTBAAInfoForSubobject(Base, FieldType));
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
 | |
|   if (E->isFileScope()) {
 | |
|     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
 | |
|     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
 | |
|   }
 | |
|   if (E->getType()->isVariablyModifiedType())
 | |
|     // make sure to emit the VLA size.
 | |
|     EmitVariablyModifiedType(E->getType());
 | |
| 
 | |
|   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
 | |
|   const Expr *InitExpr = E->getInitializer();
 | |
|   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
 | |
| 
 | |
|   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
 | |
|                    /*Init*/ true);
 | |
| 
 | |
|   // Block-scope compound literals are destroyed at the end of the enclosing
 | |
|   // scope in C.
 | |
|   if (!getLangOpts().CPlusPlus)
 | |
|     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
 | |
|       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
 | |
|                                   E->getType(), getDestroyer(DtorKind),
 | |
|                                   DtorKind & EHCleanup);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
 | |
|   if (!E->isGLValue())
 | |
|     // Initializing an aggregate temporary in C++11: T{...}.
 | |
|     return EmitAggExprToLValue(E);
 | |
| 
 | |
|   // An lvalue initializer list must be initializing a reference.
 | |
|   assert(E->isTransparent() && "non-transparent glvalue init list");
 | |
|   return EmitLValue(E->getInit(0));
 | |
| }
 | |
| 
 | |
| /// Emit the operand of a glvalue conditional operator. This is either a glvalue
 | |
| /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
 | |
| /// LValue is returned and the current block has been terminated.
 | |
| static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
 | |
|                                                     const Expr *Operand) {
 | |
|   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
 | |
|     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   return CGF.EmitLValue(Operand);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::
 | |
| EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
 | |
|   if (!expr->isGLValue()) {
 | |
|     // ?: here should be an aggregate.
 | |
|     assert(hasAggregateEvaluationKind(expr->getType()) &&
 | |
|            "Unexpected conditional operator!");
 | |
|     return EmitAggExprToLValue(expr);
 | |
|   }
 | |
| 
 | |
|   OpaqueValueMapping binding(*this, expr);
 | |
| 
 | |
|   const Expr *condExpr = expr->getCond();
 | |
|   bool CondExprBool;
 | |
|   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
 | |
|     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
 | |
|     if (!CondExprBool) std::swap(live, dead);
 | |
| 
 | |
|     if (!ContainsLabel(dead)) {
 | |
|       // If the true case is live, we need to track its region.
 | |
|       if (CondExprBool)
 | |
|         incrementProfileCounter(expr);
 | |
|       // If a throw expression we emit it and return an undefined lvalue
 | |
|       // because it can't be used.
 | |
|       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
 | |
|         EmitCXXThrowExpr(ThrowExpr);
 | |
|         llvm::Type *Ty =
 | |
|             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
 | |
|         return MakeAddrLValue(
 | |
|             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
 | |
|             dead->getType());
 | |
|       }
 | |
|       return EmitLValue(live);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
 | |
|   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
 | |
|   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
 | |
| 
 | |
|   ConditionalEvaluation eval(*this);
 | |
|   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
 | |
| 
 | |
|   // Any temporaries created here are conditional.
 | |
|   EmitBlock(lhsBlock);
 | |
|   incrementProfileCounter(expr);
 | |
|   eval.begin(*this);
 | |
|   Optional<LValue> lhs =
 | |
|       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
 | |
|   eval.end(*this);
 | |
| 
 | |
|   if (lhs && !lhs->isSimple())
 | |
|     return EmitUnsupportedLValue(expr, "conditional operator");
 | |
| 
 | |
|   lhsBlock = Builder.GetInsertBlock();
 | |
|   if (lhs)
 | |
|     Builder.CreateBr(contBlock);
 | |
| 
 | |
|   // Any temporaries created here are conditional.
 | |
|   EmitBlock(rhsBlock);
 | |
|   eval.begin(*this);
 | |
|   Optional<LValue> rhs =
 | |
|       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
 | |
|   eval.end(*this);
 | |
|   if (rhs && !rhs->isSimple())
 | |
|     return EmitUnsupportedLValue(expr, "conditional operator");
 | |
|   rhsBlock = Builder.GetInsertBlock();
 | |
| 
 | |
|   EmitBlock(contBlock);
 | |
| 
 | |
|   if (lhs && rhs) {
 | |
|     llvm::PHINode *phi =
 | |
|         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
 | |
|     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
 | |
|     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
 | |
|     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
 | |
|     AlignmentSource alignSource =
 | |
|       std::max(lhs->getBaseInfo().getAlignmentSource(),
 | |
|                rhs->getBaseInfo().getAlignmentSource());
 | |
|     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
 | |
|         lhs->getTBAAInfo(), rhs->getTBAAInfo());
 | |
|     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
 | |
|                           TBAAInfo);
 | |
|   } else {
 | |
|     assert((lhs || rhs) &&
 | |
|            "both operands of glvalue conditional are throw-expressions?");
 | |
|     return lhs ? *lhs : *rhs;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
 | |
| /// type. If the cast is to a reference, we can have the usual lvalue result,
 | |
| /// otherwise if a cast is needed by the code generator in an lvalue context,
 | |
| /// then it must mean that we need the address of an aggregate in order to
 | |
| /// access one of its members.  This can happen for all the reasons that casts
 | |
| /// are permitted with aggregate result, including noop aggregate casts, and
 | |
| /// cast from scalar to union.
 | |
| LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
 | |
|   switch (E->getCastKind()) {
 | |
|   case CK_ToVoid:
 | |
|   case CK_BitCast:
 | |
|   case CK_LValueToRValueBitCast:
 | |
|   case CK_ArrayToPointerDecay:
 | |
|   case CK_FunctionToPointerDecay:
 | |
|   case CK_NullToMemberPointer:
 | |
|   case CK_NullToPointer:
 | |
|   case CK_IntegralToPointer:
 | |
|   case CK_PointerToIntegral:
 | |
|   case CK_PointerToBoolean:
 | |
|   case CK_VectorSplat:
 | |
|   case CK_IntegralCast:
 | |
|   case CK_BooleanToSignedIntegral:
 | |
|   case CK_IntegralToBoolean:
 | |
|   case CK_IntegralToFloating:
 | |
|   case CK_FloatingToIntegral:
 | |
|   case CK_FloatingToBoolean:
 | |
|   case CK_FloatingCast:
 | |
|   case CK_FloatingRealToComplex:
 | |
|   case CK_FloatingComplexToReal:
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|   case CK_FloatingComplexCast:
 | |
|   case CK_FloatingComplexToIntegralComplex:
 | |
|   case CK_IntegralRealToComplex:
 | |
|   case CK_IntegralComplexToReal:
 | |
|   case CK_IntegralComplexToBoolean:
 | |
|   case CK_IntegralComplexCast:
 | |
|   case CK_IntegralComplexToFloatingComplex:
 | |
|   case CK_DerivedToBaseMemberPointer:
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|   case CK_MemberPointerToBoolean:
 | |
|   case CK_ReinterpretMemberPointer:
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|   case CK_ARCProduceObject:
 | |
|   case CK_ARCConsumeObject:
 | |
|   case CK_ARCReclaimReturnedObject:
 | |
|   case CK_ARCExtendBlockObject:
 | |
|   case CK_CopyAndAutoreleaseBlockObject:
 | |
|   case CK_IntToOCLSampler:
 | |
|   case CK_FloatingToFixedPoint:
 | |
|   case CK_FixedPointToFloating:
 | |
|   case CK_FixedPointCast:
 | |
|   case CK_FixedPointToBoolean:
 | |
|   case CK_FixedPointToIntegral:
 | |
|   case CK_IntegralToFixedPoint:
 | |
|     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
 | |
| 
 | |
|   case CK_Dependent:
 | |
|     llvm_unreachable("dependent cast kind in IR gen!");
 | |
| 
 | |
|   case CK_BuiltinFnToFnPtr:
 | |
|     llvm_unreachable("builtin functions are handled elsewhere");
 | |
| 
 | |
|   // These are never l-values; just use the aggregate emission code.
 | |
|   case CK_NonAtomicToAtomic:
 | |
|   case CK_AtomicToNonAtomic:
 | |
|     return EmitAggExprToLValue(E);
 | |
| 
 | |
|   case CK_Dynamic: {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     Address V = LV.getAddress(*this);
 | |
|     const auto *DCE = cast<CXXDynamicCastExpr>(E);
 | |
|     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
 | |
|   }
 | |
| 
 | |
|   case CK_ConstructorConversion:
 | |
|   case CK_UserDefinedConversion:
 | |
|   case CK_CPointerToObjCPointerCast:
 | |
|   case CK_BlockPointerToObjCPointerCast:
 | |
|   case CK_NoOp:
 | |
|   case CK_LValueToRValue:
 | |
|     return EmitLValue(E->getSubExpr());
 | |
| 
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|   case CK_DerivedToBase: {
 | |
|     const auto *DerivedClassTy =
 | |
|         E->getSubExpr()->getType()->castAs<RecordType>();
 | |
|     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
 | |
| 
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     Address This = LV.getAddress(*this);
 | |
| 
 | |
|     // Perform the derived-to-base conversion
 | |
|     Address Base = GetAddressOfBaseClass(
 | |
|         This, DerivedClassDecl, E->path_begin(), E->path_end(),
 | |
|         /*NullCheckValue=*/false, E->getExprLoc());
 | |
| 
 | |
|     // TODO: Support accesses to members of base classes in TBAA. For now, we
 | |
|     // conservatively pretend that the complete object is of the base class
 | |
|     // type.
 | |
|     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
 | |
|                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
 | |
|   }
 | |
|   case CK_ToUnion:
 | |
|     return EmitAggExprToLValue(E);
 | |
|   case CK_BaseToDerived: {
 | |
|     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
 | |
|     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
 | |
| 
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
| 
 | |
|     // Perform the base-to-derived conversion
 | |
|     Address Derived = GetAddressOfDerivedClass(
 | |
|         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
 | |
|         /*NullCheckValue=*/false);
 | |
| 
 | |
|     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
 | |
|     // performed and the object is not of the derived type.
 | |
|     if (sanitizePerformTypeCheck())
 | |
|       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
 | |
|                     Derived.getPointer(), E->getType());
 | |
| 
 | |
|     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
 | |
|       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
 | |
|                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
 | |
|                                 E->getBeginLoc());
 | |
| 
 | |
|     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
 | |
|                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
 | |
|   }
 | |
|   case CK_LValueBitCast: {
 | |
|     // This must be a reinterpret_cast (or c-style equivalent).
 | |
|     const auto *CE = cast<ExplicitCastExpr>(E);
 | |
| 
 | |
|     CGM.EmitExplicitCastExprType(CE, this);
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     Address V = Builder.CreateBitCast(LV.getAddress(*this),
 | |
|                                       ConvertType(CE->getTypeAsWritten()));
 | |
| 
 | |
|     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
 | |
|       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
 | |
|                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
 | |
|                                 E->getBeginLoc());
 | |
| 
 | |
|     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
 | |
|                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
 | |
|   }
 | |
|   case CK_AddressSpaceConversion: {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     QualType DestTy = getContext().getPointerType(E->getType());
 | |
|     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
 | |
|         *this, LV.getPointer(*this),
 | |
|         E->getSubExpr()->getType().getAddressSpace(),
 | |
|         E->getType().getAddressSpace(), ConvertType(DestTy));
 | |
|     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
 | |
|                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
 | |
|   }
 | |
|   case CK_ObjCObjectLValueCast: {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
 | |
|                                              ConvertType(E->getType()));
 | |
|     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
 | |
|                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
 | |
|   }
 | |
|   case CK_ZeroToOCLOpaqueType:
 | |
|     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled lvalue cast kind?");
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
 | |
|   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
 | |
|   return getOrCreateOpaqueLValueMapping(e);
 | |
| }
 | |
| 
 | |
| LValue
 | |
| CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
 | |
|   assert(OpaqueValueMapping::shouldBindAsLValue(e));
 | |
| 
 | |
|   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
 | |
|       it = OpaqueLValues.find(e);
 | |
| 
 | |
|   if (it != OpaqueLValues.end())
 | |
|     return it->second;
 | |
| 
 | |
|   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
 | |
|   return EmitLValue(e->getSourceExpr());
 | |
| }
 | |
| 
 | |
| RValue
 | |
| CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
 | |
|   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
 | |
| 
 | |
|   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
 | |
|       it = OpaqueRValues.find(e);
 | |
| 
 | |
|   if (it != OpaqueRValues.end())
 | |
|     return it->second;
 | |
| 
 | |
|   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
 | |
|   return EmitAnyExpr(e->getSourceExpr());
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitRValueForField(LValue LV,
 | |
|                                            const FieldDecl *FD,
 | |
|                                            SourceLocation Loc) {
 | |
|   QualType FT = FD->getType();
 | |
|   LValue FieldLV = EmitLValueForField(LV, FD);
 | |
|   switch (getEvaluationKind(FT)) {
 | |
|   case TEK_Complex:
 | |
|     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
 | |
|   case TEK_Aggregate:
 | |
|     return FieldLV.asAggregateRValue(*this);
 | |
|   case TEK_Scalar:
 | |
|     // This routine is used to load fields one-by-one to perform a copy, so
 | |
|     // don't load reference fields.
 | |
|     if (FD->getType()->isReferenceType())
 | |
|       return RValue::get(FieldLV.getPointer(*this));
 | |
|     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
 | |
|     // primitive load.
 | |
|     if (FieldLV.isBitField())
 | |
|       return EmitLoadOfLValue(FieldLV, Loc);
 | |
|     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| //                             Expression Emission
 | |
| //===--------------------------------------------------------------------===//
 | |
| 
 | |
| RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
 | |
|                                      ReturnValueSlot ReturnValue) {
 | |
|   // Builtins never have block type.
 | |
|   if (E->getCallee()->getType()->isBlockPointerType())
 | |
|     return EmitBlockCallExpr(E, ReturnValue);
 | |
| 
 | |
|   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
 | |
|     return EmitCXXMemberCallExpr(CE, ReturnValue);
 | |
| 
 | |
|   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
 | |
|     return EmitCUDAKernelCallExpr(CE, ReturnValue);
 | |
| 
 | |
|   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
 | |
|     if (const CXXMethodDecl *MD =
 | |
|           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
 | |
|       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
 | |
| 
 | |
|   CGCallee callee = EmitCallee(E->getCallee());
 | |
| 
 | |
|   if (callee.isBuiltin()) {
 | |
|     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
 | |
|                            E, ReturnValue);
 | |
|   }
 | |
| 
 | |
|   if (callee.isPseudoDestructor()) {
 | |
|     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
 | |
|   }
 | |
| 
 | |
|   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
 | |
| }
 | |
| 
 | |
| /// Emit a CallExpr without considering whether it might be a subclass.
 | |
| RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
 | |
|                                            ReturnValueSlot ReturnValue) {
 | |
|   CGCallee Callee = EmitCallee(E->getCallee());
 | |
|   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
 | |
| }
 | |
| 
 | |
| static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
 | |
|   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | |
| 
 | |
|   if (auto builtinID = FD->getBuiltinID()) {
 | |
|     // Replaceable builtin provide their own implementation of a builtin. Unless
 | |
|     // we are in the builtin implementation itself, don't call the actual
 | |
|     // builtin. If we are in the builtin implementation, avoid trivial infinite
 | |
|     // recursion.
 | |
|     if (!FD->isInlineBuiltinDeclaration() ||
 | |
|         CGF.CurFn->getName() == FD->getName())
 | |
|       return CGCallee::forBuiltin(builtinID, FD);
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
 | |
|   if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
 | |
|       FD->hasAttr<CUDAGlobalAttr>())
 | |
|     CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
 | |
|         cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
 | |
|   return CGCallee::forDirect(CalleePtr, GD);
 | |
| }
 | |
| 
 | |
| CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Look through function-to-pointer decay.
 | |
|   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
 | |
|         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
 | |
|       return EmitCallee(ICE->getSubExpr());
 | |
|     }
 | |
| 
 | |
|   // Resolve direct calls.
 | |
|   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
 | |
|     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
 | |
|       return EmitDirectCallee(*this, FD);
 | |
|     }
 | |
|   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
 | |
|     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
 | |
|       EmitIgnoredExpr(ME->getBase());
 | |
|       return EmitDirectCallee(*this, FD);
 | |
|     }
 | |
| 
 | |
|   // Look through template substitutions.
 | |
|   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
 | |
|     return EmitCallee(NTTP->getReplacement());
 | |
| 
 | |
|   // Treat pseudo-destructor calls differently.
 | |
|   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
 | |
|     return CGCallee::forPseudoDestructor(PDE);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have an indirect reference.
 | |
|   llvm::Value *calleePtr;
 | |
|   QualType functionType;
 | |
|   if (auto ptrType = E->getType()->getAs<PointerType>()) {
 | |
|     calleePtr = EmitScalarExpr(E);
 | |
|     functionType = ptrType->getPointeeType();
 | |
|   } else {
 | |
|     functionType = E->getType();
 | |
|     calleePtr = EmitLValue(E).getPointer(*this);
 | |
|   }
 | |
|   assert(functionType->isFunctionType());
 | |
| 
 | |
|   GlobalDecl GD;
 | |
|   if (const auto *VD =
 | |
|           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
 | |
|     GD = GlobalDecl(VD);
 | |
| 
 | |
|   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
 | |
|   CGCallee callee(calleeInfo, calleePtr);
 | |
|   return callee;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
 | |
|   // Comma expressions just emit their LHS then their RHS as an l-value.
 | |
|   if (E->getOpcode() == BO_Comma) {
 | |
|     EmitIgnoredExpr(E->getLHS());
 | |
|     EnsureInsertPoint();
 | |
|     return EmitLValue(E->getRHS());
 | |
|   }
 | |
| 
 | |
|   if (E->getOpcode() == BO_PtrMemD ||
 | |
|       E->getOpcode() == BO_PtrMemI)
 | |
|     return EmitPointerToDataMemberBinaryExpr(E);
 | |
| 
 | |
|   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
 | |
| 
 | |
|   // Note that in all of these cases, __block variables need the RHS
 | |
|   // evaluated first just in case the variable gets moved by the RHS.
 | |
| 
 | |
|   switch (getEvaluationKind(E->getType())) {
 | |
|   case TEK_Scalar: {
 | |
|     switch (E->getLHS()->getType().getObjCLifetime()) {
 | |
|     case Qualifiers::OCL_Strong:
 | |
|       return EmitARCStoreStrong(E, /*ignored*/ false).first;
 | |
| 
 | |
|     case Qualifiers::OCL_Autoreleasing:
 | |
|       return EmitARCStoreAutoreleasing(E).first;
 | |
| 
 | |
|     // No reason to do any of these differently.
 | |
|     case Qualifiers::OCL_None:
 | |
|     case Qualifiers::OCL_ExplicitNone:
 | |
|     case Qualifiers::OCL_Weak:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     RValue RV = EmitAnyExpr(E->getRHS());
 | |
|     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
 | |
|     if (RV.isScalar())
 | |
|       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
 | |
|     EmitStoreThroughLValue(RV, LV);
 | |
|     if (getLangOpts().OpenMP)
 | |
|       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
 | |
|                                                                 E->getLHS());
 | |
|     return LV;
 | |
|   }
 | |
| 
 | |
|   case TEK_Complex:
 | |
|     return EmitComplexAssignmentLValue(E);
 | |
| 
 | |
|   case TEK_Aggregate:
 | |
|     return EmitAggExprToLValue(E);
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
 | |
|   RValue RV = EmitCallExpr(E);
 | |
| 
 | |
|   if (!RV.isScalar())
 | |
|     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
 | |
|                           AlignmentSource::Decl);
 | |
| 
 | |
|   assert(E->getCallReturnType(getContext())->isReferenceType() &&
 | |
|          "Can't have a scalar return unless the return type is a "
 | |
|          "reference type!");
 | |
| 
 | |
|   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
 | |
|   // FIXME: This shouldn't require another copy.
 | |
|   return EmitAggExprToLValue(E);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
 | |
|   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
 | |
|          && "binding l-value to type which needs a temporary");
 | |
|   AggValueSlot Slot = CreateAggTemp(E->getType());
 | |
|   EmitCXXConstructExpr(E, Slot);
 | |
|   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| LValue
 | |
| CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
 | |
|   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
 | |
| }
 | |
| 
 | |
| Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
 | |
|   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
 | |
|                                       ConvertType(E->getType()));
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
 | |
|   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
 | |
|                         AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| LValue
 | |
| CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
 | |
|   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
 | |
|   Slot.setExternallyDestructed();
 | |
|   EmitAggExpr(E->getSubExpr(), Slot);
 | |
|   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
 | |
|   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
 | |
|   RValue RV = EmitObjCMessageExpr(E);
 | |
| 
 | |
|   if (!RV.isScalar())
 | |
|     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
 | |
|                           AlignmentSource::Decl);
 | |
| 
 | |
|   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
 | |
|          "Can't have a scalar return unless the return type is a "
 | |
|          "reference type!");
 | |
| 
 | |
|   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
 | |
|   Address V =
 | |
|     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
 | |
|   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
 | |
|                                              const ObjCIvarDecl *Ivar) {
 | |
|   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
 | |
|                                           llvm::Value *BaseValue,
 | |
|                                           const ObjCIvarDecl *Ivar,
 | |
|                                           unsigned CVRQualifiers) {
 | |
|   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
 | |
|                                                    Ivar, CVRQualifiers);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
 | |
|   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
 | |
|   llvm::Value *BaseValue = nullptr;
 | |
|   const Expr *BaseExpr = E->getBase();
 | |
|   Qualifiers BaseQuals;
 | |
|   QualType ObjectTy;
 | |
|   if (E->isArrow()) {
 | |
|     BaseValue = EmitScalarExpr(BaseExpr);
 | |
|     ObjectTy = BaseExpr->getType()->getPointeeType();
 | |
|     BaseQuals = ObjectTy.getQualifiers();
 | |
|   } else {
 | |
|     LValue BaseLV = EmitLValue(BaseExpr);
 | |
|     BaseValue = BaseLV.getPointer(*this);
 | |
|     ObjectTy = BaseExpr->getType();
 | |
|     BaseQuals = ObjectTy.getQualifiers();
 | |
|   }
 | |
| 
 | |
|   LValue LV =
 | |
|     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
 | |
|                       BaseQuals.getCVRQualifiers());
 | |
|   setObjCGCLValueClass(getContext(), E, LV);
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
 | |
|   // Can only get l-value for message expression returning aggregate type
 | |
|   RValue RV = EmitAnyExprToTemp(E);
 | |
|   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
 | |
|                         AlignmentSource::Decl);
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
 | |
|                                  const CallExpr *E, ReturnValueSlot ReturnValue,
 | |
|                                  llvm::Value *Chain) {
 | |
|   // Get the actual function type. The callee type will always be a pointer to
 | |
|   // function type or a block pointer type.
 | |
|   assert(CalleeType->isFunctionPointerType() &&
 | |
|          "Call must have function pointer type!");
 | |
| 
 | |
|   const Decl *TargetDecl =
 | |
|       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
 | |
| 
 | |
|   CalleeType = getContext().getCanonicalType(CalleeType);
 | |
| 
 | |
|   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
 | |
| 
 | |
|   CGCallee Callee = OrigCallee;
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
 | |
|       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
 | |
|     if (llvm::Constant *PrefixSig =
 | |
|             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
 | |
|       SanitizerScope SanScope(this);
 | |
|       // Remove any (C++17) exception specifications, to allow calling e.g. a
 | |
|       // noexcept function through a non-noexcept pointer.
 | |
|       auto ProtoTy =
 | |
|         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
 | |
|       llvm::Constant *FTRTTIConst =
 | |
|           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
 | |
|       llvm::Type *PrefixSigType = PrefixSig->getType();
 | |
|       llvm::StructType *PrefixStructTy = llvm::StructType::get(
 | |
|           CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
 | |
| 
 | |
|       llvm::Value *CalleePtr = Callee.getFunctionPointer();
 | |
| 
 | |
|       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
 | |
|           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
 | |
|       llvm::Value *CalleeSigPtr =
 | |
|           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
 | |
|       llvm::Value *CalleeSig =
 | |
|           Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
 | |
|       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
 | |
| 
 | |
|       llvm::BasicBlock *Cont = createBasicBlock("cont");
 | |
|       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
 | |
|       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
 | |
| 
 | |
|       EmitBlock(TypeCheck);
 | |
|       llvm::Value *CalleeRTTIPtr =
 | |
|           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
 | |
|       llvm::Value *CalleeRTTIEncoded =
 | |
|           Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
 | |
|       llvm::Value *CalleeRTTI =
 | |
|           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
 | |
|       llvm::Value *CalleeRTTIMatch =
 | |
|           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
 | |
|       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
 | |
|                                       EmitCheckTypeDescriptor(CalleeType)};
 | |
|       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
 | |
|                 SanitizerHandler::FunctionTypeMismatch, StaticData,
 | |
|                 {CalleePtr, CalleeRTTI, FTRTTIConst});
 | |
| 
 | |
|       Builder.CreateBr(Cont);
 | |
|       EmitBlock(Cont);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const auto *FnType = cast<FunctionType>(PointeeType);
 | |
| 
 | |
|   // If we are checking indirect calls and this call is indirect, check that the
 | |
|   // function pointer is a member of the bit set for the function type.
 | |
|   if (SanOpts.has(SanitizerKind::CFIICall) &&
 | |
|       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
 | |
|     SanitizerScope SanScope(this);
 | |
|     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
 | |
| 
 | |
|     llvm::Metadata *MD;
 | |
|     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
 | |
|       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
 | |
|     else
 | |
|       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
 | |
| 
 | |
|     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
 | |
| 
 | |
|     llvm::Value *CalleePtr = Callee.getFunctionPointer();
 | |
|     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
 | |
|     llvm::Value *TypeTest = Builder.CreateCall(
 | |
|         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
 | |
| 
 | |
|     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
 | |
|     llvm::Constant *StaticData[] = {
 | |
|         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
 | |
|         EmitCheckSourceLocation(E->getBeginLoc()),
 | |
|         EmitCheckTypeDescriptor(QualType(FnType, 0)),
 | |
|     };
 | |
|     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
 | |
|       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
 | |
|                            CastedCallee, StaticData);
 | |
|     } else {
 | |
|       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
 | |
|                 SanitizerHandler::CFICheckFail, StaticData,
 | |
|                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CallArgList Args;
 | |
|   if (Chain)
 | |
|     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
 | |
|              CGM.getContext().VoidPtrTy);
 | |
| 
 | |
|   // C++17 requires that we evaluate arguments to a call using assignment syntax
 | |
|   // right-to-left, and that we evaluate arguments to certain other operators
 | |
|   // left-to-right. Note that we allow this to override the order dictated by
 | |
|   // the calling convention on the MS ABI, which means that parameter
 | |
|   // destruction order is not necessarily reverse construction order.
 | |
|   // FIXME: Revisit this based on C++ committee response to unimplementability.
 | |
|   EvaluationOrder Order = EvaluationOrder::Default;
 | |
|   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
 | |
|     if (OCE->isAssignmentOp())
 | |
|       Order = EvaluationOrder::ForceRightToLeft;
 | |
|     else {
 | |
|       switch (OCE->getOperator()) {
 | |
|       case OO_LessLess:
 | |
|       case OO_GreaterGreater:
 | |
|       case OO_AmpAmp:
 | |
|       case OO_PipePipe:
 | |
|       case OO_Comma:
 | |
|       case OO_ArrowStar:
 | |
|         Order = EvaluationOrder::ForceLeftToRight;
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
 | |
|                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
 | |
| 
 | |
|   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
 | |
|       Args, FnType, /*ChainCall=*/Chain);
 | |
| 
 | |
|   // C99 6.5.2.2p6:
 | |
|   //   If the expression that denotes the called function has a type
 | |
|   //   that does not include a prototype, [the default argument
 | |
|   //   promotions are performed]. If the number of arguments does not
 | |
|   //   equal the number of parameters, the behavior is undefined. If
 | |
|   //   the function is defined with a type that includes a prototype,
 | |
|   //   and either the prototype ends with an ellipsis (, ...) or the
 | |
|   //   types of the arguments after promotion are not compatible with
 | |
|   //   the types of the parameters, the behavior is undefined. If the
 | |
|   //   function is defined with a type that does not include a
 | |
|   //   prototype, and the types of the arguments after promotion are
 | |
|   //   not compatible with those of the parameters after promotion,
 | |
|   //   the behavior is undefined [except in some trivial cases].
 | |
|   // That is, in the general case, we should assume that a call
 | |
|   // through an unprototyped function type works like a *non-variadic*
 | |
|   // call.  The way we make this work is to cast to the exact type
 | |
|   // of the promoted arguments.
 | |
|   //
 | |
|   // Chain calls use this same code path to add the invisible chain parameter
 | |
|   // to the function type.
 | |
|   if (isa<FunctionNoProtoType>(FnType) || Chain) {
 | |
|     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
 | |
|     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
 | |
|     CalleeTy = CalleeTy->getPointerTo(AS);
 | |
| 
 | |
|     llvm::Value *CalleePtr = Callee.getFunctionPointer();
 | |
|     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
 | |
|     Callee.setFunctionPointer(CalleePtr);
 | |
|   }
 | |
| 
 | |
|   // HIP function pointer contains kernel handle when it is used in triple
 | |
|   // chevron. The kernel stub needs to be loaded from kernel handle and used
 | |
|   // as callee.
 | |
|   if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
 | |
|       isa<CUDAKernelCallExpr>(E) &&
 | |
|       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
 | |
|     llvm::Value *Handle = Callee.getFunctionPointer();
 | |
|     auto *Cast =
 | |
|         Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
 | |
|     auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign()));
 | |
|     Callee.setFunctionPointer(Stub);
 | |
|   }
 | |
|   llvm::CallBase *CallOrInvoke = nullptr;
 | |
|   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
 | |
|                          E->getExprLoc());
 | |
| 
 | |
|   // Generate function declaration DISuprogram in order to be used
 | |
|   // in debug info about call sites.
 | |
|   if (CGDebugInfo *DI = getDebugInfo()) {
 | |
|     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
 | |
|       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
 | |
|                                   CalleeDecl);
 | |
|   }
 | |
| 
 | |
|   return Call;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::
 | |
| EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
 | |
|   Address BaseAddr = Address::invalid();
 | |
|   if (E->getOpcode() == BO_PtrMemI) {
 | |
|     BaseAddr = EmitPointerWithAlignment(E->getLHS());
 | |
|   } else {
 | |
|     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
 | |
|   }
 | |
| 
 | |
|   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
 | |
|   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
 | |
| 
 | |
|   LValueBaseInfo BaseInfo;
 | |
|   TBAAAccessInfo TBAAInfo;
 | |
|   Address MemberAddr =
 | |
|     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
 | |
|                                     &TBAAInfo);
 | |
| 
 | |
|   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
 | |
| }
 | |
| 
 | |
| /// Given the address of a temporary variable, produce an r-value of
 | |
| /// its type.
 | |
| RValue CodeGenFunction::convertTempToRValue(Address addr,
 | |
|                                             QualType type,
 | |
|                                             SourceLocation loc) {
 | |
|   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
 | |
|   switch (getEvaluationKind(type)) {
 | |
|   case TEK_Complex:
 | |
|     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
 | |
|   case TEK_Aggregate:
 | |
|     return lvalue.asAggregateRValue(*this);
 | |
|   case TEK_Scalar:
 | |
|     return RValue::get(EmitLoadOfScalar(lvalue, loc));
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
 | |
|   assert(Val->getType()->isFPOrFPVectorTy());
 | |
|   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
 | |
|     return;
 | |
| 
 | |
|   llvm::MDBuilder MDHelper(getLLVMContext());
 | |
|   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
 | |
| 
 | |
|   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct LValueOrRValue {
 | |
|     LValue LV;
 | |
|     RValue RV;
 | |
|   };
 | |
| }
 | |
| 
 | |
| static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
 | |
|                                            const PseudoObjectExpr *E,
 | |
|                                            bool forLValue,
 | |
|                                            AggValueSlot slot) {
 | |
|   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
 | |
| 
 | |
|   // Find the result expression, if any.
 | |
|   const Expr *resultExpr = E->getResultExpr();
 | |
|   LValueOrRValue result;
 | |
| 
 | |
|   for (PseudoObjectExpr::const_semantics_iterator
 | |
|          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
 | |
|     const Expr *semantic = *i;
 | |
| 
 | |
|     // If this semantic expression is an opaque value, bind it
 | |
|     // to the result of its source expression.
 | |
|     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
 | |
|       // Skip unique OVEs.
 | |
|       if (ov->isUnique()) {
 | |
|         assert(ov != resultExpr &&
 | |
|                "A unique OVE cannot be used as the result expression");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If this is the result expression, we may need to evaluate
 | |
|       // directly into the slot.
 | |
|       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
 | |
|       OVMA opaqueData;
 | |
|       if (ov == resultExpr && ov->isRValue() && !forLValue &&
 | |
|           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
 | |
|         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
 | |
|         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
 | |
|                                        AlignmentSource::Decl);
 | |
|         opaqueData = OVMA::bind(CGF, ov, LV);
 | |
|         result.RV = slot.asRValue();
 | |
| 
 | |
|       // Otherwise, emit as normal.
 | |
|       } else {
 | |
|         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
 | |
| 
 | |
|         // If this is the result, also evaluate the result now.
 | |
|         if (ov == resultExpr) {
 | |
|           if (forLValue)
 | |
|             result.LV = CGF.EmitLValue(ov);
 | |
|           else
 | |
|             result.RV = CGF.EmitAnyExpr(ov, slot);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       opaques.push_back(opaqueData);
 | |
| 
 | |
|     // Otherwise, if the expression is the result, evaluate it
 | |
|     // and remember the result.
 | |
|     } else if (semantic == resultExpr) {
 | |
|       if (forLValue)
 | |
|         result.LV = CGF.EmitLValue(semantic);
 | |
|       else
 | |
|         result.RV = CGF.EmitAnyExpr(semantic, slot);
 | |
| 
 | |
|     // Otherwise, evaluate the expression in an ignored context.
 | |
|     } else {
 | |
|       CGF.EmitIgnoredExpr(semantic);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Unbind all the opaques now.
 | |
|   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
 | |
|     opaques[i].unbind(CGF);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
 | |
|                                                AggValueSlot slot) {
 | |
|   return emitPseudoObjectExpr(*this, E, false, slot).RV;
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
 | |
|   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
 | |
| }
 |